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ON THE EXISTENCE OF CONJUGATE POINTS
FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION*

ANGELO B. MINGARELLI"
Abstract. In this paper we show that a result of S. W. Hawking and R. Penrose [Proc. Roy. Soc. London

Ser. A, 314 (1970), pp. 529-548] on the existence of conjugate points for a real second order linear
differential equation is a consequence of a much earlier result of M. Yelchin [5]. Yelchin’s original proof is
clarified and corrected and his result is extended. As a result, we obtain extensions of the Hawking-Penrose
theorem and Tipler’s [J. Differential Equations, 30 (1978), pp. 165-174] a complementary result to said
theorem.
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1. Introduction. In 1970 S. W. Hawking and R. Penrose ([3, p. 541], Hawking and
Ellis [2, p. 98]) proved the following interesting result concerning the existence of
conjugate points on (- oe, ) for

(1.1) y"+q(x)y=O.

PROPOSITION 1 (Hawking and Penrose). Let q: (- ,)[0, ), q continuous on

(-,) and q(tl)>0 for at least one point tl R. Then (1.1) is not disconjugate on

(-,).
We recall that (1.1) is said to be (Wintner) disconjugate on (-,) provided

every nontrivial solution has at most one zero on (-oe, oe). It is nondisconjugate or,
more simply, not disconjugate on R otherwise, i.e., there exists at least one nontrivial
solution of (1.1) which has at least two zeros in (- , ).

The relevance of the study of conjugate points of (1.1) to general relativity has
been pointed out in [4]. For example, the Jacobi equation

d2Z
dt 2

R aaflb
Vaz[3Vb

which is defined along a timelike geodesic (see [2]) 7(t) on which Z" is a Jacobi field,
is the proper time along ,/(t), V is a unit tangent vector to 7(t) and RanCh is the
Riemann tensor, has a solution which vanishes at two points tx < 2, I, if and only if
(for example, [4]) (1.1) has a solution y 0 vanishing at and 12 where

1
Vb 2q---(Ra6V +2o)

and R ab is the Ricci tensor and o 2 some nonnegative function. The existence of such
conjugate points for (1.1) with q defined above is related to the incompleteness of
timelike geodesics via the Avez-Hawking theorem (see [4] for further details).
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An elementary proof of Proposition 1 is given by F. J. Tipler [4, Thm. 1] who
complements the Hawking-Penrose result with

PROPOSITION 2 (Tipler). Let q" (-,)(-, ), q continuous on (-,)
and

(1.2) q(s)ds>O,

(where the integral is to be understood in the sense

liminf ( liminf fti )q(s)ds >0
tl--* --oO t2-- +o

whenever (1.2) fails to converge). Then (1.1) is not disconjugate on (- , ).
Tipler’s results are reconsidered, in part, in a subsequent paper by C. D. Ahlbrandt,

D. B. Hinton and R. T. Lewis [1] who present a finite interval analogue of Proposition 1
for the weighted equation

(y’(x)/r(x))’+q(x)y(x)=O, -o<__a<x<b<_,

which, however, does not allow the case r(x)= 1, [1, Thm. 3.3].

2. The aim of this paper is to show that, in fact, Propositions 1 and 2 above are
consequences of a much earlier result of M. Yelchin [5, Thm. 1] which we call Yelchin’s
theorem and which we extend in Theorem 3.1. It is to be noted that Yelchin’s proof of
said theorem causes difficulties as there are many misprints, some of which appear to
be errors on the author’s part. However his proof can still be saved and the results duly
extended to the case when q is merely required to be locally Lebesgue integrable on
(a, b), (a finite or infinite interval).

Furthermore, we emphasize that Yelchin’s results in [5] actually yield a necessary
and sufficient condition for (1.1) to be nondisconjugate on (a,b). However, the stated
condition is not wholly dependent upon q, as one may expect.

3. In the sequel all integrals are Lebesgue integrals and A Cloc (a, b) stands for the
class of all real-valued functions defined on (a,b) and locally absolutely continuous
there. The interval (a, b) will be a finite or infinite interval, oo =< a < x < b =< + . The
(equivalence) class of all functions which are locally Lebesgue integrable on (a, b) will
be denoted by Llo (a, b) and the Lebesgue measure of a measurable set E c (a, b) by
(E).

Next, let zCdenote the collection of all functions " (a, b)-* which satisfy (i) and
(ii)-

(3.1) (i) kAClo(a,b),

(3.2) (ii) lim

.-a
arctanfxoeXp -2fo q(s)ds dt

(3.3) /’(x)+bZ(x)+q(x)>=O a.e. on (a,b)
with strict inequality holding on sets E-, E+ (E-c (a, xo ], E+ c xo, b)) with (E +) > O.
Then (1.1) is not disconjugate on (a,b).

and x0 (a, b) is a fixed (but otherwise arbitrary) point. The main result of this paper is
THEOREM 3.1a). Let q Llo ( a, b ). Furthermore let q zZsatisfy
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THEOREM 3.1b). Conversely, let (1.1) be nondisconjugate on (a,b). Then there exists
a function /’which satisfies (3.3) a.e. on (a,b).

As an immediate consequence we obtain Yelchin’s theorems [5, Thms. 1,2] which
are stated there for continuous q.

COROLLARY 3.1. Let qLloc(-O, o), q: (-, o)---> [0, ) and q(x)> 0 on some
measurable set Ec(-oo, o) with/x(E)> 0. Then (1.1) is not disconjugate on (-

Remark 1. The above corollary contains the Hawking-Penrose results. For if q is
continuous on (- o, ), q(x)>O and q(tl)> 0 for some point tl, then q(x)> 0 in some
finite interval about 1, by continuity. Such an interval has positive Lebesgue measure
and hence Corollary 3.1 applies.

Remark 2. That the Hawking-Penrose result is a direct consequence of Yelchin’s
theorem is seen by choosing k 0 in Theorem 3.1a) and applying a continuity argument
to (3.3) in order to obtain strict inequality. (Note that (3.2) is trivially satisfied for this
choice of k on (- o, )).

COROLLARY 3.2. Let qLloc(- g:), o0), q: (- , o)--> (- , oz), and that q satis-

fies (3.4) and (3.5) below (for some xo R)

(3.4)

(3.5)

x

lirninf q ( s ) ds > O,
x + Xo

lim inf q ( s ) ds > O.
X’-- Ot

Then (1.1) is not disconjugate on (- o, ).
Remark 3. Note that Corollary 3.2 includes Proposition 2, cf. [4].
Remark 4. That Tipler’s theorem (Proposition 2) is a direct consequence of Yelchin’s

theorem can be realized by choosing q(x)= fxXo q(s)ds. This choice of k then satisfies
all the hypotheses of Theorem 3.1a) and so Tipler’s theorem follows (see the proof of
Corollary 3.2 in 4 of this paper for details).

As a final application we give
PROPOSITION 3. Let qLloc(-o, ot:) and assume that f q(s)ds4:0 for some xo,

Xlo If

(3.6) < lim inf q(t) dt ds <= lim inf q(t) dt ds < + oe.
Ixl--,+ Ixl--,+ xo

then

(3.7) y"+Xq(t)y=O

is not disconjugate on (- oe, oo) for each real X q= O.

4. Proofs.
Proof of Theorem 3.1a). Let u be the solution of (1.1) satisfying the initial condi-

tions U(Xo)= 1, u’(xo)=k(Xo). Since k althe function

xI,(x,a)--q,,’(x)+-(x)+a(-q(x)-q,,’(x)-q,,-(x))

where a [0,1] is in Lloc(a,b ), as a function of x. Thus the initial value problem

(4.1) u’ xt’( x, a) u,

(4.2) u(x0 a) 1, u’(x0 a) k (x0),
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where the prime always denotes differentiation with respect to x, admits a unique
solution u--u(x,a)ACloc(a,b) for which u’(x,a)ACloc(a,b ) and u(x,a) satisfies
(4.1) a.e. for a <x <b. Note that for a= 1, (4.1) reduces to (1.1) while for a=0, the
solution u(x, 0) exp ( fo (s) ds ).

We now use the Prifer-type transformation in (4.1): u- pcos, (x0)= 0. Let v be
a linearly independent solution of (4.1) given by the solution of the differential equa-
tion u’v-uv’=l, v(x0)=0. Then it is readily verified that q, ’ACoc(a,b) and
satisfies

(4.3) , i0-2, p2__ U 2 ._ 02,
while p, p’ ACloc(a,b) satisfies the equation

(4.4) p"p- p-4-- xIz( x, a)
a.e. on (a,b), (in contrast with [5, Eq. 8]). Now (4.3) implies that (., a) is increasing
for x(a,b) with q,(x,a)<0 (q,(x,a)> 0) for a<x<xo (Xo<X<b), for each a, 0_<a

__< 1. Now (x, 1) is the phase of (1.1) whereas q,(x,0) is the phase of (4.1)-(4.2) with
a 0. In fact (x, 0) is given explicitly by

(4.5) (x0), =arctan exp 2 _,s,_
x x0

In the following, 0, will denote O0/Oa while ’=)/Ox as usual. Now because of the
smoothess of ,I, as a function of a, u and v will enjoy the same property and thus 0, as
given in (4.3) is AC [0,1], as a function of a for each x. So differentiating (4.4) with
respect to a one finds, after a straightforward but lengthy calculation, that

(4.6) p,a,_(p,,p-l_4p-4)pa__ _p(q+q.,, + q2),
i.e., p satisfies the second order linear differential equation (4.6) (in x) a.e. on (a, b).

Now a particular solution of (4.6) subject to the initial conditions p(x0,a)=
p(Xo, a)= 0 is given by

(4.7) p(x, a) -O(x,a) 2

(since O(Xo, a)= 1, O’(Xo, a)=q(Xo)) where

(4.8) (x,)-- o-(s,)[q,’(s)+g,(s)+q(s)]sin2[g,(x,a)-(s,)] ds,

(in contrast with [5, Eqs. (11), (12)]). Note that (4.7) can be solved so as to yield
information regarding O(x, 1) and O(x,O) and so on ’(x, 1) and ’(x,0) because of
(4.3). Thus, integrating (4.7) with respect to a over [0,1] for a fixed x, one easily finds

(4.9)
exp[ fo (x,a)da]-1

0 (x,0)
We now proceed with the proof. To this end assume the contrary, i.e., that (1.1) is

disconjugate on (a,b). Then (3.3) and the Sturm comparison theorem imply that, for
each value of a in [0,1], there do not exist points Xl(a), Xz(a), (a<xl(a)<Xo<X2(a)
< b) which are zeros of u(x, a). Hence, by the definition of for each x (a, b) and for
each a [0,1], there holds

(4.10) ](x,a)[<.
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Hence the increasing nature of .q and (4.10) now implies that sin2[g(x, c)-q(s, a)]> 0
for each Xo<S<X. This, along with (3.3), implies that (x,a)>__0 for all x>=xo (with a
similar argument holding if x<=xo). Now for xE+ such that tz(E/n[Xo, X])>O (or
x E-), (x,a)>0, as the inequality in (3.3) is strict for such x. Therefore, (4.9)
implies that (x, 1)-(x,0) is nondecreasing for x(a,b). Since /x(E+)>0, there
exists a point x+E+ such that tx(E+\((Xo,X+)r3E+))>O, and l(E+C(x,x+))>O (by
a simple measure-theoretic argument). If we now integrate (4.9) over [x/,x], where
x > x + > x0, we obtain

(4.11) O(x, 1) > O(x, 0)+X2

where h2=q(x/,l)-O(x+,0), as the right side of (4.9) is positive on a set of positive
Lebesgue measure lying to the right of x /. We can now choose x- E- similarly. Then
for x < x < x0,

(4.12) (x, 1) < (x,0)-/2

where/2 (x-, 0)-(x-, 1). Since is monotone we get

(4.13) lim ,(x,1)>__ lim (x,0)+X2

x’-b- x-b-

and

(4.14) lim q(x,1)< lim q(x,0)-g2

x- a x-*

Combining (4.13)-(4.14) we find (because of (3.2))

lim [(x,1)]-lim [(x,1)l>r+X2+
x--b- xa

However ts contradicts (4.10) and this completes the proof.
Proof of Theorem 3.1b). Ts is identical to that corresponding to [5, Thm. 2] and

so it is omitted.

Proof of Corolla 3.1. Let 0 on (-, ). Then and clearly (3.3) is
satisfied since q(x) 0 a.e. by hypothesis. For E bounded (E)> 0, there exists a point
xoE such that ((-,x0)E)>0 and (E(x0, ))>0 (again by a straightfor-
ward measure-theoretic argument). Thus let E-(-,Xo)E and E+E(xo, ).
Then q(x)>0 a.e. on E-E+. (If E is unbounded and (E)>0, there is a bounded
subset F of E with (F)>0. We can then apply the above argument to F.) Thus strict
inequality in (3.3) holds on these sets and so Theorem 3.1a) implies that (1.1) is not
disconjugate.

Proof of Corollary 3.2. Define by (x) f q(s ds. Then ACoc ( , )
and (3.4) implies that ff(x) c where c > 0, provided x x x0. Thus it is immediate
that (3.3) is satisfied, since (x)>0 on some interval about x1. We now show that
satisfies (3.2). Note that

exp -2fx (s)ds =exp( 2q)exp 2 (s)ds

where cx= fxX2 (s)ds. But ff(x)N -c, for xx implies that

)(4.15) exp-2 (s)ds aexp(-2q)exp(2c(x-x)).
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Hence

; }(4.16) lim exp -2 /(s)ds dt= + oo
X +0 Xl

and so the same is true if x is replaced by x0. If x _< x0, note that for x __< x2__< x0 (3.5)
implies that fxxo q(s)ds >_ c9_>0. Thus k(x)>__ c2 for all x __<x2. As before we can easily
derive that

(4.17, exp(-2St(s)ds ) >_c3exp(2c2(x:z-x))
for all x __<x where c3 exp(-2SxX0 /(s)ds). Now (4.17) implies that

(4.18) lim exp 2 q ( s ) ds dt +
X X2 X0

Combining (4.16) and (4.18) we obtain (3.2) as required. Thus qsand so Theorem
3.1a) implies that (1.1) is not disconjugate on (-, m).

Proof of Proposition 3. In order to show this we note that if q is such that for

q(x)=fxXo-q(s)ds, (3.2) holds, then (1.1) is not disconjugate on (-m, m). Now
q(xl)4:0 by hypothesis and so (3.3) holds (with strict inequality around the point xl).
Again (3.1) is satisfied. Thus it suffices to show that

( z,(4.19) lim exp 2 q(s) ds dt dx + oo
X + O( X0 X0

with an analogous result for x ---> m. However (3.6) implies that

<_ q( ) dt <=
x0

provided Ixl >_ X0, where M> 0. Applying the estimate (4.20) to the left side of (4.19) we
indeed obtain (4.19). A similar result holds in the other case. Thus (3.6) implies that
(1.1) is not disconjugate on (-m, ). Now replacing q by Xq as in (3.7) we still have

fxX, (Xq)(s)ds:/:O, provided X@0, and (3.6) clearly holds for each X. Thus (3.7) is not
disconjugate on (- oo, m) for each X : 0 which is what we wished to show.

Note. Condition (3.6) excludes the case when q is of constant sign a.e. on (- e, m)
since, in the latter case, at least one of the quantities in (3.6) is infinite.

Hence (3.6) implies that q must be positive a.e. on a set of positive Lebesgue
measure and negative a.e. on a (possibly different) set of positive Lebesgue measure.
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GLOBAL SIMPLIFICATION OF A SINGULARLY PERTURBED
ALMOST DIAGONAL SYSTEM*

HARRY GINGOLD" AND PO-FANG HSIEH:

Abstract. Given a singularly perturbed differential system ehY’=[D(x,e)+eR(x,e)]Y, where D is a
diagonal matrix, xJ=(a,b), eS.=(O,c], and h and 0 are positive numbers, this paper studies the
conditions such that this system can be globally simplified by Y=(I+ P(x,e))Z into ehz D(x,e)Z, valid
inJ Sq, (0< c =< c). The method and results of Gingold [SIAM J. Math. Anal., 9 (1978), pp. 1076-1802] are
used in this study. These results are also true for complex x and e in certain domains. If 0 h, the results hold
also even when J contains turning points of the equations.

AMS-MOS subject classifications (1980). Primary 34E15; secondary 34E20

Key words, global simplification, singular perturbation, almost diagonal system, turning point

(El)

1. Introduction. Consider an n-dimensional linear ordinary differential system

ehy, [D(x,e)+eO(x,e)] y, d
dx’

where x is a real or complex variable with x J (a, b), (J may be infinite), or x G, a
simply connected domain in the complex plane, e is a real or complex parameter with
e St.- (0, c] or Sc ( e [larg el < a, 0 < lel < c) and 0 and h are positive numbers. Here
D(x, e) and R(x, e) are n by n matrices and

D(x,e)=diag( dl(X,e),...,dn(x,e)}.
Let

(1.2) R(x,e)= ()(x, e)), j,k= 1,2,... ,n.

Without loss of generality, we can assume

(1.3) rj(x,e)=O, j=l,2,. .,n.

Otherwise, r can be combined in d.
DEFINITION. The system (El) is said to be a globally almost diagonal system

(G.A.D.S.) in J [or in G] if there exists an n by n matrix P(x,e) in the class of
CI(yx Sq), [or cl(XSacl)], (0< c), such that for a suitable norm

(1.4) liml[ell 0 as e 0 in Scl [or in Stxca]
uniformly for xJ [or x G] and the following relations hold"

(1.5) Y=(I+P(x,e))Z (I: identity matrix),

(E2) ehZ’=D(x,e)Z.

* Received by the editors November 10, 1983, and in revised form April 9, 1984.
Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506. The work of

this author is partially supported by a Senate Research Grant, West Virginia University.
*Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008. The work of

this author is partially supported by a Faculty Research Fellowship, Western Michigan University.
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Namely, (El) has the fundamental matrix in the following form:

(1.6) Y=(I+P(x,e)) exp e -h D(t,e)dt

The existence of P(x,e) and validity of (1.4) on J [or on G] justify the "globality"
in contrast to "local" results obtained in a subset of J [or of G].

We shall investigate in this paper the sufficient conditions that (E) is a G.A.D.S.
for both x in J and x in G.

It is important to identify a final stage of "asymptotic decomposition" of the given
system (E) as soon as possible. By knowing this, we can avoid laborious linear
transformations and laborious calculations of eigenvalues of n by n matrix functions.
This is one of our aims in defining G.A.D.S.

2. Main theoremsreal case. For x, J, e Sc, let

(2.1) Dk(x,t,e)=Re e -h (d(s,e)-dk(s,e))ds j,k=l,2,...,n (j,k).

The following assumption will be used.
Assumption 1. Assume that dj(x,e) C(J S,.). For each pair (j,k), (j:/: k; j,k=

1, 2,..., n), there exist two fixed numbers mj.k and rhj., such that

(2.2) lfljk <= Djk (x, t, e) <= mjk
for all x,t J, eS or if Dk(x,t,e) is unbounded, then for all x,t J, e Sc, with
either x < or x > t,

(2.3) Dfl(x,t,e)<=mk or Ynjk<__D(x,t,e).

For a suitable norm, let

(2.4) r() f[IR (t, )liar.
Ca

We have the following theorems for real x.
THEOREM 1. Assume that" (i) D(x,e) and R(x,e) are in the class C(JS,.), (ii)

Assumption 1 holds, (iii) O=h, and (iv) r(e)=o(1) as eO+. Then, (El) is a G.A.D.S.,
where liP(x, e)ll-O(r(e)) uniformly on J as e---> O +.

THF.ORM 2. Assume that: (i) D(x,e) and R(x,e) are in the class C1(47.), (ii)
Assumption 1 holds, (iii) 0 > h/2, (iv) there is a fixed number I such that

j,k=l,2,...,n, jg:k

for all xJ and eSc. Then (El) is a G.A.D.S. andllP(x,e)ll--O(e) uniformly on J as
e ---> 0 +, where o min{ O, 20 h }.

We shall prove Theorem 1 in {}3 and use Theorem 1 to prove Theorem 2 in {}7.
Combine the idea of G.A.D.S. with those theorems, we have the next theorem.
THeOReM 3. Under the conditions of Theorem 1 or those of Theorem 2, the differen-

tial system (Ex) has the fundamental matrix with asymptotic expansion (1.6) uniformly
on J.

Analogous theorems with complex x will be given as Theorem 4 and Theorem 5
in {}8.
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Theorem 1 and Theorem 4 include the case that (El) has certain types of turning
points in J or in G. Extension of the method used in proving these theorems can be
applied to the results of Wasow [15] and Lee [10]. Also extensions of the method and
results presented in these theorems can be applied to improve those of Devinatz [2],
Levinson [11], Harris and Lutz [6], and Hartman and Wintner [8]. These will be
discussed in forthcoming papers.

The question of finding the "leading term" of the coefficient of (El) has been
discussed by many over the years (see Hsieh [8]). The theorems in the paper indicate
that D(x,e) is the leading term of the coefficients of (E) if 0> h/2 and appropriate
additional conditions are satisfied.

3. Proof of Theorem 1. From the equations (El) (1.5), (E:) and/9= h, we know
that P(x, e) satisfies the following equation:

(3.1) ehP’=D(x,e)P-PD(x,e)+ehR(x,e)P+ehR(x,e).

Let

(3.2) E(x,t,e)=exp e -h D(s,e)ds

and L be the integral operator

(3.3)
X

LP= E(x,t,e)R(t,e)P(t,e)E-(x,t,e)dt

with lower limits to be specified in the sequel. Then, by a well-known lemma (e.g. see
Wasow [14, p. 169]), the solution P of (3.1) is given by

(3.4) P( x, e) Po + LP, Po= LI.

Let

(3.5) P=(p), RP=((RP)k), LP=((LP)k), j,k=l,2,...,n.

Then

(3.6) (LP)k B,(RP), exp e -h (dg(s,e)-dk(s,e))ds dr,

where flk are chosen to be either a or b so that for between fl.k and x, the exponential
factor of the integrand remains bounded. Let

(3.7) rn max (Irn.k[, [rhjkl )
j,k

and the norm is chosen that

(3.8) Irjkl< IIRII and

also, denote

(3.9) Illelll= sup IIPII.
J
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Then, we have the estimate

(3.10)

Let

(3.11)
We have

(3.12)

Similarly, we have

(3.13)

(4.2)
where

(3.14) IIIPIIIz g(l[IIl+ IIlPIII)r(e).
By Theorem 1 (iv), if cl is chosen small enough, (3.4) defines a contraction mapping for
x J, e S,.. Furthermore, we have

gllIIIr(e)(3.15) IIIPIII-<_ i-(
and Theorem I is proved.

4. Fundamental lemmas. In order to prove Theorem 2, we need to establish the
following fundamental lemmas.

LEMMA 1. Let Z and Pko be n by n matrices with Z (zjk), j, k 1, 2,..., n and Po is
the matrix with one at its (k, k) entry and zero everywhere else. Then, Z commutes with

Po if, and only if, that

(4.1) Zjk’--Zkr--O forj, rCk.

LEMMA 2. Assume that D(x,e) and R(x,e) satisfy (1.1)-(1.3) and (i) and (iv) of
Theorem 2. Then" (1) the matrix D(x,e)+,lR(x,e) has distinct eigenvalues (d(x,e,i),
2(x, e,,/),...,n(x,e,,1)) for x J--, e S, I1=<0 with a suitable positive constant /o; (2)
the characteristic polynomial ofD(x, e) +IR(x, e) has the form

/5,,(h; x,e,,1)=det[D+,lR-hI]=p,(2t; x,e)+,12p,_2(h; x,e,l),

(4.3) p,,(h; x,e)= h (dj(x,e)-h),
j=l

Pn_2(k; X, e, ) is a polynomial in X of degree n- 2; and (3) dj(x, e, rl ) satisfy the following
relations;

(4.4) j(x,e,?)=dj(x,e)+O(?2), j=l,2,...,n

for xeJ, e-S, l?l<=.

Thus, from (3.4), and (2.3) we have

IItrll Z glllII LOlIR (t, )Ildt.

IILPII <- KIIIPIII faIIR (t, e)Ildt.
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LEMMA 3. Given an n by n matrix D(x, e)+,lR(x, e), where D and R satisfy condi-
tions (1.3) and (i) and (iv) of Theorem 2, and 1 is a complex number. Then, there is an n
by n matrix Q(x,e,,1) in the class of Cl(aYc (Ir/l_</)) (/: positive constant) satisfy-
ing

(4.5)
uniformly on J S x (Irll <__ 1 } for suitable positive constants K and K2 and

(4.6) (I+ O)-(D + nR)(I+ Q)-b(x,e,n)
where

(4.7) b(x,e,n) diag{ 31(x, ,n), aT,(x, ,n),-.-,2,(x,,n)}.
In order to show Lemma 1 subdivide Z according to Pko, namely

(4.8) Z= Z2I Zkk Z23
Z31 Z32 Z33

where Zll is k-1 by k-1, Z12 is k-1 by 1, Z3 is k-1 by n- k, Z21 is 1 by k-1, Z31
is n k by k- 1 etc. Then, by equating ZPko PkoZ, we get that the entries of Z12, Z21,
Z3, and Z3 are all zero. Thus, Lemma 1 is proved.

5. ProoI oI Lemma 2. To show Lemma 2, first note that D + ,/R is linear in r/, and
its eigenvalues are continuous functions of all of its variables (x, e, r/). For ,/= 0, by (iv),
the eigenvalues of D are distinct for xJ and e . Sc, there is a positive constant ’1"/1 such
that the eigenvalues ( ax(x, e, 1), 2(x, e, 1’/),""" ,dn(x, e, rl)} are distinct for x J, e Sc,

To show (4.2), by mathematical induction on n, note first that rjj 0, by (1.3). For
n 2,

(5.1) /52(,; x,e, rl)=
dx-)t r
rr d2 X ( dx X )(d- X)-rr..

Thus (4.2) is true for n 2. Assume that (4.2) is true for n k. Namely, when D and R
are k by k matrices

(5.2) /(X; x,e,)=p(X,x,e)+rl2p_2(X; x,e,q).

For n k + 1, expand + I(X; X, I,) with respect to the last column. Then,

(5.3) P/I(X; x,e,n)=det[D+nR-XI]

p (X;
k

-1-’I E rj, k+IAj, k+l,

j=l

where Aj, k + are cofactors of /, + i- Since A
j, k + is obtained by deleting the jth row

and the last column from det[D+r/R-}kI], it is a polynomial in of degree k-I and
has r/as a common factor. Therefore

k

(5.4) ’/(dk+-X)P-2(X; x,e,l)-[-l’l E I),k+lAj, k+l=*12pk-l(’; x,e, rl),
j=l
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where pk_l()k; X,e,4 ) is a polynomial in X of degree k-1. Thus, (4.2) is true for all
positive integers n.

To show (4.4), following the method given in Gingold [4], consider a new poly-
nomial

qn(,; X,e,4,)’-pn(,; X,e) nt-Pn_2(,; X,e,4),
where /is a complex number. We can assume, without loss of generality, that qn(X;
X,e, 4,/)=0 has distinct roots for xJ, eSc, Il__<x, I1=<, where 42 is a small
positive number. Regard these roots as functions of /, and x, e and 4 as their parame-
ters. These roots satisfy the initial value problems

dX -pn__(X;x,e,4)
(5.6) d--- )qn/i)X X(O)=dj(x,e), j=l,2,. .,n.

Then, these n distinct roots are holomorphic in and expressible as

(5.7) Xj=dj(x,e)+O(l), j=l,2,. .,n,

where O() is uniform with respect to xJ-, ec, 141__<40. By letting =42, 40
min(41, ), X.= d.(x, e,n), we have

(4.4) dj( x, e, 4) dj( x, e)+ O( 42)
for x J, e S,., 141<__4o.

Thus Lemma 2 is proved.

6. Proof of Lemma 3. To prove Lemma 3, we will recreate the proofs of Gingold
[3] carefully to obtain the desired estimates. As proved in Lemma 2, D(x, e) + rIR ( x, e)
has distinct eigenvalues {dl(X,e,4 ), d2(x,e,4),..-,dn(x,e,4)} for xJ, eSc, Inl=<no.
Namely, there exists a fixed number/2, such that

(6.1) inf
x J, S,., Inl < rlo

<___j,k<=n,jCk

Let Fk, k= 1,2,. .,n, be a set of rectifiable closed Jordan curves in the )t-plane such
that F contains__X d(x, e, 4) in its interior and X=d(x,e,4), (je:k), in its exterior
for all x J, e S,., I1=< 0. Consider the matrices P,(x,e,4) given by

(6.2) Pk(x,e,4)=i Rx(x,e,4)dX, k=l,2,...,n,

where

(6.3)

with

(6.4)

Rx(x,e,4)=[XI-D-4Rl-=Rxo(X, e) E [4RxoR]
,=0

Rxo(X,e)=[XI-Dl-l=diag{(X-dl(x,e)) -1 (X-dn(x e)) -1}
Then P,(x, e, 4) is a projection (e.g. see Riesz and Sz-Nagy [12, p. 419]) and in the class
of CI(]x .) and holomorphic in 4 for ([41_< 40 } for some positive

Similar to the differential equation introduced by Kato [9] and used by Coppel [1]
and Gingold [3], consider the initial value problems

dWk dPk dPk(6.5) d-- -- P, Pk -d- W, Wk (X e O) I, k= 1,2,...,n,
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and denote each of its unique n by n solution by Wk(x,e, rt), k= 1,2,...,n. By the
Cauchy’s theorem, the following n by n matrix given by

(6.6) P,o-2rri Rxo(X,e)dX

has entries all zero except the element at the (k, k) place which is one. Consequently,

(6.7) W-l(x, e, 0) PkoWk ( x, e, O) P,o.

As shown in Gingold [3], (6.7) implies

(6.8)

for all , Il 0. Let

(6.9) Zk(x,e,l) wl(x,e,)(D+R)Wk(x,e,j)

and

(6.10) Z,(x,e,)=(zk,g), i,j=l,2,. .,n.

Note that [,I-D-R]-1 and D+IR are commutative, Pk(x,e, rt) and D+IR are
commutative. By (6.8)

(6.11)

Namely, Zk(X, e, 1) and Pk0 are commutative. By Lemma 1, we have

(6.12) z,i,(x,e,n)=z,,j(x,e,n)=O for i,j4k.

Also, note that the only nonzero element in Z,(x,e,l)Pko is zkk and P is the
projection which takes the vector space on which D + /R operates onto the subspace
spanned by the eigenvector corresponding to d,(x,e, ). Also, from (6.9), we have

(6.13) ( D + lR ) W, ( x, e, rl ) P,o W, ( x, e, l ) Z/, ( x, e, rl ) Pko.

Therefore,

(6.14) ( x, & x, )

and Wk(x, e, l)Pko. has exactly one nonzero column which is the eigenvector of D +R
corresponding to d,(x, e, ,/).

Now, denote the coefficient of (6.5) by

(6.15)
dPk dPk

d P-P- Nk( x, e, *I )
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which is in the class of CI(yx gc), holomorphic in r/for (Inl <_ n0 ). Thus, the solution
of (6.5) can be written as

(6.16) W,(x,e, rl)=I+ Nk(x,e,’Ol)drl

-[" X,E,II ) Nk ( x e, "q 2 ) d’rl :z d’q +

which converges uniformly for [/[ __< /k, for a certain positive constant hk- Let

(6.17) Qk(X,e,rl) Wk(X,e,rt)--I.
Then,

(6.18) Q,(x,e,rl)= Nk(X,e,rll)drl1+ Nk(X,e,’rll ) Nk(x,e, rl2)drl2drl1+

Since Nk is in the class of CI(jV ), and holomorphic in r/for ([r/[ __< }, there exists a
positive constant gk, independent of (x,e, rt), such that

IIN,(x,,,)ll<-g, for(x,e,r/)inaxgcx (I,1_-<,,}.(6.19)
Then,

(6.20) IIQ,,(x,,,n)llzg,, d+g +...

<= e g’l’l- 1 0 as Il 0.

Thus, we can put

(6.21) Ok(x,e,) =Gk(x,e,),
where Gk is in the class of CI(]x c) and holomoc in for (11}.

Put

(6.22) W(x,e,)= Z Wk(x,e,)Po.
k=l

Then, by (6.9), (6.13) and (6.14), we have

(6.:3) (D+nR)W= (D+nR)W(,,,)eo
k=l

kl

(x,,nlo(x,,n
kl

=(x,,n)(x,,n),
where b is given in (4.7), namely

(4.7)
Put

(6.24)

b(x,e,,1)=diag( II(X, E, T/),""

W(x,e,rt)=I+ Q(x,.e, rt).
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Then, since Y’.=0Pk0 I, and by (6.22), we have

n L(6.25) Q(x,e,rl)= Qk(x,e,rt)P,o=rt Gk(x,e, rt)Pko,
k=l k=l

(6.26) Q’(x,e, rt) L Q’(x,e,n)P,o
k=l

n a, ( x, , n ) e,o, -d-x
k=l

Put

(6.27)

(6.28) K

and

]xs.x {Inl<} k=l

Thus, Lemma 3 is proved.

7. Proof of Theorem 2. First of all, since D(x, e) is diagonal, by Lemma 3 there
exists an n by n matrix Q(x,e) in the class of C1() such that

(7.1) (I+ o)-x(D + eR)(I+ Q)=b(x,e),

where

(7.2)

Furthermore, we have

b(x, e) diag{ d(x,e),... ,d,,(x,e)}.

(7.3) IIQ(x,)ll=o(), IIQ’(x,)ll=o()
uniformly on J as e 0 +.

Now, apply the transformation,

(7.4) Y=(Z+Q(x,e))V,

which reduces (E) to

ehV’= )(x, e)-eh( I+ Q)-lQ’] g
[b(x,)+"k(x,)] v,

where

b b eh diag( I+ Q) Q’,

k= ((I+ Q)-lQ’-diag(I+ Q)-Q’}.
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Then, the system (7.5) satisfies the conditions of Theorem 1 with r(e)= O(e). There-
fore, there exists an n by n matrix ]’(x,e) in the class of C1(97 ff.2), (0<c2=<c), such
that

(7.7) Y= (I+ Q )( I+/) exp( ,,
In order to show that (El) is a G.A.D.S. following an argument of Gingold [4], we

intend to show that

(7.8) e-hf[b(t,e)-D(t,e)] dt= O(e)

uniformly on J as e 0 /. In fact, by Lemma 2

Pn(X) Det( D + eR XI ) =Pn(;k) + e2Opn_ 2 ( , ),(7.9)
where

(7.10) P" (’)
j=l

and p,_2(,) is a polynomial of order n- 2. Since, by (2.5), pn() has distinct zeros dj.,
j= 1,2,. .,n, the zeros j of/,(X), as given in (7.2), are also distinct on] c3 for some
c (0 < c3<_ c_), and moreover, by suitable indexing of the zeros of p,(k), we have

(7.11) dj(x,e)=d(x,e)+O(e2), j= 1,2,-.. ,n,

uniformly on J as e 0 /. Thus,

b ( , D( t, de -fdiag(I+ Q(t,e))- Q’( ,e)dt

)
uniformly on ag as e0+, as the first integral is of O(e20-h), by (7.11), and the second
integral is of O(e), by (7.3). Let

(7.13) P(x, e)= (I+ Q)(I+b) (exp( e-hfx[ b(t,e)-D(t,e)] dt )-I,
thus Theorem 2 is proved.

8. Theorems for the complex variable case. For the case that x is a complex
variable, the following assumption will be used.

Assumption 2. Assume that" (1) D(x,e) and R(x,e) are holomorphic on G Sc; (2)
there are two fixed points a and b on the boundary of G such that for every x G, there
exists a Jordan curve FxG connecting x to a and b, and the quantities D/k(x,t,e)
given by (2.1) are defined for t Fx; (3) for each pairj, k(j4: k; j,k= 1,2,..-,n), there
exist two numbers m/k and rhj. such (2.2) holds for every x G and Fx, e S,, or if
Djk(X,t,e) is unbounded, then (2.3) holds for all xG, tF, eS,c, with on either
side of x.

Let

(8.1) (e) sup f  IlR(t, )lldt.
We have the following theorem.
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THEOREM 4. Assume that: (i) Assumption 2 holds, (ii) O= h and (iii) (e)= o(1) as
eO in S,.. Then, (El) is a G.A.D.S., where IlP(x,e)ll=O((e)) uniformly in G as eO
in Sq, (0 < c <__ Cl).

THEOREM 5. Assume that: (i) Assumption 2 holds, (ii) 0> h/2, (iii) there exists
a fixed number I such that (2.5) holds for all x G and eSc. Then, (El) is a
G.A.D.S. and IIP(x,e)ll-O(e) uniformly on G as eO in Sq, (0<q <=c) where o=
min( 0, 20- h }.

These theorems improve a special case of the result of Sibuya [13].
The proofs for Theorem 4 and Theorem 5 for a fixed path F are similar to those

for Theorem I and Theorem 2, respectively. Then, employ a method similar to that in
Gingold and Hsieh [5], there exist P(x, e) globally in G satisfying these theorems.

Remark. (1) Similar to discussions in Gingold and Hsieh [5], Assumption 2 is
satisfied if the following condition is satisfied:

(K) There exist two points a and b on 3G and positive constants ax, a2 and
( < r/2) such that every x in G can be connected with a and b by a smooth Jordan
curve in G

rx(8.2)
satisfying:

(8.3)

(8.4)

(8.5) 2

or

(8.6)

s(O)=a, s(1)=b, s()=x (0<<1)
ds

O<a1_< =<a_ for everyFx,

--+__<arg [dj(s(r),e)-dk(S(r),e)]- -harge

__<- (mod2r)

+3__<arg [dj(s(r),e)-dk(S(r),e)] -harge

3’/7"
_< 3 (mod 2r)

for every Fx, 0 _< r =< 1, e S,.,j4: k,j,k= 1,2,. .,n.
(2) In particular, if G is a simply connected domain bounded by two conjugate

circular arcs connecting the origin x =0 and x b, (b > 0) such that their tangents at
x=0 are the straight lines argx= +y, (0<y < r/2), respectively, and if Re{dj(x,e)-
dk(X,e)}4:O for xG, eSc,j4k,j,k=l,2,...,n, then, for xG, Imx 4= 0, F can be
taken to be the circular arc passing through s 0, s x and s b, and for Imx 0, F is
taken to be Ob. Condition (K) is satisfied if and et are sufficiently small.
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OSCILLATION RESULTS FOR SECOND ORDER DIFFERENTIAL
SYSTEMS*

G. J. BUTLER" AND L. H. ERBE"
Abstract. Oscillation criteria are developed for the second order vector differential system (1)y" + Q(t)y

--0 where Q(t) is an nn real continuous symmetric matrix. We show that Xl(t)--l(ftaO(s)ds) + o as
t---, o along with either a condition on the trace of ftQ(s)ds, or a condition on the growth of kl(t)/kn(t),
imply oscillation of all solutions of (1). (Here ?1(.)_>_ >=An(. denote the (ordered) eigenvalues of the
n n matrix.). The results obtained generalize a theorem of Mingarelli.

1. Introduction. Consider the second order vector differential equation

(1.1) y"+Q(t)y=O, t[a, oo)

where Q(t) is a continuous real symmetric n n matrix function. In partial answer to a
conjecture in [6], it has been recently shown by Mingarelli [7] that the condition

(1.2) )lim X Q(s)ds + o,

where hi(. ) denotes the maximum eigenvalue of the matrix, implies oscillation of (1.1)
under the assumption that condition

(1.3) -tr Q(s)ds
t-- oo

holds, where tr(.) represents the trace of the matrix. In this paper, we show that
condition (1.2) implies oscillation of (1.1), even if (1.3) does not hold, provided a
weaker condition than (1.3) holds (cf. 2). In addition, we show in 3 that condition
(1.2) can also be weakened somewhat provided a certain relation holds between the
largest and smallest eigenvalues of ftaQ(s) ds as

Before proceeding with the statement of the results, we recall some pertinent
definitions and notation which will be subsequently used. For any n n matrix A, the
transpose will be denoted by A*; similarly y* denotes the transpose of the column
vector y. If o, [a, oo), to4=t and if there exists a nontrivial solution y(t) of (1.1)
which vanishes at o and tx, then o and tx are said to be (mutually) conjugate relative to
(1.1). Equation (1.1) is said to be disconjugate on an interval J c[a, o) if every
nontrivial solution of (1.1) vanishes at most once in J and (1.1) is said to be oscillatory
if for each o > a there exists > o such that (1.1) is not disconjugate on [t0, t].

The matrix differential system associated to (1.1) is

(1.4) Y"+ Q(t)Y=O, t [a,

where Y is an n n matrix and Q is as in (1.1). A solution of (1.4) is said to be nontrivial
if det Y(t)#O for at least one t [a, o) and a nontrivial solution Y is said to be

*Received by the editors May 5, 1983, and in revised form April 5, 1984. This research was supported by
the Natural Sciences and Engineering Research Council of Canada.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada.
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prepared or self-conjugate in case

(1.5) Y*(t)Y’(t)-Y*’(t)Y(t)=O, t[a,).
(We note that for any solution Y of (1.4) the expression on the left side of (1.5) is
constant.)

Equation (1.4) is said to be oscillatory in case the determinant of every nontrivial
prepared solution vanishes on b, + ) for each b > a. This is equivalent to oscillation
of equation (1.1) since any solution of (1.1) is of the form y(t) (t)a for some
constant vector a and some nontrivial prepared solution Y(t) of (1.4).

If A is a real symmetric nn matrix, then its eigenvalues X(A), 1 =<k_<n (which
are all real) will be assumed to be ordered so that

(1.6) kx(A)>k2(A)> >=Xn(A ),

(1.7) trA= Xk(A ).
k=l

We denote by 6: the linear space of all n n real symmetric matrices. A linear func-
tional q," 5:---) (- m, + m) is said to be positive if 4(A)__> 0 for A Saand A >0 (i.e. A
symmetric positive semidefinite). Many of the recent results concerned with oscillation
criteria for (1.1) and (1.4) have been based on the use of positive linear functionals. We
refer to [6], [3], [4], [11], [5], [1], [10] and the references therein. The basic result
obtained is that equation (1.1) (or (1.4)) is oscillatory on [a, m) in case there exists a
positive linear functional q such that the scalar equation

(1.8) u"+q,(a(t))u=O
is oscillatory, where we assume that q,(I)= 1 (I= identity matrix) (cf. [3]). Hartman in
[5] showed that many of the oscillation criteria can be generalized by replacing linear
functionals by suitable nonlinear functionals.

We present in 4 a class of examples which serve to illustrate the results obtained
in 2 and 3. In particular, it is shown that there exist continuous matrix functions
Q(t) which are such that for any positive linear functional, equation (1.8) is nonoscilla-
tory but by applying the results obtained here we may conclude that (1.1) (or (1.4)) is
oscillatory. We also demonstrate that the results of2 and 3 are independent.

For completeness, we recall the following definitions (cf. [8]). For any subset E of
the real line R, ,(E) denotes the Lebesgue measure of E. If F(t) denotes a continuous
real-valued function and if I,L satisfy -z < 1, L =< +, then we say
lim approx inf t--) F(t) in case , ( t" F(t) =< 11 } < + for all ll < and , ( t: F(t) =< 12 }
+ c for all l2 > l. Similarly, lim approx supt F(t) L in case u ( t" F(t) >_ L ) -k-

for all Lx < L and u ( t" F(t) >= L2 } < + z for all L2 > L. Finally, lim approx t--- F(t) h
in case lim approx sup/__, F(t) lim t--, approx inf F(t) X. Clearly, lim inft_, F(t) =<
lim approx inft__, F(t) =< lim t--, approx sup F(t) =< lim t--, sup F(t).

2. We begin with the statement of the main result in this section.
THEOREM 2.1. Let g= g(t) be positive, absolutely continuous, and nondecreasing on

a, + ) and assume

1
(i) lim approx inf tr

g(t)

(ii) lim approx inf
t--) X

fatQ(s)ds)=l> -,

g(/’) fa hl fa Q((l)do ds



OSCILLATION RESULTS FOR SECOND ORDER SYSTEMS 21

and that

)lim 1 Q(s)ds q-(X).

Then (1.1) is oscillatory.
The proof of Theorem 2.1 will be based on the following lemma which generalizes

[7, Lemma 2.1].
LEMMA 2.2. Let V(t)= V*(t) be a continuous n n symmetric matrix function and

suppose that

(2.1) limapproxsup
tr(V(t)+f V2(s)ds)

=L< + m
t-m g(t)

where g is positive, absolutely continuous, and nondecreasing on (a, + ). Then it follows
that

(2.2) limapproxinf ftg t) +

Proof. Since V(t)= V*(t), it follows that vZ(t)>=0 and so F(t) fV2(s)ds satis-
fies F(t2)>_F(tl), a<=t <t2< +: (i.e., F(tz)-F(tl) is nonnegative definite). There-
fore, since ()l(V(t)))2 __< )l(V2(t)) =< tr(V-(t)) =< n)(V(t)), it follows that if

lim approxinf
1 ft (

,--+ oz g(i) kl(V s))ds-- + )

then

lim approx inf

We define

1 fttr(V2( 1 (, )g(t) s))ds=limapproxinf,_+ g(t) tr V2(s)ds + .

H(t)-= tr (s)ds -Mg(t), t>=a

where M> L is arbitrary. It follows then that

lim approx inf
H(t) +

so that the inequality H(t)> g(t) holds on a set E with v(E)= + m. Also, if we define
the set E by

{ 1 (trV(t)+H(t))>O}E1 =- t" g(t)
then by (2.1) we see that v(E1)< m since M> L and so the complement of E relative
to [a, + z), which we denote by/, satisfies v(R1)= + m, and H(t)< -tr V(t) on/1.
Since v(EC/)= +m, we see that the inequality g(t)<H(t)<-trV(t) holds on
E/. Thus, g2(t)<=H2(t)<=(trV(t))2<=ntr(V2(T))=n(H’(t)+Mg’(t)) holds (a.e.)
on E C E and so we have

(2.3) 1 H’(t) Mg’(t) H’(t) Mg’(t)
-< +< + onEE1.n H2(t) H:(t) H2(t) g2(t )
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This is a contradiction since the integral of the right-hand side of (2.3) is less than
fa)u-2du / fga)Mu-Edu which is finite, whereas the integral of the left-hand side is
infinite since v(E N E )= + o. This proves the lemma.

Proof of Theorem 2.1. If (1.4) is not oscillatory, then there exists a nontrivial
prepared solution Y(t) of (1.4) with det Y(t)O on [to, ) for some to>__a. Let V(t)=
Y’(t)Y-l(t), t>__ o so that V*(t)-- V(t) and V(t) satisfies the matrix Riccati equation

(2.4) V’(t)=Q(t)+ V2(t), t>__to.

Integrating (2.4) we obtain the equivalent integral equation

(2.5) v(t)+ v(t0)=f’ Q(s)ds+ (s)dsV2
to to

and hence

(2.6) V(t)+ V(to)> ft Q(s)ds.
to

Therefore, X(fttoQ(S)ds)<_Xt(- V(t))+)t(V(to)) by the subadditivity of Xx and (2.6).
Since Xl(V2(t))_>(X( V(t))2) we see that limt_X(-V(t))=limt_,h(V2(t))
+ . Now by condition (i) of the Theorem 2.1 and (2.5) it follows that

limaroxsup .g(t) tr V(t) + V2(s) ds

lim approx sup
g(t) tr V(to) Q (s) ds k l < +

t to

where k= lim, (tr V(to)/g(t)). Therefore, by Lemma 2.2 we have that

lim approxinf, g(;)
]

ftto hx(V2(s))ds< + .
Again, from (2.6) we have X(fttoQ(S)ds)2l(-V(t)) for all large (since

( V(I)) + ) and therefore

(2.7 f’e(s)d Z4(Xl(-V(t)l Z4Xl(
to

for all large t. Thus, we obtain by integration

(2.8)
1 f,t kl fs Q(r) dr

g(t) ,o ,o

4 ft Xl(V2(s))dSds<--g(t) to

for all large r and hence taking limapproxinf of both sides as oe we have a
contradiction to condition (ii) of the hypotheses. This proves Theorem 2.1.

Remark. If g(t)= in Theorem 2.1, then condition (1.2) implies that

lim -1 fa )t Q ( r ) dr ds + oe
t--* oe

so that Theorem 2.1 includes the results of Mingarelli [7] with "liminf" replaced by
"lim approx inf". In 4, we investigate further conditions (i) and (ii) by means of several
examples.
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Theorem 2.1 may also be generalized by considering the principal submatrices of
ftaQ(s)ds. We recall the notation (cf. [2])" For any nn symmetric matrix A, the
sequence of symmetric matrices Ak (aij), i,j 1,. ., k, for k.= 1, 2,. ., n satisfies

Xj+x(Ak+I)<=h(Ak)<=X(Ak+I) where Xj(A) denotes thejth characteristic root ofA
(cf. [2, p. 113]). We may then state the next corollary.

COROLLARY 2.3. Let g= g( ) be positive, continuous, and nondecreasing in a, + )
and assume there exists k, 1 <= k <_ n such that

(i) lim approx inf
1 (fa )

t-.o g(t) tr Q,(s)ds > oe,

(ii) limapproxinf
1 ft,_ g(t) kl Ok(r)dr ds= +

and that

(1.2) lim ll lt Qk(s)dsI
\

Then equation (1.1) is oscillatory.
Proof. The proof proceeds as in Theorem 2.1 to obtain equation (2.5) from which

we have

(2.9) Vk(t)+Vk(to) =ftQk(s)ds+ f’ 2((VS))kdS>=f’ Q(s)ds,
to to to

and therefore X(- Vk(t)) + o as by (1.2)k. A straightforward modification of
the proof of Theorem 2.1 now yields a contradiction to condition (ii) and this proves
Corollary 2.3.

3. In this section, we relax the condition (1.2) and replace hypotheses (i) and (ii) of
Theorem 2.1 by a condition on the relative rates of growth of the largest and smallest
eigenvalues of ftQ(s)ds as o. Abbreviate the notation for the eigenvalues of
ftaQ(s)ds to )kl(t)>=)kz(t)>= >_X,(t).

We shall require the following simple lemma.
LEMMA 3.1. Let p(t) be locally bounded, nonnegative and measurable on [a, ) with

p( t) not zero a.e. Let q(t) be nonnegative and locally integrable, such that

p(t)>q(t) fat 2p (s) ds for almost all >= a.

Then for all sufficiently large 6 >= a, we have q L2[ 6, ).
Proof ofLemma 3.1. Let P(t)= flap2(s) ds. Then P(t) is absolutely continuous, and

by hypothesis, P(t)>0 for t>a*, say. We have P’(t)=P2(t)>=q2(t)P2(t), and in-
tegrating P’(s)/P2(s) from 6> a* to t, we obtain

1 1 "t 2

p() p(t)=j q (s)ds,

and so

f 1q(s)ds<_ e(--,
proving the lemma.
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or

THEOREM 3.2. Let one of the following set of hypotheses hold:
(1) (a) limapproxinf,l(t)= and

(b) limapproxsupt_lXl(t)/Xn(t)[> 0;

(2) (a) limapproxsup/_, hi(t)= and
(b) limapproxinft_,lhl(t)/hn(t)l> O.

Then (1.1) is oscillatory.
Proof. Assume that (1) or (2) holds and suppose that (1.1) has a nonoscillatory

solution Y(t). Let W(t) Y’(t)Y- l(t) so that W(t) satisfies

(3.1) W(t)-f. Wa(s)ds=f Q(s)ds+ C, t>= o,
to

where C= W(to)-ftQ(s)ds.
It is known that for any continuous are symmetric matrix-valued function, a

continuously varying orthonormal system may be selected [9]. It follows that we may
choose a locally integrable vector x(t) with IIx(t)ll 1 such that

(3.2) x*(t)( fat Q(s)ds)x(t)=Xx(t ).

Let the eigenvalues of W(t) be/.tl(t)>__ >=p,n(t). By the preceding remark, we
may select a system of (orthonormal) locally integrable eigenvectors ei(t), such that

(3.3) W(t)ei(t)=t.ti(t)ei(t ), e[’(t)ej(t)=Sij.

Define the functions ci(s,t), i= 1,. .,n, a =<s, < , by

(3.4) x(t)= ci(s,t)ei(s ).
i=1

The ci(s,t ) are projections of x(t) on to the orthonormal system (ei(s)}’= 1, and
are locally integrable with respect to both s and t.

We have

(3.5) W(s)x(t)= i(s)ci(s,t)ei(s).
i=1

Denote the left-hand side of (3.1) by (t). From (3.1) to (3.5), we have

(3.6) x*(t)(t)x(t)= E ti(t)c2i (t,t)-f , t2i(s)c2i (s, t) ds.
i=1 to i=1

At this point, in order to give a clearer presentation of the argument, we shall
concentrate on the case n 2. Introduce angle-functions ,/? by defining

(3.7) el (s) cos(s ) e (a) + sin(s)e2 (a),
e2(s) -sinck(s)el(a)+cosck(s)e(a);

(3.8) cl(a,t)=cosO(t ), c(a,t)=sinO(t).

From (3.7) and (3.8), we find that

cl(s,t)=cos(O(t)-ck(s)), c2(s,t)=sin(O(t)-(s)).
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If we put a(t)=O(t)-q(t), we may write (3.6) as

x*( )t ( )x( ) t1 ( )COS2 or(t) + 12 ( )sin2 or(t)

(3.9)

f’ 21(s)cos2(a(t)+q(t)-q(s)) ds- ftt2(s)sin2( a(t)+q(t)-q(s)} ds.
to to

Now x*(t)d(t)x(t)=)l(t)+x*(t)Cx(t ). Since C is constant and Ilx(t)ll=l, we
have

(3.10.1) lim approx infx* ( ) tI) ( ) x ( ) o

or

(3.10.2) lim approx sup x*(t ) (t) x (t)
ot

according as hypothesis (la) or (2a) holds.
Our object is to demonstrate the incompatibility of (3.9) and (3.10.1) or (3.10.2).

Parts b) of hypotheses (1) and (2) imply that there exists 8 with 0 < 8 < 1 such that

(3.11) )kl(t) > for alltT1

where T c [a, o) satisfies

(3.12.1) ,(T1) (if (1) holds),
(3.12.2) v(".) < (if (2) holds),

with 71 a, )- T1.
Let )(t)=max(I)(t)l,I)2(t)l). For t T1, we have X(t)<=kl(t)/8. For anyyR

with II Y ll _-< 1/4 8, we have

(3.13)

Recall that x(t)=cosO(t)el(a)+sinO(t)e2(a ). Simple trigonometry shows that we
may choosey =)3(t) with I](t)ll__< 1/41, such that

X(t) +(t) COS 0 (t)el(a) + sin t(t)e2 (a)

where tg(t) 0(t) + 8/4.
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Now define y(t) by

and let 2(t)=x(t)+y(t). If (t) is defined by

2(t) COS/ (t) el(a) + sin/ (t) e2 (a),

we obtain

rr[ (modr)(modr) and a(t)-if _a(t)[>__ -otherwise,

6
(mod’zr)(3.14) Is(t)l>= g

for all >= a. Now (3.9) and (3.13) give

(3.15)

&(t)--(t)--(t),

r 8
(mod rr)a(t)--S

2*(t)d(t)2(t) =/11 cos
2 t(t) --/12 (t)sin2 &(t)

t/1(s)cos2 ( &(t)+q(t)-(s)} ds

fat/1(s)sin2( a(t)+d(t)--d(s)}ds
1

>_- -Xl(t)-211CII, trl.

Now parts (a) of the hypotheses of the theorem yield the existence of a subset T2 of
[a, c) such that

and

(3.17.1) ,(]’2) < o (if (1) holds),
(3.17.2) ,(T2) m (if (2) holds),

(= [a, )-%). Now (3.12), (3.14), (3.15), (3.16) and (3.17) show that there exists a
subset T (= T1N T) of a, m) with ,(T)= m, such that

(3.18) /11(t)cos2&(t)+/12(t)sin2&(t)- fat/1(s)cos2 { &(t)+q(t)-(s)} ds

fat/1(s)sin2(&(t)+dp(t)-d(s)}ds>O, tT,

where a(t) is bounded away from 0 and r/2 (mod r). Let

(3.19) U1(t)=/11(t)cos2&(t)- fat/1(s)cosa(&(t)q-dp(t)-(s)} ds

and let $1= (t: Ul(t)>0}. By (3.14), there exist 8>0 and a positive integer m such
that

1(3.20) cosE((t)q")>tl fort>a I[<-- (modrr).
m

1Xl(t)-211CII > 0, t Z2(3.16)
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For 1, 2,- -,m, define

Ai=(t>=a"
and let

m

[p,l(t)l t,-a/2i(t)
0, otherwise.

If A i, we have by (3.20) that

(3.21) Ul(t)<i(t)-- l fat^2(s)
By Lemma 3.1, either/i(t)= 0 a.e. or, if qi(t) is defined by

i(t)--Oi(t) fatt2i(s)ds,
we have )L216, o) for 6 sufficiently large. In the latter case, the set of for which
i(t)>= t has finite measure, and in either case, the set of in A for which Ul(t)> 0,
has finite measure. Since a, o) CI im= 1A, we have ,(S1) < o. Similar reasoning shows
that if

Uz(t)=#2(t)sin g(t) fa (s)sin2(f(t)+(t)-(s)) ds

and S= { t: U2(t)> 0}, then v(S2)< . But this is in contradiction to (3.18), and now
the theorem is proved for the case n 2.

In the general case n > 2, the basic idea of proof is the same. We introduce the
orthogonal matrix U(s) whose rows are the eigenvectors ei(s ) of W(s) (see (3.3)).
Denote the vector (c(s,t),CE(S,t),. "’,Cn(S,t))* by c(s,t). Assung, without loss of
generality, that U(a) is the identity matrix, (3.4) gives

(3.22) c(s,t)= V-’(s)c(a,t).
Now denote U-(s) by V(s), the components of V(t)c(a,t) by i(t) and the compo-
nents of (V(s)-V(t))c(a,t) by w(s,t), i=l,...,n. From (3.6), we may write
x*(t)(t)x(t) as

#i(S)(Oi(t)+wi(s,t))2dS"
i=1 i=1

By replacing x(t) by an appropriate (t) and obtaining the corresponding functions
bi(t ), i(s,t), we have

(3.24) *(t)(t)(t) ii(t)O(t) t i 2i(S)( bi(t)+i(s,t))2ds >0,
i=1 i=1

tT,

where ]oi(t)l=>80>0 on T, and T is a subset of [a, o), of infinite measure, vi(s,t ) is
the ith component of (V(s)-V(t))(a,t), and II(a,t)ll--1. Note that (3.24) is the
analogue of (3.15) and (3.18). Since the n n orthogonal matrices (identified with Sn-l)
form a compact set, we may find a finite decomposition of Sn-, (Ik}’=l say, such
that G, H Ik llG Hll < o/2, k l, m. Now define Ak ( >= a: V( ) Ik ).
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Then we shall have

(3 25) (b(t)+fv(s t)) 2 8g

whenever s, tAk, k= 1,...,m,j= 1,. .,n.
With (3.24), (3.25) and Lemma 3.1, we may complete the proof as in the case n 2.

4. We illustrate the results of 2 and 3 with some examples.
1. Let 8>,/>0 and let o=(,/+ )/2-1, k= (/+ 8)/2. Define Q(t) to be

-kt -q(t)

where q(t)=Stn--t-. Then f(trQ)ds=tn-t- ast and Xl(fQds)=
tn as t. Let g(t)=[f(X(fQdo))ds] v where 0<7<1. Then g(t)? as
t , and g(t)-t<n+)v. We have

f[(trQ)ds tn-t
> tS-v(2n+l)

g(t)

which is bounded below as provided that 8(2 + 1) y. Now

i 2It 2 ]I-vg(t) (X{ Qdo))ds= Z (XI( Qdo)) ds

as . By Theorem 2.1, we shall have oscillation if 0 < < <2 + 1 (choose
/2n+1). If > 1, we have 1/tf[(trQ)ds-, so we cannot obtain oscillation by
Mingarelli’s result.

We recall that any positive functional (A) has the form

i,jl

where A =(a .), and =(i .) is nonnegative definite [111. We have (Q(t))=J J
+a(tn--&-)N0 for sufficiently large, since0 (with equality possible
only if 0) and - 1 > o >- 1. Thus the 2nd order scalar equation y"+ (Q(t))y

0 is nonoscillatory for all positive functionals , and tNs class of tests for oscillation
cannot’be used.

2. To illustrate Theorem 3.2, we define the 3 x 3 matrix Q(t) by specifying its
integral from 0 to t. Let fdQ(s)ds=

/2 COS2 sin2 (1 + cos )

1 t/2 sin 2t ( 1 + (1 + cos ) )
0

1 1/2-t sin2t{X+t -(l+cost)}
1/2 sin2 COS2 (1 + COS ) 0

0 0

where n > 1.
A straightforward computation reveals that the eigenvalues of fQ(s)ds are kl(t )

=tl/z, ,2(t)=0, ,3(t)=-tn(l+cost). Let tm=(2m+l)r and t=tm+S. Then it is
easily verified that for near t,, l3(t)l<=cls2m n, for some constant c. Since I,(t)l>=
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C2ml/2, for some constant c2, for near tm, we have I,l(t)/X3(t)l>=l if Isl
c3m1/4-n/2(C3--(C2/Cl)l/2). Thus (t" Il(t)/3(t)] >_ l} has measure at least

ml/4C4Em=l n/2, for some constant 4 > 0, i.e. has infinite measure if n __< .
It follows that hypothesis (1) of Theorem 3.2 holds and equation (1.1) is oscilla-

tory. It is easily verified that Theorem 2.1 cannot be used to verify oscillation in the
case that 2 <_ n =< .
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COMPARISON THEOREMS FOR CERTAIN DIFFERENTIAL
SYSTEMS OF ARBITRARY ORDER*

E. C. TOMASTIK"
Abstract. Comparison theorems are given for (k, n k)-focal points of systems of the form rx(k) ](n- )

-(- 1)n-*px 0, where r and p are mm matrices. The system is not assumed to be selfadjoint, and for the
"comparing" equation no sign assumptions are made on the elements of r(t) and p (t).

1. Introduction. In this paper are given comparison theorems for (k,n- k)-focal
points of the two n th order differential systems

(1) [r(t)x(k)](n-k) (1) n-kp(t)x=O

and

(2) [R(t) y(’)]("-’)-(- 1)"-’p(t) y=O,
where r(t), p(t), R(t) and P(t) are all mxm matrices of continuous functions, r and
R Cn-k, and r-l(t) and R-l(t) exist on the intervals under consideration. In addi-
tion, R-l(t) and P(t) are assumed to satisfy a certain "positivity" condition with
respect to a certain cone. However, no further conditions are given on the matrices r(t)
and p(t). In particular, r(t) and p(t) may have oscillatory components. Since no
assumptions are made concerning the symmetry of any of the matrices r(t), p(t), R(t)
and P(t), and no assumptions are made on the integers k and n, the systems (1) and (2)
may or may not be selfadjoint. But even in the case that both systems are selfadjoint,
the results presented here are new.

Focal points play a critical role in variational theory when the systems (1) and (2)
are selfadjoint, and certain comparison theorems have long been known in this case.
For example, Morse [5] gave such comparison theorems for second order systems, and
Reid [8, p. 356] gives such a comparison theorem for general selfadjoint systems of
order 2n. Roughly, these results in the selfadjoint case state that if the matrices r(t)
and R(t) are positive definite and if the matrices P(t)-p(t) and R-l(t)-r-(t) are
both positive semidefinite everywhere and one of them is positive definite at one point,
then the focal point of (1) lies to the right of the focal point of (2). (In the selfadjoint
case the matrices r(t), R(t), p(t) and P(t) must all be symmetric.)

In the selfadjoint case, it is thus natural to define P >p if P(t)-p(t) is positive
semidefinite everywhere and positive definite at at least one point. Thus we can say that
if P is "larger" than p and if R- is "larger" then r-, then the focal point of (1) lies to
the right of the focal point of (2), in agreement with the Sturm theory for scalar second
order differential equations. Since in this paper none of the matrices r(t), p(t), R(t)
and P(t) are assumed to be symmetric, the notion of positive definiteness cannot be
used. A natural alternative definition of P>p (or p < P) will mean that if P (Pij) and
P (Pij), then p(t)<Pi(t ), and for each row strict inequality occurs for one element
at at least one point. This notion is of course independent of the notion of positive
definite, even if p and P are symmetric. However, a selfadjoint example is given later to
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show that if p < P under this latter definition, the focal point of (1) may be the left of
the focal point of (2), a very surprising situation. It will be shown in this paper that a
sufficient condition to assure that the focal point of (1) lies to the right of that of (2) is
to assume ftlr(s)lds<_ falR.X(s)lds and [pij(t)l<lPij(t)[, and that the latter inequal-
ities become strict inequalities for at least one element at at least one point in every
row. The term r; represents the element in the x/th row and the jth column of the
matrix r-1. The integral condition on r-1 and R- is of course more general than just

-t(the condition ]r-jl(t)l<lRij t)l, and is thus of some interest. It is interesting to note
that in the classical results in the selfadjoint case, the assumption that r(t) and R(t) are
at least positive semidefinite is essential. However, in this paper the matrices r(t) and
R(t) need not be positive semidefinite even in the selfadjoint case.

Comparison theorems for focal points were given by the author [9] for m 2, k 1,
but they required that Pj(t) > 0 and R.l(t) > 0. These conditions are replaced with the
much less restrictive conditions that P(t) and R-l(t) be positive with respect to a
certain cone. Thus the results presented here are new for the second order case also.
Focal points were also studied by Keener and Travis [3] for second order systems with
r(t) and R(t) the identity and without the assumption that P(t) is symmetric. In the
scalar case, comparison theorems of the "integral type" were first established by Nehari
[6] for second order equations, by Travis [10] for selfadjoint equations of order 2n, by
Nehari [7], Gentry and Travis [2] and Keener and Travis [4] for a somewhat more
general scalar equation than (1). Elias [1] also studied focal points of scalar equations.

Throughout this paper it is assumed that some partition (I,J} of the integers
{ 1, 2,. .,m ) has been given, i.e., I uJ { 1, 2,-. -, rn } with INJ , and that the set K
is given by

K= ((Zl,.. ",Zm):iI=zi>_O iJ=zi<_O)
The interior of K, K o, will be defined to be

r= ((zl,.-",z,,,):iI=zi>O, iJ=zi<O}.
Also throughout this paper it is assumed that there is one point on [a, b] at which

no row of P(t) is zero, and that P(t) and R-(t) satisfy the following positivity
condition:

Foreveryt[a,b], P(t):KK and R-I(t):KK.
If a matrix A satisfies the above positivity condition, then A shall be said to be
"positive with respect to the cone K." If K is given by K= {(Zl,Z2):z > O, z2 < 0,} then
two examples of such a matrix are

[2 0 and [2 -2]-1 1 -1 1

2. Focal points. A point f(a)[a,b] is called a focal point of a relative to (1),
provided there is a nontrivial solution x(t) of (1) satisfying

(3) x(i)(a)=O, i=0,1,.-.,k-1, [rx(k)](i)(f(a))=O, i=O,1,...,n-k-1,

and there is no nontrivial solution z(t) of (1) which satisfies

z(i)(a)=O, i=0,1,...,k-1, [rz(k)](i)(c)=O, i=O,1,...,n-k-1,

for a < c <f(a). If (1) does not possess such a focal point on (a,b], the equation will be
said to be disfocal on [a, b].
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For any matrix A(t)Cn-k[a,b] for which A-l(t) exists on [a,b], define the
differential operator D by

D(u) (- 1) n-k [A(t)u(k)(t)] (n-k),

u(i)(a)=O, i=0,1,...,k-1, [Au(*)l(i)(b)=O, i=O,1,...,n-k-1.

Then the Green’s function g(t,s,a,A -1) is given by g= g(t,s,a,A-1), where

1 f -(g=(n-k-1)!(k-1)! (t-) s-) -1() d, a<t<s<b,

and

1 fg=
(n-k-1)!(k-1)!

(t--)k-l(s--)n-k-lA-l()d’ a<s<t<b.

Then x(t) satisfies the differential equation (1) and boundary conditions (3) if and only
if x(t) satisfies

f" -a)g(t,s,a,r p(s
"a

It will be useful to state and prove some lemmas at this time.
Let 8i 1 if I and 8i 1 if J.
LEMMA 1. If A=(Aij is positive with respect to the cone K, then 88.iA/>O, i,

j= 1,. .,n.
Proof. Let eJ denote the jth unit basis vector. Then 8/e/K and A(8e/) K. But

the transpose of ASe/is (8A,’",8jAm), and this implies 8SjAi> 0.
LEMMA 2. If A =(Ai) is positive with respect to the cone K and vK, then

8Au>O.
Proof. Since 6v> 0 and, from Lemma 1, 88/Ao.> 0, it follows that 0<Syv/88A o.

+
LEMMA 3. IfA and B are both positive with respect to the cone K, then so is AB.
LEMMA 4. IfA is positive with respect to K, then A" K o K o if and only if no row of

A is zero.
LEMMA 5. If h ( ) is continuous on a, b], h ) a, b K and there exists o a, b

such that h(to)K, then fh(s)dsK.
The main theorem can now be given.
THEOREM 1. Suppose that y(t) is a solution of (2) satisfying the boundary condition

(3) and that y(t)Kfor t(a,b). If falrl(s)lds<_ ft]R-[/l(s)lds and Ipij(t)l<lPij(t)l
for all i,j (1,...,m) and for all [a, b], and iffurthermore for any i= 1,...,m, there
exists an integerj=j(i), 1 <j<m, and ti[a,b such that Ip(t)l<lP(t)l, then (1) is

disfocal on a, fl ], a, fl c a, b].
Proof. Suppose, contrary to the conclusion of Theorem 1, that x(t) is a nontrivial

solution of (1) satisfying the boundary conditions

x(i)(ol)--O, i=0,1,...,k- 1, [rx<k)]<i)(fl)=O, i=O,1,...,n-k-1,

for some a, fl [a, b). Then of course,

x(t) =faa g(t,s,a,r-1)p(s)x(s)ds.



COMPARISON THEOREMS FOR DIFFERENTIAL SYSTEMS 33

Also,

y(t) fab g(t,s,a,R-1)p(s)y(s)ds.
Obviously y(i)(a)= 0, i=0,1,. .,k- 1. It will now be shown that if yi(t) is the ith

component of y(t), then y}k)(a)O. Toward this end it is easy to see by calculation
that

1 g_l(t)fb (s_t),-k-lp(s)y(s)dsY((t)=(n_k_l)
and

y(’)(a)
(n-k-l)! R-l(a) fab (s-a)n--lp(s)y(s)ds.

By hypothesis, y(s)K for s(a,b) and P(s)y(s)K for s(a,b). Also by
hypothesis there exists a to(a,b) such that no row of P(to) is zero, and by
Lemma 4 P(to)y(to)K . An application of Lemma 5 then shows that
ff(s-a)n-’-Xp(s)y(s)dsK. Of course no row of R-(a) can be zero, and using
Lemma 4 again,

y’)(a)
(n-k-l)! R-l(a) fab (s-a)n-k-lP(s)y(s)dsg O.

This then implies that no component of y)(a) can be zero. This shows that for any i,
y(t) has a zero at t=a of precisely order k. Sincey(t) K for t(a,b), no component
of y(t) can be zero, for t(a,b). Thus for a[a,b), yi(t) has a zero of order at most k.
Of course xi(t) has a zero at t=a of at least order k. Thus the terms Ix(t)l/ly(t)l are
continuous on (a,b] and, most importantly, are bounded on (a,b], for any a>a.
Define

sup(Ixi(l)[/lY,(t)l’t ,b )
sup( Ixi(t)l/[yi(t)l" (a,b])

if a(a,b),
ifa=a.

Also define Ilxll max(llxll i= 1,... ,m ).
For any t(a,b] if a=a, or for any t[a,b] if a(a,b),

Ix.(t)l E gi(t,s,a,r-)Pij(s)xj(s) ds
i,j

<E [&.(t.s.a.r-)[ [Po(s)[ [Yj(s)l Ix,(s)l ly/(,)[ d
i,j

-<E Ip,(,)l
i,j

It follows readily from a calculation that 3/3a of the last term is

1

(n-k-1)!(k-1)!

s--a) -k-llPij(s)l
i,j
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Thus

If A(t)=(aij(t)) is a matrix, define the mm matrix/11 by (lao.(t)l). Then using the
definition of g(t,s,a,r-t), it follows immediately that Igi(t,s,a,r-1)l < gi( t, s, a, r{ ).
Also notice that if F(t,s,l)=(t--l)k-X(s--l)n-k-, then

(n k- 1)!(k- 1)!&,i (t,s,a,r{)

=L F(t,s,)lril()ld

OF(t,s,)

<_ [RT)(li)ldliF(t,s, )

L8 (t )k-l( n-k-llR_-) ()1,,

OF(t,s,l)
dl

since F(t,s,8)>O and OF(t,s,t)/Ot< 0 over the regions of integrations. These remarks
then show that

(4) g,(t,s,a,R;)lp,j(s)[ lyj(s)ldsllx[I.
i,j

But since y(t)4=O on (a,b) for all j, and since by hypothesis Ipij(to)l<leij(to)l, and
since at least one of the terms R-ix(t), 1,- .,m, must not be zero for any [a, b], it
can be seen that in the right-hand side of (4) the IPj(s)l terms can be replaced with

Ieij(s)l and obtain a strict inequality. That is,

i,j

Since g(t,s, a, R-a) and P are both positive with respect to the cone K, their product is
also. Then by Lemma 2, the right-hand side of the last term is just

/ELb
-1)&,i(t,s,a,R Pi()y(s)dsllxll,

i,j

where 8= 1 if I and= 1 if J. It then follows that

and thus

ly,(t)l
1 fa< y,(t) E &,(t,s,a,R-t)Piy(s)yy(s)dsllxll

i,j
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If a(a,b), then (5) holds for t[a,b). Now assume that a=a. It will be shown that
this strict inequality also holds at t---, a+. This will be done by showing that the
inequality

(6) ,y(t) E g,,(t,s,a,r{l)lp,j(s)l [y(s)[dsllxl[
i.j

,, fa 1)<Xy,t, E g,,(t,s,a,R{ IP,j(s)l ls(s)ldsllxll,
i.j

which has already been established for (a, b), can be extended as a strict inequality
to [a, b]. To do this, we simply use l’Hbpital’s rule and find that the limit as a + of
the left-hand side of (6) is at most

1 E (n-k-1) [Rg/(a)l (,-t) Ip, (x)lls(s)ldxllxll,(7)
8iY)(a) i,j

and the lit as a + of the right-hand side of (6) is

1 E (n-k-I)! (s-t) [P,(s)115(s)[dsllxll.(8)
a,y(a) ,,

Just as before, we readily see that indeed (7) is strictly less than (8). Since the left-hand
side of (5) is less than or equal to the left-hand side of (6), and since as we have seen
before the right-hand side of (5) equals the right-hand side of (6), inequality (5) is true
on [a, b] even if a a.

Since y(t) satisfies (2),

g.i(t.s.a.R Pij(s)yj(s)ds
i.j

and the right-hand side of (5) is just Ilxll. This implies that IIxll < Ilxll, and this in turn
implies that Ilxll < Ilxll. From this contradiction, we infer the truth of the theorem.

The following theorem is more general than Theorem 1. The proof is the same as
Theorem 1 with only the most obvious changes.

THEOREM 2. Suppose that y( ) is a solution of (2) satisfying the boundary conditions

and that y(t)K for all t(a,b) and y(O(a)K for i=0,1,...,k-1. U fXlr,f(s)l ds
flR.X(s)lds and Ip(t)llg(t)lfor all i,j(1,...,m) and for all t[a,b], and g

furthermore for any i=l,...,m, there exists an integerj=j(i), 1 jm, and ti[a,b
such that IPi2(t)l<lg2(t)l, then (1) is disfocal on [a,B]c[a,b].

Theorems 1 and 2 require y(t) not only to be a solution of (2) satisfying the
boundary condition (3) but also to satisfy y(t)K for all te(a,b). Using the theory
of 0-positive linear operators, it can readily be shown that such solutions do indeed
exist for a large class of matrices R(t) and P(t). Such a condition is to assume that
P(t) satisfies the additional assumption that for vK and vO, P(t)vK for all

[a,b.]. Notice that this latter condition, among other things, restricts P(t) never to
be diagonal, whereas P(t) could be diagonal before. Notice also that the first example
given at the beginning does not satisfy this latter condition, but that the second
example does. The following theorem can now be given.
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THEOREM 3. Suppose that P(t) also satisfies the condition that for any v K, v 4= 0
and t[a,b], then P(t)vK. Then if(2) has a focalpoint b, then (2) has a solution y(t)
that satisfies the boundary conditions (3) andy(t) K o for (a, b).

Proof. To establish this theorem define the Banach space

B= (u C([a,b]): u(a):0),

with normllulll sup( lu(t)l: [a, b ]). Also define the cone

(= ( uB’u(t)K for t[a,b]),

with interior/0= (u B" u(t)K for t(a,b)}. It is apparent that the operator

T(u)=fabg(t,s,a,R-1)P(s)u(s)ds
maps / into /0, and therefore by arguments similar to that found in [2], T is
/o-positive with respect to the cone/. From this, Theorem 3 follows in the same way
as found in [2].

We can now state a comparison theorem for focal points of (1) and (2). Let fp(a)
and f,(a) be the focal points of (1) and (2), respectively.

THEOREM 4. Suppose that P(t) satisfies the additional condition that for every v K,
v4O, t[a,b], P(t)vK. If ftlril(s)[ds<_ ftlRi-)l(s)lds and if Ip(t)l<_lP(t)l for
i,j (1,. ., m) and for all [a,fp (a)], and if furthermore for any 1,..., m, there
exists an integer j=j(i), 1 <_j<_m, and ti[a,fp(a)] such that [pi(ti)[<[Pi(ti)[, then

fp(a)>fp(a).
Proof. This theorem follows immediately from Theorems 1 and 3.
In all the theorems presented here, it has always been assumed that the absolute

value of pij(t) must be less than or equal to IP.(t)l, in order to assure that (1) oscillates
slower than (2). This condition obviously says that pij(t) cannot be too negative. The
following example will demonstrate that the theorems presented here are not true if one
just assumes that pgj(t)<lPij(t)l. Let P be the identity matrix and let the symmetric
matrix p be given by

and n= 2, k= 1. Of course f,(0)=rr/2. Notice that a solution of x"+px=0 is x=
(sinv-t, -sin,/-t)/v-, and it is easy to see that fp(O)=(r/2)V <f,(0). This example
clearly shows that p<P (in the sense that pij(t)<Pi(t)) does not imply f,(a)<fp(a),
even in the selfadjoint case. This example also illustrates just how useful Theorem 1 can
be. Change the roles of p and P, i.e., define p to be the identity matrix and P to be the
other matrix. Notice that P is positive with respect to the cone K= ((Z1,Z2):Z 0, Z2

0} and that y(t)=(sim/-t,-sinv-t)/v- is a solution of y"+P(t)y=O, y(0)=0,
y’(r/2V-)= 0 and y(t)g for (0,r/2v/-). Also ]Pij(t)l<_lPj(t)] and ]P12]<IP121.
Thus Theorem 1 implies that x"+p(t)x=O is disfocal on [0,r/2v-], which it is,
despite the fact that in some sense p is larger than P. By the way, it is interesting to
notice that in these last examples that neither p-P nor P-p is positive semidefinite
and that thus the classical theorems cannot apply.
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ON THE STABILITY OF A DISTRIBUTED NETWORK*

JOS U. rrrtRIe.A+

Abstract. This paper is devoted to the study of the stability of a lossless transmission line network which
is described by a one delay differential-difference equation of neutral type, involving three parameters. It is
shown that for certain intervals of these parameters, asymptotic stability is available when the delay verifies a
boundedness condition.

1. Introduction. This paper is devoted to the study of the asymptotic stability of
the differential-difference equation of neutral type

+/-( t) + kk( t- r) +ax(t)-akx( t- r)-h(x( t))-kh (x( t- r)) =O,

where r>0, k4:0, a>O and hCt(R) is such that h(0)=0. According to [1], [6], this
equation arises from a lossless transmission line network.

The exponential asymptotic stability of the zero solution of (1.1) is determined by
the exponential asymptotic stability of the linearized problem, which in turn occurs if
and only if for some e > 0, all roots of the characteristic equation

(1.2) z (1 + k exp( rz )) + a kb exp( rz ) 0

satisfy Rez __< e, where 3’ h’(0), a a 3’ and b a + 3’.
The case 3’ <a is considered in [1], [2], [6] (see also [3]). In [1], [2] in working on

the characteristic equation, the exponential asymptotic stability of the linearized
problem is shown for 3’ < a(1- Ik[)/(1 + ]kl), as well as the existence of oscillations for
certain choices of k and 3’ ]a(1-Ik])/(1 + ]kl),a[. By use of Lyapunov functionals,
Slemrod [6] shows the uniform asymptotic stability of (1.1) if SUpx>o(h(x)/x)<
a(1 -Ikl)/(1 + Ikl).

We will discuss here the case 3’ >= a, that is when 0 =< -a < b. With respect to the
parameter 3’, the interval a, + [ is given as a potential region of instability. This will
be confirmed in 2, 3. However imposing some bounds to the delay r, asymptotic
stability is still available for some negative values of k. This is shown in [}3.

Notice that when k 0, (1.2) has a solution with a nonnegative real part (z -a >=
0), and as we will see this situation is maintained for a/b =< k < 0. Therefore we cannot
apply an argument of continuity of the spectra, as in [1], [2], in order to conclude
asymptotic stability. We will prove that for k in some interval ]B,a/b[, asymptotic
stability occurs and disappears when -1 < k =</3. This means that part of the spectrum
of the linearized problem moves from the right-half complex plane to the left one and
returns to the first after a certain value of k. This is a kind of situation which does not
happen in the case 3’ < a, where the whole spectrum is moving from the left-half
complex plane to the right.

The linearized problem of (1.1) is exponentially asymptotically stable only if all
solutions of the associated difference equation

(1.3) x(t)+kx(t-r)=O
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exhibit an exponential decay [4]. In order to obtain this decay we will always assume

Ikl < 1, since then all roots of

(1.4) 1 + k exp( rz ) 0

satisfy Rez (l/r) loglkl < 0. As a preliminary result we have:
TnEOIM 1.1. The real part of all roots of (1.2) is less than c= (b-a)/2 > O. For any

0 < e < 8(k, r)= (l/r) loglk[, the set of all roots of (1.2), such that Rez >= e, is bounded.
Proof. Assume that z u + iv is a root of (1.2). Since (1.2) can be written as

(1.5) (z + a)+k(z- b)exp( rz)=O,

we have

(1.6) exp( ru ) Ikl [z b,

Iz+al
If u>__ c then Iz-bl<-Iz + al, and consequently we obtain u= {log(Ikllz-bl/Iz + al)}/r
< 0, which is contradictory.

For the second part of the theorem, taking M=l-lklexp(re) and z in the strip
-e<=Rez<=c, we have 1 +kexp(-rz)l>=M. Thus if z is a root of (1.2) in the men-
tioned strip, we have Izl_< (lal/ Ibl)/M. The statement then follows.

By analyticity, if all roots of (1.2) stay in the left-half complex plane, then by
Theorem 1.1 they satisfy Rez =< e for some 0 < e < tJ(k, r). Therefore if we consider
the rectangle R={z: O<=Rez<_c, llmzl<=v } for v>0, (1.2) has all roots satisfying
Rez =< e for some e > 0 if and only if the function

f(z) g(z) +k exp( rz),

where g(z ) (z + a)/(z b), has no roots in R for every v > 0.
Considering the boundary F of R, by the argument’s principle, the existence and

nonexistence of zeros with a nonnegative real part depends upon the variation of f(z)
when z proceeds along F. In order to study this variation we develop a method
introduced in [5], which consists in comparing the variation of g(z) to the variation of
k exp(- rz).

Making z u + iv, we will write g(z) as

(1.7)
where

g(u+ iv)=G(u+ io)exp(iO(u+ iv)),

(1.8) G(u+iv)=

and

[(u+a -]-V2)2 1/2

[(u-b)2+v2] /2

{1.9) -(b+a)vO(u+iv)=arctan [(u+a)(u_b)+v2
2. Oscillations. An oscillation for the linearized problem appears whenever f(z)

has a zero on the imaginary axis. Sincef(5)=f(z), it will be sufficient to study f(z) for
z along the nonnegative imaginary half-axis { z: z iv, v >= 0}. The same holds for g(z),
which study is stated in the following.
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LEMMA 2.1. For v>_O, O(iv) decreases in [O,(-ab)x/2] and increases in [(-ab)1/,
+ ); 0(0)=0 and -,r/2 <O(iv)<O, v4O. On the other hand, G(iv) increases in v>=O,
G(iv) < 1 and limo- + G(iv) 1.

Proof. Make u=0 in (1.9) and (1.8). The sign of (d/dv)O(iv) depends upon the
sign of ab+v2. In fact O(iv) decreases as long as ab+v<=O and increases when
ab+v2>_O.

As g(0) > 0, then 0(0)= 0. Since < tan 0(iv) < 0 for v 4: 0, we have r/2 <
O(iv)<O. Moroever, limo_. +o O(iv)=O.

On the other hand, as b>-a then G(iv)<l and limo_.+ G(iv)=l. By deriva-
tion one easily sees that G(iv) is increasing. [3

Then, assuming G(0)=<lkl, let v0>=0 be such that G(ivo)=lk[. In order to have
f(iv)=O, it is necessary and sufficient that v= v0 and that the origin be in the line
segment of the complex plane

( g( iv ), k exp( irv ) ) ( (1- A g( iv ) +Xk exp( irv ) 0__<h__<l}.

The origin is aligned with g(iv) and k exp(-irv) whenever

(2.1) argg(iv)=arg(kexp(-irv))+nr

for some integer n. For n 0, v 0, we have always an initial alignment in the real axis.
If k < 0, condition (2.1) becomes

O(iv)+rv=(n+ l)rr,

and since -r/2 <O(iv)<=O, we have that n>__ -1. However, the alignments which have
the origin in (g(iv),kexp(-irv)) are given by (see Fig. 1)

(2.2) O(iv)+rv=2nr and
2nr (2n+ 1/2)r

_< v< n>0.
r r

When n>= 1, as for rv=2nr, we haveO(iv)+rv<2nr, and for rv=(2n+ 1/2)r, O(iv)+
rv > 2nrr. By continuity we conclude that there is always an %]2nr/r,
(2n+ 1/2)r/r[, which verifies (2.2). For n=0, if there exists an Oo ]0, r/2r[ such
that 0(i0o)=-ro o, then we obtain another alignment, and 0 (g(ioo),
kexp(-iroo) ). This will happen if and only if (d/dv)O(iv)lo=o<-r; that is,
r<(b+a)/(-ab).

If k > 0, condition (2.1) can be written as

O(iv)+rv=nr,
where n >= 0. The alignments which have the origin in (g(iv), k exp( irv)) are given
by O(iv)+rv=(2n-1)rr and (2n-1)rr/r<v<(2n-1/2)r/r, n>=l. As above, this
condition is always verified for some 00 in ](2n-1)r/r, (2n-1/2)r/r[. Hence,
f(iv) 0 if and only if v v0 00 for some n __> 1.

Notice that when (d/dv)O(iv)<O, we have (d2/dv2)O(iv)>=O. This means that for
v [0, (-ab)], O(iv) is a convex function. Therefore all the alignments mentioned above
are unique in each considered interval.

The conditions obtained for the existence of oscillations are equivalent to those of
Brayton in [1].

3. Stability for bounded delays. When we compare g(z) with k exp(- rz), different
conclusions may be obtained according to the signal of k. In the following we show that
for k < 0, asymptotic stability can be obtained.
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-Iklexp(iro)

g(o)

ioo)

FIG. 1

When 1 < k < 0 we write f(z) as

f(z) g(z ) -Iklexp( rz ).

Therefore if g(0)= Ikl we have f(0)= 0. We avoid this degenerate situation by assuming
g(0)lkl.

We have already seen that when r < (b + a)/(-ab), there exists an 00 ]0, r/2r[
such that 0 (g(io0),-Iklexp(-iro). We will show:

THEOREM 3.1. Let -1 <k<a/b and r<-(b+a)/(ab), lf lg(ioo)l>lk ], then all
zeros off(z) have negative real part. Iflg(io)l<lkl, f(z) has two zeros with positive real
part such that 0 < Ilmzl < r/r. Iflg(i%)l=lkl, then f( +_ iw0)= 0.

In order to prove this theorem we will consider the nonnegative imaginary part of
the rectangle R,,

R+ ( z" O<=Rez <=c,O<Imz <=,},

which boundary we denote by F+ Decompose

U u r5 u u r o,
where

F-[={iv’O<__v<=v}, Ff2={u+i"O<-u<-_c},

E+3=(c+iu.o<__v<=), Eo=(u’O<__u<_c).
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As we want to compare g(z) with -Iklexp(-rz) when z proceeds along Ff
clockwise from the origin, we first need to know the variation of g(z) along Ff. We
recall that for z iv in F,, O(iv) is always decreasing if ab + v 2 <_ O. If ab + v 2 > O, O(iv)
decreases in [0,(-ab)1/2] and increases in [(-ab)l/2,v]. Moreover, G(iv) is increasing
and is less than one.

LEMMA 3.1. For z=u+iv along Ff2, O(u+iv) decreases. If (b+a)2<=4v 2, it is
r/2 <_ t( u + v) < O for u in [0, c]; 9( u + iv)= r/2 is satisfied only when ( b + a)2 4v 2

and u=c. If (b+a)E>4v2, there exists a u0]0,c such that -,r/2<O(u+iv)<O in

[0,Uo[; -r <O(u+ iv)< -r/2 in ]Uo, C and O(Uo+ iv)= -,r/2. Moreover, G(u+ iv)
< 1 for u < c and G(c + iv) 1. If v2 + ab >= O, G( u + v) increases. If v 2 + ab < O, there
exists a u ]0, c[ such that G(u + iv) decreases in [0, Ul] and increases in [u1, c].

Proof. We have O(u + iv)= arctan(-(b + a)v/[(u + a)(u b)+ v2]} and
(d/du)O(u+iv)<O, except when u=c, where this derivative is zero. Then O(u+iv)
decreases. If (b+a)E<4v2, we have p(u)=(u+a)(u-b)+v2>O for every u_>_0, and
then -,r/2<O(u+iv)<O. For (b+a)2=4v2 the same holds except when p(u)=0,
which happens only for u=c. Only in this case does O(u+ iv)= ,r/2. If (b+ a)2> 4v 2,
then p(u) has only one positive root uo in ]0,c[. We have O(uo+ iv)= -r/2, O(u+ iv)
> -,r/2 for 0_u<uo and O(u+ iv)< -,r/2 for Uo<U<_c.

On the other hand, clearly G(u+ iv)<__1 and G(u+ iv)=1 only if u=c. Moreover,
as (d/du)G(u + iv) 2 2(b + a)[v 2 (u + a)(u b)]/[(u b) 2 + v 2 2, G( u / v) increases
if vE+ab>=O. If vE+ab<O, the polynomial vE-(u+a)(u-b) has only one positive
real zero U ( ]0, C[ and G(u + iv) decreases in [0, Ul] and increases in [u1, c]. t

LEMMA 3.2. For z=c+ iv moving along Ff3, when v goes from v to zero, O(c + iv)
decreases to O(c)= -,r. If (b+ a)> 2v, it is -,r <=tg(c+ iv)< -,r/2. If (b+ a)= 2v, the
same holds except for O(c+ iv)= -r/2. lf(b+ a)< 2v, there exists a o ]0,v[ such that
O(c+ iv1)= -r/2, O(c+ iv)> -r/2 for v> v and tg(c+ iv)< -,r/2 for v<v1. Further-
more, G(c + iv) 1 for every o [0, v ].

Proof. When z=c+ iv we have (d/dv)O(c+ iv)> 0. Therefore when o goes from v
to zero, 9(c+io)decreases. As g(c)=-1, it is O(c)=-r. One can easily see that
G(c+ iv)= 1 for every o. The rest of the lemma follows as in Lemma 3.1. E3

Let g(0)=-a/b >lkl and recall the boundary I’ of the rectangle R. Taking v
sufficiently large, one can see by Lemmas 3.1 and 3.2 that Ig(z)l>lkl for every z in F.
Therefore as [(z)-g(z)l<_lk for z in F, we conclude by Rouchr’s theorem that f and
g have the same number of zeros inside I’. Hence if g(0)> Ikl, f has a unique zero,
which is necessarily real, inside I’. This conclusion, which can also be reached in a
more direct way, is the reason why in Theorem 3.1 we have to assume g(0)= -a/b < Ikl.

Assume now G(itoo)>lk and take v=m,r/r, where m is a positive even integer
arbitrarily large. Notice that then v0 < o0.

For z u + io, the real and imaginary parts off(z) are

(3.1)
Ref( u+ iv)= G( u+ iv)cos/ ( u + iv)-Iklexp(-ru)cosro,

Imf(u + iv) G( u + iv)sin O(u + it))+ Iklexp(- ru)sinrv.

(A) We will analyze here the variation off(z) for z iv along F.
(1) Let o [0,r/2r]. (i) for o=0 we have Imf(0)= 0 and Ref(0)= G(0)-Ikl < 0. (ii)

For 0<o=<o0, it is -,r/2<O(iv)<-ro<=O. Then cosO(io)<cosrv and Ref(iv)<
(G(io)-Ikl)cosro<=O. (iii) When o0_<o=<0o, we have -r/2<O(iv)<=-rv<=O and
sinO(io)<_-sinrv. Thus, for o<to0, Imf(iv)<(-G(iv)+lkl)sinrv<=O. Moreover,
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Imf( oo) ( G (i0o) +lk I) sin roeo < 0. (iv) If oo =< v =< r/2r then 0(iv) >= rv, which im-
plies Ref(iv)> (G(iv)-Ikl)cosrv >=0 for v > oo. Furthermore, Ref(ioo) > 0.

(2) In each interval [(2n + 1/2)r/r,(2n + 1)or/r], n >= 0, we have always Ref(iv)> O.
(3) If v [(2n + 1)r/r,(2n+ 2)r/r], n>=0 then Imf(iv)<O.
(4) Now let v [2nr/r, (2n + 1/2)r/r] for n >_ 1, and take the alignment 0, in the

interior of this interval. (i) For 2nr/r<=v<__o, we have O(iv)<= -rv+ 2nr. Thus, as in
(1) (iii), it is Imf(iv)<O. (ii) When on<=v<__(2n+l/2)r/r as in (1) (iv), we have
Ref(iv) > O.

Thus, for z iv moving along F, f(z) starts in the left-half plane and passes into
the right one at some v in [Vo,0o] with Imf(z)<0. After that we have always either
Ref(z)> 0 or Imf(z) < 0 (see Fig. 2 below).

(B) When z u + iv proceeds along F,, we conclude by Lemma 3.1 that

Imf(u + iv)= G( u + iv)sine(u + iv) < O.

(C) Now we will discuss the variation of f(z) when z c + iv moves along F-. By
Lemma 3.2, for every v[(2n+l)r/r,(2n+2)r/r], n>__O, we have Imf(c+iv)=
G(c+iv)sinO(c+iv)+lklexp(-rc)sinrv<O. In each interval [2nr/r, (2n+ 1)r/r],
n_>_0, alignments exist for g(c+iv),-Iklexp(-r(c+iv)) and the origin such that 0
(g(c+iv), -Iklexp(-r(c+iv))). In fact, as in [}2, for each n>=0, there exists a

vn ]2nr/r,(2n + 1)r/r[ such that O(c+ i%)+ rr,= 2nrr. A final alignment exists along
the negative real axis, when n 0, v 0mthat is, for z c.

(1) Let %=(2n+l/2)r/r. (i) Then 0(c+izn)=-r/2, and consequently
Ref(c+i%)=O and Imf(c+i,)=-l+lklexp(-rc)<O. (ii) For 2nr/r<=v<(2n+
1/2)r/r we have O(c+ iv)<O(c+ i%)= -r/2, and then Ref(c+ iv)=cosO(c+ iv)-
[klexp(-rc)cosro<O. (iii) When (2n+l/2)r/r<v<=(2n+l)rr/r it is O(c+iv)>

r/2, and therefore Ref(c + iv) > O.
(2) Now assume r,>(2n+ 1/2)r/r. Then O(e+i%)<-rr/2. (i) For 2nr/r<=o<_

(2n+ 1/2)r/r we have O(c+iv)<-r/2, which implies Ref(c+iv)<O. (ii) For (2n+
1/2)r/r <_ v <= r, we have -r < O(c + iv)<= rv + 2nrr =< r/2. Therefore cos0(c + iv)
<_eos(-ro+2nr)=cosrv and Ref(e+iv)<(1-[klexp(-rc))cosro<=O if o<z,. On
the other hand, Ref(c+ i%)=(1-1klexp(-rc))cosr%<O. (iii) For rn<__v<=(2n+ 1)r/r
and O(c+iv)< -r/2 we have -r/2>O(c+iv)_> -rv+2nr> -r, and then
sin O(c + iv) <= sin rv, which implies Imf(c + iv) < ( 1 + Ik] exp( re)) sin ro 0 if v >
r,. On the other hand, Imf(c + i%)< 0. (iv) If r,<=v<=(2n+ 1)r/r and O(c+ iv)>_ -rr/2,
we have Ref(c + iv) > O.

(3) Let %<(2n+l/2)r/r. Then O(c+i,)>-r/2. (i) For 2nr/r <= o <= r, and
O(c+io)_<-rr/2 we obtain Ref(c+io)<O. (ii) When 2nr/r <__ v <= , and O(c+iv)>_

r/2, it is -rr/2 <_O(c+ iv)<_ -rv+ 2nr <=0. Thus sin0(c+ iv)<__ sinrv, and conse-
quently Imf(c+ iv)<(-l+iklexp(-rc))sinrv<=0 if v<%. Clearly Imf(c+i%)<0.
(iii) When %<_v<=(2n+l/2)r/r, we have O>O(c+io)>-ro+2nr>=-rr/2. There-
fore Ref(c+ iv)>0. (iv) For (2n+ 1/2)r/r<=o<=(2n+ 1)r/r it is O(c+ iv)> -rr/2,
and then Ref(c + iv) > O.

Recalling that 0()=-r, for z=e+io moving along F-, f(z) goes back to the
left-half plane, but whenever f(z) crosses the imaginary axis it does with Imf(z)< 0.

(D) Finally when z u moves along F0, we have f(u) (u + a)/(u b)-
Iklexp(-ru), and since r<-(b+a)/(ab) and -a/b<lk], one can easily prove that
f(u) decreases when u increases in [0,c]. Thereforef(z) has no zero on F,0, and when z
moves along F,0 from c to zero, f(z) moves along the negative real axis from f(c)= -1

-Ikl exp(- re) to f(0)= a/b-[kl.
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Thus by the analysis made above, when z proceeds along I’ clockwise, f(z) passes
from the left- to the right-half complex plane and returns to the first. Whenever f(z)
crosses the imaginary axis we have Imf(z)< 0. This means that f(I’) never encircles
the origin and that then f(z) has no zeros in R. Hence all zeros of f(z) lie in the
left-half plane.

FIG. 2

Assume now G(ioo)<lk and take ,=rr/r. It will be Vo> 00, and we distinguish
two cases: vo <= r/2r and v0 > r/2r. Using similar arguments to those in (A)(1), we have
the following. (i) For 0 =< v =< o0, Ref(iv) < 0. (ii) If 0o __< o __< v0 __< r/2r then Imf(iv) > O.
(iii) When Vo<=V<_r/2r it is Ref(iv)>O. (iv) For o<=V<__r/2r and Vo>r/2r we have
Imf(iv) > 0. (v) When r/2r <__ v <= r/r then Ref(iv) > O.

Thus when z iv proceeds along F,I, f(z) leaves the left-half plane and goes to the
right one crossing the imaginary axis with Imf(z)> 0. For z running along F-, as in
(B), we have always Imf(z)< 0. When z moves along F-, making n 0 in (C), we can
see that f(z) returns to the left-half plane crossing the imaginary axis with Imf(z)< 0.
Finally, as before, for z along F,o f(z) runs over the negative real axis from f(c) to f(0).
Hence f(Ff) encircles the origin once, and consequently f(z) has two zeros with
positive real part such that 0 < [Imz[ < rr/r. This achieves the proof of Theorem 3.1.

Notice that when a=0, Theorem 3.1 holds for every delay r. In fact, in this case,
since we can make 0(0)= r/2, O(iv) increases and the alignment o0 always exists.

In all other circumstances we are in a situation of instability. As a matter of fact,
when 0 < k < 1, it can be shown that f(z) has always a real positive zero, and as we have
seen, this situation is maintained when 1 < a/b < k < 0. When 1 < k < a/b < 0 and
the alignment at some 00 in ]0, r/2r[ does not exist, it can be seen that f(z) has two
zeros inside F/r.

When 0 < 3’ < a we have 0 < a < b. It is well known that for [k[ < a/b, all roots of
f(z) lie in the left-half complex plane (see [6]). This can also be proved studying the
variation of the function g(z) and applying Rouch6’s theorem as before. When 0 <a/b
<k, f(z) has always a positive real zero, and for k=a/b we have f(0)=0. For

1 < k < -a/b, a statement similar to Theorem 3.1 holds, as was pointed out in [1].
In fact, using the same procedure, it can be shown that there exists always a

unique tOle]O, qr/r such that f(_ i01)-- 0 if [kl=lg(iox) 1. Therefore if [kl<lg(io)[, all
zeros of f(z) have negative real part. Otherwisef(z)= 0 for some z having Rez > 0 and
O < [Imzl < r/r.
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SEMIGROUPS GENERATED BY A
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION*

OLOF J. STAFFANSf

Abstract. We discuss a number of semigroups generated by neutral functional differential equations of
the form

d
-(x(t)+tx * x(t))+’* x(t)=f(t), t>_O,

x(t)=p(t), t<_O.

They are of extended initial function type and of extended forcing function type, and they differ from each
other by the amount of smoothness which is imposed on x and f above. The extended initial function type
semigroups are adjoints of the extended forcing function type semigroups, and vice versa. The two types of
semigroups are also equivalent in the sense that there is a one-to-one, bicontinuous mapping of the state
space onto itself, which maps a semigroup of the initial function type onto a semigroup of the forcing
function type. In particular, it suffices to study the asymptotic behavior of one of the two types of
semigroups, because the results can easily be transferred to the other type of semigroups.

1. Introduction. We discuss a number of semigroups generated by functional dif-
ferential equations of the form

d
(1.1) -(x(t)+ix * x(t))+ * x(t)-f(t), t>=O,

with initial condition

(1.2) x(t)=(t), t<__O.

The values of x,f and q9 lie in Rn, and IX and , are n by n matrix valued measures on
[0, ). The measure IX is not allowed to have a point mass at zero. The convolution

IX x is defined a.e. by

x* x=f[ [dix(s)]x(t-s), t>=O.

Our semigroups act on certain "fading memory spaces" of functions of type L P, or
W1’’, or W-l’p, with 1 <p< o, defined on R-=(-,0] or R+[0, o). More specifi-
cally, we let r/ be an "influence function", choose our initial function q from either
WI’P(R-;Rn;r/) or LP(R-; R"; r/), and choose our forcing function from either
LP(R+; R"; r/) or W-’P(R+;R;,/). The semigroups which we construct are of two
types; an extended initial function type, and an extended forcing function type. One
gets an extended initial function type semigroup roughly by solving (1.1) with initial
condition (1.2), taking a translate of the solution to be a new initial function, and
taking a translate of the forcing function f to be the new forcing function. To get an
extended forcing function type semigroup we, roughly speaking, solve (1.1) with zero
initial condition, and let the new forcing function be a translate of the old forcing
function f, plus a correction term which replaces the initial function term in the initial
function type semigroup.

We show that the adjoint of a semigroup of extended initial function type is a
semigroup of extended forcing function type, and vice versa. We also show that there is

*Received by the editors September 6, 1983, and in revised form March 16, 1984.
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a continuous, one-to-one mapping of the state space onto itself, which maps a initial
function type semigroup onto a forcing function type semigroup. In other words, the
two types of semigroup are equivalent to each other. This means e.g. that it suffices to
study the asymptotic behavior of one of the two types of semigroup, because the other
type of semigroups behaves in exactly the same way.

This paper may be considered as a continuation of [33] where the same type of
results are proved for a (nondifferentiated) functional equation. We expect the reader
to be familiar with [33], and throughout use the same notations as in [33]. We also refer
the reader to [33] for a short discussion of earlier comparable results.

In [33, 5 and 6] we gave two examples on how the equivalence relation between
the two types of semigroups could be used to find the generator of the extended forcing
function semigroup, and to study the asymptotic behavior of the extended forcing
function semigroup. The equivalence relationships which we state here can be used in

the same way.

2. The initial function semigroups. In this work we shall for simplicity restrict
ourselves to state spaces of type L p, with 1 <p< c. Also, in [33] the limiting cases

p 1 and p o0 were discussed. They could be included here, too, but the proofs are
slightly simpler in the reflexive case 1 <p < o0.

We let r/be an influence function dominated by a dominating function t, and let
L P(R-; Rn; ,/) and Lp(R +; Rn; /) be the standard LP-spaces on R- and R+ with weight
r/ (cf. [33]). Our principal initial function space will be either LP(R-;Rn;*l) or

WI’P(R-; R"; ), where

WI’p(R-; R"; ,I) (qLP(R-; R"; ,/)l q’ LP(R-; R; /)}.

Here the condition on the derivative q’ should be interpreted as requiring that q has to
be absolutely continuous. Our principal forcing function space will be either
LP(R-; R; rl) or W-I’P(R+; Rn; r/), a space of distributions which will be defined later.
In addition to the principal spaces above, we shall also discuss certain initial and
forcing function spaces of cross product type.

The measures/ and v in (1.1) are throughout supposed to belong to M(R/; Rn; p),
and # is not allowed to have a point mass at zero.

To make a long story short, we define W-I’p(R+; Rn; /) to be the dual of the space
lqzl’q(R-; Rn; /), where q is the conjugate index to p, and / is the adjoint influence
function to r/, i.e. /(t)= [r/(- t)] -1, tR. We postpone the precise definition of
I,V-I’p(R+; Rn; r/) to the next section. For the moment it suffices to know that an
element of W-I’p(R+; R; r/) can be identified with a distribution of the form 3z +f+ g’,
where (z,f,g) R" LP(R+; R"; r/)LP(R+; R; r/), 6 is the unit point mass at zero, and
bothf and g vanish on R-

Under the general hypothesis, the equation (1.1) has a fundamental solution r,
which vanishes on R-, belongs to LI(R /; Rnn; e-dr) and has a (distribution) derivative
in M(R/; R"n; e-dt) for some sufficiently large number d. This function satisfies

(2.1) r’ + r’ , lx + r , v= r’ + x, r’ + v , r=3,
where is the unit point mass at zero, and the equation should be inerpreted as an
equation in M(R/; Rn"; e-at). See [28, Thm. 5.2]. In particular, r(0)= I (the identity
matrix). In general r does not commute with and v. However, by (2.1),

(3+/), r’ ,(3+ l)= (3+ )*(3-r , v)= (3- v , r),(3+/),
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so r satisfies

(8 +/.t)* r* v=v* r (8+/x).

Equation (1.1) generates the following initial function type semigroup in
WI’p(R-; Rn; )Le(R+; Rn;

THEOREM 2.1. For each (q,f) WI’p(R-; Rn; *I)LP(R+; Rn; *I), let x=x(,f) be
the solution of (1.1) with initial condition (1.2), and define T(t)(q,f)=(xt,ft), >= O, where
x is the restriction to R- of rtx, and ft is the restriction to R/ of %f. Then T is a strongly
continuous semigroup in WI’’(R-; R"; r/)LP(R+; R"; /).

Here *t is the left-translation operator ztq(s)=q(s+ t). In the sequel we shall use
the subindex t with the same interpretation as in Theorem 1: Whenever a function, call
it h, is given the subindex t, then we mean the restriction to either R- or to R/ of ,t h.

Theorem 2.1 can be deduced from e.g. [30, 7] and [31, 7] (although it is not
formulated there in exactly this form). In the situation above one can express the
solution x of (1.1) with initial condition (1.2) e.g. in the form

(2.3) x=+ (r+ r )q (0) + r (f+ N() +M(q’)),

where we have defined f, M(’) and N() to be zero on (-o, 0), and ’ to be zero
on R+, and

(2.4)
M(k)(t) ft, oo)

dt(s)b(t-s), t>=O,

N()(t) ft dv(s)cp(t-s), t>_O.

To verify that (2.3) is a solution of (1.1) one can simply differentiate (2.3), and use (2.1)
and (2.2) above to get (1.1); by [28, 4 and 7], the solution of (1.1) with initial
condition (1.2) is unique under the assumption of Theorem 2.1.

In the sequel we shall throughout use the same convention as in (2.3), i.e. initial
functions are always extended to R by zero on R/, and forcing functions are always
extended to R by zero on R-.

Equation (1.1) with initial condition (1.2) generates initial function type semi-
groups also in other settings. If we relax the smoothness requirement on the initial
function to LP(R-; Rn; r/), then the forcing function space has to be changed, too,
or some other modifications are necessary. One possible way, the one used in [28], is to
rewrite (1.1) in the form

(2.5)
z’(t)+v * x(t)=f(t), t>=O,

, t>=o,

and replace the initial condition by

(2.6) x(t)=(t), t<0, z(0) ’.
Then one gets the following semigroup.

THEOREM 2.2. For each (q,’,f,g) LP(R-; R";,/) R" LP(R+; R"; /)
LP(R+;Rn;,1), let (x,z)=(x(q,,f,g), z(q,,f,g)) be the solution of (2.5) with initial
condition (2.6), and define T(t)(q,,f,g)=(xt, z(t),ft, gt), t>=O. Then T is a strongly
continuous semigroup in LP(R-; R"; /)R" LP(R+; R"; 1)LP(R+; R";
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Here, the solution (x, z) of (2.5) with initial condition (2.6) is given by

(2.7)
x=tp+ r’+ r ,(f+ N(qg))+r’,(g+ M(ep)),

z=(r+#, r)+(r+l * r),(f+N(p))-v, r ,(g+M(tp)),

where M(tp) and N(tp) are defined as in (2.4) (and initial and forcing functions are
defined to be zero outside of their original domain).

Although it is true that x and z together determine the functions f and g in (2.5)
uniquely, it is not true that x alone does so. This is a rather disturbing fact, because we
only added the new variable z in order to make the problem "well posed", and it is not
necessarily true that z has a natural physical interpretation. In other words there is a
certain redundancy in the forcing function pair (f,g) in (2.5). One can remove this
redundancy in many ways. One way is very obvious: If g 0, then the g-component of
the semigroup remains zero, and by restricting the previous semigroup to the space
L’(R-; Rn; r/)Rn L’(R+; R"; rt) {0} we get the following semigroup.

THEOREM 2.3. For each (q,,f)LP(R-;Rn;,1)R"LP(R+;R";,1), let (x,z)=
(x(qg,,f),z(qg,,f)) be the solution of (2.5) with g=-O, with initial condition (2.6). Define
T(t)(cp,,f)=(xt, z(t),ft ). Then T is a strongly continuous semigroup in LP(R-; Rn; /)
RLP(R+; Rn;

Another equally obvious possibility is to take the f-component of the semigroup to
be identically zero. This is roughly equivalent to replacingf(t) in (1.1) by df(t)/dt.

Theorem 2.2 has the obvious disadvantage that the set of permitted forcing func-
tions is much more restricted than the set of forcing functions in Theorem 2.2. For-
tunately there is also another way of removing the redundancy in Theorem 2.2, which
leaves the set of forcing functions intact. Interpreting (2.7) in the distribution sense, we
can write x in the form

x=tp+ r N(q)+r’ , M(qv)+r f,

where we have replaced 8z+f+g’ in (2.7) by a distribution f W-I’p(R+;Rn;rl). In
Theorem 2.2 we have used a particular representation forf W-I’p(R+; Rn; /), but the
solution x depends only on the distribution f, and not on the particular representation.
Therefore, we can interpret Theorem 2.2 in the following way.

THEOREM 2.4. For each (q),f)LP(R-;Rn;I) W-I’p(R+;Rn;I) choose an arbi-
trary triple (, h, g) R’ LP(R+; R’; r/)LP(R+; R’; 1) representing f, in the sense that
f=8+h+g’, and let (x,z)=(x(ep,,h,g),z(ep,,h,g)) be the solution of (2.5) with f
replaced by h, and with initial condition (2.6). Define T(t)(ep,f)=(xt,ft), t>=0, where
ft=z(t)Wht+(gt)’. Then T(t) is a strongly continuous semigroup in LP(R-;R’;r/)
W- I,p(R +; Rn; ).

3. The adjoints of the rough initial function semigroups. We next want to compute
the adjoints of the initial function semigroups found above. We begin with the adjoints
of the "rough" semigroups in Theorems 2.2-2.4 (the adjoint of the semigroup in
Theorem 2.1 will be discussed in 4).

In all the different cases considered above, the state space of the initial function
type semigroups are reflexive. Therefore, the adjoint semigroups can simply be com-
puted as the adjoints of the original semigroups (it is not necessary to restrict the dual
space to the closure of the domain of the adjoint of the generator).
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Let us first compute the adjoint of the semigroup in Theorem 2.2. The dual space
of the state space can in this case be identified with Lq(R-; Rn; /)XLq(R-; Rn; /))<R
)< Lq(R /; Rn; /) through the duality mapping

(f*,g*,*,q*),(q,,f,g)=q**qg(O)+*+f** f(0) +g** g(0).

Here q is the conjugate index to p, and /is the adjoint influence function to 4, i.e.
/(t)= [r/(- t)] -1, tR. If we denote T*(f*,g*,*,*)(t) by (f,,,), then a straight-
forward computation, very similar to the corresponding one in [33], leads to the
following equations for f, , , and (in particular, the adjoints of the operators M and
N are computed in the same way as the adjoint of the operator G in [33])"

= If* / *(/ r) /** r],
=t[g*-*(v. r)/q** r’],

’*(r / r)(t)/q** ,’(t),
q9 =’r, [* + N*(’*(r+ r) +tp** r)

+M*(-*(v, r)+q** r’)],

where M* and N* are defined analogously to M and N, namely

M*g*(s)= f(t, cX)
g*(t-s)d(s), t>=O,

N*f*(t)= ft, )f*(t-s)dv(s), t>=O.

These equations can be interpreted in the following way. Define (x*, z*) by

(3.1) x*=f* + ’*(r+ g * r) +p** r,

z* =g*- ’*(v r) +q* + r’.

Then x* Lq(R-;R";/)N wI’q(R+;R’;/), z* Lq(R,R",/), and (x*)’(t)=
-*(v,r)(t)+q**r’(t)=z*(t) for almost all t>__0. This means that (x*,z*) is the
solution of the equations

(3.2) o,t] ,t]

z*(t)=(x*)’(t),

x*(t-s)dv(s)=q*(t), t>=0,

with initial conditions

(3.3) x*(t)=f*(t), z*(t)=g*(t), t<0, x*(0)=’*.

Moreover, f=xt*, =z*t =x*(t), and t q0t* +N*(xt*-ft*)+M*(zt* +gt*). In other
words, the adjoint semigroup can be described as follows.

THEOREM 3.1. The state space of the adjoint semigroup T* of the semigroup T in
Theorem 2.2 is Lq(R -, R", /) Lq(R -, R", /) R" Lq(R +; R"; /), and T* is given by

T *(f *, g*, *, cp* )( )
=(x*t,zt*,x*(t),p* +N*(xt*-ft*)+M*(zt*-gt*)),
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where (x *, z * ) ( x * (f *, g *, *, p* ), z * (f *, g *, *, q* ) is the solution of (3.2) with ini-
tial condition (3.3), and

M*(zt*-gt*)(s)= f (x*)’(t+s-v)dtx(v), s>=O,
(s,s+t]

(3.4)
N*(xt* +ft*)(s) f x*(t+s-v)d(v), s>=O.

s,s+ t]

The adjoint of the semigroup in Theorem 2.3 is obtained from the semigroup
above, by simply deleting the g*-component (it is possible to delete the g*-component,
because all the other components are independent of g*; in particular, by (3.4),
M*(zt*-gt* ) depends only on (x*)’, and not on g*).

THEOREM 3.2. The state space of the adjoint semigroup of the semigroup in Theorem
2.3 is Lq(R-; Rn; I)RnLq(R+; Rn; 1), and it is obtained from the semigroup in Theo-
rem 3.1 through a deletion of the g*-component.

Before applying Theorem 3.1 to get the adjoint of the semigroup in Theorem 2.4,
let us give a precise definition of W-I’p(R +; R"; ). As we already mentioned above, we
define this space to be the dual space of W"q(R-; Rn; 1). More specifically, we imbed
Wx’e(R-; R"; r/) into LP(R-; R"; I)XLP(R-; Rn; I)XRn, identifying WI’p(R-; Rn; )
with the subspace

{ (, ’, q(0))l

of LP(R-;Rn;I)LP(R-;Rn;I)R". In the same way as imbed w’q(R-;R";)
into Lq(R-; Rn; /) Lq(R-; Rn; /) Rn. Every continuous linear functional on
Lq(R-;R’;I)XLq(R-;R";)R" can be represented by a triple (z,f,g)R’
L’(R +; R"; ) Lp(R +; R"; rt) through the formula

((z,f,g), (,p,))=z+f q (0) +g q (0).

In particular, every continuous linear functional q* on wI’q(R-; R’; 1) can also be
represented by a triple (z,f,g)R’LP(R+;R’;y)LP(R+;R";I) through the for-
mula

(3.5) (*,)=z(0) +f (0) +g ’(0).

Two functionals W and q induced by z, f, g and z, f, g2, respectively, are identical
if and only if z.=z-h(0), f=fl-h’ and g=g+h for some function h
Wx’V(R+; R’; rt). In other words, the dual space of w’q(R-; Rn; ) can be regarded as
the quotient space of Rn LP(R+; R"; )LP(R+; R"; ) over its subspace

{(-h(0),-h’,h)lh W’P(R+; Rn; /)}.
(Of course, this subspace can also be identified with W’P(R+; R’; ), but we shall not
use that identification here; instead we interpret it to be the orthogonal complement to
w’q(R-,R’;/) in R"LP(R+;R’;rl)Le(R+;R’;rl).) As we mentioned above, we
shall denote this quotient space by W-I’p(R +; R"; 1).

(The preceding notation is not completely standard. Frequently the notation
W-I’p(R+; R"; n) is used for the dual space of W01,q(R-; R"; ), where W0,q(R-; R’; /)
=( w’q(R-;R’;/)](0)=0). One can get the latter space from the former by
taking the quotient of W-’e(R+;Rn;I) over the subspace of functionals in
W- I’e(R +; R’; /) which are of the form (3.5) withf= g 0.)
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There is a simple distribution interpretation of (3.5) which we already used in the
formulation of Theorem 2.4. Define f(t)= g(t)= 0, < 0, and extend q to a function in
WI’p(R;Rn;vl) in an arbitrary way. Then (p*,p)=(3z+f+g’).p(O), where 3 is the
unit point mass at zero. This means that in the distribution sense, qg* =Sz +f+ g’.

Let us go back to the adjoint of the semigroup in Theorem 2.4. To get this adjoint
we have to restrict the semigroup in Theorem 3.1 to the dual space of Le(R-; Rn; ,/)
W-I’p(R+; Rn; r/), which is wI’q(R-; Rn; /)Lq(R-; Rn; /). The latter space we have
identified with the product of the subspace

( (f*, (f*)’,f* (0))If* wl,q(a-; Rn; ) }
of Lq(R-; Rn; /) X Lq(R-; Rn; /) R and Lq(R-; Rn; /). If we drop the g*- and ’*-components of the semigroup in Theorem 3.1, replacing g* by (f*)’ and ’* by f*(0),
then (3.2) and (3.3) become

(3.6) (x*)’(t) + f(0, t]
(x*)t(l-s)d(s)t- f[o,t] x*(t-s)dp(s)--fD*(t)’ tO,

(3.7) x*(t)=f*(t), t__<0,

and we get the following semigroup in WX,g(R-, R"; )Lq(R-; R"; ).
THEOREM 3.3. The state space of the adjoint semigroup T* of the semigroup T in

Theorem 2.4 is wX’q(R-; R"; /)Lq(R+; Rn; /), and T* is given by

(:,, )= + N*( x: -:t* ) + x: )’-(:,* )’)),
where x*=x*(f*,p*) is the solution of (3.6) with initial condition (3.7), and the terms
containing M* and N* are defined as in (3.4).

We can rewrite (3.1)-(3.4) and (3.6), using the same type of notation as was used
in 2, to get the following set of equations"

(3.8)
x=q+(r+r l)l+r * f,
y=-(r.,)+r’.f,

(3.9)
x’(t)+ f( [dl(S)]X’(t-s)+ f[o0, t] ,t]

y(t)=x’(t), t>=O,

dr, (s)] x(t-s)=f(t), t>=O,

(3.10) x(t)=q(t),y(t)=.(t), t<0, x(0) ,
(3.11)

M(Yt-/t)= f(s,s+,] [dlx(V)]X’(t+s-v),

N(xt-q)t)=- f(s,s+t] [dv(v)]x(t+s-v),

s>=O,

s_>0,

(3.12) x’(t)+ f( [dt(s)]x’(t-s)+ f[o0,/] ,t]
[d,(x)](t-s)=f(t), t>=O.

With the new notation the semigroup which we found in Theorems 3.1-3.3 can be
described as follows.
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THEOREM 3.4. For each (q0,p,,f) LP(R-; Rn; /) LP(R-; Rn; /) R
L’(R+;R;/), let (x,y)=(x(qg,p,,f),y(qg,p,,f)) be the solution of (3.9) with initial
condition (3.10), and define

S(t)(ep,d/,l,f) ( xt,Yt,X( ),ft + N(xt- %) +M( yt + /t)),

where M(Yt-/t) and N(xt-fPt) are defined as in (3.11). Then S is a strongly continuous

semigroup in LP(R-; R"; ,i)LP(R-; R"; /)R LP(R+; Rn;
THEOREM 3.5. For each (p,l,f) LP(R-; R; /) R LP(R+; Rn; /), define

S(t)(q,,f) as above, ignoring the +-component. Then S is a strongly continuous semi-

group in LP(R-; R"; q)R"XLP(R+; R"; ,1).
THEOREM 3.6. For each (p,f) WI’p(R-;R";rl)LP(R+;Rn;,1), let x=x(q,f) be

the solution of (3.12) with initial condition (1.2), and define

S( t)( cp,f) ( xt,ft 4g- N( xt- fDt) -Ji- m(( xt)’- (ft)’)),

where M((xt)’-(ft)’) and N(xt-qt) are defined as in (3.11). Then S is a strongly
continuous semigroup in WI’P(R-; R"; /)LP(R+; Rn; /).

4. The adjoint of the smooth initial function semigroup. We have still not com-
puted the adjoint of the "smooth" initial function semigroup in Theorem 2.1. The
dual space to the state space WI’p(R-;Rn;I)LP(R+;Rn;I) is Lq(R-;Rn;l)
W-I’q(R+; Rn; ), SO we again have to work in a Sobolev space with negative index.
Thinking of W-l’q(R+; Rn; /) as a quotient of R" Lq(R+; Rn; /)Lq(R+; Rn; /), whose
dual space is Lp(R-; Rn; /) Lp(R-; Rn; r/) Rn, and looking at the semigroup pre-
sented in Theorem 3.6, one soon discovers that the initial function semigroup in
Theorem 2.1 can be imbedded in a larger initial function semigroup, which acts on
LP(R-; Rn; r/)LP(R-; R"; r/)R LP(R /; R; ,/). Basically, to get this semigrouP one
prescribes two initial functions in (1.1), i.e. one uses the initial function in the term,, x, but replaces q’ by a new initial function q in the term /, x’. The precise
formulation resembles the formulation (3.9)-(3.10). We require (x,y) to satisfy

y(t)+ y(t)+,, x(t)=f(t),
x’(t)=y(t), t>=O,

and use the initial condition (3.10). Here (q,p, ,f) LP(R-; Rn; /)LP(R-; R;/)R
LP(R+;Rn; rl). Using the fundamental solution r in (2.1), one finds that this set of
equations has the unique solution

(4.2)
x=cp+ (r + r )t+ r , (f+ N(ep)+M( /)),
y=ap- r ,)t + r’ *(f+ N(q) +M(ap))

(cf. (2.3) and (3.8)). Translating all functions to the left we get the following semigroup.
THEOREM 4.1. For each (q,tp,,f) LP(R-;R;I)LP(R-;Rn;I)R"

LP(R+;R;/), let (x,y)=(x(cp, tp,l,f),y(q,tp,,f)) be the solution of (4.1) with initial
condition (3.10). Then T is a strongly continuous semigroup in LP(R-;R;/)
LP(R-; R"; ,/)R LP(R+; Rn; /).

By taking x WI’p(R-; Rn; v/), y=x’, =X(0), we get the semigroup in Theorem
2.1.
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Now, just as in the preceding section, it is a straightforward task to compute the
adjoint of the operator T(t) in Theorem 4.1. If we denote T*(f*,*,cp*,q*)(t) by
(f, , q, ), then one gets the following equations:

f=’t[f* + *r+* r+* r’)],
=*(r+ r /.t) +** r+ q** r /x- b** r.,,
q ’, [* +N*(*r+** r+** r’)],
(--Tt[lC]* + M*(*r+ p** r+** r’)].

One can interpret these equations in the following way. Define

(4.3)
x* =f* + *r+ q* r + +* r’,
y*=*(r+r ) +tp** (r+ r /x)-b* r ,.

Then x* LP(R-; R"; r/), y* WI’p(I+; Rn; /), and (x*,y*) is the solution of the equa-
tion

(y*)’(t)+ f x*(t-s)dv(s)=cp*(t), t>=O,
.’[0,t]

(4.4)
x*(t)+ f x*(t-s)dl(s)-y*(t)=q*(t), t>__O,

0,/]

with initial condition

(4.5) x*(t) =f*, < 0, y*(0) *.
Moreover, f=xt*, =y*(t), qg= tpt*-N*(xt*-ft* ), and =qt* +M*(xt*-ft*). In other
words, the adjoint of the semigroup in Theorem 4.1 can be described as follows.

THEOREM 4.2. The state space of the adjoint semigroup T* of the semigroup T in
Theorem 4.1 is Lq(R-; R’; )R’Lq(R+; R’; )Lq(R+;R’; I), and T* is given by

T*(f*, *, q*, q*) (xt*,y*(t), qg + N*(x’t-f’t) 1* t. M*( x,* -ft* )),
where (x*,y*)=(x*(f*,l*,q*,*), y*(f *,*,tp*,q*)) is the solution of (4.4) with initial
condition (4.5), and the terms involving M* and N* are defined as in (3.4) (with (x*)’
replaced by x*).

The definition off* in (4.3) can be interpreted in the distribution sense to mean

(4.6) x* =f* + q* r,

where * stands for the distribution ’8+* +(*)’ in (4.3). This distribution is
uniquely determined as an element of the dual space W-a’q(R+;Rn;l) of
WI’p(R+;Rn;rl). In the same way we can interpret the definition of T*(t) in the
distribution sense, and we find that the adjoint of the semigroup in Theorem 2.1 can be
described as follows.

THEOREM 4.3. The state space of the adjoint semigroup T* of the semigroup T in
Theorem 2.1 is Lq(R-;Rn;I) W-I’q(R+,Rn;), and it is defined as follows. For each
(f*, q*) Lq(R-; R"; /) W-I’q(R+; Rn; /), choose an arbitrary triple (t*, 3/*, d/*) repre-
senting q* in the sense that tp*=*8+),*+(p*)’, let (x*,y*)=(x*(f*,*,y*,ap*),
y*(f*, 1*, *, p*)) be the solution of (4.4) with e?* replaced by ,*, and with initial condition
(4.5). Define T*(f*,cp*)=(x*,q*), where q*t W-I’q(R+, Rn" ) is the distribution y*(t)8
+ Vt* + N *(xt*-ft*) + [+t* +M *(xt*-ft*)]’.
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Just like in 3, let us again change the notation and describe the last two semi-
groups in terms of equations directly related to (1.1). Equations (4.3), (4.4) and (4.6)
become

(4.7) x=+ r" + r * f+ r’, g,
z=(r+g, r)+(r+g , r), f-r, r g,

z’(t)+ f [d,(s)]x(t-s)=f(t), t>=O,
[0,t]

(4.8)
x(t)+ f [dg(s)]x(t-s)-z(t)=g(t), t>_ O,

0, t]

(4.9) x=q+ r , f
and (4.5) becomes (2.6). Observe that apart from the initial function corrections to the
forcing functions, formulas (4.7) and (4.9) agree with formulas (2.7) and (2.8).

With the new notation, the semigroups in Theorems 4.2 and 4.3 can be described
as follows.

THEOREM 4.4. For each (cp,,f,g) LP(R-; Rn;r/) R LP(R+; Rn; 7)
LP(R+;R";r/), let (x,z)=(x(q,,f,g), z(q,,f,g)) be the solution of (4.8) with initial
condition (2.6), and define S(t)(p,,f,g)=(xt,z(t),ft+ N(xt-qt), gt+ M(xt-qt)), t>= O.
Then S is a strongly continuous semigroup in Lp(R-; Rn; v/) R Lp(R+; R; r/)
LP(R+; R"; ).

THEORE 4.5. For each (,f)LP(R-;Rn;/) W-I’p(R+;R";), choose an arbi-
trary triple (,h,g)R" LP(R+; R"; )LP(R+; R"; 7) representing f in the sense that

f=8’+ h+g’, and let (x,z)=(x(q,,h,g),z(q,,h,g)) be the solution of (4.8) with f
replaced by h, and with initial condition (2.6). Define S(t)(qo,f)=(xt,ft), t>=O, where
ft=i$z(t)+ht+N(xt-qt)+[gt+ M(xt-%)]’. Then S is a strongly continuous semigroup
in LP(R-; Rn; 7) W-’P(R+; Rn; 7).

5. Initial and forcing tunction semigrouos are equivalent. By now we have de-
scribed a total of ten semigroups generated by (1.1) (plus five more adjoint semigroups).
Five of them are of initial function type (the initial function does affect the values of
the solution on R/), and five of them of forcing function type (the initial function does
not affect the values of the solution on R /). Fortunately, one need not study all of them
separately, because some of them are similar to each other. In particular, four of the
initial function type semigroups are similar to four forcing function type semigroups. In
the retarded case also the fifth pair of semigroups is similar. In all cases the similarity
transformation is essentially the same, i.e. the operator which adds an initial function
correction to the forcing function, as required by (1.1) in its different versions.

THEOREM 5.1. For each (q,f) WX’P(R-; R"; I)LP(R+; R; rl), define D(q0,f)=
(,f+ N()+M(q0’)), and let T and S be the semigroups in Theorems 2.1 and 3.6. Then
D maps W’P(R-;R";I)LP(R+;R";) one-to-one and continuously onto itself, its in-
verse is the operator which maps (q,f) into (q,f-N(q)-M(q/)), and S(t)=DT(t)D-,
T(t)=D-1S(t)D for all t>=O.

TI-IEORE 5.2. For each ( q,f) LP(R-; R"; ) W- x’P(R +, R"; ), define D(q,f)
+ N() + M(q)] ’) and let T and S be the semigroups in Theorems 2.4 and 4.5. Then D
maps LP(R-; R"; 7) W-’P(R+; R"; 7) one-to-one and continuously onto itself, its inverse
is the operator which maps (q,f) into (q,f-N(qo)-[M(q)]’), and S(t)=DT(t)D-,
T(t)=D-tS(t)D for all t>=O.
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THEOREM 5.3. For each (q,,f,g) LP(R-; R";,/) R L’(R+; Rn;,/)
LP(R+;R";r/), define D(tp,,f,g)=(q,,f+N(),g+M(q)), and let T and S be the
semigroups in Theorems 2.2 and 4.4. Then D maps L’(R-; R; r/)R L’(R+; R; /)
LP(R+;Rn;ri) one-to-one and continuously onto itself, its inverse is the operator which
maps (q,,f,g) into (q,,f-N(ep),g-M(q)), and S(t)=DT(t)D -1, T(t)=D-IS(t)D
for all >__O.

THEOREM 5.4. For each (9,P,,f) LP(R-; Rn;/) LP(R+; Rn; /) Rn
LP(R+;Rn;rl), define D(q,tp,,f)=(q,tp,,f+N(q)+M(tp)), and let T and S be the
semigroups in Theorems 4.1 and 3.4. Then D maps L’(R-; R; ,/)LP(R+; R; /)R"
LP(R+; R"; /) one-to-one and continuously onto itself, its inverse is the operator which
maps (p,p,,f) into (qg,p,,f-N(qg)+M(tp)), and S(t)=DT(t)D-, T(t)=D-S(t)D
for all >= O.

THEOREM 5.5. Suppose that the equation (1.1) is retarded, i.e. that I=-O. For each
(qg,,f) LP(R-; Rn; I)RLP(R+; Rn; ,1), define D(qg,,f)=(q,,f+ N(q)), and let
T and S be the semigroups in Theorems 2.3 and 3.5. Then D maps L’(R-; Rn; /)R"
L t’(R+; Rn; r/) one-to-one and continuously onto itself, its inverse is the operator which
maps (qg,,f) into (qg,,f-N(q)), and S(t)=DT(t)D-, T(t)=D-tS(t)D for all t>O.

All these theorems are direct consequences of the previous constructions.
There is also another connection between some of the semigroups presented above,

which should be pointed out. One can get the two semigroups in W’’(R-; R;
L’(R+; R; r/) (those in Theorem 5.1) by restricting the semigroups in L’(R-; R;
W-t’P(R +; Rn; /) (those in Theorem 5.2) to the domains of their generators. In [27] this
relationship plays a key role.
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STABILITY IN A REACTION-DIFFUSION MODEL OF MUTUALISM*

V. HUTSON

Abstract. A reaction-diffusion model for the mutualistic interaction of two species is studied. A condition
for the dominance of an equilibrium point in the bistable case is obtained, generalizing results for the
well-known scalar case. It is also shown that the "hair trigger effect" operates when the corresponding kinetic
system has a single globally asymptotically stable interior equilibrium point.

1. Introduction. Consider the pair of reaction-diffusion equations

(1.1) uit=uimi(u)+tl,iUixx (i= 1,2)

with u=(ul, U2) where the spatial region is either , or a bounded open interval, a
homogeneous Neumann condition being imposed on Of. This system has been much
studied recently, one of the most interesting applications being to biological problems
with u interpreted as, say, population density. However, the mutualist case, that is
when Oml/OU2, m2/Ou <0, has been relatively neglected in the literature, and it is
this case that is treated here, attention being concentrated on two of the most basic
points of interest.

The first question concerns the dominance of an equilibrium point in the bistable
case. To illustrate, take f . Recall that the scalar equation

(1.2) ut=um(u)+#u

is said to be bistable when the corresponding kinetic equation /= um(u) has exactly
three equilibrium points 0, and u* with 0<<u*, the points 0 and u* being
asymptotically stable and unstable. For (1.2), the dominance of one of the asymptoti-
cally stable equilibrium points over the other has been extensively discussed, see for
example [1] and [4]. When u* is dominant, if the initial value u(x, 0) is not too small on
a sufficiently large (but finite) interval, then u(x,t) u* uniformly on compact sets as. For the two species mutualist case the phase plane may have the form shown in
Fig. la, and by analogy this will be called the two species bistable case. We derive in 3
a condition for this case which will ensure that u* is dominant.

Secondly, we consider in 4 the case when the kinetic system corresponding to
(1.1) has a single globally asymptotically stable interior equilibrium point Q. If the
origin is a source, it is shown in [5] that all solutions with initial values neither of whose
components are identically zero are attracted to Q (the hair trigger effect). In 4 we
extend this result to the case when the origin is a saddle point.

Our results have applications to the resolution of a paradox concerning the distri-
bution of mutualistic systems in nature; for general biological background on mutua-
lism see [2], [8], [9], [10], [11], [13] and [14]. If the kinetic model for mutualism is
adopted, it is clear from Fig. la that the occurrence of obligate/obligate mutualisms is

Received by the editors December 13, 1983, and in revised form November 16, 1984.
Department of Applied Mathematics, The University, Sheffield S10 2TN, England.
The terminology of [2] is used: mutualism is an interaction between species that is beneficial to both;

an obligate and a facultative mutualist cannot (respectively can) survive without its partner; on the other
hand symbiosis is the living together of two organisms in dose association.
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relatively unlikely in an unstable environment. For if a natural disaster should sweep
the population vector into the hatched region, the extinction of both species will follow.
However, such mutualisms are common even in very variable temperate and arctic
regions, see [8]. If the species may diffuse, the results of 3 show that the system is a
great deal more resilient, for if some, perhaps quite limited region is left relatively
unaffected, the species will return to their coexistence levels u*. That is, the domain of
attraction of Q is much larger for the reaction-diffusion system than for the kinetic
system.

2. Preliminaries. We consider the problem of finding classical solutions of (1.1)
given that the initial value u(x, 0) is bounded nonnegative and uniformly continuous on
2, and that a homogeneous Neumann condition holds on 8f when 2 is finite.

It will be assumed throughout that the following conditions are satisfied.
(C1)/,/z 2 > 0.
(C2) ml, m2C (1,!), and for all Ul, u2->0,

(i) )ml/Ul, )m2/)u2 <0;
(ii) )ml/)u2, m2/Ou > O.

(C3) There exist a1, a2 R such that

ml(Ul,U2)<O (Ul>= 01, u2 >=,.0),
m2(ul,u2)<O (u >=0,u2>__ or2).

(C2)(i) implies that, because of intraspecific competition, the per capita rate of
increase of each species decreases as its population increases, while (C2)(ii) is the
mutualist assumption that an increase in the population of one species increases the per
capita growth rate of the other. (C3) requires further that intraspecific competition
causes the population density of each species to decrease if it is large enough no matter
how numerous the other species may be; this appears essential if the equations are to
reflect biological reality, and corresponds to a "finite world" assumption--for further
discussion see [10], [11]. Of course a Lotka-Volterra system cannot satisfy both (C2)
and (C3). Finally, for the equilibrium points of (1.1), assume that one of the following
holds.

(C4) There are in the interior of R exactly two equilibrium points =(al, a2)
and u*=(A,A2)where a <Ax, a 2 <A2 (Fig. la).

(C42) There is exactly one equilibrium point u*=(A1 A2) in the interior of /
2

(Fig. lb). When (C41) holds, apart from the configuration shown in Fig. la, there are
other possibilities, for example that u is facultative and u2 is obligate, when the u
isocline cuts the positive u axis at (a, 0) say, in which case (0, 0) will be a saddle point
and (a, 0) will be asymptotically stable. When (C42) holds, apart from Fig. lb, there are
again other possibilities; for example u2 may also be facultative, in which case the u2
isocline will cut the positive u 2 axis.

For later reference some properties of the solutions of the kinetic equation are now
quoted from [7].

PROPOSITION 2.1. In case (C41) there is a one-dimensional stable manifold S through. The point u* is a global attractorfor allpopulation vectors whose initial values lie to the
right of S, while if the initial values lie to the left of S (that is in the hatched region in Fig.
la), at least one population tends to zero as

In case (C42), u* is globally asymptotically stable (with respect to all populations
with ux(O), u2(0) > 0).
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U2 U2 I

0

u (a, O) u
(a) (b)

FIG. 1. Possible configurations for the zero isoclines of cases (C4) and (C42) respectiuely, other possibili-
ties being described in the text. In Fig. la both species are obligate, whi& in Fig. lb the first species is obligate
and the second facultatiue.

Sub and supersolution techniques are particularly effective for mutualistic interac-
tions. The basic mathematical apparatus is given in [5] and [6], and for later reference
we outline the salient results specialised to (1.1). To fit the framework of [5], set
Mi(u)=uim and extend M and M to by setting MI(Ul, U2)=MI(Ul,0),
M(u,u)=O for Ul>0 and u<.0, MI(Ul, U2)=M2(Ul, U2)=O for u, u0, and
Ml(Ux, U2)=O, M2(Ul, U2)=M2(O, u2) for u<0 and u>0. With u=(ul, u), =
(u, u) the relation u < (respectively u u) means that u < (respectively u ui) for
i= 1,2.

If fl , a regular subsolution is defined on an open set X x, and must
satisfy

uitZMi(u)At-#iUixx (i=1,2)

on X, with all derivatives appearing being continuous. Let X=2 (0, r) for some
z > 0. u is said to be a subsolution if there is an e > 0 such that for every point P X
there is a finite collection ( urn, ., u) } of regular subsolutions in B(P, e), the e-ball
centre P, such that in XCB(P,e),

u(x,t)= max u(l)(x,t),
l<=k<=a

the max being taken componentwise. If f] is bounded, it is required in addition that the
outward normal derivative 3u/v =< 0 on 3f. Supersolutions are defined analogously by
reversing the inequalities and substituting "min" for "max". Of course every solution is
a sub and supersolution.

PROPOSITION 2.2. Under the stated conditions on u(x, O) the following hoM.
(i) Every solution of (1.1) is nonnegative and satisfies u(x,t)<=M for some M and

all t>0. Further, if a lies in a region I (Fig. 1), then u(x,t)<=a for large enough t.
(ii) A unique classical solution exists and is uniformly continuous in X.
(iii) If neither of ul(x,O), u2(x,0) is identically zero, then u(x,t)>O for all x,

t>0.
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Proof. (i) The bound on u follows from [4, Thm. 5.1] when the properties of the
kinetic system given by Proposition 2.1 are used. (ii) is a consequence of [4, Thm. 3.1]
and [12, Thm. 14.4]. (iii) This follows from the strong maximum principle, see [12].

THEOREM 2.3. Let u and Ft be bounded uniformly continuous sub and supersolutions in
X. If u(x,O)<_Ft(x,O) then u(x,t)<=Ft(x,t) in X.

THEOREM 2.4. Assume that u, Ft are bounded uniformly continuous stationary sub and
supersolutions respectively with u <= Ft. Let u be the solution with u(x, 0)= u(x). Then there
is a stationary solution w with u <= w <= Ft such that as , u(x, t) w(x) uniformly on
compact sets.

Let f R, and suppose that there is a neighborhood N of 0 such that w(x +y) >= u(x)
for all y N. Then w is a constant.

3. Dominance for a two species bistable system. It will be assumed throughout this
section that (C41) holds, a possible configuration of the isoclines being given in Fig. la.
Theorem 3.1 shows that condition (DQ) below yields an analogue of dominance for a
one species problem.

Define/ (/1/2)1/2, and set

(3.1)
M(u) =/, min[/z-1M,( u, u),/z] 1M2( U, U)],

M(u) is negative for small and large u > 0, and it follows from the definition that if
et>0 is a zero of M, then (et, a) lies in region II, whence a1, a2<=a<=A1, A2. Assume
that the following holds (Fig. 2).

(DQ) There exists a number b > 0 such that V(u) < V(b) for 0 =< u < b.
Note that a rescaling of ux, u 2 in (1.1) may be advantageous in arranging for this

condition to hold. The idea is roughly that as much as possible of the line u=u2
should lie in region II in Fig. l a.

FIG. 2. V when condition (DQ) holds.

Assume that 0 2, and let q, be the solution of the equation

(3.2) /zq)" + M(q)) O,

with q(0)= b, q,’(0)= 0. From the first integral

(3.3) /z [q)’(x)] 2= 2[ V(b)- V(q)(x))],
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it is clear that if f] g, q will eventually reach zero at points symmetrical with respect
to 0. Define q(x)=max[0,q(x)], see Fig. 3a. If f] is finite, q, may first reach the
boundary, where from (3.3) Oq/O, < 0 (Fig. 3b).

!(0, b)

(a) (b)

FIG. 3. Possibilities for

_
when 2 g and f is finite respectively.

With= (q, q,), we have the following result for the system (1.1).
THEOREM 3.1. Suppose that 0 f, and assume that conditions (C1)-(C3), (C41) and

(Do) hold. Let u(x,t) be the solution of (1.1) with u(x,O)>= on 2. Then uu*
uniformly on compact sets as

Proof. Note first that is a subsolution of (1.2). For by (3.1) and (3.2),

tx ,qxx + Mi ( ck, ck ) >= l ,kxx +g-1M() 0,

and (0, 0) is a subsolution. For 2 the assertion follows as is the local maximum
of regular subsolutions, and for f bounded also /,_< 0 on Off.

Choose any point (fil, fi2) in region I with fi>__ SUpxU(X,0) for i= 1,2. Let fi be
the (spatially independent) solution of (1.2) with fi(0)= (ill, fi2)- Define u(x, t) to be the
solution of (1.1) with u(x,0)= . Then by Theorem 2.3, for all t>0,

(x) <__u(x,t) <= u(x,t) <=fi(t).

Now from Proposition 2.1, limt_. fi(t)=u*. Furthermore, and u* are respectively
stationary sub and supersolutions with =<u*. Hence from Theorem 2.4, there is a
stationary solution w with __< w =< u* such that u(x,t) w(x) uniformly on compact
sets as o. Therefore the proof will be complete if it can be shown that w u*.

Suppose first that f=. Then w(x)>(x) for xf. For if not there is an x0
and an i-1 or 2 such that wi(xo)=q,(Xo). But

__
is a subsolution, w(x) is a regular

supersolution and __=<w. Hence from [5, Thm. 1], wi(x)=q,(x ) for all x. This is
impossible as q(x) has a discontinuous first derivative.

Now q, has compact support. Hence if 20 is any compact set containing the
support of q, in its interior, there exists =(1,2)>0 such that w(x)>=(x)+ for
x f]0- It follows from uniform continuity that there is a neighborhood N of zero such
that w(x +y)> (x) for all y N and x R. Therefore by Theorem 2.4, w is a
constant.

Finally, if a > 0 is any zero of M, the point (a,a) lies in region II (Fig. la). But
from the construction of q, q(0) and so w is greater than the smallest positive zero of
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M. Therefore w4:fi, and so w=u*. This completes the proof for fl=R. It follows
immediately that the only stationary solution w of (1.1) satisfying _<_ w<=u* is u*
itself, a fact which will be used below.

When f is bounded, the result will be proved by first constructing an extension of
w to R. Consider then the stationary solution w of (1.1) on 2 satisfying Ow/3u=O on
2. Let f (, + 3’) where =< 0 =< + 3’. Define an extension of w to by successively
reflecting w in the lines x=, -3’,-.., and x=+3’, + 23’,.--, and note that w
then has period 23’. Because Ow/Ox=O on x= and x=+3’, w is a C2-function
which is a solution of (1.1) for all x. It is also clear from the evenness of ff and the fact
that it is decreasing for x > 0 that w >_ . This shows that w extended in this manner is a
solution of (1.1) on satisfying =< w =< u*, so by the final remark of the preceding
paragraph, w u*. This completes the proof.

A similar mutualist system has been considered in [3] although from a different
point of view. There f must be bounded, and a condition is imposed which requires
among other things that 1 and /2 are sufficiently large relative to the length of f.
Then u tends to a spatially independent solution for large t, so that the asymptotic
behavior of u may be deduced from that of the solution of the analogous kinetic
system. Under certain further restrictions it will be the case that if the space average of
u(x,O) lies to the right of S, the solution will eventually return towards Q. The
conditions in [3] and Theorem 3.1 are of course of quite a different nature, but from the
point of view of biological applications the principal point of interest in Theorem 3.1 is
that it shows that the restriction on the space average of u(x,O) and on 1, /2 can be
removed if Do is imposed.

4. Global asymptotic stability. If there is exactly one interior equilibrium point for
the kinetic equations, this point is globally asymptotically stable, and the aim now is to
show that an analogous property also holds when there is diffusion. This extends a
result in [5, 4] to the case where there is a saddle point at the origin.

THEOREM 4.1. Assume that conditions (C1)-(C3) and (C4) hoM. Let u(x,t) be the
solution of (1.1) with u(x, O)>= O on , and suppose that neither Ul(X,0) nor u(x, O) is

identically zero. Then as o, u u* uniformly on compact sets.

Proof. By Proposition 2.2, u(x, t)> 0 for > 0. Therefore, by shifting to a new time
origin we may assume that u(x, t) > 0 ill 2 for >_ 0.

(i) fl bounded. The proof is very simple. Let u(t) and fi(t) be solutions of (2.1)
with

gi (0) min_ u (x, 0), (0) ma_x u (x, 0)
xf

for i= 1, 2; by the remark above _u(0)>0. Now _u, are sub and supersolutions
respectively, so by Theorem 2.3, _u(t) __< u(x, t) __< (t) for > 0. The result follows, for by
Proposition 2.1, limt_, u(t)= limt__, (t)= u*.

(ii) f . A more elaborate proof is needed since it is not necessarily true that
u(0) > 0. If both species are facultative, then the origin lies in region II and is a source
for the kinetic problem, so the argument of [5, 4] yields the result. However, if one
species is obligate and one facultative, as is the case in Fig. 1, this argument does not
work.

So far as the upper bound of u is concerned, of course it follows as in (i) above
u(x, t)__< (t), where lim (t)- u*. We shall show that there is a function z(x, t)
which approaches u* uniformly on compact sets as such that u(x,t)>__z(x,t) for
large enough t, from which the assertion of the theorem follows.
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From the assumption on Ml(/31,O)=/31ml(/31,O) there exists an a 0 with 0<ao<a
and a 3,>0 such that M1(Ul, O)>=3,21gIU1 for 0=<Vx=<a o. Since Ul(X,0)>0 for
there is a 8 with 0 < 8 < ao such that

<

where r/23,. Set

min ul(x, 0),
<=x <=l

Vl(X) { 0 COS3’X
and let/3l(x, t) be the solution of the one-dimensional problem

Vlt-- Ml ( Vl, 0) + IglVlxx,

with/31(x,O)=/31(X ). Put/3(x,t)=(/31(x,t),O) and note that/3 is a solution of (1.2).
LEMMA 4.2. /31(X) is a stationary subsolution of (4.1), and the following hold.
(i) Vx(X)<=Vl(X,t)<=a (t>=O).
(ii) OVx(X,t)/Ot>=O for xf and t>0.
(iii) v (x, t)--+ a uniformly on compact sets as oo.
(iv) u(x,t)>__v(x,t) for t>__O.
Proof. We have

MI(Vl,0)+IglUlxx >- 3, 21V -+- lVlxx--O,

and 0 is a solution. Hence v is the local maximum of regular subsolutions, and is
therefore a subsolution of (4.1). Also a >/31(x) is a supersolution, so (i), (ii) and (iii)
follow from Theorems 4.1, 4.2, 4.8 respectively of [4]. Finally, /3(x,t) is a solution of
(1.1), and since u(x,O)>=/3(x,O), Theorem 2.3 yields (iv). This concludes the proof of
the lemma.

The lemma shows that on any compact set the lower bound of u moves into
region II for large t. Since u 2 > 0 it is plausible from the direction of the vector field
that u is swept towards u*. This is now proved by constructing another subsolution
whose first component is based on the value of/31(x, t) for large t.

From the assumptions on m2(z1,z2)=z2m2(z1,z2) there are numbers e,b,p>O
such that m2(a-e, zv_)_>_p2tx2z2 for O<=z2<__b. From (iii) of Lemma 4.2, there exists a o
such that /31(X, to)>=a-e for [x[ <__ cr/2p. Since u2(x, to)>O for xf], there is a o>0
such that

o< min Uz(X,to),
--12 <-x_l

where 12= rr/2 p. Define Z(X)= (ZI(X),Z2(X)) where

Z1( X ) /31( X, to )

(Ix I=<rr/2O),
Zz(X)

0 (Ix[>rr/2p),

and let z(x,t) be the solution of (2.1)with z(x, to)=Z(X ). From the above construction
and Lemma 4.2(iv), u(X, to)>=z(x, to)>=v(x, to) and since u(x,t), z(x,t) and /3(x,t)
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are solutions of (1.2), from Theorem 2.3, u(x,t)z(x,t)>= v(x, t) for t>= 0. Now

MI(ZI(X),Z2(X)) + lZlxx(X)> Ml(Zl(X),O)+tlZlxx(X)

2
Ul(x,to)-Ml(Ul(x’to)’O)+l
X 2

U
ato(X,to)

>=0,

by Lemma 4.2(ii). Also,

M2(Zl(X),Z2(X)) 3
t- lz2Z2xx( X) = M2(a- e,z2 ( x )) + lz2Z2xx( X

>= x) + x) =O,

and the left-hand side is zero when 22-’0. Thus z(x) is the local maximum of regular
subsolution, and so is a subsolution.

Now z(x) is a subsolution, u* is a supersolution and z =<u*, so it follows from
Theorem 2.4 that there is a stationary solution w(x) with z(x) =< w(x) <_ u* such that
z(x,t) w(x) uniformly on compact sets as t---, o. The final step is to show that
W--U*.

As noted above, zl(x,t)>=Vl(X,t), and since Vl(X,t)---a uniformly on compact
sets, it follows that Wl(X)>__a>=z(x ). Also, since z 2 has compact support, by an
argument used in proving Theorem 3.1, there is an a >0 such that w2(x)>=z2(x)+a on
the support of z2. There is therefore a neighborhood N of 0 such that w(x +y)> z(x)
for y N. Therefore, by Theorem 2.4, w is a constant. However, the only constant
solution satisfying w >__ z(x) is u*, so w u*. This concludes the proof.
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A PARABOLIC-HYPERBOLIC FREE BOUNDARY PROBLEM*

ANTONIO FASANO" AND MARIO PRIMICERIO"
Abstract. Change of phase problems with space-dependent melting temperature are considered. A weak

formulation is given, pointing out that relevant differences occur with respect to the case of constant melting
temperature. Next, analyzing the case in which weak solutions are suitably smooth, it is found that (i) mushy
regions may appear even if volumetric heat sources are absent; (ii) a differential system is satisfied, consisting
of parabolic equations and first order hyperbolic equations coupled through free boundaries; (iii) the
interface conditions have the form of "unilateral constraints". Finally, a model problem is studied and the
existence of a smooth solution is proved.

1. Introduction. In this paper we study a mathematical model for change of phase
processes (e.g., freezing of lakes, thawing of glaciers, etc.) in which the melting tempera-
ture is space-dependent.

Among the main features of this model, we point out that "mushy" regions (see
[1], [8], [11], [12], [13]) may appear even if volumetric heat sources are absent. More-
over, in such regions while temperature is locally constant (and equal to the melting
temperature), heat conduction makes energy evolve with time.

This model could be the starting point of a classical theory for melting or solidifi-
cation of alloys (see [2], [4], [14]). Actually, the results presented here show that the
possible appearance of a mushy region during the solidification of an alloy is not
necessarily related to the gap between the solidus and liquidus curves in the phase
diagram. Indeed, when the concentration of the diluted component is not uniformly
distributed and its diffusion is negligible, then an alloy in which the liquidus and
solidus curves were supposed to be almost coincident would behave essentially as a
medium with space-dependent melting temperature.

In 2 we will write the weak formulation of the problem in a general setting. In 3
we will sketch some properties of the classical solution in one space dimension. We will
show that a differential system has to be satisfied, consisting of parabolic equations and
first order hyperbolic equations coupled through free boundaries. Moroever, the inter-
face conditions have the form of "unilateral constraints". In 4 a model problem will
be considered, clearly exhibiting the spontaneous appearance of a mushy region. A well
posedness theorem is stated and an outline of its proof is given. Details and a more
comprehensive discussion of the model will appear in a forthcoming paper ([6]).

2. Weak formulation. Let x be a point in R and let denote time, u temperature,
k thermal conductivity, c heat capacity, r rate of heat supply per unit volume. Assume
that the melting temperature u is a smooth function of x and that k, c,r, depend on
the difference w u-u only, being bounded and smooth for w 4: 0. Moreover, c, k >= a
for some positive constant a.

The thermal energy E is defined as

(2.1) E(x t) fw(x,t) c(y)dy+Asgn+w(x,t),
"o

*Received by the editors September 11, 1983, and in revised form June 25, 1984. This work was partially
supported by the GNFM of the Italian CNR and by the University of Firenze.
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where A is the latent heat and

0, z<O,
sgn+z= [0,1], z=0,

1, z>0.

Obviously, w can be found in terms of E as a single valued function b(E), and

u(x,t)=u(x)+b(E(x,t)).
Moreover, we set

(2.3) g(w)= k(y)dy,

(2.4) B(E)=g(b(E)).

Given T> 0 and a bounded domain Q c R with smooth boundary OQ and outer
normal n, let us define a weak solution of the change of phase problem with data
Eo(x ), the initial energy, and U(x,t), the boundary temperature. Here, we will assume
that the subset of OQ (0, T) where U= u has zero measure. We extend the functions

(2.5) K(E)=k(b(E)), R(E)=r(b(E)), E4= (0,A),
over the interval (0, A) as linear interpolations.

We say that EL(Q(O,T)) is a weak solution if the following equation is
satisfied for anyFC(Q O, T), vanishing for t= T and on OQ (0, T),

(2.6)
r fQ EF + B div grad F- Kgrad u gradF+ RF] dx dt

+ fQ E(x)F(x’O)dx-faQx (0, 7")
BgradF’ndS=O’

where B0 g(U- um)o

3. Classical solutions. A solution E(x, t) of the above mentioned problem is said
to be a classical solution if it possesses some additional regularity properties which will
be listed below for the case n 1, Q (0,1):

i) The function u(x,t) given by (2.2) is continuous in the closure of P=(0,1)
(0, T).

ii) The sets

L=((x,t)e" U(x,t)>Um}
S-- ((x,t)P" u(x,t)<Um}
M=I, N=P\(LUS),

are such that those parts of their boundaries which lie in P consist of N curves x= si(t ),
t Ii=(t,t’’)c(O, T) such that sic C(I)(CI(I), i= 1,2,...,N.

iii) u C2a(LU S) and u is continuous on each side of the curves x=s(t).
iv) E C’X(M) C(t).

When this condition is not fullfilled, the boundary data to be prescribed are the temperature or the
energy, according to the thermal properties of the medium. This nontrivial point is discussed in [6], together
with the analysis of the problem with Neumann data.
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We will call L and S the liquid and the solid regions respectively, while M will be
called the mushy region. In M it is u(x,t)=Um(X ), and E[0,A] (regions where E=0
or E A identically could be included in M as well).

It is immediately seen that the parabolic equation

(3.1) cu,=(kux)x+r
holds in L and in S, and that the first order hyperbolic equation

(3.2) Et= ( K( E)u’m(X))x+ R( E)
is satisfied in M. Moreover it is immediately found that the initial and boundary
conditions are satisfied in a classical sense,

(3.3)
E(x,O)=Eo(x), x(0,1), u(O,t) =U(O,t), u(1,t)=U(1,t), t(O,T).

To find the conditions satisfied on interfaces, multiply (3.1) and (3.2) by a test function
F and use Green’s theorem on each connected component of L, S and M. If we denote,
for any function f(x,t), [f]i-f(si(t)+,t)-f(si(t)-,t), we find by comparison with
(2.6):

(3.4) [E]+[KUx]i=O, tI, i=l,2,...,N.

A careful analysis of condition (3.4) shows that the following local characteristic
speed

dK
(3.5) Vo(X)=-hu’m(X ), h=--, E(0,A)

determines the form of the free boundary conditions. Namely:
(A) When }(t)>Vo(S(t)) and x=s(t) is a boundary between solid (for x <s(t))

and mush (x > s(t)), the free boundary condition is

(3.6) E(s(t)+t,t)[(t)-Vo(S(t)) +Ks[u2(s(t))-Ux] =0,

where Ks K(0 ) and Ux Ux(S(t) -, t).
(B) When k(t)<_vo(s(t)), the free boundary condition between solid and mush is

(3.7) u s (s(t)),
and the condition

(3.8) R(0- )+ Ksu2(s ( t)) > 0

is needed.
Conditions (3.6), (3.7) can be summarized as

{3.9) E(s(t)+,t)[k(t)-Vo(S(t))l++Ks[u’m(S(t))-uS] =0.

This unilateral form of the free boundary condition can be derived using the boundary
point principle (see [6] for the details). Parallel results are found for an L-M interface,
while on a L-S interface the usual Stefan condition is valid.

4. An example. In this section we produce a simple example in which, despite of
the absence of volumetric heat sources, mushy regions appear as an effect of a variable
melting temperature with nonvanishing second derivative. We note that in this defini-
tion of classical solution, possible effects of superheating are not taken into account.
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Indeed our classical solution originates from a weak solution under suitable regularity
requirements, and the definition of the "energy" function (2.1) is a constitutive law
excluding nonequilibrium effects (see [6], [10], [11] and [13] for a discussion of this
aspect).

We consider the slab 0 < x < 1 assuming that no body sources are present (r-0),
that the specific heat is constant throughout the slab (say, c 1) and that the conductiv-
ity has two constant values KL and Ks in the liquid and in the solid, respectively.
Therefore we define the function K(E) as follows:

KL

K(E)-- Ks]hEKs

E>A,

E<0.

We will assume that the melting temperature is given by

(4.1) urn(x) 1 -1- X 2,

and that the initial and boundary conditions are

(4.2) u(x, 0) 1 +-

(4.3) ux(O,t ) =0,
(4.4) u(1,t) -1/2

2X x (0,1),

We assume that this problem has a classical solution and we will derive some a
priori information on the qualitative behaviour of the solution.

Our first result is aimed at characterizing the region S.
PROPOSITION 1. There exists a function s(t)>=O, such that S= ((x,t): s(t)<x < 1,0

< < T ). Moreover, s(t) 0 in any neighborhood of O.
The proof of this proposition is essentially based on the maximum principle. The

next step will be to prove that a mushy region appears from the very beginning.
PROPOSITION 2. There exists a function z(t)>= O, z s, in any neighborhood of t= O,

z(t)<_s(t), such that u(x,t)=u,,(x) in the set z(t)<_x <__s(t), 0 < < T.
Proof. Suppose that there exist a > 0 and a region R (y(t) < x < s(t), 0 < < tl }

with y(t)>= 0, such that R is a component of L N ( < ).
The maximum principle ensures that if y(t)>0, then the curve x=y(t) is an

interface between M and L. Following the discussion of the preceding section, it can be
seen that the condition u>0 implies (t)<oo(y(t))=-2hy(t), t(O, tx), thus con-
tradicting y(t)> 0, y(0)=0. Let us show that also assuming y(t) identically equal to
zero is contradictory. In such a case the pair (s, u) would be a solution of

Kuxx-u,=O, O<x<s(t),
ux(O, ) =0,
U(S(t),t)=Um(S(t)),

Using Green’s theorem we find

(4.5)

0<t<t1,

0<t<t1,

0<t<q,

0<t<t.

u(x,t)dx= Krux(S(t’)-,t’)dt’ + u(s(t )(t’)dt’

t>0,

t>0.
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The last integral is nothing but f(t)Um(X)dx hence

0<= KLUxdt’= -As(t)+ gsudt’

=<-As(t)+ Ksu’m(S(t’))dt’.

This inequality is false, since u,(s)= 2s. The argument applies also in any interval
(tu, tb)C(O,T) in which s(t)>0, s(tu)=0. Thus the only possibility is that the curve
x s(t) is an interface between M and S.

By means of similar arguments it is possible to prove that the liquid region does
not appear at 0. More precisely, we have

PROPOSITION 3. There exists a time o > 0 such that

z(t)=-O in (O, to).
Therefore, in this time interval (0, t0), we will have nothing but one free boundary

separating regions M (for x < s(t)) and S (for x > s(t)).
Having concluded our a priori analysis, we can pass to the proof of our existence

theorem. According to the results of [}3, to find the interface between S and M together
with the temperature in the region S we have to solve the following problem: find a
T> O, and s(t) C[O, T] cl(o, T) and a u(x,t) C2’I(DT)OC()T) (DT=- ((x, t): s(t)
< x < 1, 0 < < T }) such that

Ksuxx- ut=O in Dr,

=0,
2

u(x 0)=-a+X2’ 0<x<l,

1u(a,t) --, 0<t<T,

u(s(t),t)=-l+s2(t), 0<t<T,

and that

(4.7) Ks[ux(s(t),t)-2s(t)] =E(s(t)-,t)[k(t)-Co(S(t))
in the case k(t)<-2hs(t). In the case k(t)_>-2hs(t), instead of (4.7) the following
condition has to be satisfied

(4.8) u(s(t),t) 2s(t).
If we disregard the condition >__ -2hs, problem (4.6), (4.8) has a unique classical

solution, such that limt_,0k(t) + and s(t) =< 1 (2)- 1/2. This conclusion can be
obtained using the results of [5]. Such solution is also a solution to the original problem
if h >= 0 (the condition k >= 2hs is automatically satisfied). Otherwise a time T> 0 exists
such that k(T)= -2hs(T), beyond which the solution has to be continued in a differ-
ent way. The possibility of such a continuation will not be investigated here.

The determination of M requires first the solution of

(4.9) E 2hxEx 2( Ks + hE )
with the condition

(4.10) E(s(t),t)=O, 0<t ifh>0, 0<t< if h<0



72 ANTONIO FASANO AND MARIO PRIMICERIO

and the constraint E (0,A). This problem is easily solved and the curves x= q,.(t)
where E c are found to have positive and bounded slope for any value of c in (0, A ].

The L-M interface, x=z(t), is expected to start from the point (0, TL), with

TL=(2h)-Xln(1 +hA/Ks) for h4:0 and T=A/(2Ks) for h=0, and enter the region
bounded by the curves x=s(t) and x=q(t).

On such an interface the energy balance condition is

(4.11)
K[ux(Z(t)-,t)-2z(t)l -[A-E(z(t)+,t)] [2(t)-Vo(Z(t))], t> T.
As a matter of fact, it can be shown that the alternative condition ux(z(t)-, t)=

2 z(t), valid when (t) < v0(z(t)), never occurs
We have the following.
THEOREM. The free boundary problem for the heat conduction equation in the liquid

phase with free boundary conditions (4.11), z(TL)= 0 and

(4.12) u(z(t),t)= -1 +z2(t)

has one unique classical solution in some interval (T, T ).
The proof of this theorem is complicated by the fact that the apparent latent heat

in (4.11) vanishes for t= T. The main tool employed is to construct a sequence of
monotone approximations by solving the following problems.

,,(i)-u}i)-- -2K inD,!i)-- ((x t)" O<x<z(i)(t) TL<t<Tc(i) }t,,

(4.13) u(i(x, T)--0, x 0, -U(xi)(0, t) 0, t(TL, Zc(i)),
u(i’(z(i)(t),t)--O, t(TL, Zc(i)),
KLU(xi)(z(i)(t),l) -L*(z(i)(t),t)[2(i)(t)+2hz(i)(t)], t(TL, Tc(i)).

In (4.13) the following symbols are used:
1) is an integer not less than some 0 such that E(1/i0, TL) is defined and takes a

value in (0, A);
2) c is a constant in (0,A) such that the level curve x qc(t) hits t= T on the left

of x=l/i;
3) L*(x,t)= A- E(x,t);
4) T,.(;) is the first instant (greater than T) such that the curve x=z(i)(t) hits either

x q,.(t) or the boundary of the region where E is defined.
The convergence proof goes through the following steps.
First, one can prove as in [12] that for any i> 0 there exists a constant co(i ) such

that T,.() is uniformly estimated from below by some To> T for any c(co, L). Hence
the following definition makes sense

z(t)=limzi)(t), ro).

Next, it can be shown that if the functions qA(t) and z(t) do not coincide in any
neighborhood of t= T, then qA(t)< z(t) in (TL, To). The argument of the proof is
based upon the construction of suitable barriers for z (i).
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By means of a comparison technique it can then be proved that the convergence of
the sequence (z)) is uniform in [TL, To] and that the limit function z(t) is locally
Lipschitz continuous. Moreover, let ft(x,t) be the solution of the equation KLftxx-ftt=
-2K in the domain 0 <x < z(t), T < < To, subjected to the boundary conditions
x(0, 0) 0, f(z(t), t)= 0. The maximum principle ensures that ft(x, t) is the uniform

limit of the sequence (u)(x,t)).
At this point it can be concluded that the pair (z,u), with u=ft-1 + x 2, solves the

free boundary problem in the liquid phase, i.e., that (4.11) is satisfied. To this end it is
convenient to reformulate (4.11) in an integral form, using Green’s identity, namely

So(4.14)
(’)
2Kdxdt’ +A(z(t),t)+ A,(z(t),t)dt’- ft(x,t)dx,

where

A(x,t)= L*(x’,t)dx’,

Ax(x,t)= -2hxL*(x,t)+ L*t (x’,t)dx’.

In the present case (4.14) is seen to be equivalent to (4.11). Writing the correspond-
ing equality for each of the pairs (z ), u i)) and passing to the limit shows the validity
of (4.14).

As a consequence, the theorem will be proved if we can guarantee that the
functions qA(t) and z(t) are not identical in a right neighborhood of T. Assuming
this is false, we immediately get a contradiction, since L* and fix vanish on x= z(t),
where ft attains its minimum.
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STANDING WAVE SOLUTIONS FOR A SYSTEM
DERIVED FROM THE FITZHUGH-NAGUMO EQUATIONS

FOR NERVE CONDUCTION*

GENE A. KLAASENt AND ENZO MITIDIERI$

Abstract. We focus our attention on the reaction-diffusion system ut=D1Au+f(u)-o, ot--D2Ao+
e(u-3"v) where f(u)=u(1-u)(u-a), 0<a< and D1, D2, e, 3’ are positive constants. The parameter 3’ is
chosen large so that the associated dynamic equations (D D_ =0) have three constant solutions two of
which are stable. The authors establish necessary and sufficient conditions that the Dirichlet problem for this
system possesses two nontrivial time independent solutions.

1. Introduction. We investigate the system

ut--OlAU+f(u)-o,
v D2Av + e(u 7v),

where A--ET=lO2/Ox2i, n>=l, t>=O, (XI,’’’,Xn)’__ n, f(u)=u(1-u)(u-a), 0<a
< 1/2, O > 0, D2 > 0, e > 0, , > 0. Equations (1.1) are an extension of the simpler
FitzHugh-Nagumo [7], [13] equations, namely

(1.2)
ut=Uxx+f(u)-v’

The FitzHugh-Nagumo system serves as a prototype for nerve conduction and other
chemical and biological systems. The interested reader is referred to [8], [15] for a
review of results obtained to this date.

The space independent system (i.e., the dynamics of (1.1) and (1.2)) consists of the
equations

(1.3)

Of particular interest to us is the case of large , for which (1.3) have three steady state
solutions, two of which are stable and one unstable (see Fig. 1). This "bistability"
phenomenon is present in a number of chemical and biological models [6], [13], [21].

Recently, Terman and Rinzel [18] have made a detailed mathematical and numeri-
cal study of the case , large in a simplification of (1.2),

ut=Uxx+n(u-a)-u-v,

v,= e( u "/v ),
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FIG. 1

where
1 if u>a,H(u-a)= 0 ifu<a,

For appropriate values of the parameters they find wave fronts, wave backs and pulse
solutions of (1.4). One important result of their analysis is that e72< 1 is a necessary
and sufficient condition for the existence of a pulse solution.

In this paper we investigate the more complicated system (1.1). The addition of
diffusion terms to the v equation reflects the possibility that more than one species may
diffuse. For example, Tuckwell and Miura [19] have proposed a model for spreading
cortical depression in the brain. In their system there are three steady state solutions
and more than one species diffuses. Also, Koga and Kuramoto [10] examine a two
diffusion modification of (1.4), namely

ut=DlUxx+H(u-a)-u-v,
V D2vxx + btt- co, c < x < c.

They show that if the inhibiting diffusion 02 is sufficiently large, (1.5) have 2 noncon-
stant steady state solutions, one of which is linearly stable. They also argue that such
standing waves are likely in bistable excitable systems in which the inhibiting diffusion
is large enough to halt the formation of a traveling wave.

Rothe and de Mottoni [16], [17] consider a system somewhat similar to (1.1) but
with D2=e=y=l and a function f which satisfies f(-u)=-f(u) and f’(0)>0. In
contrast to our system, their model has a single constant solution which exhibits the
diffusion driven instability property which Turing suggests as the dynamics of pattern
formation. Moreover, since our f is not odd we cannot apply the Ljusternik-
Schnirelmann theory as they do to obtain existence of steady state solutions.

Standing waves of (1.1) have been found when n 1. Ermentrout and Hastings [5]
show when 7 > 0 is small that there are two standing waves. Klaasen and Troy [9] argue
for 7 > 0 large and 1/2-a > 0 small, n 1 that system (1.1) has a standing wave solution
and infinitely many periodic solutions.

Our main goal is to show the existence of standing wave solutions for system (1.1)
when n> 1. Our space domains are finite balls with sufficiently large radius, i.e.,
Bn(0) ((Xx,-.., x.) Ir7= x/__< R2 }, where R > 0 is large.
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In {}2 we state our main results. In 3 we give the proofs of our theorems.

2. Statement of main results. We investigate (1.1) for the existence of steady state
solutions on bounded domains in R N with zero boundary values. Such solutions
(u(x), v(x)) solve the system

-D1Au=f(u)-v,
(2.1) D:Av= eu e’v,

on 2 with u 0 and v 0 on Of. By rescaling the equations using the transformations
x x//D 8D eD1, we obtain the equivalent system

(2.2) -Au=f(u)-v
on , u O,

(2.3) Av= Su- /v
v=O on

We assume that 0 < a < 1/2 and require V > 4/(1- a) 2. This latter condition guaran-
tees that (2.2) have three constant solutions. The first of these, the so-called rest state, is
given by %=(0,0). The other two are denoted by ri= (i, ;), i= 1,2, where 0< <2
and 0 < 1 < 2" By solving the equation f(u)= u/v it is easy to see (see Fig. 1) that

fii=---+ 2 (l+a -4 a+ i=1,2.

If we assume f is of class C2+, where a(0,1), then, following [11], [16], [17],
the system (2.2), (2.3) can be uncoupled since the boundary value problem

(2.4) -Av+8gv=Su, v=0 on

defines a transformation o=B(u), where B can be viewed as a bounded invertible
linear transformation from C() into C2+() or from L2(f) into H(f) in the case.
of weak solutions. Substituting v=B(u) into (2.2) we obtain an equivalent single
operator equation

(2.5) -Au+B(u)=f(u) one2, u=0 onO.

Finally if we define

h(u)=(u-a)(u-1),

then (2.5) becomes

(2.6) -Au+B(u)=-uh(u) one2, u=O on)f.

Thus u, o is a solution for the Dirichlet problem (2.2), (2.3) if and only if = B(u) and u
is a solution of (2.6).

The following lemma asserts that classical solutions of (2.6) are a priori bounded.
LEMMA 1. Let b0>0 be chosen so that h(u)> 1/3 whenever lul>bo. Then every

C2-solution u of (2.6) satisfies

bolu(x)lZbo, IBu(x)lz-- on .
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The variational approach to solving (2.6) is enhanced by the a priori bounds for
classical solutions as established in Lemma 1. We use these bounds to modify h as
follows. Let g C’(R) be defined with the restrictions

(2.7)

(i) g(u) h (u), lul=< bo,
1

(ii) g(u) >, lul> bo,

(iii) g and g’ are bounded on R.

Then -ug(u) is a modification of f(u) and if F(u)= ff(s)ds then the function
/(u)= f-sg(s)ds is a modification of F. Let the functional (I) be defined on
by

(2.8) 1 l ffauB(u)dx_f  ,(u)dx.
By standard critical point theory, see [10], critical points of (I) are weak solutions of the
Dirichlet problem

(2.9) -Au+B(u)=-ug(u) onl2 u=0 on Of].

Ambrosetti and Rabinowitz [2] and Ambrosetti [1] prove that if there are constants
c1, c2 and p such that

1 (s)l=< < + ls[
where

p>l if n=2, but
n+2(2.10)

l_<p< if n>2,
n-2

then weak solutions of Dirichlet problems for -Au= k(u) on domains fcR" with
3f C2 /, 0 < a < 1, are of class C 2 /,. Our choice of g is such that there are constants
c and c2 with Isg(s)[<=c + c2ls and hence condition (2.10) follows for k(u)= -ug(u).
Because of the smoothing effect of B and (2.10), a standard "boot strap" argument (see
[1] or [2]) can be applied to conclude that if

(2.11) fc, fC2+ forsome0<a<l,

then weak solutions of (2.9) are classical solutions. But then Lemma 1 and (2.7) imply
that these solutions are solutions of (2.6). Throughout the remainder of our discussion
we will assume our domains fa satisfy (2.11).

THEOREM 1. Suppose 0<a< 1/2, ),> 9/(2a2- 5a+ 2). There exists an Ro>0 such
that if f contains a ball of radius R o then the Dirichlet problem (2.2), (2.3) has a nontrivial
solution pair u1, v B( u of class C2 + a(. ) which satisfies

inf (u) (Ux) <0.
Uoi<)

THEOREM 2. If the hypotheses of Theorem 1 hoM then a second nontrivial pair of
solutions u2, o2-B(u2) of the Dirichlet problem (2.2), (2.3) exists of class C2+’(12) and
satisfies

inf max (b(o(t))=((u2)>O,
aGE 0<t<l

where Y.= (a C([0,1]; H0X(a))lo(0)= 0, o(1)= Ul}.



78 GENE A. KLAASEN AND ENZO MITIDIERI

The hypotheses of Theorem 1 and Theorem 2 are to a certain degree necessary as
the following theorem indicates.

THEOREM 3. The Dirichlet problem (2.2), (2.3)fails to have a weak nontrivial solution
on BR(O) if any one of the following hypotheses is assumed:

(i) 8, 3’ are fixedpositive numbers and R > 0 is sufficiently small;
(ii) 83’2 >= 1, 3’ < 4/(1 a) 2 and any R > 0;
(iii) 83’2<1, 2--83’>(1-a)-/4 and any R>0.
The hypothesis

9(2.12) > 2a2-Sa+2

present in Theorems I and 2 is quite natural. Firstly, since

9 4

2a2-Sa+2 (l_a)2’

condition (2.12) implies that the dynamics of (2.2) are bistable as mentioned earlier.
Secondly, condition (2.12) is equivalent to the inequality

(2.13) f(s)- ds > O,

where fi2 is the first coordinate of the trd constant solution %=(fi2,2) of (2.2).
Inequality (2.13) is known to be a necessary condition for the existence of nontrivial
solutions of Dirichlet problems associated with the single equation -ku=f(u)-u/7;
see Berestycki and Lions [3].

In part (iii) of Theorem 3 the assumption that 7 < 4/(1- a) 2 is implicit in the
inequality 2 8> (1 a)2/4 since it is always true that 1/7 g2 87. Hence a
necessary condition for the existence of nontrivial solutions of the Dirichlet problem
(2.2), (2.3) is that 7 > 4/(1 a) 2.

3. Proofs. This section contains the proofs of Lemma 1 and Theorems 1, 2 and 3
of }2.

Proof of Lemma 1. This proof is essentially due to Lazer and McKenna [11]. Let u
be a C2-solution of (2.5) with Dirichlet boundary conditions. Let maxlu(x)l=b1. By
applying the maximum principle to -ko=-Syu+Su we see that lBu(x)l=lo(x)[
bl/7 on . Suppose for contradiction that b > b0. If there exists x such that
U(Xx)=bl, then kU(Xx)0 and

U(Xa)<h(u(xx))U(Xx)=T[U(Xl)-B(u(xx))] Z -n(u(xl))ZU(Xl),
which is impossible. Similarly there is no x2 such that u(x2)=-b and hence

b > b0 is false and the lemma is proved.
Before proving Theorem 1 we introduce some notation and establish the validity of

several useful lemmas.
On the Hilbert space L2() the inner product is denoted by

( u, v ) f.uv tx
and the norm is denoted by

)1/2.Ilull2-(u u
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If the Hilbert space is H0(f), then the inner product will be

((u,oll= fn(vu, vo)d
and the norm

We seek nontrivial solutions of

(3.1) -Au+B(u)=-uh(u) on a, u=0 ona.
Recalling the discussion following Lemma 1 of {}2, we will assume f

___
R satisfies

3f C2/’, where 0<a < 1, and obtain as a consequence that weak solutions u of (3.1)
are of class C2+"(fl) and u,v=B(u) is a pair of classical solutions of (2.2), (2.3). Also
weak solutions of (3.1) are critical points of the functional

1 l fauB(u)_fap(u)(3.2) (u)=
where P(.u) f sg(s) ds.

LEMMA 2. Let B be defined by (2.4). Then

1

Proof. If u L2() and v B(u) then ( v) v + 8va 8 uv and hence fa Vol 2 +
f o2=f uollullalloll=. Consequently, llnull=f o2 llull=llnull= and the
lemma easily follows.

Let Bn { x nlllxll < R }, Cn Bn Bn_ and for any N let I1 fa dx.
LMM 3. If R>0 is sufficiently large then there exists a uH(Bn) such that

(u)<0.
Proof. For R > 0 define u H(B) by

=, 0 z Ilxllz R- 1,

where (,) is the third constant solution of (2.2). Then

BR

R R-1

z lc.l+ -1

where c is a positive constant independent of R. Recall that IBI k,R, where k is a
constant depending only on the dimension n of the space. Thus there is a constant
such that ICIN l,R"-. Continuing the inequality we have that there exists a constant

K such that

*(u.lz-l+
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Since a<fi2<l<b0, +/.(fi2)>fi/2 if 7>9/(2a2-5a+2) and hence for R suffi-
ciently large (uR)<0. See (2.13).

Proof of Theorem 1. First we wish to argue that , defined by (3.2), is bounded
below on Ho(2). From (2.7) we have that g(s)> 1/, for [sl> b0 and hence there exists
an M>0 such that/(u)= f0" sg(s)ds>-M for all uR. Consequently fa l(u) dx>
-Mlf on H(). If the second equation of (2.2) is multiplied by o=B(u) and
integrated we obtain fa [volz+yfa Iol2=fa uB(u) and hence fe uB(u)>=O for all
u H(f). Consequently (u)>__ -mlal on H().

Secondly, since feP(u)dx>-mll, rk(u)>=1/2llull2-M]21 on H(f) and hence
(u) oe as Ilull oe.

Finally, by standard variational arguments is weakly lower semicontinuous and
consequently attains a global minimum on H() at some critical point u which is a
weak solution of (3.1); see Vainberg [19] or Ambrosetti [1]. Lemma 3 implies that
(u)<0 and ux is nontrivial. By the standard "bootstrap" arguments referred to

earlier, u C2+(a) and is a classical solution.
To prove Theorem 2 we use the following version of the mountain pass theorem of

Ambrosetti and Rabinowitz [2]; see Mawhin [12].
THEOREM. Let CI(E,N), where E is a Hilbert space and assume there exists

uo E, u E, r > O, k > 0 satisfying the following conditions:
(i) Iluo- uxll > r;
(ii) (Uo)<k, qb(Ul)<k;
(iii) (u)>__k for IlU-uoll=r.

Let N { o C([0,1], E)lo(0)= Uo, o(1)= u } and define

infe max t u.
oE uo([0,1])

If tb satisfies the Palais-Smale condition, then c is a critical value for .
In the proof of Theorem 2, E= H(f), u0=0; u is described in Theorem 1. Since

B is a compact operator the argument of Ambrosetti and Rabinowitz [2] or Ambrosetti
[1] will show that the function defined in (3.2) satisfies the Palais-Smale condition.
The remainder of the hypotheses of the mountain pass theorem will be satisfied when
we prove the following lemma.

LEMMA 4. There exist r>0, 0>0 such that t(u)>O for all 0<[[ull__<r and (u)>=O
for all [lull r.

Proof. Define k(u)= ug(u)+ au so that (2.9) becomes

(3.3)

Let K(u)= f k(s)ds. Then from (2.6) and (2.7) we conclude that k(u)= (1 + a)u- u
for lul=<b0 and since Isg(s)l<=Cl / c=lsl for sNl we see that k satisfies (2.10). From this
property Ambrosetti and Rabinowitz [2] show that fa K(u)dx-O(llull 2) at u=0. Hence

1 2 fae(u)=g Ivul + B(u)u- P(u)

1 [2 a fa>=- lvu +y u K(u)

>_  llull=/ o(llull 2) for some fixed e > 0

and the lemma follows.
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In Theorem 3 we prove the nonexistence of nontrivial solutions to the boundary
value problem

-Au+B(u)=f(u) onB0(R ),
(3.4)

u=O on Bo(R ).
Several lemmas are required to establish the validity of Theorem 3.

Consider the eigenvalue problem:

-Au+Bu=lu onB0(R),
u=0 on

LEMMA 5. /f / is an eigenvalue of (3.5), then /=)+B/()+By), where ) is an
eigenvalue of

(3.6)
-Au=Xu on Bo(R ),
u=0 on Bo(R ).

Proof. Suppose (/,u) is an eigenvalue eigenfunction pair for equation (3.5) on
L2(f). Since B=6(SV- A) -1 we operate on both sides of (3.5) by (8"- A) to obtain

(3.7)
((- + ,a)u

u=O.

or

By factoring the quadratic operator in -h we obtain

(3.8) (-A+a)(-A+b)u=O
for appropriate complex numbers a and b. Both a and b must be real numbers for
otherwise they are complex conjugates and both (- A + a) and (- A + b) are invertible.
This would imply that u 0 contradicting the fact that u is in eigenfunction. Hence a

and b are both real and (3.8) implies that one is an eigenvalue of -A with eigenfunc-
tion u. If we suppose a is an eigenvalue then from (3.7) we conclude that a 2 + &a + 8-
/8 0 and upon solving for we obtain the required relationship/=a + 6/(a + /).

LEMMA 6. Let ,()=,+8/(+ 3). Then on (-’/, ), ,() has a unique positive
minimum at ,0=v/--8y with u(0)=27r-8,. Moreover is increasing on

v /, ) and lim x__, u (X) . This lemma is obvious.
LEMMA 7. Let t be the first eigenvalue of (3.5). If the BVP (3.1) has a nontrivial

solution, then I <= 1/4(1- a) 2.
Proof. Let u L(BR(O)) be a nontrivial solution of BVP (3.1), and let C h + B.

Then by the Rayleigh-Ritz representation of the first eigenvalue of (3.5), see [4], we
have =inf(Cv, v)/llvl122, where infimum is taken over all vL(BR(O)), vO. Since
u L2(BR(0)), we have

 xllul122 (Cu,u)-(f(u),u)- [-u4+(l+a)u3-au]

fB u2[--uZ+(l+a)u--a]<= fB u2(1--a)
2

R(o) R(o) 2

(l--a)2
2

or 1 ------< 1/4(1 a) 2.
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Proof of Theorem 3. First we prove part (i).
Let 0<a< 1/2, 8, 3, be fixed. If xl(R) is the first eigenvalue of (3.6), then

limR+0?l(R)=o; see [4]. Hence, from Lemma 6, there exists R0>0 such that if
0< R < R 0 then v(,I(R))> 1/4(1-a) 2 and kl(R)> k 0. Hence the first eigenvalue/I(R)
of (3.5) satisfies

/J,I(R) Xn + Xn+--’-’-I(kn)>=.I(Xl(R))
and by Lemma 7 no nontrivial solution of (3.1) exists.

To prove part (ii), since 83,2>= 1 and 1/3 > 1/4(1- a) 2, then in Lemma 6, X0=<0 and
hence/(?) is increasing on [0, o0). Thus

1

for all h>0 and hence for some n, l(R)=(2,,)>l(O)=l/y>1/4(1-a) and by
Lemma 7 no nontrivial solution of (3.1) exists.

Finally part (iii) follows by an argument similar to part (ii). For if u is a nontrivial
solution of (3.1) for some R > 0 then from Lemma 7 we have

1 (l-a)2 < 2f- 83, min(;k)/xx(R)-<
,>_0

which contradicts Lemma 5. Hence no nontrivial solution of (3.1) exists.
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REGULARIZATION FOR A CLASS OF
NONLINEAR EVOLUTION EQUATIONS*

JAMES F. EPPERSON

Abstract. We establish estimates of the regularization error for a class of nonlinear degenerate parabolic
evolution equations, which includes the Stefan problem in enthalpy form.

1. Introduction. In this paper we consider the regularization of nonlinear para-
bolic equations in the form

(1) ut=Af(u)+F,

where f’()_>_ 0, and equality holds for some Range(u). Our ultimate goal is to
establish estimates for the error due to changing fromf to f, f’(j) >__ e > 0 for all .

Particular equations of the form (1) have been studied by many authors, including
Friedman [8], Cannon and Hill [5], Brezis [3], Jerome [9] and Alexiades and Cannon [2],
all of whom established existence and uniqueness in appropriate Sobolev spaces.

The question of regularization error for equations of the form (1) has been most
closely tied to the Stefan problem. In [7] we established an O(e1/4) estimate for the L2

error in temperature (corresponding to f(u) in (1)), where e is the regularizing parame-
ter. This was extended in [6] to o(el/2). Jerome and Rose [10] had earlier obtained a
similar O(e1/2) result for a different regularization.

The importance of the regularization error lies in its effect on the error in numeri-
cal approximation. If the regularizationf is such that f’() >= e > 0, then typical numeri-
cal error estimates ([6], [10]) are proportional to positive powers of e -1. There thus
exists an e* for which the approximation and regularization errors are balanced. The
smaller the regularization error, then, the smaller the total error.

Our main result is Theorem 4.1, which characterizes the regularization error in
both u and f(u) for a fairly broad class of regularizations. This is followed by Theorem
4.2, which gives conditions under which the regularization error for the Stefan problem
is O(e).

To fix notation, let fa c R" be an open bounded domain with Lipschitz boundary
f= F. For T>0, Qr=2 (0, T] defines a space-time cylinder. The spaces H(D)
denote the usual Sobolev spaces of functions over D, with the standard norms II’llr, D
[1]. The notation LP(X) for LP(0, T; X) will be used for brevity, with the norm being
written I[" [l {x). Finally, the letter C will be used to denote generic positive constants.
Only where distinction is important will any attempt be made to distinguish between
different constants.

2. The nondegenerate case. Consider the evolution problem

(2) u,=Af(u)+F ina, t>0,

(3) u=0 onr, t>0,

(4) u(O) u o ona, t=O,

*Received by the editors October 25, 1983, and in revised form May 10, 1984.
Department of Mathematics, University of Georgia, Athens, Georgia 30602.
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where we assume

(5) f C(Nt) and is piecewise Cl,
(6) f(0)=0, O<a<=f’()<=x< all .
We remark that the choice of homogeneous boundary data is not a restriction, since for
smooth enough boundary data an appropriate translation of f and modification of F
can always be done to achieve u=0 on F. We also take FL2(Qr) and u0 Hl(f),
although the case u0 L2(f) will also be considered.

It follows from (5)-(6) that, for any ,/1,

(7)
and

(f(J)-f(’o))" (J- n) >= Co ( l l )

(8) (f() -f(/)) (- /) _>_ C(f(l)-f(rl))2,
where C is independent of o.

We begin by establishing certain a priori estimates for smooth solutions to (2)-(4).
By "smooth" we mean a function in the space

V= { qL2(0, T; H2(a)CH(a))Iq),L2(Qr) }
LENNA 2.1. Let V solve (2)-(4) a.e. in Qr. Then;
(i) I111(=) CM1;
(ii) IIII(H) C-X/2M;
(iii) ]lf()ll=( CM;
(iv) II())/ll=(=)+llf()ll() CM=;

(vi) IIf()llc=(m C-X/=M=,
where

M= [lu0110+ zX/211FIl=(=),
The constants in (i)-(vi) are all independent of o.

Proof. We use standard energy arguments. Multiply the equation by , integrate
over space and time, and use the Poincar6 inequality to get

2 ’llw( )lld’NC(lluo[l+’fa[wfldxd ),(9) II(t)llo+o

alternately, we can use (6) to obtain

c II.0110+
The last term on the right can be bounded by the HNder inequality applied twice:

lesults (i) and (ii) follow immediately from this last bound applied to (9); result (iii)
follows when it is applied to (10).



86 JAMES F. EPPERSON

If we now multiply (2) by (f(q))t and again integrate twice, we get

fof/ fo’fo fo’fo,(q)(%)2dxdr + v(f(ep))tvf(q)dxdr= (f())tFdxdr

which becomes

or, alternately

(12) o II,()ll0+llvl((t))llc Ilvl(u0)ll0+ li(()),F()lx.

Part (iv) follows immediately from 01); part (v) then follows from (12) with (iv) sed to
ouna tke last intetral on tke ritkt. Pinally, part (vi) is estaliskea y multiplyinl (2)
y Ai() ana ounain tke , term usin (v).
Tog 2.2. Suppose UoH() and FL(). Then there exists a unique

u HI(Qr), wit S(u)L(H()), solvin ()-(4).
rooi. xistnc ana uniqueness were staliska in [$] for weag solmions in tke

sense that

(1 [..+(.l]xe+ .0(0lex+ eex=0

for all V, (T)=0 a.e. in . This analysis assumed homogeneous Neumann data
and a specific choice of nonlinearity f, but can be easily generNized to our case.
Further, the estimates of Lemma 2.1 imply the extended regularity uH(Qr), f(u)
L(0, T; H()), i.e., u is a strong solution in that (2) holds a.e. in Qr-
ToN 2.3. Suppose only that uo L() andFL(Qr). Then there exists u, a

unique weak solution (in the sense of (13)) to (2)-(4), such that uL(L(a)) and

Proof. The theorem follows from Theorem 2.2 and Lemma 2.1(iii) by taking a-
sequence { v } in H() converging in L() to u0.

3. e aegeere ease. We now consider the problem (2)-(4), with hypothesis (6)
changed to

(6’) f(0)=0, 0Nf’()N<m, allN.
Because 0, many of the bounds from Lemma 2.1 no longer apply. Thus, the whole
existenceuniqueness question becomes much more delicate. Direct proofs of ex-
istence of weak solutions are possible ([3], [8], for example), but we prefer here to
establish existence as the limiting case, as o 0, of (2)-(4), (6).

Consider the sequence of problems:

(14) u}=(f(u()+%u(l)+F ina, t>0,

(15) u(’=0 on F, t>0,

Each u( is the solution of a problem of the form (2)-(4), (6) and, if

lim % 0,

then we can in fact construct the solution to the degenerate problem.
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THEOREM 3.1. Let FL2(Qr) and uoHl(). Then there exists a unique weak
solution of (2)-(4), (6’); moreover,

u(0,; ()),
(u)L(O,T; H()),
f(u)tL2(O,r; L2(Qr)).

Proof. Consider the sequences ( u) ), {f(u))), defined by (14)-(16), where

f.()=f()+o..
By Theorem 2.2, then, the sequences are well-defined and

where C is independent of n for lim, o,=0. Hence there exist subsequences such
that

(17) u(m) weakly in La(QT),
(18) fm(Um)) f strongly in La(QT).
Clearly, if f=f(fi), then we have established existence, for the same analysis as in [5]
will apply. Sincef is continuous and monotone, it suffices to show that

(19) (-v,/-f(v))aO, all oL2(Qr).
So, we consider

(- ,i-()) (- u’m’,/-/( )) + ( u’m’-o,/-/m( u’m’ ))
+ ( um-o,f( um)-f( o)) +om( u-o,um).

In the limit, the first two terms go to zero by (17) and (18); the third term is positive
since f is monotone; and the last goes to zero since o does. Thus (19) holds, and so
f=f(). Existence then follows.

For uniqueness, let v L2(Qr) be a second solution. Then

for all V. Factor out the (u v) to get

rfa(u-v)[’+eA]dxdt=O’ where e=f(u)-f(V)u-v _0
and eL(Qr). Consider then the final value problem

w})+(e+e)w)= ina, t<r,

()=0 onF, t<T,

()(T) 0, in a,
for C(Qr), e>0. By [11, pp. 179-180], this has a unique solution () K Thus,
for any C(Qr),
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Again from [11, pp. 179-180], we have that

for C independent of e. Hence, we have

for any q C(Qr), any e > 0, which implies u v a.e. in Qr-
As before, a solution for u0 L2(2) is possible.
THF.OREM 3.2. Let F L (Qr) and uo L2(f). Then there exists a unique solution u

to (2)-(4), (6’); moreover

uL(L2(a)), f(u)L2(H(a)).
Proof. Again, take a sequence of { v(0j) }, v(oJ) Hl(a), O(oj)

4. Regularization. Consider the degenerate problem (2)-(4), (6’) and the associ-
ated regularization (14)-(16). What bounds, if any, can be placed on the errors u-u(n)

and/orf(u)-fn(u(n))? In connection with numerical work for the Stefan problem, this
question has been addressed before ([6], [7], [10]). The best estimates so far are ([6], [10])
O(E1/2) in Ilf(u)-f(u*)llL2, where e is the regularizing parameter (f’()>_ e). Here we
generalize and improve upon some of these results.

For a given f satisfying (5) and (6’), definef by

f,()=f(l)+e,(),
where e, is continuous and such that

e,(0)=0, f,’()>__e for e<*o-
Let u solve the corresponding problem (2)-(4). Then

THEOREM 5.1. IfFL2(QT) and Uo L2(), then

(i) Ilu u e-a Jle( u )[[ L-( L);

(ii) IIf(u)-L(u)ll,( <_ (1
Proof. Let E H-’(0)+ HoX(0) be the solution operator for the boundary value

problem

-Aq0=q in, q=0 onF.

Then the PDE’s can be written as

Eu;+L(u*)=EF, u*(0) =Uo,
Eut+f(u)=EF, u(0) uo

Subtract, multiply by (u- u*), and integrate to get

1 u foia o,glle’/’(u- )lifo(r)+ (,,-

hence

u-ue,f,(u)-fe(u*))dxdt<= e(u)(u-u*)dxdt.
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Thus, from (7), and the Schwarz inequality,

llu ull =

which proves (i). Then, using (8),

so

1) /2
IlL( u)-f(u)llv < lie(U)I[La(L2),

E

hence (ii) follows, using the triangle inequality.
The most obvious regularization is the global choice, e(u)= eu, for all u. In this

case, Theorem 5.1 yields

for all e, but only that Ilu ull (L=) is bounded.
On the other hand, for certain cases a regularization e is possible which provides

higher order convergence.
THEOREM 5.2. Suppose that the following conditions hoMfor e sufficiently small:
(a) Ile(u)ll(o)__< Ce;
(b) vol(supp e(u)) =< Ce.

Then, for e sufficiently small:
(i) Ilu ull =(r=)_-< C11/2;
(ii) Ilf(u)--f(u)llL2(L2)<__ Ce.
Proof. Conditions (a) and (b) directly imply

Ile( U)IIL2(L2) <-- C.3/2,

from which both (i) and (ii) follow, using Theorem 5.1.
Consider, then, the Stefan problem in enthalpy form, in which case f has the

general form

t+ 1,
f(j)= O, 0<<1,, __<o.

Define e() by

0, 1 + V-=<,,
e() e- V/e- (J- 1)’ 1--<--< 1 + V/-’

e, 0__<__<1,
o, __<o.

Clearly, Theorem 5.1 applies, with e0= 1; moreover, condition (a) of Theorem 5.2 also
holds.
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Now suppose that the given problem also has a solution in the classical sense; for
the Stefan problem this is the case under fairly mild and reasonable conditions on the
data functions (see [4] and references therein). In this case, the degenerate region
corresponds to the solid-liquid interface and hence has measure zero (it is an n-
dimensional surface in (n + 1)-space). Thus

vol( (x,t)lO<=u(x,t ) <_ 1) --0.

But the degenerate region is very nearly the same as supp e(u), and, in fact, as e O,

supp e(u) (<x,t)lo<__uZl).
Thus the hypothesis (b) of Theorem 5.2 becomes quite reasonable. This discussion then
indicates that, for the classical Stefan problem, a regularization error that is O(e) is
plausible although not yet rigorously established.
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BIFURCATION IN DOUBLY-DIFFUSIVE SYSTEMS I.
EQUILIBRIUM SOLUTIONS*

WAYNE NAGATA’ /ND JAMES W. THOMAS"
Abstract. The problem of the steady flow arising when a layer of fluid with a dissolved solute is heated

from below is considered. The problem is placed in a functional analytic setting where bifurcation of
convective solutions is proved and the stability of these bifurcating branches is studied.

Key words, doubly-diffusive systems, bifurcation, stability

1. Introduction. This paper studies steady convective flow that can arise when a
layer of fluid with a dissolved solute is heated from below. The effect of a stabilizing
solute gradient can be overcome by introducing a destabilizing temperature gradient,
resulting in convective motions. Under some conditions these motions can correspond
to steady cellular flow, as in the case of pure thermal (B6nard) convection. However, it
is also possible for the convective motions to be periodic in time.

Double-diffusive convection was studied in 1965 by Veronis [19], who simplified a
model describing two-dimensional cellular flow (rolls) into a system of coupled nonlin-
ear ordinary differential equations. Numerical solutions of these equations showed both
equilibrium and periodic solutions. Later, Huppert and Moore [7] numerically in-
tegrated the full partial differential equations describing rolls, and found equilibrium,
periodic and aperiodic solutions. More recently, in 1981, Da Costa, Knobloch and
Weiss [6] solved the system of ordinary differential equations of Veronis numerically
and discovered further behavior-successive period doubling and apparently chaotic
solutions.

The initial appearance of convective motion as the destabilizing temperature gradi-
ent is increased is suggested by a study of the linearized stability of the motionless
conduction solution which is globally stable for small temperature gradients. If the
thermal diffusivity of the fluid is greater than its solute diffusivity, we have the diagram
shown in Fig. 1 for the linearized stability of the conduction solution in two-dimen-
sional parameter space [7, p. 826]. The parameter r is proportional to the destabilizing
temperature gradient and the parameter s is proportional to the stabilizing solute
concentration gradient. In the region below the curve ACD, the spectrum of the
linearization about the conduction solution lies in the negative complex half-plane, and
hence the conduction solution is asymptotically stable with respect to small perturba-
tions. In the region above the curve ACD, the linearization has part of its spectrum in
the positive complex half-plane, and hence the conduction solution is unstable. From
bifurcation theory, we expect to find nontrivial solutions corresponding to convective
flows near the linearized stability boundary ACD: (i) on the open line segment AC, the
linearization about the conduction solution has a zero eigenvalue; (ii) on the open line
segment CD, the linearization about the conduction solution has two conjugate pure
imaginary eigenvalues; (iii) at the point C, the linearization has a degenerate zero
eigenvalue. Case (i) is associated with the appearance of steady convective motion, case

*Received by the editors May 10, 1983, and in revised form June 11, 1984.
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.
Present address: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912.
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(ii) is associated with the appearance of convective motion in which the flow reverses
itself periodically in time, and case (iii) is associated with both types of convection
interacting with each other. When the thermal diffusivity is less than or equal to the
solute diffusivity, then the line CD in Fig. 1 is absent and the linearized stability
boundary of the conduction solution consists of the line AB. In this case only steady
convection can bifurcate from the conduction solutions.

The bifurcation of nontrivial equilibrium solutions corresponding to steady con-
vection is similar to that which occurs in the B6nard problem which models a layer of
fluid heated from below with no solute present. The existence and stability of bifurcat-
ing equilibrium solutions has been shown for the B6nard problem by several authors,
for example [8], [9]. A review of bifurcations in fluid flow, including the B6nard
problem, was given by Kirchgtssner in [13].

In this paper we treat case (i). We first describe the mathematical model, which
was also the basis of the numerical studies mentioned above. Then in 3 we formulate
the problem in a function space setting and apply a theorem of Crandall and
Rabinowitz [4] to prove the existence of bifurcating equilibrium solutions correspond-
ing to two- and three-dimensional cellular convection. In 4 we compute the linearized
stability of the bifurcating solutions. We find that the three-dimensional solutions can
be stable under the same conditions which would make two-dimensional roll-like
solutions unstable.

In later papers--Parts II (this issue, pp. 114-127) and Ill--we will treat case (ii),
involving the bifurcation of periodic solutions, and case (iii), involving the interaction
between bifurcating equilibrium and periodic solutions.

2. Formulation of the problem. In this section we describe how to obtain the
system of partial differential equations which we will use and formulate the boundary
conditions.

The double-diffusive convection equations. Consider an infinite horizontal layer of
an incompressible fluid of uniform height h where the upper surface is maintained at a
constant temperature T and solute concentration $1, while the lower surface is main-
tained at constant temperature TO and solute concentration S0. We assume that TO > T
and SO > St. The equations governing the motion of the fluid are taken to be [19]

0 1
o-U + (U. v )U= --( vP + pge) + vAU,

Po

o-7 v+ (u. v T= ar,

s+(u-V)S=xsiS,Ot

’ .U =0,

for x (x,y, z) in Nt 2 X (0, h) where
V (1)/)x, 3/)y, )/)z) is the gradient operator, A }2/)x2 + 2/)y2

is the Laplacian operator,
U (U, V, W) is the fluid velocity at x,
T is the fluid temperature at x,
S is the solute concentration at x,
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p is the fluid density at x,
Po is the fluid density at the lower surface z 0, assume to be constant,
P is the fluid pressure at x,
g is the acceleration due to gravity,
e is the unit vector (0, 0,1),
v is the kinematic viscosity,
rr is the thermal diffusivity,
rs is the solute diffusivity.

B

C

0 C

FIG. 1. Linearized stability diagram for the conduction solution.

We assume that the effects of the temperature and the solute appear only in the
buoyancy force term (p/po)ge, and that the fluid obeys an Oberbeck-Boussinesq
equation of state

(2.2) p=po[1-a(T- To)+b(S-So)

where

a--
1 )p

is the thermal coefficient of volume expansion, assumed constant,p OT

1
p 3S

is the solute coefficient of volume expansion, assumed constant.

We take ,, x r, rs to be constants, and we have the constant-gradient solution

(2.3) sO-.So_( SO- sl )
P=Po-gpo z +- h

z -- h
z

where P0 is a constant. The solution (2.3) corresponds to pure conduction of heat and
solute. We consider deviations from the conduction solution u=U-U, 0= T-T,=S-S, p__p_pO. We also transform to dimensionless variables by making the
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rescalings xhx, t-*(h2/XT)t, U-(tCT/h)u O--(To-T1)O ---(S0-S1)" p--
((pOVXT)/h 2)p. This leads to the dimensionless equations

-u o(Au- Vp)+o(rO-s)e-(u.

(2.4) -0 A0 + w (u. V ) 0,

V "u=0,

for x (x,y, z) in the domain x (0,1), where u ( u, v, w) and

ag(To- T1)h bg(So-S1)h Xs
/Tp /Tp /T

In the following sections we consider the system (2.4) with positive parameters r, s, o
and ’.

Boundary conditions. The upper and lower surfaces are maintained at constant
temperatures and solute concentrations, so we must have

(2.5)

on the boundary of the .domain..We assume that the fluid satisfies a stress-free
condition on the boundary surfaces

(u.N)lz=o,1 0,

where N is the unit outward normal at a point on the boundary surface ( Vu)i./= 3ui/3xj,
and (.)r denotes the matrix transpose. For the domain fll these conditions reduce to

U(2.6) w]_0,1=0,
z----0,1 z=0,1

We note that the incompressibility condition V u 0 and (2.6) together imply

2W(2.7) Wlz=0,1
)4W

OZ 4
z--0,1

Although these boundary conditions are difficult to approximate experimentally,
they have the advantage that the eigenvalue problem for the linearization can be solved
exactly.

Equations (2.4)-(2.6) comprise the problem which we study to find bifurcating
nontrivial solutions. We observe that u 0, 0 0, " 0, p constant is always a solution
of (2.4)-(2.6) for all positive values of the parameters r, s, o and z.

3. Bifurcation of equilibrium solutions. We begin this section by stating a theorem
of Crandall and Rabinowitz which we will use to prove the existence of bifurcating
equilibrium solutions of (2.4)-(2.6). We then examine the eigenvalue problem of the
linearization to determine critical values of the parameters at which we expect to find
bifurcations and set up the problem so that the critical (zero) eigenvalue is simple.
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Finally, we define suitable function spaces and operators corresponding to the problem
(2.4)-(2.6) and apply the bifurcation theorem.

The bifurcation theorem. Let us write (2.4)-(2.6) as a parameter-dependent evolu-
tion equation

(3.1) du
dt -F(r,u)

in a suitable space of functions where s, o and r are considered fixed and the depen-
dence of (3.1) on these parameters is suppressed. If u=(u,0,’), then u=-0 is an
equilibrium solution of (3.1) for all r > 0. The following theorem gives conditions under
which there exists a branch of nontrivial equilibrium solutions bifurcating from the
trivial solution u=-0; see [5, Lemma 1.1], proved in [4]. If L is a linear operator, we
denote its null space by N(L) and its range by R(L).

THEOREM 1. Let X and Y be real Banach spaces and let I be an open interval in R.
Suppose F: I X--, Y is a C + mapping with

i) F( r, O)= O for all r I,
ii) dimN( Fu( ro, O))= codimR( Fu(ro, O))= 1 for some ro I,
iii) Fru(ro,O)uo R(Fu(ro, O)) where N(Fu(ro, O))=span{ uo}.

Let Z be any complement of span{u0} in X. Then there exist an open interoal I
containing 0 and C functions r: I and z: I Z such that r(0)= r0, z(0)=0 and if
u(e)= euo + ez( e), then F( r( e), u( e))= 0 for all e I. Moreooer, the only nontrioial solu-
tions of F( r, u)= 0 near (ro, O) are of the form (r(e), u(e)) for some e I.

The eigenvalue problem for the linearization. To apply Theorem 1, we need to find
function spaces X and Y such that zero is a simple eigenvalue of the Fr6chet derivative
Fu(r0, 0). To this end, we first consider the eigenvalue problem for the linearization of
(2.4)-(2.6):

o ( Au- Vp) + (roO- so)e
AO + w XO,

U
z---0,1 Z z=0,1

Wlz=0,x-- 01=0,1- Elz-0,1--o.

As in the B6nard problem, we seek solutions corresponding to a regular pattern of
convection cells. Since (2.4)-(2.6) and the domain ’1 are invariant under translations in
the xy-plane, we can require that the fields u (u, 0, ’) are doubly periodic in x and y:

2r(3.3) u x+,y,z U x,y+---, z =u(x,y,z) for all x "1,

for some nonnegative numbers a,/3 satisfying a2+/324: 0. If we expand the fields in
Fourier series

(3.4) u(x,y,z)= E Ujk(z)ei(/x+k"Y),u-j,-k(z)=ujk(Z),
.j, k=
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and substitute (3.4) into (3.2), we obtain an infinite system of ordinary differential
equations

LjkUjk ijalk 0 -lkUjk

tjkVjk-- ik#Pjk= O- Ojk,

(3.5) L2kO2k + w2k= XO2k,

ijaujk + kfl vjk + wjk O,

’1 ’1 =0ujk =0,1 v)k z=o, wjk z=O, k =0,1 k z=0,1

for each (j, k) x , where ’= d/dz, L2k= d2/dz:-k and k=j2a: + k:fl . These
equations can be reduced to a single equation for w2k(z),

( X ) ( X ) ( o X ) + ( X ) ( X O
(3.6)

o o W); =0
z=0,1 WJk Iz=0,1

for each (j, k) ’ ;. Because of the boundary conditions, we can expand wjk(z) in a
Fourier sine series

(3.7) E
1=1

for each (j,k) ’ 7/. Substituting (3.7) into (3.6), we obtain an algebraic equation
for h

(3.8)
k3 _k_ ( o q_ ,r q_ l) ]t

2 2 4 2 -2
jk, + [( O + " + O’)Vjk, OO)kYjk, (r--s)] , + Oryj6.k, + O0.k(S ,r) 0

for each (j, k) 7/ 7/and 1, 2,..., where y; %.2k + 2 2. Thus the eigenvalues of
the problem (3.2)-(3.3) are the roots of the cubic polynomials (3.8).

The location of the roots of (3.8) was studied by Baines and Gill [2], and a
convenient summary is presented in [7, !}2]. For certain values of r, s, o and r both zero
and purely imaginary roots of (3.8) occur. For now we only need the fact that ;k 0 is a
root of (3.8) if and only if

S
(3.9) r=-+

for each (j,k)7/7/. Furthermore, X=0 is a simple root of (3.8) provided z>__ 1, or if
0<<1 and

(3.10)

The case z > 1 corresponds to interchanging the roles of heat and solute to the case
in which the temperature gradient is stabilizing and the solute gradient is destabilizing.
This is the "fingering" regime. In the rest of this paper, we will restrict r to 0 < < 1,
the "diffusive" regime.
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To determine the multiplicity of X=0 as an eigenvalue of (3.2)-(3.3), we note that
for X 0 the boundary-value problem (3.6) reduces to

(3.11)
Lj3+fk r-- wjk=0,

’r

w  lz o, =0

for each (j, k) 7/ 7/. Then (3.11) is equivalent to the integral equation

(3.11’)

for each ( j, k) where ljk ofk r sly), Kj., z, 2 ) is the composition Kk Gj.ko G.o G,,
and Gj.k(z,2) is the Green’s function for the regular Sturm-Liouville operator (-Lk)
defined by

( d2 )(
dz TIz=0, =0.

Since (-Lj.k) has a positive spectrum, Gj. is an oscillating kernel [11, p. 538]. The
composition Kk of oscillating kernels is also an oscillating kernel, and one of the
consequences of the theory of oscillating kernels is that the eigenvalues of the integral
equation (3.11’) are simple and satisfy

0 ( l.jkl "( jk2 "( -’) (X

for each (j,k) 7/x 7/[10, Vol. I, pp. 251-255]. In fact, we have

(3.12) ttJk’ ({@, +/2r 2)3, l= 1,2,

for each (j,k)7/7/. Hence, the smallest eigenvalue of (3.11) corresponds to l= 1.
Now, r= r(fk) given by (3.9) is a convex function of fk with a unique minimum when
l= 1 at 2k ,n.2/2, for which

2) s 27qr 4

(3.13) r - =r0-=-+z4
Thus r= r0 is the smallest possible value for r which 0 is an eigenvalue of (3.2)-(3.3).
Moreover, this value of r corresponds to a one-dimensional subspace of nontrivial
solutions of the integral equation (3.11) and hence of the system (3.5) for each (j,k)
such that .=r2/2 (see [9] or [17] for the application of oscillating kernel theory to
the B6nard problem).

If we choose ct and/3 such that

7/.2
(3 14) az+f12=2
then the multiplicity of X= 0 as an eigenvalue of (3.2)-(3.3) is equal to the number of
grid points (j,k) 7/ 7/ on the ellipse X20t2+y2f12--71"2/2 in the xy-plane. This num-
ber is at least four if both a and fl are nonzero, or two if either a or fl vanishes. Thus, to
ensure that = 0 is a simple eigenvalue of (3.2)-(3.3), we must further restrict the space
of allowable solutions.
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If we require that the solutions of (3.2)-(3.3) are covariant with respect to rota-
tions in the xy-plane,

(3.15) u(gx) gu(x), (0,,p)(gx)= (0,,p)(x)

for all x fl where g is a rotation of the form

[ ]cos sinq, 0
g= sinq, cosq, 0 0<q,<2r,

0 0 1

then the only possible q for which there are nontrivial solutions of (3.2) also satisfying
(3.3) are integer multiples of if= 2r/k, k= 1,2,3,4 or 6 [14]. We consider four cases
which yield function spaces, with respect to which =0 is a simple eigenvalue of
(3.2)-(3.3) (consult [13] for details).

a) Rolls. We take Ot2-"’t/’2/2, /2--0 in (3.3), and q,=rr in (3.15). The flow is
two-dimensional with u(x) (u(x, z), w(x, z)). Rolls admit a Fourier series expansion
of the form

(3.16) u(x,z)

u(z)sinjax

E w.,.(z )cosj,z
=o 0.(zcos

j(z)cosjax

and the eigenspace of roll-like solutions of (3.2)-(3.3) for X= 0 when r=ro is the span
of

(3.17) Uo(X,Z )

2a
Sln otx COS ’rrz

7/"

cos ax sin rz
2

cos ax sin rz
3r 2

2
cos ax sin rrz

3r

b) Rectangles. We take 2 +/ 2
7/" 2/2, a, fl > 0, fl 4= V/m 2 1 a for all m N in

(3.3), and q=r in (3.15). In addition, we require the invariance of w(x,y,z) under the
reflection y -y. Rectangles admit a Fourier series expansion of the form (cf. [17])

(3.18) u(x,y,z)= E
j, k=0

uj., ( z ) sinjax cos kfly

v/ z )cosjax sin kfly

w., ( )cosj,xcos
0(z)cosjx cosky

5(z)csjxcsy
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and the eigenspace of rectangular solutions of (3.2)-(3.3) for X=0 when r=ro is the
span of

(3.19) Uo(x,y,z )

sin o/x cos BY cos rrz

coscx sin fly cos rrz

cosx cos fly sin rrz

2
cos ax cos ,By sin rrz

3rr 2

2

3rr2z cos o/x cos fly sin rrz

c) Squares. We take o/2=rr2/4, fl=o/ in (3.3), and =rr/2 in (3.15). Then the
Fourier series expansion and eigenfunction are as for rectangles, with/3

d) Hexagons. Take o/2- rr2/8, fl= V/--o/in (3.3) and q,= 2r/3 in (3.15). In addition,
w(x,y,z) is required to be invariant under y-+-y. Hexagons admit a Fourier series
expansion of the form (cf. [9])

(3.20)

wherej= (j, V/-k), the sums are over all j, k either both even or both odd, (x,y),

u(, z)= gu(j, z ) and (0, ’)(, z)= (0, ’)(, z) for all admissible , and the eigenspace
of hexagonal eigenfunctions for 0 when r r0 is the span of

(3.21)

i_y_

Uo(X,y,z ) 1 e

3rr 2

_2
3r2r

+ llY _lt_

4O/
eia(x-vy) + 1

3rr 2

2

3rr 2,r

e i2 q_ c.c.

where c.c. denotes the complex conjugates of the preceding terms.
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In each of the above cases a)-d), we say that a function admits periodicity 2 if it
satisfies the symmetries corresponding to each of the cellular flows a)-d). Such func-
tions are spatially periodic, with fundamental domain of spatial periodicity f. For rolls,

f= (x z)’0<x< 0<z<l

for rectangles and squares,

2= (x,y,z)’O<x< 0<y< 0<z<l

for hexagons, f=C(0,1), where C is the region in 2 enclosed by the six lines
y= ++_r/va, y+ fx ++_2r/v/a, y- v/x +2r/v/-a in Fig. 2.

Y

FIG. 2. The region C.

The adjoint problem. Integration by parts yields the adjoint eigenvalue problem to
(3.2),

AO* + row*= ,0",

(3.22) $A*-sow*=;k*,

V "u* =0,

0u*[ Ov*
W*lz=0,1"- 0*lz=0,1-- ’*[z=0,1"-- 0.Z z=0,1 Z z---0,1

We observe that (u0,P0,00,’0) solves (3.2) when r=ro and ;k=0 if and only if (u, p6,
0o*, ’0")= N(uo, Po, rooOo, So), N4:0 solves (3.22) when r= r0 and 0. Thus for
each of the cellular flows a)-d) the adjoint problem (3.22) also has a one-dimensional
null space.

Abstract formulation. Let n 2 (for rolls), or 3 (for rectangles, squares or hexagons)
and let f R" be the fundamental domain of spatial periodicity for functions admit-
ting periodicity 2. Also, let 21 (0,1), and define the following vector spaces of
smooth functions from f or f into

CO ,(, ) { U C(1, ). u admits periodicity f ),
C,(-, { u C(1, ). admits periodicity fl, supp u c 1 },

for m 1, 2,. ., and

= {uC’(,n")’V.u=O, (u.N)lz=O,l=O),
w=
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where N is the unit outward normal vector on the boundary z =0,1. We define the
Hilbert spaces

H(,Rm) the completion of C’g(2, R ") in the norm [l’]]o associated with the
inner product (U,V)o=Eim=I fu uividx,

Hk(,llm) the completion of C’(,[ m) in the norm II’ll associated with the
y’minner product (u,v), i=lEllz,f D uiD vidx,

where k= 1,2,.- ",1=(/1,"" ",Vn) is an n-tuple of nonnegative integers, D is the partial
derivative )ll/3x[, Ox" of order Iv[ vl + + vn,

H0(fl, N m) the closure of C’(fl, N m) in Hk(, R m),

J= the closure ofoin H(fl, N n),

V= the closure of zCqn H1(2, N’),
W= the closure of Uin HI(,Nn+2).

We note that W= Vx H(fl, N) H0a(fl, R), and that /’is dense in J. Finally we define
the following Hilbert spaces

x=
z=0, az

Y=J H(f, n H(f, l

where U/OZlz=o,1--’yN(VU) and N is the trace operator extending TNU--(u.N)lz=0,1
defined for smooth vector fields u [18].

We have the following properties [8]:
a) H(f,l’)=JJ+/- the topological direct sum of closed subspaces, where J+/- is

the orthogonal complement of J in H(2, N"),

J+/-={Vp’pHl(,R)}.
b) If H denotes the orthogonal projection of H(f,R ") onto J, then H is a

bounded linear mapping from H*(f, R") into H*(f,R")fqJ for k=0,1,2,--.. We use
H to eliminate the pressure term in the equations, and formulate (2.6) as

(3.23)

du=olI[au+(rO-st)e]- II (u. v)u,
d
O=AO+w-u- V0dt

d
dt=zA+ w- u. V,

for (u, 0, ’) X. If we define

(3.24) L(r)u=(oII[Au+(rO-sf)e],AO+w, ’A" + w)
for u (u,0,’) X and r>0, then L(r) is a bounded linear mapping from X into Y for
all r > 0. Define

(3.25) M(Ul,U2)--(-I-[(Ua. 7 )u2, -Ul. 702 -Ul. 7ff2 )
for u;= (ui, 0i, ’) X, i= 1,2. Then M is a bounded bilinear mapping fromXX into Y
[81.
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We now let F: (0, m) x X--, Y be defined by

(3.26) F( r, u)= L( r)u + M( u, u).
Then F is analytic, F(r, 0) 0 for all r (0, m), F,(r, 0) L (r) for all r (0, o) and the
null space N(L(ro)) is a one-dimensional subspace of the space X of functions admit-
ting periodicity f for each choice of f. To show that the range R(L(ro) has codimen-
sion one, we use the following lemma, which is proved in the appendix.

LEMMA 1. R(L(ro))=N(L(ro)*) -.
Since the adjoint problem has a one-dimensional null space N(L(ro)* ), we now

have satisfied all the hypotheses of Theorem 1 except (iii). To verify this last hypothesis,
it suffices to check that

(3.27) YI (0oe), u’ ) s 4: 0,

where (Uo,0o,’o) spans N(L(ro)) and (u;,0o*,’’)= -luo,ro0o, S’o) spans
N(L(ro)* ). Since u; J, and hence V -u;=0, (3.27) is equivalent to

(3.28) f.Oowo dx . O.

Since w0=-A00, 00 satisfies periodicity f, and 0Olz=O,1--0, we have fa Oowodx=
f 170ol=dx>O, and hence (3.28) is satisfied for each cellular structure: rolls, rectan-
gles, squares or hexagons.

Finally, we take Z= N(L(ro)) +/-. Then Theorem 1 establishes the existence of a
bifurcating curve (r(e), u(e)) of nontrivial equilibrium solutions near (r0, 0). For each
cellular structure, the bifurcation point corresponds to the same critical value ro given
by (3.13).

4. Linearized stability o| the biturcating solutions. In this section we investigate
the linearized stability of the bifurcating branch of nontrivial equilibrium solutions
(r(e), u(e)), whose existence was proven in 3. This bifurcating solution is stable (resp.
unstable) in the linearized sense if the small real eigenvalue ,(e) of the linearization
Fu(r(e), u(e)) is negative (resp. positive) near e=0. For Navier-Stokes type systems
such as the one we use, Iooss [8] has shown that linearized stability implies the
asymptotic stability of u(e) with respect to small initial perturbations.

We first summarize the linearized stability theory of Crandall and Rabinowitz [5]
and then indicate how to use power series expansions to determine the sign of (e) near
e 0. We then present the results of our calculations.

Linearized stability. Before stating the main theorem on linearized stability, we first
define the concept of a K-simple eigenvalue.

DEFINITION. Let X and Y be real Banach spaces, and let L,K(X, Y). Then
R is a K-simple eigenvalue of L if

i) dimN(L-)K)=codimR(L-XK)= 1, and
ii) Kuo q R(L- XK), where N(L-K)= span( uo ).
The following result shows that the simple zero eigenvalues of Fu(ro, 0) in Theorem

1 are associated with a small eigenvalue (e) of the linearization F(r( e), u( e)) about
the bifurcating branch. Let F, Z, u 0 be as in Theorem 1 and let r(e), u(e)= eu o + ez(e)
be as supplied by the theorem.

LZMMA 2. [5, p. 165]. Let K5(X, Y) and suppose zero is a K-simple eigenvalue of
F(r, 0). Then there exist open intervals ,owith ro3, D oand smooth functions
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such that

F(r,O)v(r)=,(r)Kv(r) for r),
Fu(r(), u())()=()K() for

Moreover, X(ro)=(0)=0, v(ro)=g)(O)=u o, v(r)-uo Z, (e)-uo Z.
The main result of [5] is Theorem 1.16.
TnzOM 2 [5, p. 165]. Let the assumptions of Theorem 1 and Lemma 2 hoM, and let, be the functions supplied by Lemma 2. Then ’(ro) 0 and

lim 1.

Moreover, there is a constant C such that Ilu’(e)-(e)llCmin(ler’(e)l, IX(e)l) near

In what follows we take K to be the continuous injection of X into Y, Ku u. By
Theorem 2, the sign of X(e) near e=0 is the same as the sign of -er’(e)h’(ro) near
e=0, provided X(e)#0. To determine the sign of -er’(e)h’(ro), we use power series
expansions.

Power series expansions. Since F(r,u) is analytic in r and u, we can expand r(e)
and u(e) in power series

(4.1)
r() r0 + r + e2r +---,

+ + ).

Substituting the power series (4.1) into F(r(e), u(e))=0, taking the inner product with

u and collecting terms we obtain at order e2

(4.2) rx= (Fru(ro,O)uo, u)"
If r 0, then at order e we get

(4.3) r2= (Fr(ro,O)uo,u)
where F,(ro,O)Ul -M(uo, Uo). If r#0, then X(e)#0 near e=0 (expand X(e)=eX +
82 2 + "’’’ ()= U0 +1 +’’" and substitute into F(r(e), u(e))(e)= X(e)u(e)) and
by Theorem 2, X(e) has the same sign as -r2h’(ro) near e 0.

Differentiating the equation F(r,O)v(r)=h(r)v(r) with respect to r, evaluating
at r ro and then taking the inner product with u, we obtain

(4.4) Fru ro O)Uo, u ’( ro)( u o u ).
In 3 we determined that the left-hand side of (4.4) was strictly positive, and hence the
sign of h’(ro) is the same as the sign of (Uo, U) provided (Uo, U)#O. For each cellular
structure, simple computations show that

(Uo,U)>0 if0<<land0<s<sc,

(4.5) (Uo,U)=0 if0<<lands=sc,

(Uo,U)<0 if0<<lands>sc,
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where
27r4 ("1"2 )(1+-1)Sc- 4 1-

(cf. (3.10)). If 0 < -< 1 and 0 < s <sc, then the zero eigenvalue of F(ro, 0) crosses into
the positive complex half-plane as r increases past r0, and all the other eigenvalues of
F,(ro, 0) are isolated points in the negative complex half-plane. Thus the bifurcating
solution u(e) will be stable if er’(e)> 0 near e= 0, and unstable if er’(e)< 0 near e 0.
However, if 0< " < 1 and s> s,., then the zero eigenvalue of F(ro, O) crosses into the
negative complex half-plane and moreover, Fu(ro, 0) has one positive real eigenvalue [7].
Thus F,(r(e), u(e)) has a positive eigenvalue near e 0 and the solution u(e) is unstable
in this case, regardless of the sign of er’(e).

Results. Due to the dependence of the eigenfunctions u0 on z for each cellular
structure, r-0. Thus to determine the stability of the bifurcating solution u(e), we
must solve F,(ro, O)u= -M(uo, Uo) and compute r2 from (4.3). Then the sign of
near e 0 is the same as the sign of rX’(r0) and hence for 0 < " < 1 and 0 < s < Sc, the
bifurcating solution u(e) is stable if r > 0 and unstable if r2 < 0.

a) For rolls we have

U -’-0, W --0,
1 1

01 sin 2 rz, ’1 3sin 2 rz,
12r "rl2r

and r2 has the same sign as ro-s/’r3=27r4/4-((1-,r2)/,r3)s. Thus r2>0 if 0<r< 1
and 0<s<sl (27rn/4)(r3/(1 ’2)), while r2>0 if s>sx. We note that s <sc so that
the branch of convecting rolls bifurcates subcritically as r increases past r0 when
s < s < sc (and when s > sc). This result is well-known (see [10, Vol. II, p. 45] and the
references therein) and moreover, the value s is the same as the global nonlinear
stability limit of the conduction solution u=0 when r= r0, obtained by Joseph [10, Vol.
II, pp. 42-46] using energy methods.

b) For rectangles we have

ux W2o_sin 2ax cos 2rz,

O Wo22Sin 2By cos 2rz,

W W202COS 2aX + W022COS 2/3y)sin 2 rz,

2"--I-- O2 W202 T24r
t-
4(r 3r

COS 2ax

4(r 2 +/3 2) w22
3rr"--S - cos 2/3y sin 2 rz,

1 1
24,/r 3,r 4,r (,/r 2 + c2 ) W202 3,a.3,r -- COS 2ax

4,r (,r 2 q-/ 2 )
cos 2/3y } sin 2 rz,
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where

Then r2 has the same sign as the expression

(4.6) 2____o ( s){ rrz-2a2[ 2
9rr4 r0--7 4+

q7.2_.o2
1-- -S (O2--/)2

2{ 2 O2 2+-o f(a)(r -2 1--(a2-/3 2) 3+
6,/r 2( . q_ 02)ro -+f(fl)(r2-2fl 2) 1-7(flz-a ) 3+ 6rre(r +/3a r-75

We observe that rr2-- 2o2, "tr2--2/8 2, [1- (2/’/r2)(c2--/82)], [1- (2/,/r2)(/82--c2)], f(a)
and f(/3) are all strictly positive when 0 < a2,/2 < 2/2"

C) For squares, a2=/8 2= 2/4 and the expression (4.6) simplifies to

(4.7) 16o( s) 40[ 20( S )] 2

15,n- 4 r-TS +4730 3+ ro-
15rr 4 7

d) For hexagons we have

irr
Ul --’- { Wl1211 q- W31231 }COS 2q’/’g,

iv/-5r { w11221 + w3132 }cos2rz2a

WI’- { Wl12(I)131 q-W312(I)331 } COS2’TrZ,

9rr 2 Wl12-- 9rr----S iirr W312-- 33rr---S

9rr 9rr3r 2 llrr2r w312 331 }COS 2rrz,
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where

w112= 39ro
9 + r0-

9,/r 4

33[ 4o (w312 625rro
3 + ro-

33’n"4 V
1 eia(x + v/yy) q- eia(x-V/YY)-- 2e- 2i,x eia( v/Yy)

e ia(-x +gt-Y) .-I- 2e 2iax,

211 eia(xvt-y)_ eia(x- C’-y) eia(-x- vfy) q_ eia(- +

d 31 ei( + /-Y) -1- e i( y) + e- 2ietx nt ei(-

+ ei(-+vqy) + e2i,

d# 3ei( +y)+ 3i"(3- r3-y) 3ei(

3ei(-+vqy)d,
ei(3 +Y) ei(3- vqy) 2e-i2y

ei(-3- 5-y) + ei(-3+ vy) + 2e2Vy

dPl e ia(3x + gt-Y) -}- e ia(3x- 7rY) + e-i2vl-otY .q- e ia(- 3x- 7ty)

+ eia(-3x+’-Yy) + ei2aY.
Then r2 has the same sign as the expression

(4.8) 120o( s) 62208+ 5936 ( s) 1268480 ( s 2

11r r-- +81250 8125rr 4 r-7 +7239375r8 r-
The linearized stability of the bifurcating three-dimensional cellular solu-

tions-rectangles, squares and hexagonsmall show similar dependence on the parame-
ters s, o and r. If we substitute

(4.9)

s

r0
27’4(1 + o+’r)

4o’r

into the expressions (4.6), (4.7) and (4.8) we obtain

(4.10)

1++r){4+r2-2a2 [1_ 2 2 2} 2-2fl2 [1_ 2 f12 )]}7 ( ) + 7 (

+f(/)(’rr2--2/ 2) 1----(/2-- 2) i]z-- +O(sc--S)
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for rectangles,

(4.11) 36(1+o+-)+ 84
5 4370 + O(sc s

for squares, and

) 314892(4.12) 810 1+o+- ++O(s -s)11 " 893750 c

for hexagons. In each case the term O(sc-s) is of the form

(4.13) O(sc-s)=A(sc-s)+B(sc-s)2, A,B>O

so that, in particular, lim -O(sc-s)=O. From (4.6)-(4.8) we see that given any
o > 0 and 0 < r < 1 the coefficient r_ is positive if s is near zero, but can be positive or
negative as s increases up to sc, depending on o and r. More explicitly, one sees from
(4.10)-(4.13) that given 0< < 1 one can choose o sufficiently close to zero so that
r2 > 0 for all s, 0 < s <sc; but given o > 0 one can choose z sufficiently close to zero so
that r2 < 0 for all s, s + e0 < s < sc where 0 < e0 < sc- Sl.

In Figs. 3-6 we have plotted the coefficient r2 as a function of the size of the solute
concentration gradient s for several values of o and , comparing rolls, squares and
hexagons. In Fig. 3, for o= 7 and r= (the appropriate values for salt dissolved in
water) the cofficient r2 is positive at s--0 and changes sign at a small positive value for
s" for rolls r2 changes sign at s=0.00128, while for squares and hexagons r2 changes
sign at slightly higher values s=0.001311 (squares), s=0.001313 (hexagons). As o

decreases towards 0, the differences become greater. In Fig. 4, for o 1 and 0.1 and
more clearly in Fig. 5, for o=0.01 and =0.1 one can see that r2 for squares and
hexagons changes sign at higher values of s than does r for rolls. For sufficiently small
o, as in Fig. 6, where o 0.001 and -= 0.1, the coefficients r2 for squares and hexagons
remain positive for all s, 0 < s < sc. In contrast, r2 for rolls is negative except for s very
near s 0.

For most systems of physical interest, 0 < r << 1 and o >_ 1 so that the dependence
of the coefficient r2 on s for the three-dimensional cellular solutions is nearly the same
as that for roll-like solutions, although r. is positive for a slightly larger range of s for
the three-dimensional cellular solutions.

The sign of rz indicates the directions of bifurcation (supercritical if r is positive,
subcritical if r. is negative) and the stability of the equilibria on the branch of convec-
tive solutions, but only with respect to small perturbations having the same cellular
structure. It is possible, for example, that solutions on a supercritical branch of hexa-
gons are stable with respect to small perturbations having the same hexagonal struc-
ture, but are unstable with respect to other small perturbations. We discuss this
possibility in the next section.

5. Comments on pattern selection. In a recent paper [20], Golubitsky, Swift and
Knobloch investigate pattern selection between rolls, hexagons and two other cellular
structures in a model of pure thermal (B6nard) convection with the same boundary
conditions on the upper and lower surfaces. They treat bifurcation problems that are
symmetric with respect to the group preserving doubly periodic functions on a hexago-
nal lattice. After reducing the problem at the bifurcation point to a six-dimensional
phase space, all possible local bifurcation diagrams are found (given certain nondegen-
eracy conditions) involving rolls, hexagons, regular triangles and a "patchwork quilt"
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(c)
FIG. 3. The coefficient as a function of when o= 7, T= 6 for

(a) rolls, (b) squares and (c) hexagons (sc=0.119).
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FIG. 4. The coefficient r2 as a function of when o= 1, T=0,1 for
(a) rolls, (b) squares and (c) hexagons (so= 14.6).
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FIG. 5. The coefficient r as a function of s when o 0.01, r 0.1 for
(a) rolls, (b) squares and (c) hexagons (sc- 738).

107r2

10

2500 5000

(c)
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FIG. 6. The coefficient as a function of s when o 0.001, T 0.1 for
(a) rolls, (b) squares and (c) hexagons (so= 7131).
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of rectangles. Their results are applicable to the convection problem in this paper. In
particular, the coefficients r2 which we have computed for rolls and hexagons can be
used to find the coefficients 13(0) and a of [20]. Provided a certain fifth order term
rn 5(0) in the reduced bifurcation equations is nonzero, we have the following pattern
selection results: (a) If/3(0)>0 and a < -1, then rolls are stable in the sense of [20],
i.e., near the bifurcation point rolls are stable with respect to small perturbations
possessing the symmetries of the hexagonal lattice and midplane reflection; (b) if
13(0) < 0 and a > 1/2, then either hexagons of regular triangles are stable, depending on
the sign of ms(0); (c) for all other values of 13(0) and a, solutions near the bifurcation
point are unstable even though they may be on a supercritical branch.

The value of the coefficient ms(0 depends on the results of computations for the
coefficient r4 in (4.1). Although we have not computed r4, both r4 and ms(0) are most
likely nontrivial functions of the parameters o, z and s, and m5(0)4:0 for almost all
parameter values o > 0, 0 < < 1, 0 < s < Sc.

In Fig. 7 we have plotted the coefficient a as a function of s, for o=0.01 and
z 0.1. We observe the following behavior: for s 0 and for s in a small right neighbor-
hood of s=0, case (a) holds; and for all other values of s less than sc, case (c) holds.
Assuming that m5(0)4:0, this implies that rolls are stable in the sense of [20] for s=0
and for s in the small right neighborhood of s 0, but for all other values of s less than
sc, neither rolls nor hexagons are stable, even though the branch of hexagons may
bifurcate supercritically. For the other values of o and corresponding to Figs. 3, 4 and
6 we observed similar behavior of the coefficients/3(0) and a as functions of s. In fact,
it is easy to show that when s=0, and by continuity when s belongs to some right
neighborhood of s-0, then/3(0)> 0 and a <- 1. The case s--0 corresponds to pure
thermal (B6nard) convection and this result agrees with that of [21]. We did not find
any parameter values yielding case (b) in which stable hexagons are possible.

|

250 c

/(0) > 0 /3(0)

FIG. 7. The hexagonal lattice coefficient a as a function of when o 0.01, " 0.1 (sc =738).

The pattern selection results do not apply to the squares and rectangles for which
we have also computed values for r2. A theory of pattern selection including more
general cellular structures (for example, squares) with rolls and hexagons is not yet
developed. However, in experiments performed on layers of fluid with finite extent, one
usually sees either rolls or hexagons.
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6. Conclusion. We have used a bifurcation theorem of Crandall and Rabinowitz
to prove the existence of nontrivial equilibrium solutions of the doubly-diffusive con-
vection equations. For fixed parameter values o > 0 (Prandtl number), 0 < r < 1 (ratio of
solute diffusivity to thermal diffusivity) and s sc (solute concentration gradient) there
exist solutions corresponding to steady cellular convection for r (temperature gradient)
in a neighborhood of the critical value r0.

At the bifurcation point u=0, r--r0, four types of convective solutions (rolls,
rectangles, squares and hexgaons) bifurcate supercritically when s is near 0. However,
when s is near sc rolls always bifurcate subcritically but three-dimensional cellular
structures bifurcate supercritically if o is sufficiently close to 0. Solutions on a subcriti-
cal branch near the bifurcation point are unstable, but solutions on a supercritical
branch may only be stable with respect to a very restricted class of perturbations. Using
the results of Golubitsky, Swift and Knobloch [20], we have found that near s-0 rolls
are stable with respect to a class of perturbations including both rolls and hexagons
(assuming a nondegeneracy condition); but for the parameter values we explored,
hexagons are unstable with respect to this class of perturbations even though the
hexagon solutions may be on a supercritical branch.

Although we give only local existence and stability results, in a neighborhood of
the bifurcation point r r0, u 0, other methods applied to this problem have provided
information on the global behavior of the bifurcating branches of equilibrium solutions.
Using energy methods, Joseph studied the global stability of the conduction solution
and for 0< < 1 gives the following diagram [10, Vol. II, p. 46] (cf. Fig. 1). For (r,s)
values above the curve AECD, the conduction solution is unstable (Fig. 8). For (r,s)
values below the curve AEF, the conduction solution is globally stable. For (r,s) values
between the two curves, the conduction solution is stable with respect to small per-
turbations, but other equilibrium solutions are possible. In fact, the two-dimensional
roll-like solutions bifurcate subcritically (r2 <0, and hence r(e)<ro near e=0) for
values of (r, s) on the open line segment EC, and hence these solutions exist for (r, s) in
a neighborhood below EC. Since they cannot exist for (r,s) below EF, it is plausible
that the branch of solutions in ru-space for fixed s, s < s < sc, "turns back" and regains
stability as is suggested by numerical calculations [7] and by the results of a perturba-
tion analysis near s=s [16]. The five-dimensional system of ordinary differential
equations obtained by model truncation of the two-dimensional flow also has a branch
of solutions corresponding to convection which bifurcates subcritically from the con-
duction solution and possesses a turning point [6]. Thus, it is reasonable to conjecture
that this same behavior is repeated in the infinite-dimensional case.

The doubly-diffusive convection equations also admit periodic solutions, which
have not been considered here. When 0 < < 1 and s > sc, the bifurcating equilibrium

D

-S
C

AECD: instability limit of
conduction solution

AEF: stability limit of
conduction solution

on AEC.

FIG. 8. Stabifity and instabifity fimits of the conduction solution.
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solutions near r= r0, u=0 are unstable, but on the curve CD in Figs. 1 and 3, the
linearization possesses two conjugate pure imaginary eigenvalues. We therefore expect a
Hopf bifurcation of periodic solutions [7]. Furthermore, if o >0, 0 < -< 1, s=sc and
r= r0, then the linearization possesses a double zero eigenvalue, and in this case the
bifurcation theorem used in this paper does not apply [15]. We will treat the Hopf
bifurcation case and the double eigenvalue case in Parts II and III.

Appendix. In this appendix we regard L(r) as a densely defined, unbounded
operator in a Hilbert space H. By making use of the fact that L(r) is a perturbation of
a negative-definite, self-adjoint operator A, we can easily deduce some properties of
L(r) which will be useful in later work on the bifurcation of periodic solutions, as well
as for proving Lemma 1.

The self-adjoint operator A. Let , > 0, fJ and consider the Stokes problem: find
uJ with AuG H(f], R ") such.that

-HAu+,u=f,

U
(A.1) 0-- z=0,1

V
z=0,1

=0,

u admits periodicity

Then (A.1) is equivalent to a "variational" formulation of the problem [17]" find u V
such that

a(u,v)+X(u,v)o:(f,v) for all v V,

where a(u, v)= Y"i"= 1Y’.= f DiujDivjdx defines a bounded symmetric bilinear form on
V V. By classical methods [1], [8] it can be shown that (A.1) has a unique solution
nH2(, R n)CI V, and that Ilullz__< CIlql0 for some constant C.

If we define the subspace

Ou }v, ( --1-IA ) u H2 ( a l] ) (’ V -z O,1 aZ z=0,1

then -HA:.(-IIA)->J is a densely defined, self-adjoint, closed operator in the
Hilbert space J. For real , > 0, the left-hand side of (A.2) defines a coercive bilinear
form on V V, which implies that any real X < 0 is in the resolvent set of the operator
(-HA). The resolvent operator takes values in V, and the injection of V into J is
compact; thus, the resolvent operator (-HA-i)-1 :j_>j is compact. By [12, Thm.
II.6.29, p.187], we conclude that the spectrum of (-HA) consists entirely of isolated
eigenvalues of finite multiplicities, and that (-HA-XI)-1 is compact for every not
an eigenvalue of (- HA).

Similarly, if we consider the Dirichlet problem

(A.3) AO +0 =f, O[z=0,1 O, 0 admits periodicity f,

and define (-A)=H02(,R), then -A’(-A)H(f,R) is a densely defined,
self-adjoint closed operator in H(f,R), and every real , =<0 is in the resolvent set of
(- A), with (- A- ,1)- compact.
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Now let Y=JH(,R)H(,R) and define the operator A by

{ tt’t3u 3v =0},u=’u’O’’H2"f’n’+z’fqW’oz
z=0,1 )Z z----0,1

Au=(oHu,O,) foru(A).

Then A is a densely defined, closed operator in Y whose spectrum consists entirely of
isolated eigenvalues of finite multiplicities; each real > 0 is in the resolvent set of A,
and (A I)-" Y Y is compact for every not an eigenvalue of A. In addition, A is
self-adjoint, and hence its spectrum Z(A) is a subset of the negative real line, and for
every not an eigenvalue we have II(A-l)-ll=l/dist(,Z(A)) [12, p. 272]. By
substitution of the Fourier series of 3, it follows that the problem Au=O admits only
the trivial solution, and hence 0 is not an eigenvalue of A. Thus the resolvent set of
A contains all real 0. We summarize the properties of A in the following proposi-
tion.

POPOSITION A.1. The spectrum of A consists entirely of isolated, real, negatioe
eigenoalues of finite multiplicities. For eoery in the resoloent set of A, the resoloent
operator (A I) is compact, andfor all real > O, we haoe the estimate

1
<A.4 II(A

The operator L(r). Define the operator B(r) for r > 0 by

B(r)u=(oH[(rO-s)e], w,w) foru(B(r)).
Then B(r) is a bounded linear operator in Y and, in particular, B(r) is relatively
bounded with respect to A [12, p. 190]: (A)(B(r)) and there exist nonnegative
constants a and b such that

(A.5) IIn(r)ulloallullo+bllullo for all u(A).
In our case we may take a liB(r)II and b 0.

Finally, we define L(r) for r > 0 by

(L(r))=(A), L(r)=A +B(r).
Then L(r) is a densely defined, closed operator in Y. By (A.4), we can choose a real, > 0 sufficiently large so that

where a, b are as in (A.5), and hence by Proposition A.1 and [12, Thm. IV.l.16, p. 196],
(L(r)-hI) -1 is compact. Applying [12, Thm. 111.6.29] again, we obtain the next
proposition.

PROPOSITION A.2. For each r> O, the spectrum of L(r) consists entirely of isolated
eigenvalues of finite multiplicities. Furthermore, (L(r)-,l) -1 is compact for every in
the resolvent set ofL(r).

Proof of Lemma 1. We can now use Proposition A.2 to prove Lemma 1 of 3. Let
f Y and consider the solvability of

(A.6) L(ro)u=f
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for u(L(ro)) (=X). If X is in the resolvent set of L(r0), then (A.6) is equivalent to
the problem of finding u Y such that

(A.7) u+,(L(ro) )ki)-I -1u=(L(ro)-,I ) f.
By Proposition A.2, (L(ro)-I) -1 is compact for some real 24:0, and hence by
Riesz-Schauder theory a solution exists if and only if

((L(ro)-XI)-if *U )0=0
for all u* satisfying u* + X[(L(ro)-)I)-]*u*=O. But k 4:0 and hence this solvability
condition is equivalent to the condition that

u,)0=0
for all u* satisfying L(ro)*u*=O. Thus R(L(ro))=N(L(ro)*) +/-.
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BIFURCATION IN DOUBLY-DIFFUSIVE SYSTEMS II.
TIME PERIODIC SOLUTIONS*

WAYNE NAGATA’: AND JAMES W. THOMAS"
Abstract. We study a system of double-diffusive convection equations which describe a layer of fluid

heated and salted from below. For suitable parameter values Hopf bifurcations of time periodic solutions
occur in roll-like, square and hexagonal convection cell patterns. A version of the center manifold theorem
suitable for partial differential equations is used to prove the existence of the bifurcating time periodic
solutions, and the stability of these solutions is determined from the Poincar6 normal form of the reduced
equations on the center manifold.

Key words, doubly-diffusive systems, Hopf bifurcation, stability

1. Introduction. This is the second paper in a series of three concerning bifurca-
tions which occur in double-diffusive convection equations. In the first paper [10] (this
issue, pp. 91-113), which we will refer to as Part I, we investigated the existence and
stability of bifurcating nontrivial equilibrium (steady) solutions. In the present paper
we consider bifurcating time periodic solutions of the equations.

We refer to Part I for a description of the double-diffusive convection equations
and the cellullar structures of rolls, rectangles, squares and hexagons. Proceeding as in
{}2 of Part I, we select one of the cellular structures, and then choose the parameters o, r
and s so that

(1.1)

Then when

o>0, 0<r<l,
27 -1 -1S>--4r2(1+o )(a--r) =--sc.

o+r) 27 4 -1(1.2) r s+ (l+r)(l+ro)---r.o+l Tr

the linearization of the convection equations about the constant gradient solution
possesses two simple eigenvalues ;k + i0, where

9,n.4 1
(1.3) 002= (o+r+or)--so(rn-s).
All the other eigenvalues of the linearization have negative real parts when r=rn [5].
We expect a Hopf bifurcation of time periodic solutions to occur at r= rn in the
nonlinear convection equations.

The existence of Hopf bifurcations in Navier-Stokes type systems can be proven
within a number of theoretical settings, for example [1], [3], [4], [6], [7], [8], [9]. These
settings also provide means for computing the stability of the bifurcating solutions near
the point of bifurcation. In this paper we use center manifold methods (see [3], [4], and
[9]), which we feel are conceptually more natural.

In {}2 we formulate the nonlinear convection equations as an abstract evolution
equation in a Hilbert space, and prove the existence of bifurcating time periodic
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solutions for each cellular structure. Then in {}3 we compute for rolls, squares and
hexagons the direction of bifurcation and the stability of the bifurcating solutions with
respect to small perturbations having the same cellular structure. Our results for rolls
agree with the results of formal computations performed previously by [5] and [2]. A
simplified model corresponding to rolls with different dimensions was treated by [11].

2. Hopf bifurcations of time periodic solutions. In this section we express the
double-diffusive convection equations as a one-parameter family of semilinear para-
bolic equations in a Hilbert space. The family satisfies hypotheses of a version of the
center manifold theorem [4], and from this theorem follows the existence of Hopf
bifurcations.

In {}3 and the appendix of Part I we defined the Hilbert spaces X and Y .d the
operators A, B(r) and M. We continue with the same notation. Since the unbc .nded,
densely defined operator A is self-adjoint and negative definite, it follows that the
fractional powers (-A) and the Banach spaces X=((-A)) with norms Ilull
II(-A)u[[v are well defined for a>__0 [4, p. 19]. If a=0, then X= Y, and if a= 1, then
X X=(A). Furthermore, if 0 __< a < 1, then XcXc Y with continuous imbeddings.
Thus, the bounded linear operator B(r) in Y defines an analytic mapping (u, r) B(r)u
from XX R into Y, when 0 =< a < 1. The nonlinear operator M is a bounded bilinear
operator from X x X into Y, when a > -] [4, p. 79]. Thus,

(2.1) f(u,r)=B(r)u+ M(u,u)
defines an analytic operator f: XR Y. We observe that f(0, r)= 0 for all r , and
D,f(O,r)=B(r).

We now write the double-diffusive convection equations in the abstract form

du
(2.2) d--7=Au +f(u,r)
for u Y, where (-A) is a sectorial operator in Y and f is analytic when
Equation (2.2) generates a unique parametrized family of local semiflows in X for
-] < a < 1 [4, p. 54], which is jointly analytic in the initial condition u(0) X, the
parameter r and time > 0 [4, p. 66].

When (1.1) and (1.2) are satisfied, the linearization L(rn)=A + Duf(O,r,4) at r= rn
possesses two simple eigenvalues _+ i0a0 where 0 is given by (1.3), and all other
eigenvalues of L(rn) have negative real parts as discussed above. Since the spectrum of
L(r) for r is a closed subset of the complex plane consisting entirely of isolated
eigenvalues which depend analytically on r, near r= rn the spectrum of L(r) consists of

{ a(r)+_io(r) } tO’,

where E’c {Re<fl<0}, a(rn)=0 and oa(rn)=oa0. By implicitly differentiating the
dispersion relation for , [Part I, (3.8)] with resepct to r, we obtain the nondegeneracy
condtion

(2.3) a’(rn) > 0

i.e., the critical eigenvalues cross into the positive complex half plane with nonzero
speed. It then follows from [4, p. 181] that (2.2) has a two-dimensional local invariant
manifold S containing 0 X for r near rn. Local bifurcation and stability of solutions
of (2.2) is determined by local bifurcation and stability of solutions for the flow in St.
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Near the origin, the flow in S for r near rH is described by

(2.4)
a ( )r ) a(r) Y2

+
d2(Yl,Y2;r )

where a(rt)=0, a’(r/_,)> 0, 0(r,)= 0o>0 and dPl,2(Y1,Y2;r)--O(y21+Y22) as (yl,Y2) ----)

(0, 0). Under the additional assumption
(A) the origin is not a center for (2.4) when r= rH, and this is true independent of

terms of order ]ya] p + ly21 p, for some p >= 2, Henry then concludes that (2.2) either has a
supercritical or subcritical branch of time periodic solutions near r rH. More precisely,
we have the following result.

THEOREM 1. Let 2 be one of the followingfundamental domains of spatial periodicity:
i) (Rolls) f=C (0; 1)cR 2, where C1= (0, 2gr-),
ii) (Rectangles) --C2X(O, 1)c[ 3, where C2=(0,2rr/al)X(O, 2r;/0/2) and

0/22-" 2/2, 0/1’ 0/2>0’ 0/2 =/= 0/1 V/m2- 1 for all mN,
iii) (Squares) f C (0,1) c 3, where C (0, 4) (0, 4),
iv) (Hexagons) f C4 (0,1)c R 3, where Ca is the interior of a regular hexagon

with sides of length 4//3.
Then for each fixed o(0, m), r(0,1) and s(s,., ), (2.6) can be reduced to the

one-parameter family of equations (2.4) on local invariant manifolds S for r in some
neighborhood of rt. Moreover, if (A) is satisfied then one of the following two conclusions
must hoM [4, p. 1 82]:

a. (Supercritical Hopf bifurcation) The origin is asymptotically stable for (2.2) when
r= r,_, and there is an o > 0 such that there is no periodic orbit of (2.2) in a neighborhood
of the origin in X for r[rl4-eo, r,4], but a unique family of orbitally asymptotically
stable periodic orbits grows out of the origin for r (rn, ri4 + e0]; or

b. (Supercritical Hopf bifurcation) The origin is unstable for (2.2) when r= ri, and
there is an eo > 0 such that for r [rl-eo, rn) a unique family of unstable periodic orbits

of (2.2) shrinks to the origin as r rl_i- but there is no periodic orbit of (2.2) in a
neighborhood of the origin for r rn, rtt + eo ].

In both cases the periods of the nontrivialperiodic orbits approach 2 rr/oao as r rH.
In the next section we will show that there exist o (0, m), r (0,1) and s (s,., m)

such that assumption (A) is satisfied. In addition, we will be able to determine whether
we have supercritical or subcritical Hopf bifurcations.

3. Stability of the bifurcating time periodic solutions. In this section we determine
whether the bifurcating time periodic solutions described in the last section are orbit-
ally asymptotically stable or are unstable. Following Hassard, Kazarinoff and Wan [3]
we express the family of equation (2.4) in terms of the complex variable z =Yl + iy2 as

(3.1) 2 ,(r)z + g( z,Y; r),

where =yl iy2, )(r)= a(r)+ ioa(r), ,(rn)= ioo, 0/’(r,4)> 0 and g(z,; r)=O(Izl 2) as
z --+ 0. By transforming (3.1) into the Poincar6 normal form

(3.2) =A(r)+cl(r)l[2+o(l]l(,r-ri)]4),
one can determine whether the Hopf bifurcation is supercritical or subcritical. If
Recl(rt)4=0 then the origin is not a center for (3.2), and hence the origin is not a
center for (3.1), when r= rn. Furthermore, this is true independent of terms of order Izl 4
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in (3.1). If we write

(3.3) g(z,;r)= E
j+k=2

z Jff, k 4)gjk(r)+O(lz[
for the term appearing in (3.1), then we can use the formula [3, p. 47]

(3.4) cl(ru)= g2o(ru)g(r.)_2iglx(ru)12 [go2 (ru)121]+
__

g21 (/,H).1

The Hopf bifurcation is supercritical or subcritical according as (Recx(ru))/a’(ru) is
negative or positive, and the bifurcating periodic solutions for r near ru are orbitally
asymptotically stable with asymptotic phase or unstable according as Recx(ru) is
negative or positive. Thus to determine the stabilty of the bifurcating periodic orbits we
must find the leading terms of the nonlinear part (3.3) of the equation on the center
manifold (3.1).

To find cl(rn), it suffices to reduce (2.2) to the center manifold at r=rn. We
follow the procedure of Hassard, Kazarinoff and Wan [3, Chap. 5], which we now
outline. First, we rewrite (2.2) as

du
(3.5) dt -L(r)u+ M(u,u),

where L(r)=A + Duf(O,r ). Next, we solve the eigenvalue problems

(3.6) L ( ru ) q iooq
and

(3.7) L(rh)*q*= -iwoq*,

where the adjoint L(r)* of L(r) is given explicitly in Part I.
We can then write X as the direct sum X X,. Xff, where

(3.8) X,.=(zq+q: zC}, X;=(wX": (w,q*)=0}

and (.,-) is the restriction of the Y-inner product to X. Observe that this restriction is
continuous with respect to the norm II’ll when a>__0, due to the continuity of the
injection Xc Y. Thus for any u X we have

(3.9) u zq + Yt + w

where z=(u,q*) and w= u-(u,q*)q-(u,q*)q provided we have normalized (q, q*) 1.
Projecting (3.6) onto C X and Xff, we obtain

(3.10)
and

(3.11)

dz
dt

dw

-iooz+(M(u,u),q*

-L(ru)w+H(z,Y,w)

respectively, where u is given by (3.9) and

(3.12) H(z,2, w)= M(u,u)= (M(u,u),q*)q-(M(u,u),q*)Yt.
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The center manifold St, can be expressed locally in terms of a function w(z,5; rn)
X’,

(3.13) St,= (zq+Sq+w(z,5;rn)" Izl<8}
where w(0, 0; rn)= 0 and Dw(O, 0; rn)= O. Since f(u, rH) is analytic in u X, w(z,5; rn)
can be approximated to arbitrarily high orderp by a polynomial [4, p. 171]

(3.14) W(Z,5;rH)= E j-Wjk+O(Iz )"
j+k=2

Equation (3.1) with r=rH on the center manifold Sr, is obtained by setting u= zq + 5?t
+ w(z,5; rH) in (3.10). Thus locally we have

(3.15) g(z,z;rH)=(M(zq+577+w(z,z;rH),zq+SYt+w(z,z;rH)),q*).
To lowest order u zq ++ O(Izl2), and hence

(3.16) M(u,u)=z2M(q,q)+2zReM(q,q)+M(q,q)+O(lz{3).
Due to the boundary conditions, the eigenvalue problems (3.6) and (3.7) can be solved
exactly for q and q*, and then a calculation will show that M(q,q), ReM(q,q) and
M(q, q) are all orthogonal to q* (see the example for rolls later in this section). Hence

(M(u,u),q*)--O([z[3),
g20(?’H) g11 (rH) 02(rH) "-0

(3.17)

and

(3.19) H( z,5, w( z,5; ru) ) M( u, u)+ O( Izl),
where M(u, u) is given by (3.16). To determine the stability of the bifurcating solutions
it follows from (3.5) and (3.18) that we only need to find g21(rH). To do this we need
the quadratic approximation to w(z, 5; rH),

1 1 52 O(iz]3).(3.20) w(z,z;rH)= -Z2Wao+ ZSWll + - Wo2+

To find W2o, wlx and Wo2 we solve [3, p. 237]

( L( rH) 2i,Oo)W2o 2M(q,q),
(3.21)

L(rH)Wll 2 ReM(q,

and Wo2 9_o. Substituting (3.20) into (3.15) and collecting the coefficients in 52z, we
obtain

(3.22) g2(rH)=(M(w2o,[l)+M(Yl,W2o),q*)+2(M(Wll,q)+M(q, Wll),q*).
Since a’(rtt)> 0 for o>0, 0< z< 1 and s>s,., the Hopf bifurcation is supercritical

or subcritical according to whether Reg2(rH) is negative or positive, and we have the
following theorem.

THEOREM 2. If Reg21(rH)=/=O then assumption (A) of 2 is satisfied. Furthermore, if
Reg2(rH)< O then conclusion (a) of Theorem 1 holds, while if Reg21(rH)> O then conclu-
sion (b) holds.

If Reg2x(rtt)=0 then higher order terms in (5.2) are required to see if (A) is
satisfied.
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We now illustrate the procedure of finding an explicit expression for g21(rn) in the
case of rolls. For 2 C1 (0,1) in R 2 the components of an element q Y have Fourier
series expansions (see Part I)

(3.23)

ql(Xl,X3)= Z ql(nl,x3)sinnloqx1,
nl=l

q3(xl,x3) E q3(nl,x3)cosnlolXl,
n =0

Z,
=0

q5(Xl,X3)--- E q5(nl,x3)cOSnxlXx,
n =0

where a r/v/-. Then the eigenvalue problems (3.6) and (3.7) become

(3.24)
oA ( nl) ql ( nl,x3 ) + nlalP H1,x3 ) ioql ( nl,x3 ),

d
oA (n 1) q3 ( nl,x3 )-O-x_P(nl,x3) +orHq4( nl,x3)-osqs( nl, x3) iooq3 (nl,x3),

A (nl)q4( nl, x3) + q3( nl,x3 ioq4(nl,x3),
"rA (n 1)q5 (na, x3)q- q3( nl, x3)= ioqs( nl,x3 ),

d
nlalqx(nl,x3)W-x3q3(nl,x3)=O forx3(0,1),

d qx(nx,x3 ) q3(n,x3)lx=O,1 q4(nx,X3)lx3=O,X qs(na,X3)[x3=0,1=O
dx3 =0,1

and

(3.25)

dxq*l( tll ,X3 ) =q* (nl x3)[x3 0,1-- 4 1q*(n X)lx3 0,1-- q* (n x3)l.x3=O, 0,
x3-----0,1

2 2 and p, p*for n1=0,1,2,-.., where A(tl)--(d/dx3)-171Otl are fluid pressures. The
pressures can be eliminated, and the equations (3.24), (3.25) can be reduced to single
equations for q3(nl, X3), q*3(nl, x3) as in Part I. The boundary conditions allow the
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Fourier series expansions

(3.26)
q3(nl,x3)= Z q3(nl,n3)sinn3rx3,

q* (n x3)= E q*3(nl x3)sinn3qrx31,

---1

for n --0,1, 2,-.-. Equations (3.24), (3.25) have no nontrivial solutions unless n n 1
and we obtain the eigenfunctions in the case of rolls,

(3.27) q=

2Ctl sin OtlXl COS 7rx

COS OtlX sin rx

3r
2

+ ioo cos alx sin rx

3,/r 2,r )
-1

2
+i cosaxx sinrx

(3.28) q* (V) -
sin O/lX COS 7rX

7/’

COS OlX sin rx3

orn itoo cos alXl sinx

-os io cosax sinx

where

(3.29) N=- 3+orH +io (3r2 )-2]os -- + i,oo

is chosen so that

(q q,) f f,/2 (qt* + -* *4 ?/* dx 1q3q +q4?l +q5 5)dx
0 "0

We then compute

(3.30) (XT"q)q

al sin 2axx
7/"

-sn 2rx
q./. (32-- + ioo sin 2 rrx

,r/. (3,rr 2,r )-12 +i sin2x
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and

(3.31) (V.q)/=

sin 2OtlX

2
sin 2x3

3r 2.

-1

ioo sin 2rx

)_1oo sin 2rx

Note that (M(q,q),q)=(-IIo(XT.q)q,q)=(-(XT.q)q,q)=O, and similarly
(M(q, /),q*)= 0 since f cosrx3dx3=O andf sinrx3sinrx3dx3=O. This verifies in
the case of rolls the assertion following (3.16). For squares and hexagons, the assertion
is true for similar reasons. We then solve (3.21) for Wzo and wn by finding their Fourier
coefficients as we did for q and q*, and obtain

(3.32)

Wll

0
0-- +io qr sin 2rx

(42,r + 2i0o)-1( 3r 2"r )-2 +i r sin 2rx

0
0

3r2 ) -(4r) Re --- + ioo r sin 2rx

(4,n. 2,r ) XRe( 3,n. 2,r )-12
+i r sin 2rx3

Finally from (3.22), (3.27), (3.28) and (3.32) we obtain the expression

(3.33)

-r { ( 3qr 2

gx(r.)= -or4 -- + ioo

-1 -1

2 ) -1]+ 2(4r 2)-1 Re -- + ioo-- + ioo (4r2+ 2i0o)-1 3rr
2 +i

+ 2(4r 2 ) Re( 3r2
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The computations to find g21(rH) in the cases of squares and hexagons
proceed similarly, but are somewhat longer. Here we state only the results: for
squares we have

(3.34)

/gzx(r,,)= 3(A+2B)

or. + ioao 4(4rr2 + 2ioo)-1 3rr 2

+io

rr2 )+ 8(4r 2) - Re + ioo

-1

+ 2(5rr2) -1 3rr2 )Re - +ioo

+ os 2 + ia 4(4rr2 + 2i)

+ 8(4r2r)-I Re

+ (52+ 2io)- 3r2
2

+ 2(5r2r)-1IRe(’ 3r2r
2

where

N 3 + ort -- + ioo os -- + ioo

d [(25rr2o+10i6Oo)+OrH(5Vr2+2iOao)-1- os(5rr 2r + 2i6o0 ) 11
3+orrt - +i6oo (57/.2 + 2iwo)

3r2 )oS + iOao (5qr2 + 2iOo)-1],



BIFURCATION IN DOUBLY-DIFFUSIVE SYSTEMS II 123

and

while for hexagons

(3.35)

-or + ioo 24(4r+ 2i%)- 3r
+io

(3,/72 )-1+ 48(4’rr 2 1Re -T + ire

+3 --+2iwo 3 -T+ioo

(9rr2)[ (3,/r2 )-1 ]+6 3Re -- +ioo -B’

+ 2
+ 2i

-1

+2( llr2 )-12 -1

+os
2 +ia 24"4rr2r+2i’-l3rr2r2

+ 48(4r 2r)- 1Re!

2 + 2i 3
2 + ia -A’

3 Re 2 + ira -B’

+
2

+ 2i 2 + iw -A"
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where

N= 3 + or + iao os 2 +i

2 + 2i +r -- +2ioo -os
2

3 + or -- + ioo -- + 2ioo -os
2

+i

+2ioa0)-1 -1

-1( 9"tr 2r )-2 + 2i

2 + 2ia +or

1-1(3+or +ioo 2

11rr2 )-1 (11rr2r2 + 2i0 -os
2

-1 -1

( 3rr 2,r
+2i0a0 -os

2 + ia
-1 11r2r

2

B’=3-9 2- +rI4 -- -os 2

3,+ ori4 -- Re -- + iooo os
2

Re

-os
2

-1

3 + orn 2 Re -- + ioo os
2

Re --- + i00

The dependence of Reg21(rn) on o, r and s does not appear to be obvious from
(3.33), (3.34) or (3.35) so we evaluated Reg21(r,z) numerically. For all four spatially
periodic structures--rolls, rectangles, squares and hexagons--the locus of points in or

s-space where Reg21(rn)=0 appears to be a two-dimensional surface in the three-di-
mensional parameter space. If this is true, then for almost all admissible o, r and s, we
have Re g21(r,_/)4= 0 and hence by Theorem 2 either supercritical or subcritical Hopf
bifurcations exist.

In Figs. 1-5 we have plotted RegZl(rH) as a function of s, for several values of o

and r. The values of o and r in Figs. 1-4 correspond to those in [5, Fig. 2], and the
values of s at which Reg21(rn)= 0 for rolls agree with [5]. In [2], Da Costa et al. give an
analytic expression for Regz1(rn)=0, which also agrees with the results of [5]. The
expression was obtained by considering a modal truncation of the full double-diffusive
convection equations for rolls, which simplified the computation. However, the center
manifold reduction used here provides justification for the validity of the truncation:
enough modes were kept in [2] so as not to affect the normal form (3.2) in terms of
order 112 or less.

We have also obtained results for squares and hexagons. In Figs. 1-4 the qualita-
tive behavior of Reg21(rt) as a function of s for squares and hexagons is similar to the
behavior for rolls: for s near sc, Reg21(r,4) is negative and increasing, and the graph
crosses the s-axis as s is increased. The exact value of s at which Reg21(r/_/)= 0 depends
on the cellular structure considered. However, by varying 0 and , one can observe
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FIG. 2. Re g2t(rt) as a function of when o= 1, ’r=0.1 for (a) rolls, (b) squares, (c) hexagons.
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FIG. 3. Re g2(rtt) as a function ors when =10, r=0.1 for (a) rolls, (b) squaees, (c) hexagons.
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FIG. 4. Re g21(r/,,) as a function of when 0=7, r=l/8O for (a) rolls, (b) squares, (c) hexagons.
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different behavior. For example, if the Prandtl number o is decreased as in Fig. 5,
where o=0.001 and z=0.1, one sees that for s near sc, Regz1(rH) is positive for
squares and hexagons, but negative for rolls. Thus, branches of unstable time periodic
square and hexagonal convection patterns bifurcate subcritically from the constant
gradient solution at r= rH, while branches of time periodic rolls bifurcate supercriti-
cally.

FIG. 5. Re g21 (rtt) as a function ofs when o 0.001, "--0.1 for (a) rolls, (b) squares’, (c) hexagons.

It is possible that when Reg21(rn) is positive, the corresponding subcritical branch
of unstable solutions may "turn back" at a limit point and the solutions on this branch
beyond the limit point may be stable. This was conjectured by [5] for rolls, and the
behavior of the modally truncated equations in [2] supports this conjecture. To verify
this conjecture near parameter values where Regz1(rn)=0, one needs to compute the
order 114 term in the normal form (3.2).

4. Conclusion. We have proved the existence of nontrivial time periodic solutions
of double-diffusive convection equations, for suitable values of the parameters r, s, o

and ’. The solutions correspond to time periodic fluid flow in roll-like, rectangular,
square and hexagonal convection cell patterns in the layer of fluid. The time periodic
solutions bifurcate from the constant gradient solution either supercritically or subcriti-
cally, according to whether the sign of the coefficient Reg21(rn) is negative or positive.
Solutions on a supercritical branch for r near rn are orbitally asymptotically stable with

respect to perturbations of the same cellular structure, while the solutions on a subcriti-
cal branch for r near rn are unstable. As far as we know, a theory of pattern selection
for Hopf bifurcation (which would determine whether solutions on a supercritical
branch are also stable with respect to perturbations of a different cellular structure) is

not yet available.
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We have computed Reg(ri) for rolls, squares and hexagons. For some parame-
ter values, all three cellular structures exhibit similar functional dependence of Re g:x(rrl)
on s, but as the Prandtl number o is decreased, the behavior of Regz(rH) for squares
and hexagons is different than that for rolls.
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THE GENERALIZED INVERSE OF AN UNBOUNDED
LINEAR OPERATOR*

ROBERT NEFF BRYANt

Abstract. Some necessary and some sufficient conditions are given for the existence of the Moore-Penrose
generalized inverse of an unbounded linear operator between inner product spaces with an appropriately
restricted domain. These results generalize a recent result of W. F. Langford.

1. Introduction. In this paper, we establish results similar to, but more general
than, some of those given in a recent paper [1] by W. F. Langford regarding the
existence of the Moore-Penrose generalized inverse of a certain unbounded linear
operator between inner product spaces. Langford applied his results to a two-point
ordinary differential boundary value problem to show that the associated operator has
a generalized inverse, and, apparently, chose his assumptions on his operator so that his
results would be applicable to the differential operator. Here, we show that his assump-
tions may be relaxed to some extent to obtain similar results, and we clarify the roles
which certain of his assumptions play in the establishing of the results.

2. Notation and assumptions. We begin by listing our notation and stating our
assumptions. Let X and Y denote real inner product spaces and be a linear operator
from X and Y. Let D be a subspace of X. We study the operator L which is restricted
to D. We denote the range of L by R, the kernel of by k, and the kernel of L by K.
The spaces of linear (not necessarily continuous) functionals on X and Y are denoted
by X* and Y* respectively. The natural imbedding of X into X* (and Y into Y*) is
denoted by J and maps z X to z* X which satisfies z*(x)= (x, z) for x X, where
(-,.) is the inner product notation in X (and Y). We make extensive use of the
following sets related to S

_
X:

S+/-:(xX: (s,x):OforsS}
and

S=(x*X*" x*(s)=OforsS}.

The following lemma is interesting as it stands as well as useful in the sequel.
LEMMA l. Let X be an inner product space and S be a subspace of X. Then
(1) J(S+/-) S O implies S +/- +/- S;
(2) if S +/- is finite-dimensional and S +/- +/- S, then J(S)= sO; and
(3) if S O J(X), then J(S +/-)= S.
Proof. (1) We need only show that S +/- +/- _S. For some tS- - -S there is a

functional u X* for which u(t) 1 and u(s) 0 for s S; hence, there exists fi S x

for which J(fi)= u. This implies ( fi, t) 1 which contradicts that S - +/- and u S +/-.
(2) Clearly, J(SX)_S. We have, by hypothesis, X=SSx. Let uS, and

consider the restriction of u to S +/-. Since S +/- is finite-dimensional, there is a fi S +/-

*Received by the editors August 11, 1981, and in revised form March 19, 1984.
Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 589.
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satisfying u(x)= (fi,x) for xS +/-. Given an X=X -[" X2, X S, x2S +/- u(x)=u(x2)
(fi,x2)= (fi,x). Hence, u=J(fi) and uJ(S+/-). Thus, J(S+/-)=S.

(3) The proof is immediate.

3. Main results. First, we review some terminology. The equation Lx =y has
associated with it the set Sy=(xX: [[Lx-yl[<[[Lz-y[]; zX) of least squares
solutions. The norm is given by the inner product on Y. The set Sy is convex. If there is
a unique point x + in Sy satisfying [[x+l[ __< [[x[[ for all xSy, then x + is called the
best-least-squares solution (BLSS) of Lx=y. The operator L is said to have a
(Moore-Penrose) generalized inverse, L /, if Lx=y has a BLSS for every y in Y, and, of
course, L+y x +.

In order to compare the results which follow with those of Langford in [1], the
reader should keep in mind that in the setting of [1], the spaces k (and hence K) and
R +/- are finite-dimensional. The assumptions regarding each of these spaces in this
paper are included in each statement of a lemma or theorem which involves it, except
Theorem 4 in which R +/- is assumed to be finite-dimensional.

Advantages of considering these slightly more general settings are that some proofs
are simplified and the roles that the various assumptions play in the results are made
explicit. This enables us to concentrate on the sets of sufficient conditions for the
existence of L+, each of which includes the completeness of K; they appear as the first
statement in each of Theorems 1, 2, and 3 and in Theorem 4.

The finite-dimensional version of our first main result does not appear in [1], but is
hinted at in the proof of Langford’s Lemma 1 [1, p. 1085].

THEOREM 1. (1) IfR +/- and K are complete and R +/- +/- R, then L + exists; (2) if R +/- is
complete and L+ exists, then R +/- +/- R.

Proof. (1) Since R +/- is complete, Y= R +/- +/- R +/- R R +/-. Hence, y, in Y, can be
written as Y=Yl +Y2, Yl R, y2 R +/-. The projection theorem implies that [[y-Yll[ <
[[y-zl[ for all zR-y1. Letting x be a solution of Lx=yl, we see that the in-
equality implies I[Lx-yl[<_llLx-y[[ for all xD. Since K is a complete subspace of
X, we can apply the projection theorem again to obtain unique mocK satisfying
[Ix,-mol[<=llx-m[[ for all mK. Then x+=x-mo is the BLSS of Lx=y. Thus, L +

exists.
(2) Lety Y. There exists a unique x/=L+u which satisfies IlLx+-yll<=

for all xD, so that there is a unique f,=Lx+R such that II-Yll<=llz-Yll for all
z R. Thus, by the alternate form of the projection theorem (see 6), Y= R R +/-. But
Y=R +/- R +/- , so that R +/- +/- =R.

The following theorem is a generalization of Langford’s lemma [1, p. 1085],
mentioned above. We note, in particular, that no assumptions are made here on the
space k. The proof consists of applying Lemma 1 and Theorem 1.

THEOREM 2. (1) IfR +/- and K are complete and J(R +/-)= R, then L + exists. (2) IfR
is finite-dimensional and L+ exists, then J(R +/-)- R.

The adjoint of l, denoted by l*, is defined in the usual manner. If k, the kernel of 1,
is complete, then R(/*), the range of l*, is the annihilator of k; i.e., R(/*)-k. A proof
of this is given in [1, Lemma 8, p. 1094], where only the completeness of k is used, not
its finite-dimensionality.

We note that the following result does not depend on the dimensionality of any of
the spaces involved.

LEMMA 2. (cf. [1, Lemma 2, p. 1086]). (1) l*(R)c_Dfk; (2)furthermore, ilk is
complete, then DOk=l*(R).
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Proof. (1) Let ul*(R), v--R so that u=l*v. Then u(x)=l*v(x)=v(lx)=O for
xD, so uD. Clearly u(x)= 0 for xk, so uk.

(2) For uDk, uR(l*) so there is a v Y* for which u=l*. Since uD,
l*v(x)=O for every xD. But l*(v)=v(lx) so v(r)=0 for every rR; i.e., vR, so
u l*(R). Thus, D O q k c l*(R). Part (1) yields the equality,

Theorems 3 and 4, below, are generalizations of [1, Thm. 1]. The statements of
those theorems indicate the interplay among the various assumptions made on k,K,
and R - which are lost in [1, Thm. 1]. Together with Theorems 1 and 2, above, they
provide several sets of necessary conditions and of sufficient conditions for the ex-
istence of L/.

THEOREM 3. (1) If R 1, k, and K are complete and DOk_l*[J(Y)], then L+

exists.

(2) If L+ exists, R - is finite-dimensional, and k is complete, then D O(k
_

1"[ J(Y)].
Proof. (1) We have DOk=l*(R)l*[J(Y)] by Lemma 2, so that R_J(Y),

since 1" is one-to-one. Thus, R=J(R +/-), by Lemma 1, so L/ exists, by Theorem 2.
(2) We use Lemma 2, Theorem 2, and the fact that R +/-_ Y, in turn, to establish

that D k=l*(R) l*[J(R+/-)]c I*[J(Y)].
The set I*[J(Y)], which is mentioned in Theorem 3, has an attractive characteriz-

tion, which adds interest to that theorem. The characterization is given in the following
remark.

Remark. If ul*[J(Y)], then there is a point y Y for which u(x)= (lx,y) for
x X, and conversely.

Using this result, we see, readily, the following lemma.
LEMMA 3. If Dc__J(k)9l*[J(Y)], then D t k cc_ l*[ J(Y)].
This gives us a sufficient condition on D for the existence of L/; viz.,
COROLLARY (cf. [1, Corollary 1, p. 1086]). If R +/-, k, and K are complete and

DO _J(k)l*[J(Y)], then L + exists.

4. A result for L with special domain. In this section we choose a particular type of
domain of L, essentially the same as that described in [1], and obtain a necessary and
sufficient condition for the existence of L +.

Let (fl,f2,""" ,fm } be a linearly independent set in X* and F be the subspace of X*
spanned by fl,"" ",f,-Let D=(xX: f(x)=0 for all fF). It is easily seen that D,
given in this way, has finite codimension and that D=F. This implies that R +/- is
finite-dimensional and, hence, complete. Thus, for D as given here, we have, from
Theorem 3, the following theorem.

THEOREM 4. If k and K are complete, then L* exists if and only ifFfk
_

l*[ J(Y)].

5. An example. We include an example to show that Theorem I applies in at least
one case where Langford’s Theorem 1 does not. Let X1 (a /2: an__ 0 for sufficiently
large n} with 2 inner product, X=I2 iX with inner product (s1+xl,s2+x2)

(sl,s2) + (x,x2), and Y=Xx. Let T: Xx Y be defined by T(a)= T[(ax, a2,... )]
=(ax,2a2,3a3,... ). Then T is one-to-one but not continuous. Define by l(x)=
l(s+a)= T(a), and let D=OXI. Note that D has infinite codimension. Let L be
restricted to D. Then R Y= Xx, R - ( 0 }, which is complete, and R +/- z R; also, L is
not continuous. The kernels, k K= 2 0, are infinite-dimensional but complete. Thus,
L has a generalized inverse, by Theorem 1.

6. The projection theorem. We include two versions of the projection theorem
which were applied in the proof of Theorem 1.
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PROJECTION THEOREM. Let V be an inner product space, M be a subspace of V and
V-M and moM. Then IIv-moll<llv-mllfor all mM-mo if and only if v-mo
M+/-.

PROJECTION THEOREM-ALTERNATE FORM. Let V be an inner product space and M a
subspace of V. Then for every v V there exists a unique m o M such that Ilv- moll =<
IIv-mllfor all m M if and only if V=MM+/-.
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LINEARIZATION STABILITY FOR AN INVERSE PROBLEM
IN SEVERAL-DIMENSIONAL WAVE PROPAGATION*

W. W. SYMES

Abstract. Inverse problems in wave propagation arise from the physical notion that the response of a
mechanical continuum to a specified excitation should reflect the properties of the medium through which the
excited waves travel, even though the waves are eventually measured at a remote location. We consider the
formal linearization of a simple model inverse problem in several-dimensional wave propagation, in which the
density distribution of a linear fluid is to be recovered from its remotely measured response to an incident
plane-wave excitation, assuming the sound velocity distribution to be known and constant. We make
reasonable choices for norms (error measures), and give simple examples establishing the ill-posed nature of
the problem and indicating the mechanism of instability. We then show how the problem may be regularized
(rendered well-posed) by the introduction of minimally stringent a priori constraints, motivated by a (crude)
approximation to the singular value decomposition of the linearized problem.
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Inverse problems in wave propagation arise from the physical notion that the
response of a mechanical continuum to a specified excitation should reflect the proper-
ties of the medium through which the excited waves travel, even though the waves are
eventually measured at a remote location. All measurement is contaminated by error,
and the mathematical structures used to model wave propagation can be regarded only
as approximate descriptions of actual physical processes. Therefore, the most important
question about these problems (as for many other problems in applied mathematics) is:
to what extent does error in data (remote measurement of wave fields) produce error in
solution (estimates of mechanical parameters)? This question of stability or condition is
also critical for the design of effective numerical algorithms.

In this paper, we address a very simple model inverse problem in several-dimen-
sional wave propagation, by examining its formal linearization. We make (reasonable)
explicit choices for norms (error measures) and give simple examples establishing the
ill-posed nature of the linearized problem, and indicating the source of the difficulty.
We then show how the problem may be rendered well-conditioned (regularized) by
imposition of a priori constraints on the mechanical parameters. These constraints are
essentially the least stringent possible, and amount to a crude approximation to the
singular value decomposition of the linearized problem.

We expect these considerations to apply with some changes to more complex
inverse problems of greater practical interest than the simple model problem considered
here.

We consider an acoustic medium confined to a half-space (xNt: x>__O}. We
assume that the excess pressure u is small, and so is governed approximately by the
linear acoustic wave equation

10_- v.- v u=0
oc o
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where p is the density and c the sound velocity; both depend on x. We assume that the
fluid is initially quiescent, i.e., u--0 for << 0, and that the boundary of the fluid is

fixed (rigid) except at t= 0, when it is subject to an impulsive acceleration, uniformly
over the entire boundary:

(2)

where we have written x=(x’,xn), x’R n-1. A final simplifying assumption is that the
velocity c-= 1, so that the rays of geometric acoustics are straight lines.

We take for the data of our problem the excess pressure measured at the boundary
x,=0. Since the problem (1) is well posed, at least for smooth 0, each distribution of
density produces a (hopefully characteristic) response

.).

The inverse problem thus amounts to the study of the functional equation

(3) Y-(p) =g.

Instead of considering (3) directly, we will examine its formal linearization

(4) O"(/9) iol g

in which a perturbation 01 about a reference density distribution 0 is sought to produce
a perturbation gl in the response.

We first give an example which shows that, for reasonable choices of norms (error
measures) for O and g, one or both of DY-and DY--1 are unbounded. This means that:

(i) Depending on choice of norm, either Y-ls not differentiable, or its derivative is
not boundedly invertible, or Dis not its derivative, or any sensible combina-
tion of these circumstances.

(ii) The equation (4) does not in general possess solutions.
Consequently, the only obvious computational option for (3), i.e. some version of

Newton’s method, is doomed to failure. Problem (3) and (4) must be modified by the
introduction of a priori constraints, to restore continuous dependence of 01 on gl. By
virtue of (ii), we cannot actually expect to solve (4), so we change it to a least-squares
optimization problem with constraint, i.e. we seek to minimize

where is a regularizing set and the norm is an appropriate Hilbert space norm. If the
optimization problem (5) is to have stable solutions, an inequality of the form

(6) IIll<=cIIo (o).o ll,
must hold. The derivation of roughly such an inequality is the main goal of this paper.

The choice of is important. Unfortunate choices of may override some
information present in the data. We want to choose to correspond roughly to the
small singular oalues of DY-: that is, we want the condition 01 to bound a priori the
components of 01 in the singular value decomposition corresponding to small singular
values, but leave the other components unbounded. We identify a suitable below
(though our choice is probably suboptimal, as we also discuss).
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To complete the picture, and deduce similar results for the nonlinear problem (3),
we need to establish that q-is actually differentiable, and that DY-is continuous. These
goals can be accomplished by extending the arguments given in our previous paper [12],
in which we established that -is Lipshitz-continuous when the domain (0) is metrized
with an anisotropic Sobolev norm. The results of [12] are fundamental to those pre-
sented here, and we make the same choice of norm for the perturbations pl below.

To end this introduction, we note that essentially the same arguments yield similar
results for velocity-inversion, a more practically motivated problem in which the sound
velocity is to be determined from remote pressure measurements, provided that no
caustics occur in the incident wavefront. This restriction is highly unnatural, but the
presence of caustics introduces presently unresolved technical difficulties. On the other
hand, many authors have discussed (formal aspects of) linearized inverse problems,
most often linearized velocity inversion against a homogeneous or stratified back-
ground--see for instance [3] and references cited therein. Also, most current data-
processing methods in seismic exploration for petroleum, nondestructive materials
evaluation by ultrasonic probing, ocean acoustics, etc., are based in one way or another
on the study of formal linearizations. Some authors have also written on iterative,
formal algorithms for the solution of inverse problems of this type--see [8], [9], [10],
[11]. For one-dimensional problems, a fair amount about the analytic structure of
analogues of Y-is known--see [13], [15] and references cited there. In higher dimen-
sions, very little of a nonformal nature seems to have been accomplished.

We introduce some convenient changes in notation: we write: x (x,z), so that
X- n-l,Z +. We use the notation Ilul[ for the norm of uH(fa), suppressing the
dependence on the domain f. We set

k=l,...,n-1,t -’ z=-3-7’ O, 3x,

Vx= (D1, ",D.-I), V Vx, }z),. _2 2 2

We shall also replace p by -1 for convenience. Denote by u the solution of (1), i.e.

(Ot2- A- V log/. V )u=0,
(1’) OzU(.,O,t)= -8(t)

u=0, <<0.

We suppose throughout that logo C(R _). It is then standard that u is smooth in the
forward light cone Co= {(x,z,t): t> z>0}, and on the boundary (wave front) {z=t}
undergoes a jump discontinuity determined by the transport equation of geometric
optics. Consequently, inside the light cone u solves the characteristic initial/boundary
value problem

(Ot2 A V log /. V ) u 0,

(7) i)zU(.,O, .)=0, t>O,

U( X,Z,Z +) T(X,0)1/2"I(X,Z) -1/2

(see [5, pp. 42-46] or [4, Chap. VI, [}4, pp. 633-655]).
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Remark. The transport equation breaks down in the presence of caustics, which
complicates the extension of the present reasoning to variable-velocity problems.

The characteristic geometry of the wave equation shows that { (x,z): z __< T }
determines { u(x,O,t): t__<2T}. For log C(R n-1 [0, T]) or C(R) respectively,
we define

T() "= U(’,0, ") C(n n-1X [0,2T]),
(): u(.,0, .) c(n).

When the value of T is implicit from context, we suppress the subscript, and write

We next formally linearize . Let o+ el, u u+ eul+ and substitute in
(7). A short calculation yields the perturbational equations

(0--vlog’V)ux=V’Vu,
(8) 0ul(.,0, .)0,

1 -3/= /(0)
where we have used the useful notation fi(x,z)= u(x,z,z +). Thus

(). ul(. ,0, .).
To discuss the behavior of D, we must introduce norms for a and gl. For

reasons discussed below, we choose the H-norm for , and the Dirichlet norm for gl.
We now sketch a pair of examples, based on the geometric optics construction,

which show that D(1) and D(1)- are both unbounded. A very similar argument is
given in [14, 3] for the time-like Cauchy problem, so we refer the reader to that paper
for details of the estimates.

In fact these examples really concern the relation between initial and boundary
values for solution of the wave equation, and express well-known facts. The first
example (unboundedness of D-) shows (essentially) the ill-posedness of the time-like
Cauchy problem. The second (unboundedness of D) shows that the boundary values
are generally not as smooth as initial data. Perhaps by sharpening the second example,
one could show that, in general, one loses exactly the half-derivative suggested by the
trace theorem.

The first example also follows trivially from the existence of solutions with singu-
larities along a single raysee [17]. Presumably the second example could also be
derived from a closer examination of the Gaussian beam construction, although the
route pursued below (ordinary geometric optics) seems simpler. In both cases the
pathology arises from energy propagating along grazing rays.

The simplest reference coefficient to consider is o= 1, for which

u(,z,t)=h(t-z)
where h is the Heaviside unit step function.

For u1, obtain the equations for the so-called Born approximation:

(0- v)ul=0,
(9) 0z,(, 0, t) 0, >0,

l(,z,z+)= (,z).
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For convenience, we temporarily allow /x and u to be complex, with the understanding
that only the real parts have significance.

Suppose X is a smooth function of bounded support in R 2 with unit L2 norm, and
set

1
rl(x’z)--i0 X(x z)ei’(x+z)

--1
Ua(X,Z,t)=tX(X-Z+t,z)ei{x+’) for t>z.

is a horizontally moving monochromatic wave packet, and is an approximateIn fact, u
solution of (9) in the sense that

0
1 )

Also

UI(X Z Z+) 1/2’ll(x Z)
l(x z,t) by l(x,z,t)+ula(x,-z,t), thenIf we reflect u at the boundary i.e., replace u u

differs from u1, in the energy norm, by O(1/0).Ua
We distinguish two cases. First suppose that the support of X is entirely contained

0, for z 0; it follows that there is some sequence of frequenciesin { z > 0}. Then u
w. for which

T Ln_l dX(Itul(x O,t){2 +lVxl(x,O,t)l 0
while

f f Ivll2 1.

That is, the boundary values of u can become arbitrarily small in the mean-square
sense, even when the derivatives of the coefficient ,11 remain large. Physically, the level
surfaces of the oscillatory perturbation ,t dip at 45, and reflect the incident vertical
rays horizontally. Since for large 0 the field is essentially given by its geometric optics

the trace becomes small as oa- 00.approximation u,
For our second example, we assume that the support of X does intersect (z 0).

depending on another parameter e > 0 as follows:We construct a family of le, U a,

1 ( z) ;,o(x+z,le ( x z -j’- X X --e e

Then

a, X x-z+t,-e e

2
Also

dxdz=O(e)+O 1
0)2
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Now let to m, e0 in such a way that toe2 m. Then, as in [14], we can show that
for some sequence of values of to, e,

However,

f f0dx dtlO,

whereas

This second example shows that DY’itself is unbounded. As the inverse is also
unbounded by the first part, no strengthening or weakening of topologies of the
domain and range can render both bounded. We shall change the topology in the
domain so as to make Doq-bounded, then ask for optimal regularization of DY--1.

Note that in both cases, the cause of unboundedness was rapid oscillation of 11 in
the x-(" horizontal") directions. Therefore it seems reasonable that imposition of addi-
tional smoothness in horizontal directions might cure the difficulty, and this is indeed
the case.

To state our main results, we shall make use of the spaces affim,s [7, 2.5]. These
are the completions of C(R n) in the norms (s >_ 0)

2
m

2

j 0

Ilull(o, ) 1](1- Ax) s/2

The following facts are either easy to prove or are stated explicitly in [7, 2.5]:
(I) For any multiindex a=(a’,az), DuO’p,t) if Um, and

(p+t),%<=m-p.
(II) If m + s > n/2 and m > 1/2, then ,,s) L(R n)N C(") (continuous inclu-

sion).
(III) II 1]1,) is equivalent to the graph norm of (-Ax)/2, viewed as a densely

defined operator on HI( n).
TnEOREM 1. For s > (n-1)/2, there exists a constant C> 0 depending on s, T, n,

]]logj0(’,0)llH.+l(n,-a), and IIlognlla...+, tO, Tl) so that for 1, 11 C(+),
IlO27"T()’nal11 <= cll]llll,s+ 2). Also for 1, o, 11 CO([ n+),

I[D._-T (10) "11- D-T(]0) "]lli < C[llog’oO- 1og]0[[(1,s+2)l[]l[l(1,s+ 2).

In particular, D-T extends to a Lipschitz-continuous map

log/ --> Doq-r ( /),

(1, + 2)(Rn-1X [0, T ]) -P oYfO,s+2)("- X [0, T ]), Hl( n-1X [0, 2T 1)].
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Suppose 3’ > 0, and suppose F c R

_
is a closed set for which F N (z zo ) is compact for

every zo > 0. We call such a F laterally compact. Define

(y,l-’) (fnl(R_) suppfc F

and for every T> 0, Ilfll,,,.+=,<.’-I xt0, ]) llfll/l<. t0, 1>).
Remark. An inequality of the above form holds for every f&(1,s+2)(l_) and

every T> 0, but not necessarily with , independent of T. Thus this inequality amounts
to a strong form of the ban on horizontal oscillation mentioned above. If fHI( _)
and C(’-1), then f. (convolution in the x-variables) obeys an inequality of
this form. Also, results entirely analogous to those given here may be formulated for
cylinder domains f +, rather than R,+ =n-1 +, with Dirichlet or Neumann
boundary conditions on Of /, or any other choice of boundary condition for which
various integrations by points in the x-variables remain valid. In terms of the eigen-
functions of the (n- 1)-dimensional Laplacian on such a (compact) f, an interesting
class of subspaces of H lying inside the regularizing sets are the Hi-functions of z
with values in finite Fourier series in x, although these (linear) subspaces are clearly
proper subsets of the conic regularizing sets .

THEOREM 2. Suppose T, > 0 and F c "-1 is laterally compact. Then there exists a

functional K: (,I’) R + so that
0 weakly in HI( _), then K(rl) O.(i) If {r/j)c (,,F), r/j

(ii) There exists C> 0 depending on I]log/ll(1,s+ 2), s, n, and T, for which

nl(.n 1X[0, T])Z C [[O-Z(’0) "1"11 [I2HI(.n-Ix[0,2T])I-K(’I1)

Remark. The presence of the "compact" functional K on the r.h.s, of the above
estimate means that we can only assert that a sufficiently small neighborhood of zero
contains finitely many singular values of D. In particular we cannot rule out zero as a
singular value (i.e. nonuniqueness), and therefore have not quite established continuity
of the inverse. The best we can do in this direction is summarized in:

THEOREM 3. Suppose that log/Jl,s+2)(R_)N WI’(_), and that 7>0 and
F c + is laterally compact. Then if "l’l ( ", F satisfies

D7-oo (r/) /1 0

it follows that TI O.
THEOREM 4. Suppose 7, 7, F as above, and define

,./" ( )’ F ) --) Hlloc (R n+ ) (gH (l -1)

,-’O1-- ( n,.’o (’1"/) .’O ’ol( 0)).

Let /g be a weakly closed subset of

U .(r’,r)
7’>0
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and let .//4’ v ’N 3’, F), given the topology of Hloc(R _). Then"
(i) The restriction z!v ofz’to /gv has closed range.
(ii)z-1 is continuous on Rangezv.
Remarks. 1. It is commonplace in exploration seismology that seismic reflection

data give much greater resolution of vertical rock structures than of horizontal varia-
tions, at least in the absence of substantial ray bending. As the present problem is a
crude, straight-ray version of the seismic problem, the a priori constraint on horizontal
derivatives of /1, implied by ,/1 , seems quite natural.

2. Much sharper results are possible via propagation-of-singularities argu-
ments-see [16] for such results for the (closely related) timelike Cauchy problem.
In particular, the (regularized) dependence of /1 on the data can be localized by
ray-tracing. However, in that case the constants C depend on higher Sobolev norms of
r/ than appear in the above estimates for ,/1; the dependence follows from results of
Beals and Reed [2]. Such estimates force one to restrict the domain of Y-to a relatively
compact subset to achieve continuity, whereas the inclusion 9ffl,s+2)c H is not com-
pact. Perhaps sharper propagation-of-regularity results would allow one to retain the
local dependence property without such stringent regularization.

3. For layered media, i.e. r/v, ,/1 independent of x, the inverse problem amounts to
the much-studied impedance profile inversion problem, and the statement of Theorem
1 becomes (part of) the statement that Y’is a Cl-diffeomorphism HI[0, T] HI[0,2T]
in that case--see [15]. On the other hand, for topologies much weaker than H1, Y- fails
even to be continuous--see [6]mor --1 fails to be continuousmsee [1]. This accounts
for our restriction to H and related topologies. Also, rougher media may be ap-
proached via homogenization arguments.

4. Theorem 3 asserts uniqueness for the linearized inverse problem for the case
T-. For n 1, a very similar argument yields uniqueness for T< . We are pre-
vented from making direct use of the one-dimensional pattern here by the lack of local
uniqueness for the time-like Cauchy problem, and instead use a transform argument.
The transform argument allows us to appeal to elliptic unique continuation results, but
restricts us to the case T= . Recently, Paul Sacks has used the full strength of the
local part of the proof of Theorem 3, together with a very clever application of
HOrmander’s uniqueness theorem for the Cauchy problem, to extend Theorem 3 to the
case T< . Details may be found in [18].

5. The restriction of zC’in the statement of Theorem 4 is necessary because the sets
(3’,F)mor indeed their union over 3,mare not weakly closed. An example of a
function in the complement in ffl, s)(R 2+) of t v (3’, F) is

q) ( x ) e-e*+ sin( xe-1)

with q0 C(). Such functions may occur as the dl,s)mweak limits of sequences in
(3’,F). On the other hand, if we modify the definition of by requiring uniform
integrability in x at infinity, rather than lateral compact support, then the class of
uniformly x-bandlimited functions

{ u l,,+2)(flRTv)" &(z,)-0 for

lies in the union of the modified (3’)’s. Since E is independent of 3’ in this regard and
may be chosen as large as desired, perhaps the restriction is not particularly severe. For
further discussion see [18], especially {}5.
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We shall need a number of the results of [12] concerning the relation between p0
and u, as well as a technical lemma, which we now list:

(IV) ([12, Lemma 1]). Suppose f5’(Nn), g2 Lz(Nn), gl LZ(n) O

L([R z,L2( 1)), and s > (nx 1)/2. Then for some C C(s,n)>O,

n-1
_
[

Moreover, if f is independent of xl,...,xk, then the same conclusion holds for
s>__1/2(n-k-).

(V) An intermediate result in the proof of [12, Lemma 1] which we shall also need,
is: supposef5("), gL(N z, LI(R’-I)).z Then

(11)

with C= C(s,n)> O.
Similarly,

ff 2
(12) dz clxfl,gl<__ cllql0,,sup JJg(’,z)llo-.

We also require the following Poincar6-style inequality:
(VI) Suppose that s>(n-1)/2, loga(-,0)Hs+l(R"-l),

[0, T]), u(.,O)H(R"-), uHX(R"-X[O,T]). Then for some constant C>0 de-
pending on Illoga( ., 0)11,, Illoga[Io.+ ), s, n, and T,

(a3) Ilull
2
s c{ v(u)0+ lu(., 0) }.

Proof of (13). First observe that a_ a a + with a depending on Illoga(’, O)lls,
Illogallo,,+ ), and T.

Next suppose u(., 0) O. Then the simplest PoincarB inequality gives

(14) Ilaullt S Cll Vaut[o.
Also

So

(15)

But

Ilau(", z)llo =< cllaulll, O<z<T.

llull -1 -1
2

II.llo + v.llo =< a Ilaullo + v(a .au)llo
2 2 2

<= cllaullo+ 211(va-X)aullo+ 2a-llvaul[o.

1[( va-1)aull= fordz f ( Va-1)21aul 2

fo f !1< dz dxla-2val2supllau(.,z) <C[laul[

which together with (15) gives

<= Cllaullx.
Combined with (14) this gives the result for the special case.
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In general,

Ilulix -< }}u(., o)1} + Ilu- u(.,

z Ilu(.,0){ll+ CllX7a(u-u(.,O))}{o

Z llU( 0)!11 -" C( 11V(au){{o + 11V(au(’, 0)) {1o)
_-< Ilu(., 0)111 + C( vaul{o + vu(", 0)11o+ }lu(-, 0) I}o)

where in the last step we have used the estimate (12) with f= Va and g-}u(., 0)12.
Q.E.D.

(VII) The following estimates hold between u and r/ (each statement is followed
by its reference in [12], of which it is (at most) a minor modification)"

(16) fmin(T’t) dz f dxrl([)tul 2

Vul2) ,z,t)" ]lu(t)]l
2 2+ (x E--< II1og r/

(Lemma 2),

(17) IlDu(t)lle<_ C[llogtll(,,+ ) (j= 1,... ,n- 1),

(Lemma 3, Theorem 1),

(18) sup fz2T-Zdt f dx(ltu12-1 IS7u12)(x,z,l)<= CF(l[loglll(1,s+l), T),
O<z<T

(Theorem 1),

(19) IIDDu(t)lleN CIIlog/ll(1,+ _) (k,j= 1,... ,n- 1),

(Lemma 5, Lemma 6),

(20) sup fz2r-z d, f CF(lllog’oll(1,s+2,,T),
O<z<T

(Lemma 6).
Here C denotes a constant depending on s, T, and n, and F is a smooth function of its
arguments.

Proof of Theorem 1. We shall establish the first estimate. The second is proved by
further arguments of the same sort, following the pattern of the proof of [15, Thm. 2.5].
Therefore we omit the proof of the second statement.

The main tool in the proof of Theorem 1 is the "sideways energy form"

l fz2T-zo{z)= d, f dx{lO,u
A short calculation yields

d fzzg-T-z-Z Q(Z)= dl f dx((t2ul-Aul)z,tll-l-N7xul. Oz7xul }
(21)

1 112 1 2] Z2f x[Iv +Iv (x)

where l(x,z)= F(x,z,z ), as before, and (x,z)" ul(x,z,2T z).
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Remark. The second term on the r.h.s, in (21) cannot be estimated in terms of Q
alone, which reflects the nonhyperbolic nature of the timelike Cauchy problem.

Integrate (21) from z to T, make use of the boundary value problem (8) for u1, and
note that Q(T)=0 to obtain

Q(z)=-fzTdf2T-; dt f dx { V log rl" V ulOzul

(22) nl }+ V-" vUOSzUl + 2VxUl}zVxul (X,,t)

1 T
"}- -- 7 ’1]/2 ( ’1"]0 ) 3/21] 12}

Estimate the first term on the r.h.s, of (22) using (11)" for s > 1/2-1,

(23)

with

o(z)--IIv
For the second term, use (10)"

sup ( .)ll,,vu..,_,’.,,:..-,t,:-l).
z<<_T

The first factor is bounded by IIXll(,s+x), the second by (ffQ)l/2 and the third by
I111o,+ ), according to (18). So we obtain

fff v vuv ua cllnlll(l,,+ 1) Q

(24)

1(2 feT__<-C II,ll[o,s+l)

To estimate the third term, we require an energy estimate for the tangential
derivatives XTxu. Define vj=Djux, j=l,-..,n-1. Then in Cr’= {(x,z,t)" xR"-,
O_<z <= T, z <=t <=2T-z}

(25)
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Multiply the wave equation by ’0Otvj and integrate by parts over n (t =< r } to obtain
the energy identity

1 100 VDj-" Vu+ V-" VDu+ vDjlog’0" VU )tVj

(26) 1 fmi.(,r) dz f dx’0olvjl2 1 r 2
dz f dx,lv ,l2.,0

1 fmin(r,2T-r)+o
where h is the Heaviside function. Define Ea.(r) by the last term in (26). Estimate the
first two terms on the 1.h.s. of (26) by means of (11):

VD:’0- Vu+ V VD/uo" - Otv2

=< C{ l[’01[l(,, s+ 2) sup Ilvu( ,z,-)[IL:(n. t2r-zl)
O<z<T

+ sup IIVD2u(.,z, ")[IL2(.,-,tz,2r_zl)} IOtVI 2
O<z<T O{t<T}

The suprema in the above estimate are bounded in terms of ll’0[l(1,s+ 2) according
to (18) and (20). Also, the last factor is the integrated energy. Thus the left-hand side
above is bounded by

(27)

Also,

VDj.log’0" Vu8,va.

sup [{x7ul( ",z,’)lln(.--’tz,2r_zl)X ( fff
O<z < T n{t__<r}

Define Q* SUPoz<_yQ(z ). Then the above is

(28)

<=-C Q*+ E
Combine (27), (28), and a slightly rearranged version of (26) to obtain

E(r) < C lift I[x,s+ 2) + Q* + j.
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whence Gronwall’s lemma implies

Ej(’r) =< CeC’{ IIn1111,+ , +
Now

(29) d" tf dxlv.Ou2]2<=fo2 (1,s+2)+ Q*

We also need an energy estimate for/gl. Multiply the wave equation in (8) by r/3tu and
integrate by parts over 2 n ( __< } to obtain
(30)

1 f2r f riO al 2
+ -h(r- T) dz dx IV

T-r

1 fmin(r, 2T- r)

+"0
Define E to be the last term above, and estimate the 1.h.s. as before to obtain

whence

E(’i’) < C{ I11112 fo )(1,s+ 1)-- E

(31) E(r) <=
Now estimate the third term in (22):

& f aX(VxU . VzVxul)

(32) /

E )1/2( j=lnl fff [(v .DjR1)] 2)
-< CI[r/I[[ o,, + 1)( [ITI[[ 2(1,s+ 2) + Q*)1/2

To estimate the fourth term, note that (30) for 2T reads

(33)

1 7" 2 flf( rll )=- fo az f ax’ lv I+ v- ’vu Otul

_<c (I1 II’-x / I[11[0,,+ ,supl[ vu(" ,z,.)I[ =(,-1 tz, z_ za>( f,ff I,ui [2) 72)
,s+l)
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using bounds quoted above. Since r/ is bounded below uniformly by a function of
Illog/ll(1,s+ 1), we have estimated the fourth term. In the process, we have estimated the
fifth term also"

(34) for z f ctxlvl

Now, combining (22), (23), (24), (32), (33), and (34), we have

a(z)<f(ll’ol[ll,s+2)--l--ll’olll(1,s 1)(I],oll[l,s+2)--l-a*) 1/2 fzT )+ + (o+ 1)Q

Now Gronwall’s inequality implies

Q(Z
_
C[l (1,s+ 2)(1 + (ll 7111 ,s+2 -- a*)l/2), O<z<T.

Since we can replace Q(z) by Q* on the 1.h.s., it follows immediately that Q is bounded
by a function of I1111,+ 2 and of course, of n, s, T and Illogllo, s+ 2), which finishes the
proof of Theorem 1. For use in the proof of Theorem 3, note that inequality (i) together
with (32) implies

(35) E() <= Ce<’[lnllll,,+. Q.E.D.

For use in the proof of Theorem 2, we note another obvious consequence:
COROLLARY 1. (Same hypotheses as Theorem 1.) For 0 < z <= T,

Vxul(’’ Z," )II 2T-z])----< cllnlll(1,, + ).

Proof. Integrating (35) from r= 0 to r 2T, we see that 7xul has Dirichlet norm in
Cr bounded by C11111(1,s+2). By the transport equation its boundary value on z is
bounded by a similar quantity, so its L2 norm, thus its H norm, in Cr is also bounded
by CIl/lll(l,s+ 2). Now the standard trace theorem implies the result. Q.E.D.

Proof of Theorem 2. The first step is to devise an identity similar to (22), involving
an indefinite form" set

1 2T-z )2 2P(z)=-f dt f dx{()tul +(1)zul) -IV’xU 2}
Then a short calculation yields

(36)

1 2 1 1 2 2]o,(z) f + (Oz)2]_ [( Vx ) -t-(7x1) }

fz2T-z dt dx V logl. Vu "nt- 7’ -- 7’uO OzUl.

Now

2
2T-z

ul 2.p(z)-O(z)- fz
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Therefore, integration of (36) from z 0 to z T and some manipulation yields

Q(Z)-’[-’ d f dx[[’7 .-1-17112]

(37)
2fz  -z

f2T-
dz

Recall that

1 1/2 -3/21= __-10 (10)

With u---, 1 and a 1/2/2(g]0)- 3/2, the Poincar6 inequality (13) implies the existence of
a constant C > 0, depending on 0, 0, and T, for which

(38)

Now (37) and (38) combine to yield for any 0/> 0,

HI(R n-1 [0, z])

<= O() / 21lVxUX(" z ")ll2o-211 vxuX(". , )11 
(39) /llvxlll

2

L (R [0, ])

"[- f0 (-1-C20/ 1)0+O/ 7-- ";’t%,s’(g;n-l[O’z’,

1 [1 1( ,0)11 .

Since

(the last inequality by virtue of l R(-I,F)), if we choose 0/ small enough we can
absorb the next-to-the-last term in (39) into the 1.h.s., at the price of decreasing
somewhat. Now Gronwall’s inequality implies

a(z)+cllnlll..(..-ato.zl. (a(0) + K(/1) } exp (O -- C20/-1so (Q(T)=0)

IIlll c{ Q(o)+ K(/1)}
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where we have defined
2

g(’ox) "= -2llvxu(’, , )11

+ sup (11 ’Tx111 = I1=,
OzT

+ 2[[vxul( ,z, .)llL2(n,-Xlz,2r_zl) + - [1]1( ,0)

It remains to verify the property claimed for K. Accordingly suppose { r/1a. } c (y, F)
with 0 weakly in HX(n "- x[0, T]). Then { } is bounded in,+(n"- x[0, T])
and so has a subsequence converging weakly in 1,+)- Since the (weak) limit must be
the same distribution as the (weak) limit in H1, the limit is unique (=0); therefore the
entire sequence tends weakly to zero in ,+). Since { g} share the same compact
support, the supports of the u are also contained in the same compact subset of CT,
and likewise for supp vul(.,z, .) for each z[0, T]. Now the trace and embedding
theorems for Sobolev classes (e.g. [7, Thms. 2.5.6 and 2.2.3]) imply that maps

n vu(.,z,.)
from I,+)(F): {/l,+n"- x[0,T]: suppf F) to LZ(n "- x[0,z]),
Lz(n-l[O,z]), Hl(n-1), and LZ(n-Ix[z,2T-z]) respectively, are compact for
each z [0, T ]. We conclude that

and for each z,

-1112 =1F,(z) xU ,- ,o.,) + 7xU
2

L2(Rn [0, Z])

2

+ 2 V,,ua. (.,z, .) L2(n,_x xtz,2r-zl)

We claim that ( Fj. } is uniformly H01der-continuous with exponent one-half. In fact,

2
2T-z

iOzF,.(z)= fz , fax v.u; V.OzU,

SO

IFJ (Z1) Fj(z2 )1 2111VxU Ill Ill VxOU)III
(where the norms are L2(Cr{zl<=Z<_Z2})). But IlVxUjllH(CT) is bounded by
Cllrla.ll(1,,+2), hence uniformly in j, as is ]]VxUj(.,z,.)l]L2(n,-,tz,2r_zl), O<__z<=T
(Corollary 1), and

[[TxUjl (. Z’ )[IL2(In-1 [z, 2T- z])
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SO

[F(z)-F()[ _< Clz- z[/

with C independent ofj.
Now let e > 0, and let ( zk }=0 be an ordered partition of [0, T] with

By the pointwise result derived earlier, for some J , j J implies

.(zk) < e, k=0,..-,U.

On the other hand, if z z k, zk + X),

IF(z) I-< IF.(z,)l+ [F(,)-F(z) I=< (a + C).

Since e is arbitrary, we have established that F 0 uniformly in [0, T]. Since

1( 1) 2] VxUl(. 0 .)11 +- ]11(" 0)II1 + [[F]lcuoi0K.b.

the theorem is proved. Q.E.D.
Proof of Theorem 3. We begin by establishing a local uniqueness result.
The hypotheses imply that, for any T> 0, Q(0)= 0. Now integrate (21) from 0 to z

to obtain

lfo fi12Q(z)+- df f dxlv (x,f )

(40) <=fo d f2T-f dt f dx(2[KTxuX.X7x)zua

From (35),

-’b IV log/jO. vbllOzUllq

ff.f lv Ozu l =< cIl’o"ll,:l,,+2).

(For the moment, IInll,,+ 2)= Ilrtlll<,.,.+2,(R,-1 t0, T])’ etc.). Therefore, for any a > 0,

d
2T-

d f dxlx1. xzNx
1/2

(41) S Clln)l<l, 2, d
2T-

d, f dxlVxul

The second term is estimated as in (23):

(42) dz
2T-

dt f dxlv log" vul’3ul<= cf)" oQ.
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The third term is estimated as in (24)"

(43) foZd f’- dt f clx ,s+2)-f- a Q

The upshot of (40), (41), (42), and (43) is

Consequently,

Estimate the Dirichlet integral on the 1.h.s. from below by means of the Poincar6
inequality (13), as in the proof of the previous theorem, and replace Ili1111(1,s+2)
]lrtlll<,.,+ 2,(a"-’ Io, rl) by C0llilllll, as we can since ilx (,/, Ii _). The upshot is

If a is sufficiently small, and T= 0(a), then

o C3a < C,

whence Ilrllll 0 from (44), i.e." ill 0 in R [0, T] for some (small) T> 0.
Now we shall show that, in fact, u =0 in R,-1 [0,T] /. It will follow that the

Cauchy data for u vanish on (z T }, so we can repeat the above argument to show
that ill vanishes on a somewhat larger interval. The constants in (45) depend only on

Illogilll(l,s+2), s, and n, and T, are smooth functions of T near T=0. Therefore, the
thickness IT of the slab (T<=z <= T+ST) in which we conclude ill =0, provided ill 0
in (0 =< z _< T }, is bounded below independently of T. Thus for any T> 0, finitely many
repetitions of this "continuation" procedure yield il 0 on (0 =< z <_ T }, and so we may
conclude il 0, which finishes the proof modulo proof of the claim.

Remark. For n= 1, this procedure yields uniqueness up to z T where Cauchy
data for u on (z 0} are required to vanish only on {0 =< =< 2T } (see [15, proof of
Theorem 2.8]), because of local uniqueness in the time-like Cauchy problem for n 1.
Local uniqueness in the time-like Cauchy problem for the wave operator modulo
lower-order terms no longer holds for n > 1, as a consequence of a theorem of HOrmander
[7, Thm. 8.9.4]. Consequently we must require that the Cauchy data vanish globally in
order to carry out the "continuation" step.

To show that u =-0 for 0 =< z =< T, recall the estimates (31) and (35) for the energy
of lg and 7xU1"

E(t) <= CaeC2tiiilxill,s+l),
(X,s+ 2), j 1,"-,n.
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Since u --0 on z 0, it actually follows that

grows exponentially in t. Note that the proof of the local result above actually shows
that u -=0 in {0__<z <= T, z <t<2T-z}. Thus ul( .,t) is actually of class H in the full
cylinder R"-Ix [0, T] for 0 =< =< oe, as is Vxul. Furthermore, the local H norms in
R n-l [0, t] a fortiori grow at exponential rate C2. Therefore the Laplace transform
ill(x, z, s) exists for s > C2, and satisfies

(46a)
(46b)
(46c)
(46d)

’(.,-,s) HX( "-a [0, tl),
Vxl( ",S ) ul([] n-1 [0, l),
(s 2- V -- X7 log. V)tl=0, in "- [0, t],
l--Ozl0 on {z=0}, C<s< oe.

Since we have assumed V logTL(N _), it follows from (46b) and (46c) that
HI(N "-1 [0, T]); hence /IHZ(Ntn-1 [0, t]). Therefore, we can extend 1 by zero to
negative z with fil remaining in Hloc We are now in position to apply [7, Thm. 8.9]. It is
easy to check that any plane is strongly pseudoconvex with respect to the principal part

X7 2 of the operator on the 1.h.s. of (46c). Therefore, fil vanishes in 0 __< z __< T, and by
uniqueness of the Laplace transform, so does u1.

As noted above, this finishes the proof of Theorem 3. Q.E.D.
Proof of Theorem 4. The assertion of the theorem is equivalent to the following"

0Suppose log,/ o(1,s+2)([]+) (’) Wl;’ (+), {’t/j}c,y, Tj(’,0)--)0 in H ( ),
0and D.Y-(T )-Tj. 0 in Hloc(N +). Then Tj.0 in Hoc(R +) (hence in ocg(1,s+ 2),oc( +)).

Since (,,F)cHl(Nf), it does no harm to assume {T} bounded in H1, hence
(passing to a subsequence) weakly convergent in Hloc Since (y,F)cO,s+Z)(Nt_)
also, we can as well assume { Tj. } bounded and weakly convergent in ocg(1,s+z),o. Since

1. + 2) is stronger than H1o, the weak limit is unique; denote by T the weak limit.
Now Theorem I implies

1= 0DY-r ( T )T w limD-r( T)T

for any T>0, so Dgr(T)T=0. Also, the hypothesis on ,’ implies that T
hence TIR(-y’,F) for some "1,’>0. It follows immediately from Theorem 3 that

T 0. Since ( T } 0 weakly in HI(R +), a fortiori ( T9 } 0 weakly in HI(R [0, T])
for each T>0. Also, since F(R "-1 [0, T]) is compact, and thus supp(DY-(T).T)

0(R [0, T]) is compact, uniformly in j, convergence to zero of D’(T )’Tj- in Ho
0implies convergence to zero of D-r(T )’T. in H (R [0, T]) We conclude from

j

Theorem 2 that T0 strongly in Hi(R"-1 [0, T]). Since T is arbitrary, the proof is
complete. Q.E.D.

Remark. A number of Soviet mathematicians have derived uniqueness and con-
tinuous dependence results for inverse problems of hyperbolic partial differential equa-
tions, under the assumptions that the coefficients may be expressed as finite sums

T(X,Z)=V’Lai(z)%(X)
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the q0 being some prescribed (smooth) functions of x. (See, for instance, V. G. Jahno,
Uniqueness theorem for an inverse problem for a hyperbolic partial differential equation,
Differential Equations, 13 (1977), pp. 544-551.) Note that the coefficients in this class
belong to the regularizing set (,,F) for suitable 7, F. Thus, these results seem to be
related to those presented here.

Acknowledgments. I would like to thank Paul Sacks and Percy Deift for useful
conversations leading to several corrections and revisions. I would also like to thank the
referee for pointing out an error in an example.
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A NONLINEAR INTEGRAL OPERATOR ARISING FROM
A MODEL IN POPULATION GENETICS IV. CLINES*

ROGER LUI

Abstract. We study the existence, uniqueness and stability properties of solutions to the integral equation
q,=Q[q] with q,(-)=l, q,()=0. Here Q[u](x)=f K(x-y)g(y,u(y))dy is defined on functions
bounded between 0 and 1, K is a probability density function and g(x,u)=[s(x)u +u]/[l+s(x)u2+
o(x)(1-u)2] according to a population genetics model. The hypotheses on g are based on the biological
assumption that the homozygotes, that is individuals with genotypes AA or aa, are best fit to survive near
opposite ends of the one-dimensional habitat.

1. Introduction. In the first section of [13] a population genetics model was for-
mulated that describes the change in gene fractions over successive generations of a
population living in a homogeneous one-dimensional habitat. The model took selection
and migration into account and resulted in a recursion of the form

(1.1) tn+l=Q[bln],
where Un(X ) is the gene fraction of the population at location x in the nth generation.
The operator

Q[ l(x) =fK(x-y)g(y,u(y))
is defined on the set of functions cg= { u’0 =< u =< 1, u piecewise continuous }.

In the model, the selection process is described by a function g’R [0,1]--* [0,1],
where

g(x,u)=
1 +s(x)u2+o(x)(1-u)2"

Migration on the other hand is described by a probability density function K.
The formula (1.3) was arrived at under several severe restrictions, among which is

the fact that fitnesses of the three genotypes AA, Aa and aa present in the population
have to be in the ratio 1 + s" 1" 1 + o. In actual situations, the difference between these
fitnesses is usually small.

Equation (1.1) has so far been studied only when s >__ o are constants (g indepen-
dent of x). The case s > 0 > o and s >= o > 0 are considered in the papers [10], [11] and
[12], [13] respectively. The case 0 > s >__ o is essentially the same as that of s > 0 > o. It
has also been mentioned in these papers that our model came as an improvement of a
similar model proposed by R. A. Fisher in 1937 [6].

Fisher came up with the nonlinear diffusion equation u=Uxx+f(u). This equa-
tion has received a lot of attention lately (see references in [13]). Our results in [10]
through [13] agreed to a remarkable extent with those obtained for Fisher’s equation.
Not surprisingly, the results in this paper are in line with those in [4] and [18]. Judging
from what is known, it is clear that the qualitative picture of the solutions is indepen-
dent of the details of the modelling and therefore has much biological interest.

*Received by the editors January 17, 1984.
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts

01609.

152



NONLINEAR INTEGRAL OPERATOR IN POPULATION GENETICS IV 153

The purpose of this paper is to study (1.1) without assuming that s and o are
constants. We assume however that individuals of genotype AA are more fit to survive
in the far left region of the habitat while the same is true for genotype aa in the far
right. In terms of s and o, we assume

There exists N> 0 such that s (x) >= o (x), s (x) > 0

for x_< -N and s(x)<_o(x), o(x)>0 for x>=N.
We also assume that none of the homozygotes is lethal. That is to say,

(1.5) 1 +s(x) >0, l+o(x)>O inN.

This implies that g(x, O) O, g(x, 1)-- 1 and ,(x, 0)-- 0, ](x, 1)-- 1. Here

(1.6) (x,u)=l-g(x,l-u)

From (1.3)

[s’u +(os’-so’)u(1 u)- o’(1 u)] u(1 u)

[1+su2+o(1-u)2] 2

According to (1.5), the denominator is always positive. If o’(x)>0, s’(x)<0 and
0<u< 1, then s’u[1 +o(1-u)]<O<o’(1-u)[1 +su] so that gx(X,u)<O. Therefore we
assume, in addition to (1.4) and (1.5),

(1.7) o’(x)>=O, s’(x)<=O for IxlN.
This will imply that g(x,u)<=O for Ixl N.

Condition (1.7) is only enough to guarantee the existence of clines but not the
uniqueness or stability. For these we need the more restrictive assumption

(1.8) o’(x) >= 0, s’(s) _< 0 in N and there exists an intervalof
where o’(x) > 0, s’(x) < 0.

In terms of g, (1.8) implies that, gx(X,U)<=O and gx(X,u)<O inog (0,1).
Again from (1.3)

gu(X,U)= -(s+ 2so +o)u2+(2s+2so)u+l +o

[1+ S//2 + O(1--//)2] 2

Let N(u)= -(s + 2so + 0)//2 + (2s + 2so)u + 1 + o. Then N(0)= 1 + o > 0, N(1)= 1 + s
> 0 so that N(u)> 0 in [0,1] if s + 2so + o >= 0. When s + 2so + o < 0, the minimum of N
occurs at u* =s(1 +o)/(s+ 2so+o). In order for 0__<u*=< 1, we must have s<0, o=<0.
But then

N(u*)= (1 +o)(l+s)[s+so+o] >0,
s + 2so + o

since s+so+o<=s+2so+o<O. Thus gu(X,u)>O in NX[0,1]. Note that gu(x,O)
1/(1 + o) and gu(X, 1)= 1/(1 + s).
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To continue, consider

g(-N,u)= s(-N)uZ+u
1 +s(-N)uV-+o(-N)(1-u)2

From (1.4), s(-N) is positive so that the numerator and denominator are both
nonnegative. Since s(- N)_>_ o(- N), (1.7) implies that

s(-N)uZ+u(1.9) g(x,u)>__g(-U,u)>__gl(u)-- for x< -U.
1 +s(-U)uZ+s(-U)(1-u)2

Similarly, o(N)>=s(N) and (1.7) imply that

a(N)uZ+u(1.10) g(x,u)<=g(N,u)<=go(u) for x> N.
1 +o(N)uZ+o(N)(1-u)

This last inequality is easy to verify if we look at (N, u).
We now summarize the hypotheses on K and g to be assumed throughout the entire

paper except for condition (viii*) of (1.12). The hypotheses on K are identical to those
assumed in [12]. We shall not assume g has the form (1.3) but only that it satisfies all
the conditions listed in (1.12). Our discussion earlier made it clear what to assume of s
and o in order that (1.12) holds when g has the form (1.3).

(1.11)

(i) K(x)>=O. If Bl=inf(x:K(x)>O), B2=sup{x:K(x)>O}, then K(x)>
0 in (B1,B2). We allow B1 o, B= + o so that K need not have
compact support.

(ii) K(x) is continuous in R, except possibly at B and B. where

limx, BK(x)=Pl, limx tzK(x)=p2.
Also K may be written in the form

K(x)-Ka(x)-PlX (--00, B ]--P2X[

(1.12)

where K is absolutely continuous and X s is the indicator function of
the set S.

(iii) f K(x)dx= 1.
(iv) f e’XK(x)dx is finite for all real/.
(v) f K(y)dy <__constK(x) for large x, fx__o K(y)dy <_ constK(x) for

small x.
(vi) g(x, u)" [0,1]-o [0,1] has continuous derivative, gz, gu, guu are uni-

formly bounded.
(vii) g(x,O)=-O, g(x, 1) 1.
(viii) There exists N>0 such that gx(x,u)<=O for ]x[>__N; or

(viii*) gx(X,U)<__O in [0,1] and gx(X,U)<0 ino (0,1) for some intervalog.
(ix) g,(x,u)>=O in x[0,1] and g,=/= 0 in any rectangle.
(x) g,(x, 0) (0,1) uniformly for x>=N, g,(x, 1)(0,1) uniformly for x__<

-N.
(xi) There exist two functions g+, g_ satisfying all the conditions in (1.13)

such that g(-N,u)>=g_(u) and g(N,u)<=g+(u). Furthermore, c(g_)>
0 and c*( g +) > 0.
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At this point we must digress to explain the meaning of condition (xi). Consider
first a function g’[0,1] [0,1] satisfying the conditions"

(1.13)

(i) g C1[0,1].
(ii) g(0)= 0, g(1)= 1.
(iii) There exists a constant a(0,1) such that g(u)<u in (0,a) and g(u)> u

in (a, 1).
(iv) g’(u)>=O in [0,1]. If ol=inf{u:g(u)>O), o2=sup{u:g(u)<l}, then

g’(u)> 0 in (Ol, O2).
(v) g’(0)< 1, g’(1)< 1.
(vi) g(u)>=g’(a)(u-a)+a in [0,al and g(u)<g’(a)(u- a)+a in [a,1].
(vii) g’(O)u<_g(u)<=g’(1)(u- 1)+1 in [0,1].

Remark 1.1. Condition (vi) implies that max[o,]g(u)/u<g’(a) and

max[o,1]((1-g(1-u))/u)<g’(a). All the results in [12] are valid under conditions

(1.11) and (1.13).
Let Q" rg Cgbe the nonlinear convolution operator Q[u]=K g(u). Then associ-

ated with Q is a real number c_(g) such that the following holds.
THEOREM 1.1 (existence of travelling waves). There exists a nonincreasing function

w, w(- o)= 1, w()= 0 and w(x)= Q[w](x + c*+(g)).
THEOREM 1.2 (uniqueness). Suppose u Cgsatisfies u(-o)> c, u()< c and u(x)

Q[u](x + c). Then c=c*+(g) and u(x)=w(x-’)for some constant .
The above two theorems are [12, Thm. 5] and [2, Thm. 1.2] respectively. The

function w is called a travelling wave solution of Q facing right. They are unique up to
translation.

The number c_(g) is called the wave speed of Q in the positive direction [13], [21].
It should be pointed out that c_(g) is the asymptotic speed of propagation for certain
class of initial data. For example, let u0

rgbe decreasing, u0(- )> c, u0(o)< a and
Un+ 1"- -[U,] for all n. Then lim,_.(uSl(y)/n)=c_(g) for every 0 < y < 1.

There are of course nondecreasing travelling waves facing left with wave speed
c*_(g) in the negative direction. The meaning of condition (xi) should now be clear.

Remark 1.2. If u (x) 0 for x >= 0, then u / I(X) 0 for x B2. Thus the speed of
propagation to the right, namely c+(g), cannot exceed B. We can show that B < c_(g)
< B_ and B < c*__(g) < B2 so that condition (xi) implies B <0< B2.

Remark 1.3. The wave speed depends monotonically on Q. Given 01 and Q2 with
Q[u]>= Q[u] for all u W, then c(Q1)> c_(Q2). For example, if gl(u)>= g2(u) in [0,1]
and Ol[U]--K gl(U), Q2[u]=K g2(u), then c_(gl)>=c_(g2). In fact, more is true. If
gl(U) > g.(u) in (0,1) and g(0)> g_(0), g(1)< g(1), then c(gl)> c(g2)[2].

Remark 1.4. Let gx, g0 be defined as in (1.9) and (1.10). Then all the conditions in
(1.13) are satisfied. It is easy to check that a=l/2, o1=0, o2=1, g(0)=g(1)=(1 +
s(-N))-, g6(0)=g(1)=(1 + o(N))-1 and g;(u)=<g;(1/2) in [0,1]. This last inequal-
ity obviously implies condition (vi) of (1.13). It may be proved by observing that gf(u)
is a rational function in u. The numerator has a maximum at u= 1/2 and the de-
nominator has a minimum also at u= 1/2. The left-hand inequality in (vii) of (1.13) is

straightforward. The right-hand inequality is equivalent to showing that i(u) 1-
gi(1-u)>=g(1)u. But then ,i=gi and g(0)=g(1) from (1.6), and so it is the same as
the left-hand inequality.

Remark 1.5. If g is given by (1.3), we cannot take g_= glor g+= g0 in assumption
(xi) of (1.12). In fact when K is even, c_(gl)=c*(go)=O [2]. However, if s(-N)>
o(-N) in (1.4), we let g_(u)=(s(-N)u2+u)/(l+s(-N)u+ol(1-u)2) for some
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max( o( N), 0} < o <s(-N). Then g(-N,u)>=g_(u) and if Ol, is close enough to
s(-N), (1.13) will be satisfied by c_(g_)> 0 (Remark 1.3). A similar arrangement can
be made for go when s(N < o(N).

Finally a few words about references. As mentioned earlier, results in this paper
parallel those obtained in [4] which considered the differential equation ut=Ux+
f(x, u). Almost identical results were obtained in [18] for the equation ut= Uxx+ mu +
f(x,u). The term mu came from assuming nonsymmetric migration. In [5], one of the
homozygotes was assumed favored in the entire habitat, and the differential equation
was allowed to have variable coefficients in some cases. This could happen in our
model also if we do not assume the total population density/z(x) is a constant. Then K
in (1.2) is replaced by

K(x-y)l(y)
f K(x-y)l(y)dy’

see [21]. It is not clear if any of the techniques developed so far are applicable to this
case.

The paper by Felsenstein [3] contains 152 references on the subject of variable
selection and migration. Some of the fairly standard ones are [7], [14]-[17], [20]. We
must also mention the work of Conley [1], who proved the existence of clines for the
above differential equation with f(x, u)= s(x)u(1 u), s( + ):/: O, using a topological
argument. A radially symmetric problem with x Nt 2 is also considered. The paper by
Sawyer [19] contains more complete and recent information.

2. Statement of results.
THEOREM 2.1. There exists a function rk such that (-)=1, ff(oe)=0 and

if= Q[].
Remark 2.1. If is nonincreasing, it is often referred to as a cline.
The rest of the results assume the stronger condition (viii*) of (1.12).
THEOREM 2.2. There is at most one solution to the problem rk , ff(-oe)= 1,

q(oe)= 0 and rk Q[rk ]. Furthermore, such a solution is decreasing in .
In the next two theorems, u, is defined recursively by (1.1) for a given u 0. ,# is the

unique monotone cline from Theorems 2.1 and 2.2.
From conditions (viii*) and (xi) of (1.12), we have g(x,u)>=g_(u) for x _< -N and

g(x, u) =< g /(u) for x >_ N. Since g_(u) > u near 1 and g+(u) < u near 0, we can define the
functions a(x)=inf(u" g(x,u)>u} for x<= -N and ao(x)=sup{u" g(x,u)<u } for
x >__ N. Also, al(x ) is nondecreasing in x and ao is nonincreasing in x. We let a-=
lim a o(x) and a + lim_ a (x). Clearly a + < 1 and a- > 0.

THEOREM 2.3. Suppose uo satisfies the condition (i) (x- hx)<= Uo(X)<_ q,(x- h2) for
some h <0<h 2 or (ii) liminfx_- o Uo(X)> a +, lim SUpx Uo(x)<a-, then lim, o[lu

THEOREM 2.4. There exist positive constants i, # and C such that if [[Uo-q,[[ =< ,
then [[u,-q[[o =< Ce-" for all n. Consequently, the uniform convergence in Theorem 2.3
may be replaced by exponential convergence.

3. Proof of Theorem 2.1. We begin by proving left continuity of c*+(g) with
respect to g. It is a consequence of Theorem 1.2.

LEMMA 3.1. Suppose g, 0 < < io is a family offunctions each of which satisfies the
conditions in (1.13) with some a (0,1). Suppose further that g increases uniformly to g
as i $0. Then lim ,oC*+(g)=c_(g).
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Proof. By Remark 1.3, c=c(g) increases as 8 decreases. Let lim+oC=Co<
c(g). From Theorem 1.1, for each 8 > 0, there exists nonincreasing travelling waves w
such that wn(- o)= 1, w(o)= 0 and

wn(x) fK(x + %-y)g(w(y))dy.
Since wn is determined only up to translation, we may choose w such that w(0)=-/
for some fixed y(a,1). From (ii) of (1.11), [[w[[[o<=llKl[l+px+p2. Arzela-Ascoli
theorem implies that a subsequence, also denoted by w, converges uniformly on
compact sets to a nonincreasing function w*. Furthermore, w*(0)=V and w*(x)-
f K(x + co-y)g(w*(y))dy. Therefore w*(- oe)= 1 and w*(oo)= a or 0. w*(oe) cannot
be a because g(u)> u in (a, 1) and such a solution connecting I and a exists if and only
if Co> p> c_(g). See [12, Prop. 3 and Lemma 2.2] for this fact and the definition of
p_. Thus w*(oe)= 0 and by Theorem 1.2, Co=C_(g). Q.E.D.

LEMMA 3.2. There exist two nonincreasing functions u, in cg with the properties
u__<fi, u__< Q[u] and Q[fi]__< ft.

Proof. We first construct u. From condition (xi) of (1.12), there exists g_ satisfying
(1.13) with c(g_)> 0. Let 80 > 0 be sufficiently small and for each 0 < 8 < 80, construct
g CX[0,1] such that g=g_ on [8,1], g=0 on [0,8/2] and on the interval (8/2,8),
g > 0 and gn increases uniformly to g._ as 8 $ 0. It is clear that (1.13) is satisfied for each
g.

From Lemma 3.1, for sufficiently small 8>0, c=-c(g)>O. Fix such a 8 and let

wn be the nonincreasing travelling wave of the operator K. g(u), translated so that
w(-N)=8/2. We have

w (x) fK(x + c-y)g(w(y))dy=fK(x-y)g(wa(y + ca))dy

Let

<_ fK(x-y)g(w(y)) 4v= f_- NK(x--y)g(w(y))dy

<= f-NK(x-y)g_(w(y))cly.

u(x)={ o
Then from (1.2) and (viii) of (1.12), we have

Q[ul(x)=f-NK(x--y)g(y,u(y)) dy >= f-NK(x-y)g(-N,u(y))dy
>= f-NK(x-y)g_(u(y))dy>_ w(x).

Therefore, Q[u](x)>= u(x) for x <_ -N. Since Q[u]>= 0, the inequality holds for all x.
To construct fi, let Kl(x)=K(-x), +(u)=l-g+(1-u) and 0[u]--K1, +(u).

The relation between this (dual) operator Q and Q[u]= K g/(u) is given in [12, 2]. It
is shown there that + satisfies the set of hypotheses (1.13) and that the wave speed of

in the positive direction, hereby denoted by (+), is equal to the wave speed of
in the negative direction, c*(g /). This fact is a consequence of the symmetry between 0
and 1 in the graph of g /.
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As before, we construct increasing uniformly to + as 8 $ 0, (u)= 0 in [0, 6/2],
=+ in [,1] and each satisfies (1.13). Since c*(g+)>0, Lemma 3.1 and above
implies that for sufficiently small > 0, 0-= 0*+() is positive.

Now let # be the nonincreasing travelling wave of the operator K (u) trans-
lated so that v(-N)-8/2. As before,

v(x) fKl(X-y)P,(Cvn(y + ))dy
<=f-NK(--x +y)(O(yl)dy

Define v(x)= 1 #(- x). We have

1-

Now let

(x,u)=l-g(x,l-u). Then

1 ifx<_N,
(x)= v(x) if x>__N,

Q[fi](x) 1 fK(x-y)g(y, 1 (y)) dy

=1- K(x-y),(y,l-(y))dy.

From condition (xi) of (1.12), ,(x,u)>=+(u) for x>__N so that

Q[fil(x) =<1- K(x-y)+(1-(y))dy

<=1- K(x-y),(1-(y))ay<_v(x).

Since (x)=v(x) for x>=N and Q[]__<I, we have Q[]__<. It is also clear from
the definitions of u and that they are nonincreasing and u =< . This completes the
proof of Lemma 3.2.

To prove Theorem 2.1, we first observe that Q is order-preserving in the sense that
u <_ v implies Q[ u =< Q[ v ].

Let u0 -u, T0 fi and define un, fin recursively as in (1.1). An inductive argument
shows that U0__<U_n__<Un+x__<fin+l__<fin=<fi0 for all n. Therefore un, fin converge, as
/’/--) 00, to qbl, qb2 respectively. Since u=< ql _-< q’__-< fi, we have qi(-oe)= 1, qi(m)= 0 and
qi Q[qi]. The proof of Theorem 2.1 is complete if we take q’ ql or q’2.

Remark 3.1. It does not follow from the above construction that q is nonincreas-
ing in R, even though u_, fi are. This is true if we assume gx =< 0. In this case there exists
a cline.
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Remark 3.2. The solution q we have constructed in Theorem 2.1 lies between u and
ft. Since w(x), v(x) converge to 1 exponentially as x- - [12, Prop. 5], there exist
/>0, C>0 such thatlq(x)l<_Ce-x asx andll-q(x)l<=Cex asx -.

Without further assumptions other than (viii) of (1.12), the solution q is not
unique. For example, let h(x,u), defined on R [0,1], be sufficiently smooth and
satisfy the conditions (i) h (x, u) 0 on ,N] [1/2,1] and N, ) [0, 1/2], (ii)
h(x,O)=h(x, 1)=O, (iii)h(x,u)<=O for Ixl>=N and (iv) -1/2<h(x,u)<__ 1/2 in R [0,1].
It is clear that such an h exists and if { (0,1), 7h also satisfies conditions (i) to (iv).

Let K(x)=K(-x), g(x,u)=go(U)+Th(x,u), where g0 is given by (1.10).
Choose , so small that g(u)+7hu(x,u)>O in [0,1]. This is possible since

mint0,11g(u)> 0. For small 3’, it is straightforward to verify that conditions (vi) to (x)
of (1.12) are satisfied for g. However, according to Theorem 1.1 and Remark 1.5, there
exists a nonincreasing function w, w(-o)=1, w(0)= 1/2 and w()=0 such that
w(x)=f K(x-y)go(w(y))dy. From (i) above, it is easy to see that w(x+r)=
f K(x-y)g(y,w(y+))dy for I[__<N. Therefore we have nonuniqueness.

4. Proof of Theorem 2.2. For the rest of the paper we assume condition (viii*) of
(1.12). Proposition 4.2 is the basis for much of the results that follow. The following
lemma is the heart of its proof.

LEMMA 4.1. Let q be nonincreasing, q(- o)= 1, q,(o)= 0 and q,= Q[q]. There exist
two decreasing sequences { z, }, { q, } such that if o,(x)=q,(x- z,)-q,, then
for all n.

Remark 4.1. We shall see from the proof that there are no restrictions on z0, q0

except that z0 < 0 and q0 > 0 be sufficiently small.
Proof. We begin by showing q/(x)<0 in . From g__<0 and our hypotheses,

’(x)<= f K(x-y)gu(y, ck(y))q/(y)dy <= O. Let q/(x0)=0. Then gu(y, q(y))q’(y)=O on
the interval [xo-B2,xo-B1], which, according to Remark 1.2, contains x0. Since
does not vanish on any rectangle, q/(x)=0 on an open interval containing x 0. This
means that the set S when q/=0 is open. From the continuity of q/, S is closed.
Obviously q is not a constant, S is empty and so q/(x)< 0 in N.

Next we show that there exist constants q0,/J, 01 all in the interval (0,1) such that

(4.1) g(x,u-q)-g(x,u)>__-Olq for 0 =< q=< q0
ue[1-,l] andx__< -N or u[0,81 andx>=N.

To begin, consider the function

g(x,u)-g(x,u-q)
if q>0

q(x,u,q)= q

gu(x,u) ifq=O

in the set= [1-/J, 1][0,q0], where we shall define g(x,u)=O if u<0. It is clear
that q is uniformly continuous in . Also

q(x,l,q)= 1-g(x,l-q) =gu(x,O) wherel-q<=0<=l.
q

From (x) of (1.12) and the fact that g, is uniformly continuous, there exists 01 (0,1)
such that /(x,l,q)<O1<1 for q sufficiently small and x<-N. Since q, is uniformly
continuous in , /(x,u,q)<O for u near 1. Therefore (4.1) holds when x < -N and
1-6_<u<l.
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Next consider g(x, u q)- g(x, u) for 0 =< u < iS and x >__ N. If u q_>_ 0, then
g(x,u- q)-g,(x,u)= -gu(x,O)q, where u- q<__O <__ u. From (x) of (1.12) and uniformly
continuity of gu, we may assume (by increasing 01 < 1 if necessary) that gu(x,O)<O < 1
for x >= N and 0 sufficiently small. Therefore (4.1) holds when x >__ N and u sufficiently
small.

On the other hand, if u q < 0, then g(x, u q)- g(x, u) g(x, u). From the
mean value theorem and the fact that guu is bounded, limuo(g(x,u)/u)=gu(x,O)
uniformly in R. Therefore for x >__ N and u small g(x,u)/u < 01 so that g(x, u-q)-
g(x,u)>=-01u> -01q. Altogether (4.1) is valid. It should be pointed out that (4.1)
continues to hold with the same 01 and N if we decrease q0 and 8.

To continue, let M=supaIO,llgu(X,U)_> 1 and choose e>0, >0 such that O=eM
+0 <1,

f f-nK( x ) dx <_ e(4.2) K(x)dx <=e,

Define # and q, by 0 e-’ and qn qoe-’n= qoOn for all n. Since q/< 0 in R, (- oo)= 1,
q,(o)= 0, we define Ev q-1(3,) for every 0 < 7 < 1.

Let F=[EI_8-2r/, Es+ 2r/]. We assume 3>0 is sufficiently small so that Es>N,
E1-8 _-< N. There exists 02 > 0 such that

(4.3) qb(l)--(2)-02(1-2 ) if f >f2 are in F.

Finally, let z0 =< 0 be arbitrary and define z recursively by

(O-M)qoe-’n
(4.4) z,+l= 02

-[-Z

Clearly zn’s are nonpositive and decreasing and converge to the limit

xl O 1 e------ +o-

We may assume that q0 is sufficiently small so that (M-O)qoO <
Having defined all the constants, we proceed to prove the inequality

where Vn(X)=q(X--Zn)--q,,. This is equivalent to showing

(4.5) (X-Zn+l)-(X-Zn)

Let

and

Then

fK(x-y)[g(y,q,(y-z.)-q.)-g(y-z.,q,(y-z.))] dy_<qn+l.

’n-- E1-8 + Zn, E8 + Zn ], I’-- El_8 + Zn-’q, Es + zn +

fK(x-y)h.(y)dy-- fr.K(x-y)h,,(y)dy+ fy >= l+z,,K(x-y)hn(Y)dY
+ fv K(x-y)hn(Y)dY’

<-El-+zn

11 + 12 + 13
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Consider first the case x F’. Since z O,

I >= fg(x-y)[g(y,(y-Zn)-qn)-g(y,(y-Zn))] dy

fr’,K(x-y)gu(y’O)(-qn)dy>= -Mqnfr,K(x-y)dy>= -Mqne.

The last inequality follows from (4.2).
If y>_E+zn, then y-zn>=E>=N and q(y-z,)<_8. From (4.1),

hn( Y) >=g( Y-- Zn,( Y-- Zn)--qn)--g( Y-- Zn, dP( Y-- Zn)) >= --01qn.

Therefore, I2>_-Oq, fy>=e+z,K(x-y)dy. Similarly, if y<_E_+z,, then y-z,<=
EI_<__-N and (y-zn)>=l-& Again from (4.1), hn(Y)>=g(y,q(y-Zn)-qn)-
g(y,q(y-z,))>____ -Oq, so that 13> -Oq, fyzea_+, K(x-y)dy.

Combining all three inequalities, we have, when x Fn’,

fK(x-y)h.(y) dy >= Mq,e-Olqn= --Oqn= q,+ 1"

Since Zn/ <= Z and is nonincreasing, the difference between the first two terms in
(4.5) is nonpositive. Therefore (4.5) is established when x F’.

If x F’, then E_-,l<=x-z,<=E+,l and

hn(Y) >=g(Y,(Y--Zn)--qn)--g(Y,(Y--Zn))=gu(Y,O)(--qn) >= -Mqn.
Therefore f K(x-y)h,(y)dy>=-Mqn. From (4.4), Zn-Zn+x<_(M-O)qoOX<*l and
hence x-z,<__X-Zn+<__E+2,1. From (4.3) and (4.4), q(X--Zn+)--q(X--Zn)<
-O(z,-Zn+x)=(O-M)qoe-’"=(O-M)q,. Hence (4.5) is valid if x F,. This com-
pletes the proof of Lemma 4.1.

PROPOSITION 4.2. Let uo satisfy the conditions

lim inf Uo (x) > a / and lim sup u0 (x) < a-.
X --0 X O

Let be a nonincreasing function satisfying (- o)-1, (o)--0 and --[]. Then
there exist constants x, x2, q, i, the last two positive, such that

q(x-x)-qe-n<un(x)<=q(x-x2)+qe-n foralln.
Proof. We only prove the left-hand inequality. The right-hand inequality is the

same but requires a result like Lemma 4.1 with v+ >__ [ vn]. We begin by showing that
u ( o) increases to 1 as n o.

Since a(x) decreases to a + as x - o (see 2), there exist > 0, N>N such that

a +__<al(x )__<al(-N) <a++eZ Uo(X)
and

g(x,uo(x)) >=g(-N,uo(x)) >=g(-N,a++ e)
From Fatou’s lemma,

for x __< N.

lim inf Ul(X ) >= fK(y) lim inf g(x-y,uo(x-y))dy >=g(-N,a + + e).
X --00 X’--

Now suppose liminf,,__,_ou,,(x)>=g"(-N,a++e). Then for any 8>0, un(x)>=
q"(-N,a++e)-i and g(x,u,,(x))>=g(-N,u,(x))>=g(-N,g"(-N,a++e)-6) for x
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near . Hence liminfx__,_ un+l(x)>=f K(y) liminfx_,_g(x-y, un(x-y))dy>
g( N, gn( N, a + + e)- i). Since 8 > 0 is arbitrary, we have

(4.6) lim inf u, (x) >= g n( N, a + +e) for all n.
X

From the definition of al(x ), we have g(-N,u)>u for al(-Ne)<u<l. This
implies that g"(-N,a++ e) increases to 1 as n c. Therefore, let q0>0 be as defined
in Lemma 4.1. There exist, by (4.6) positive integers k and NO such that uk(x)> 1- qo
for x -No. Hence Vo(X)=(X-Zo)-qo< 1 -qo_<Uk(X) for x =< -N0. From Remark
4.1, z0=< 0 is arbitrary and we now choose it sufficiently negative so that q(-NO Zo)-
qo 0. Therefore, Vo(X)< u(x) for all x.

Since Vn/l =< Q[on] and Q is order-preserving, an inductive argument shows that
o =< uk / for all n >= 0. Explicitly,

*(X--Zn)--qoe-tn<=Uk+n(X ) for n_>O.

Since z is decreasing, we may replace z by its limit x in the above inequality. Doing
so and writing n for k + n, we have

O(X-Xl)-q;e-n<__Un(X) for n>_ k, whereq;=qoe".

The first k terms are then taken care of by increasing q until 1- q)e-"< O. This
completes the proof of Proposition 4.2.

Remark 4.2. The condition lim supx_, Uo(X)< a- is needed to prove the right-hand
inequality.

LEMMA 4.3. Let rk satisfy 0=Q[0] and let Uo(X)=O(x-h ). Then Un, defined
recursively by (1.1), is nonincreasing (nondecreasing) in n if h > 0 (h < 0).

Proof. We only prove the case h > 0. Proceeding by induction,

Ul(X)= fK(x-y)g(y,q,(y-h))dy= fK(x-h-y)g(y+h,eo(y))dy
<__ fK(x-h-y)g(y,q,(y))dy=uo(x).

Assume that Ungn_ 1. Then since Q is order-preserving, we have Un+l=Q[Un]<=
Q[un_]= u,. Therefore Un/ Un for all n and the lemma is proved.

To show uniqueness of clines, we first recall from Remark 3.1 that gxN 0 implies
the existence of at least one cline . Suppose u is another solution of u=Q[u] with
u(- oe)> a /, u(z)<a- Proposition 4.2 with Uo=U implies that q(x-x)-qe-"n

u(x ) <_ O(x x2) + qe-tn for all n. Letting n --* m, we have q(x Xl) U(X ) qb(X X2).
Since q is nonincreasing, we may assume that Xx < 0 and x > 0.

Let Uo(X)=O(x-x), ?to(X)=O(x-x) and define un, fin recursively by u+=
Q[u,], fi,+ Q[fin]- Clearly, Un<=U<= and u,=<q=< fi for all n. From Lemma 4.3, u
increases to a nonincreasing function u with the properties g_<u, u=<q, u(-oe)= 1,
u(oe)=0 and u=Q[u]. Similarly, fi decreases to a nonincreasing function fi with the
properties u__<fi, O__<fi, fi(- oe)= 1, fi(oe)=0 and fi= Q[fi]. In order to show that u=q,,
it suffices to show that u ft. This follows from Remark 3.2 and the next lemma.

LEMMA 4.4. Let , q be two nonincreasing solutions of Q[O], 1 __< 2 which both
converge to I and 0 exponentially as x - -T- . Then q --.
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Before we can prove Lemma 4.4, we must establish two lemmas.
From Proposition 4.2, q2(x + h)=< ql(x) for some h > 0. Let h be the infimum of

such h. We assume that h > 0 and derive from it a contradiction. Note that from (viii*)
of (1.12), the function f K(x-y)[g(y+h,q(y+h))-g(y,q(y+h))]dy is not identi-
cally zero if h 4= 0. Therefore translation of qi is not a solution of q Q[ q,].

Let u(x)=q2(x +h-e) for O<=e<=h/2. According to the definition of h, we have
u(x)> q(x) on some interval for sufficiently small e > 0. Write

u(x)- fK(x-y)g(y,u(y))dy+n(x),
where n(x)=f K(x-y)[g(y+h-e,u(y))-g(y,u(y))]dy is nonpositive but not
identically zero. Let qe(x) ue(x) q,1(x). Then

(4.7)

where we set

4,(x) fK(x-y)h(y)Oe(y)dy+n(x),

he(x)--
g(X’Ue(X))--g(X’l(X))

0.
Ue(X)--l(X )

We shall employ the following notation" oeg’=L-(R) with inner product (., .),
max{ +, 0 }, K g’--+ is the linear operator

Kq, (x) fK(x-y)h(y)+(y)dy.
From Young’s inequality, K is bounded. Observe that q+ 0 for every e > 0 suffi-
ciently small but q- =0. Finally for an operator A ")’--+a’, the symbols o(A), r(A), A*
and IIAII will denote respectively the spectrum of A, spectral radius of A, adjoint of A
and operator norm of A.

We state two lemmas and defer their proofs until after we have proved Lemma 4.4.
LEMMA 4.5. For e > 0 sufficiently small (i) K is a positive operator in the sense that

>= 0 implies that Ke >= 0; (ii) K is quasi-compact, i.e., there exist operators V and C
such that [[C[[ < 1, V, is compact and K= C + Ve, (iii) lim+ ollK- Kol[ 0.

LMMA 4.6. r(Ko) < 1.
Proof of Lemma 4.4. From (4.7), qe =< Keqe so that q+ __< [Keqe] /__< Ke+ / Since the

operator K is order-preserving, an inductive argument shows that + +Ke+e >--q’e >=0 for
all n. From our hypotheses, qe.,’. Therefore IIg"q,+ll2_>_llq,+ll2 which implies that
IlKfflll/n>__l for all n. Now if we fix n and let e $0, we have from Lemma 4.5,
IIKII1/>__ 1. Hence lim_llKlll/--r(Ko)>= 1 which contradicts Lemma 4.6. There-
fore h 0 and q qb. The proof of Lemma 4.4 is complete.

Proof of Lemma 4.5. K is positive because Ke(x ) >= 0 and h e(x)_> 0 in R. To show
that K is quasi-compact, recall from the definition of h that h e(x) gu(X, Oe), where 0
is between u and ql- From hypothesis (x) of (1.12), there exist 8 > 0, 01 (0,1) such
that gu(X,U)<=01<l for u[0,1$], x>=N or u[1-1$,l], x<=-N. Since ue(-z)=
qx(- )= 1, ue()=q(z)=0. We can choose ae> N such that [he(x)[<__O < 1, when
x[-ae, a] ’.

Define Ce, V o’ by

Ceq(x)=fK(x-y)Xt_a,al,.(y)he(y)q(y) dy
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and

V+ (x) fK(x-y)xi_,(y)h(y)/(y)dy.
Then K C+ V and V is compact because ff K 2(x y)X 2 )h 2t-a,,a,l(Y (y)dydk is
finite. For C, we have [[CqllE--llK*[xt_a,a,lchq]ll2<=01llglllllkli2. Therefore IICll__<
01 < 1 and K is quasi-compact.

Finally it is elementary to show that h converges to h 0 pointwise as e $ 0 and
II(g- g)@ll2-- IIg*[h-h0]@ll2<-_llgll2ll[h-h0]@llx <=llgll21]h-holl=ll@ll. From the
fact that h (x) gu(X, 0), where 0 is between u and ql, we have

Ih(x) -ho(x)l Ig..( x, )l lO- Ool Z const.

But then 41, 2 converge to 1 and 0 exponentially as x -T- o. Thus 10-01 is dominated
by a square integrable function independently of e. From the dominated convergence
theorem, lim+ ollh- h0[12 --0. This establishes (iii) and completes the proof of Lemma
4.5.

Proof ofLemma 4.6. From (4.7), we have

(4.8) (x)=/(og,o(X)+

where ko and n o are both nonpositive and not identically zero.
From Lemma 4.5, K’=C + Vo*. As is well known, IICo*ll=llColl and Vo* is

compact if and only if V0 is compact. Therefore K0* is also quasi-compact. In fact, Ko*
is the operator K’(x)=ho(x)f K(y-x)q(y)dy. Therefore Ko* is a positive opera-
tor.

According to [9, Thm. 4], since K0* is a positive operator r(K’)o(K’). If
r( Ko* ) < 1, then r(K0)= r( K0* ) < 1 and the lemma is proved. We cannot have r(K0* >= 1.
For if so, r(K’)qo(C) since Ilcll< 1. However, K is a perturbation of C by a
compact operator. Weyl’s lemma says that perturbation by a compact operator can
only change the spectrum of an operator by eigenvalues, [8]. Therefore, r(K’) is an
eigenvalue of Ko* and clearly has the largest modulus among the eigenvalues of K0*. By
[9, Thm. 5, Cor. 1] applied to r(K), there exists a nonnegative eigenfunction e0
corresponding to r(K’). That is to say, r(K’)eo(x)=ho(x)f K(y-x)eo(y)dy>=O.
Using the same idea we used to show q/< 0 at the beginning of the proof of Lemma 4.1,
we see that eo(x)> 0 in R.

From (4.8), we have (qo, eo)=(Koo, eo)+(no, eo)<(Koqo, eo)=(+o,Keo)=
r(K’)(+o, eo). Since q0__< 0, we have r(K0*) < 1 which is a contradiction to our assump-
tion. Lemma 4.6 is therefore established and so is Theorem 2.2.

5. Proof of Theorem 2.3. The argument given after Lemma 4.3 actually provides a
proof for part (i) of Theorem 2.3. Letting u0(x)=(x-h) and 0(x)=(x h2), we
have un un=< fin for all n, and un, fin converge monotonically to the (unique) cline .
With all the properties un, fin and have, it is an elementary exercise to show that the
convergence is uniform in R.

To prove part (ii) of Theorem 2.3, we first observe that [[u’nl[ __<[[Kal[1 +p +P2 SO

that ( u, } is an equicontinuous sequence of functions. By the Arzela-Ascoli theorem, a
subsequence { un } will converge uniformly on compact subsets of R to some continu-
ous function U. From Proposition 4.2, ff(X-Xx)__< U(x)<=(x-x2). We may assume
that x < 0 and x2 > 0. Apply part (i) of Theorem 2.3 with U as the initial data. Then
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U Qn[U] converges uniformly to q, as n . The convergence of u to U is also
uniform in , since u,, are uniformly close to 1 and 0 near -T- respectively.

We now state a lemma and use it to prove part (ii) of Theorem 2.3. The proof of
the lemma will be given at the end of this section.

LEMMA 5.1. Given e> O, there exists ’> 0 such that if llvo-ckll <-_ ’, then IlVn-- qll
<= e for all n.

Let M=suPnx[O, llgu(x,u). We have IIQ[u]-Q[o]ll<=Mnllu-oll for all n and
u,v cg. For any e>0, let i’ be chosen as in Lemma 5.1 and let kl, k 2 be positive
integers such that

Uk-ll < - if k > k, [lung- UII < if k > k.2M,x

Then

Furthermore,

if k>=k2.

=< 8’ if k => k2.

Now set k=k2 and V0=U,k+k,. From Lemma 5.1, we have limsup._ollun-OIl<__e.
Since e > 0 is arbitrary, Theorem 2.3 is proved.

Proof of Lemma 5.1. We have to look carefully into the proofs of Proposition 4.2
and Lemma 4.1. Recall from Remark 4.1 that the only requirements on zo and q0 for
Lemma 4.1 to hold are Zo=< 0 and that q0 > 0 be sufficiently small. Also, in the proof of
the left-hand inequality in Proposition 4.2, k, z0, qo have to satisfy the condition
q(X-Zo)-qo<=Uk(X ) in N. From our hypothesis, (x)-8’<=v0(x) in N. Therefore,
we set Zo=0 and 8’=q0=q( small enough to obtain the inequality
qoe-’n<=vn(x) for all n. Again from the proof of Lemma 4.1, lim_,oZn=Xl=
(O-M)qoOl(1-e-’) -1. Now (4.1) is valid with the same 01, 8, N if we decrease
qo > 0. Consequently, 0, M, 02,/ above are independent of 8’ (= q0) if 8’ is sufficiently
small. Hence let 8’ be so small that Ixxl e/211,’ll and qo<=e/2. Then

g
ok(x)-qoe-"=ck(x xl) -qoe--’n + k(x) -ck ( x Xl) =< un(x)+.

This implies that (x)-e =< u,(x) for all n which is half of Lemma 5.1. The other half
may be proved similarly.

6. Proof of Theorem 2.4. Let T"’e’ be the bounded linear operator

T(x) fK(x-y)gu(y,(y))q(y)dy.
It is easy to see that T is positive and quasi-compact. Furthermore, the proof of Lemma
4.6 can be used to show that r(T)< 1. In place of (4.8), we use

,/,’(x) fK(x-y)gu(y,q,(y))q’(y)dy+ fK(x-y)gy(y,,(y))dy,
where the last term is nonpositive and not identically zero.
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Choose X(r(T),I) and rtgffsuch that ?(x)>0 in R. Then w-Tw=rt has a
unique solution w $f’. Since (h- T)-I=FjoTJ/M+1, we see that w>=0. In fact rt >0
implies that w(x)> 0 in NI. By adjusting r, we may assume that Ilwll 1 and that w is
sufficiently regular.

Consider the following inequality:

fK(x-y)g.(y,q(y))dy<_ fyl>=NK(x-y)g.(y,q(y))dy+const, fl.,<=NK(x-y)dy.
From condition (xi) of (1.12), g,,(x,O(x))<O < 1 if [xl>=N for some large N1. There-
fore, f K(x-y)g,(y,O(y))dy<=O < 1 if Ixl>=N2. We extend g to R R so that gu(X,U)
>__ 0 and M -} supnn g,,(x, u) is finite.

Choose /,>0 such that h<e-<1. On the interval Ix]=<N2, let w(x)>=
m>0. Define ml=supnf K(x-y)gu(y,O(y))dy, y=(e-*-X)m/(ml-O), fl=
y(e-,_O1)/M(1 + ,)2 and z,(x)= fl(w(x)+ y)e-*’" for all n.

We claim that N[z,]<=z,,+ for all n where

N[z](x)= fK(x-y)[g(y,O(y)+z(y))-g(y,rk(y))] dy.

Write

N[zl(x)- fK(x-y)g.(y,q,(y))z(y)dy+ fK(x-y)h(y,z(y))z(y)dy,
where

h(x,z)=
Z

-gu(X,,(x)).

By the mean value theorem, Ih(x,z)zl<= MIz[ 2.
To begin we have Tzn(X)=fle-n[)tw(x)-r(x)+yf K(x-y)g,(y,q,(y))dy] and

Nl[Z,](x)= .[ K(x-y)h(y,z,(y))z,(y)dy satisfies the inequality

[N[z.l(x)l <=MfK(x--y)lz.(y)ldy <= Mflae-"n(1 + It) 2.

Hence N[z,,](x)<=fle-t’"[Ttw(x)+’,lf K(x-y)gu(y, q,(y))dy + tiM(1 + ,/)2].
If [xl>__N2, the term inside the square bracket is bounded above by e-w(x)+yO

+tiM(1 +,{)2 which by the definition of fl is equal to (w(x)+’)e -’. Therefore,
N[z,,](x)<__z,,+l(x) if Ixl >- N_. On the other hand if Ixl__<N, we have

(X-e-’)w(x)+.lfK(x-y)g.(y,(y))dy+,SM(1 + ,)2- ,e-.

)2< (X-e-t*)m+y(ml--e-t*)+flM(l+g

()t- e-t*)rn + y( ml-- 01) "-0,

and so the term inside the square bracket is bounded above by e-"(w(x)+’). There-
fore, N z, ]( x ) <_ z, + (x ) if Ix I__< N2 and our claim is proved.
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Finally let 6 fly in the statement of Theorem 2.4 and on= u,-q) for all n. If
oo =< (, then oo =< z0 since w > 0. Proceeding inductively, suppose o _< zn, then

Un+I(X)=Un+I(X)--(X)= fK(x-y)[g(y,q(y)+vn(Y))-g(y,(y))] dy

<= fK(x-y)[g(y,q(y)+z.(y))-g(y,q(y))] dy

-N[z,](x)<=Zn+I(X ).
Hence, u.(x)-q)(x)<= Ce-"n for all n where C= fl(1 + ,). This proves half of Theorem’
2.4.

To show the other half, we first observe that the proof of N[zn]<z,,+l also shows
that N[-z,]>= -zn+ for all n. This part involves no more than changing the sign of
some of the terms in the proof of N[Zn]<=z,+ 1.

Now suppose o0>__->__-z0. Proceeding inductively as before, assuming that
v >__ zn, we have

Un+l(X)--f(X)= fK(x-y)[g(y,q(y)+v.(y))-g(y,q(y))] dy

>= fK(x-y)[g(y,q(y)-z.(y))-g(y,q(y))] dy

=N[-zn](x)>= --Zn+l(X )

Therefore, q(x)-Un(X)< Ce-"n for all n. The proof of Theorem 2.4 is now complete.

Note added in proof. Since this paper was accepted, Dr. Odo Diekmann in
Amsterdam has informed the author that some of the results in this paper overlap with
his paper, Clines in a discrete time model in population genetics, Proc. Conference on
Models of Biological Growth and Spread, W. Jtger, ed., Lecture Notes in Biomathe-
matics, 38, Springer-Verlag, New York, 1981.
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STABILITY OF A SURFACE DETERMINED FROM
MEASURES OF POTENTIAL*

CARLO DOMENICO PAGANI"
Abstract. Let G be a bounded domain in R whose boundary F is connected. Let Vao be the Newtonian

potential produced by a mass of density o distributed over G. We assume a model distribution for o and
consider the problem of finding G from the knowledge of the potential (a) on 1", (b) on Fa, a large spherical
surface surrounding G. These problems are unstable and we investigate what kind of supplementary informa-
tion on the solutions is needed in order to restore stability. We prove that, in case (a), solutions whose H
norm (s > 3) (Sobolev norm) is bounded by a given constant constitute a H61der-stable class; in case (b), a
class of H61der-stable solutions consists of real analytic functions whose derivatives are suitably bounded.

Introduction. Let G be a bounded domain in R whose boundary F is connected.
Let Vao be the Newtonian (electrostatic) potential produced by a mass (charge) of
density o distributed over G,

(0.1) Va(x ) L (y ) Ix yI dy"

The classical inverse problems for the potential are of two kinds" a) we are given G;
find o by measuring the potential outside of G. b) we assume a model distribution for
o" o # say; then find G by measuring the potential.

Both problems have been considered by several authors. A common feature to
these problems is that they are ill posed in the sense of Hadamard. The most striking
aspect of ill-posedness is their instability, namely the impossibility of efficiently de-
termining the solution from the measured data. This aspect of the problem has been
analyzed, in the case a), in [7], [12], [3]. Here we wish to consider problem b). Our aim
is to find classes of stable solutions. Let us pose precisely the problem. Let GO be a
reference bounded domain in R whose boundary F0 is connected and smooth" al-
though it is not necessary, we shall assume through this paper that GO is a ball, centered
at the origin, with radius r0. Let z" I"0 R be a function belonging to the set

(0.2) c (ro); Izlzz*}
where z* is a given constant, z* < ro. Let us consider the map

(0.3) ro

(n is the outward unit normal to Fo at ) and define F as the image of Fo given by "Fz zFo; Gz is the bounded domain whose boundary is Fz. We assume that z induces
a diffeomorphism of class C between F and Fo. Finally, let F be a surface of a large
ball, centered at the origin, with radius ro+ a(a> z*). Let be a positive smooth
function (typically, is a constant) and consider the potential Va#, that we shall
denote simply by V6. Let us define Uo by writing

(0.4) V=o Voo + Uo.

*Received by the editors April 19, 1984.
’Department of Mathematics, Politechnic of Milano, 20133 Milano, Italy.
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We define now two operators" A" zZc L2(1-’0)--- L2(Fo) and B: zCc L2(1-’0)--- L2(F0) as
follows (the physical meaning of these definitions is explained below)

A[z]= ,}z,

(0.6) B[ z Ufio ,
(here means composition). Consequently we shall pose two problems:

Problem I (resp. II). Find z: A[z]=o (resp. B[z]=o), where v is a given function
defined on F0.

We expect that both problems are ill posed, for the image of A is contained in the
Sobolev space H3/-(F0) and the image of B is a subset of C(F0). Then the maps:
z A[ z] and z B[ z] are smoothing, so that the inverse maps will not be continuous in
LZ-norm. Thus an approximate knowledge of the potential o does not permit one to
recover z. We shall investigate which kind of supplementary information on the solu-
tions is needed in order to stabilize the problems. We shall prove, for Problem I, that a
subset ofe’consisting of those functions z whose HS-norm (s > 3) is bounded by a given
constant, is a class of HOlder type stability, i.e., the inverse of the restriction of A to this
subset is a HOlder continuous operator. The precise statement is our Theorem 2.7. A
similar result is proved for Problem II: a class of H61der-stable solutions consists now
of real analytic functions z whose derivatives are suitably bounded (see Theorem 2.8).

Inverse problems for potentials arise in many fields of applied sciences; in particu-
lar Problem II is classical in geophysics: it is the problem of finding the position and
the shape of a body Gz of known density 6 from the measure of the potential generated
by this body on the surface F surrounding Gz. For that problem one can find
uniqueness results in [6] (with 6= 1) and in [9] (and several other papers of the same
author) (with ti > 0). Results about stability are given in [9] and in [1]. In this last paper,
M. M. Lavrent’ev states that solutions of class C with the first derivatives bounded by
a given constant are stable: however, the stability is very poor, being of logarithmic
type. Our result is in some sense complementary to that one: for we exhibit a stronger
stability (namely of Hiblder type) for a restricted class of solutions (analytic functions).
Problem I, in case the right member of the equation A[z]v is a constant and z is
negative (i.e., the unknown surface F is contained in the ball Go) has a plain physical
interpretation; see Schaeffer [11], who studied the problem (in [11] ti is 1 and F0 any C
surface) and proved the existence of a C solution. Here, for any right member, we
prove a stability estimate (hence uniqueness). Existence results for a similar problem
are proved also in [13].

The stability of the maps A and B is studied via a lemma (Lemma 2.1) which rests
on the knowledge of the spectrum of some linear approximations of A and B. 1 is
devoted to the study of these linear approximations; it is written in a self-consistent
form, independent on the remaining part of the paper. We study there the classical
inverse problem for the single layer potential: to determine the density of a single layer
supported by a given surface F from the knowledge of the potential created by this
layer (on F or on Fa).

Section 2 is devoted to our main problems I and II. First (2.1) we prove the basic
lemma which gives us a criterion for HOlder stability of a nonlinear map. Then (2.2)
we prepare the problems I and II in such a way to apply this criterion; in 2.3 the main
results (Theorems 2.7 and 2.8) are stated and proved, by taking account of the results of
1.
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Remark about the notation. We shall use through this paper the Sobolev spaces
HS(F) (for the definition and main properties of such spaces see, e.g., [2, Chap. 7]); we
will use the notation

Ilull for

1. The single layer potential. Let us consider a fixed surface Fz, (z ’) and the
single layer potential generated by a density distributed over F; in the region FoX
(-z*,z*) let us use the coordinates (0,t) to denote points y=0+ tno, o F0, t
(-z*,z*); let j(,t) be the jacobian of the transformation y(o,t). Now by using
surface coordinates on F0, let us consider the potential written in the form (the reasons
for this form will appear clear in 2):

(1:1) Wzp(X) fro p()j(z())d
We shall consider two circumstances: i) the potential is measured on Fz; ii) the
potential is measured on F. Consequently we pose

(a.2) m[p] mzp z,

and formulate two problems:
Problem (resp. ii). Find p: Mz[p]=u (resp. Nz[p]=u), where u is a given function

defined on F0 .1

1.1. Problem i): existence, uniqueness an instabili. A classical solution to prob-
lem i) is given by the following theorem.

THeOReM 1.1. For every uHl(F0) there exists a unique pL2(F0) satisfying the
equation

(a.4) m[p] =u.

Moreover the estimate

holds where c( z) denotes a constant depending only on the surface Fz.

Proof. First we prove the assertion in case F is a spherical surface, F0 say; next we
prove for any z the a priori estimate

(a .6) IIo 10 z ) o
Hence the assertion of the theorem follows from standard principles of functional
analysis. The first step proves via a spherical harmonics expansion (for a standard
reference on spherical harmonics see, e.g., [5]). If we expand p:

(0, are the geograpcal coordinates of a point F0; in the sum n goes from 0 to
+ andj from I to 2n + 1), we get

Mo[p]()=4r+l(2n+ 1)-a,S,(O,).
1If (y) is the potential measured on F, we pose u(w)=(oa+z(w)n,o); analogously for Problem ii.
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Now, if flnj are the coefficients of the expansion of u, (1.4) (with z=0) is uniquely
solved by choosing

1
-(2n+ l)flnj.a J 4 ,ri. ro

Then we get

lipilo (Ero2"+ 2az )1/.= 1 r02. 2 ilulll.nj "-- (E (2H"[-]) nj)1/2

To prove the second step we can use a representation formula for p; we know in fact
that, if W is the potential due to a single layer of charge of density o on a surface F,
then W is continuous across F and the normal derivative suffers a jump of magnitude
4rp. Now, let w/ be the solution of the boundary problem

Aw+=0 inGz,

w+=m[o]o,l,z- on rz
and w_ be the solution of the corresponding exterior problem. Then Wzp= w+ on Gz
and w_ on the complement of Gz. Therefore p equals the difference in the normal
derivatives

aw+ aw
P= 0n z 3n z

(at least within a geometric factor), where n is the outward unit normal to Fz.

Now, let zCa+S(Fo)(s>=O). Then, we know (cf. e.g. [2, Chap. 2]) that if Mz[p]
HS+l(F0) (so the boundary datum in the previous Dirichlet problem belongs to

HS+(Fz)), then w+HS+3/Z(Gz) and its normal derivative belongs to HS(Fz); analo-
gous statements hold for w_. Finally we have

(1.6’) II011 c ( z ) IIM 0 ]11 +1"
For the sake of completeness notice also that the converse inequality is true: if z
C a +S(F0) (s >= 0) operator M acts continuously from HS(F0) to Hs+ X(F0) and the estimate

holds:

(1.7) IIM[olll/
This assertion is immediately deducible from the results of [4, {}5]. Estimate (1.5) shows
a dependence of the density 0 on the gradient of the potential. But an error in the
measure of the potential prevents us from having any information on its derivatives,
hence on the solution. That is what we called instability.

1.2. Problem i): stabilization. As is known in the theory of ill-posed problems,
supplementary information on the solutions can help to restore stability. Such informa-
tion is usually supplied in the form of a priori bounds on the solutions themselves.

LEMMA 1.2. Let z C(2-)/(-’)(F0) (0 < a < 1). Then every function p
H/( )(F0) satisfies the inequality

1--
(1.8) II0llo =< c( z ) IIM o oil0 o/(1-o.

Let us define the convex set

(1.9) n(e) {pga(Fo)" IIplI/(1-E },
where E is a given positive constant. Then we immediately deduce the following
theorem.
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THEOREM 1.3. Let z C(2-a)/(1-a)(I’o); every pair of solutions Px, P2, to problem i)
corresponding to data u1, u 2 and belonging to the set Ha(E) satisfies the inequality

(1.10) liP1- O ll0 _-( co( z )g -llUl-

Expression (1.10) is a stability estimate. It shows that the restriction of the map M
to the (non-linear) set Ha(E) has a continuous inverse in L2(F0) and the continuity of
the inverse map is HiSlderian (with exponent a). In such cases we speak of HOlder
stability.

Proof of Lemma 1.2. The proof follows from: i) the "a priori" estimate (1.6); ii)
inequality (1.7), that we shall use with s- /(1 ); iii) the estimate

l-a(1.11) I111 -< cIIqll 1/(1- )llll o

valid for every function H1/(1-’)(Fo); this estimate is easy to prove by using
spherical harmonic expansion and the H61der inequality. Combining i), iii), and ii),
one then gets

]Ipi[o < c( z) llMz[ O

__< ca( z ) IIM p ]111/(1-a)HMz[P

<= c( z )lloll/{x_)lIMz[ o1112.
The lemma is proved.

1.3. Problem ii): existence, uniqueness and instability. Let F be a spherical surface
of radius r; let us define a class of real analytic functions on F. Let u be a L(F)
function whose coefficients, when expanded in spherical harmonics, are/3,. For reals
s >= 0, , >= 1 consider the linear space spanned by such functions u that

(1.12) E(1 + n2)*y2"r2n+2fl2j <
Notice that, by writing [2"=_,k(2nlogy)k/k!, we get

2(log ,)(1.13) series (1.12) <2 k! +(r).
0

Definition. We call ’(P) the Banach space consisting of those functions u L2(F)
satisfying (1.12) and whose norm is given by the square root of the expression appear-
ing in (1.12). Notice that, if ,-- 1, this space can be identified with H*(F). In particular
we will use the following values for ,/: , + (r0 + a)/(r0 + sup z), ,_ (r0 + a)/(r0 + inf z).
We will use the notation"

[u;y[ for Ilull<(ro).
Remark. For every p H(Fo), s>0, if z C2+(Fo), then Nz[p] g+(Fo) and

(1.14) IN:[ P]; /+ [s+X - Cs(
This assertion can be easily checked for spheres (i.e., z=constant); for general

surfaces, consider the restrictions of the potential WzO to F0 ({p say) and to F (+ say,
obviously related to Nz[p via the map {I}). From [4, {}5] we deduce that {p Hs+l(F0)
and [[{Pll,+x =< G(z)[[O[[,; then we check that II+]lg++l(ro)--II{pll,+ and finally.that

,1
INz[O 1; v + I,+, T2-+
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Now, if we take uq/vl_(Fo), i.e. u()=Ea.jrS.j(O,q) with E(1 +n2)a2.j72"ro"+2-<
+ , then the function U:

,ro + a )U(x)=Ea"J IX roS"j(O’q)

is harmonic for Ixl > r0+infz, U a(o)=u(o), and

belongs to nl(I’0). Thus U z also belongs to Hi(F0) and there exists a unique density
p L2(F0) (Theorem 1.1) which creates a potential whose restriction to F is U z; this
single layer potential coincides with U(x) in the region exterior to Fz. Thus we have
proved the following

THEOREM 1.4. For every u q/vl_(F0), there exists a unique p L2(F0) satisfying the
equation

(1.15) Nz[a] =u.

Moreover the estimate holds

(1.16) tip II0 Z c (z)lu;

Inequality (1.16) shows that problem ii), as was expected, is much more unstable than
Problem i); nevertheless, it can be stabilized in the same class Ha(E) as before, as we now
show by an example.

1.4. Problem ii): stabilization.
ASSERTION. Every pair of solutions Pl, P2 (corresponding to data u1, u2) of the

equation NolO]= u belonging to the set H1/2(E ) satisfy the inequality

(1.17) Ilpl- P2llo<=2E{ q(llUl-U21120/4E2)} 1/2.

Here 0 =< q(t) is a certain concave function, increasing from q(0)= 0 to q( + o)
+ m and exhibiting the following behavior near the origin.

r /log as = 0 +(1.18) q(t)= 21o8 r-
Inequality (1.17) shows that the restriction of the map NO to H1/2(E) does have a
continuous inverse in L2(F0), but the continuity of the inverse operator is now very
poor, namely of logarithmic type.

Proof of the assertion. The proof follows, via spherical harmonic expansion, from
the application of Jensen’s inequality for convex functions. Let 0 <k-p(k) be the
function given by

Fg
X2 2/f-(1.19) p(X)=-

One can easily verify that p is convex; notice also that p(X) and p()/ are positive
increasing.
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The following chain of inequalities holds:

p( I111 Y’rg" + 202nj
2+2(n(n+l)+l)a,j

(a,j. are the coefficients of the expansion of p in spherical harmonics)

ro2r-Z/n(n+l)+l rn+2 2

2Er02"+2(n (n + 1) + 1) a.j

(Jensen’s inequality)

Thus (1.17) follows by taking q=p-.
On the other hand, we are looking for classes of H61der stable solutions. Then, let

us define the convex set

(1.20) K(E) {p C(Fo)" INz[p];7111/(1__)<=E}
where yx=3,1_/-. Notice that, because 71>7_>__7+, form Nz[p] belong to some

q/v,/ (F0) one requires that p and z belong to some class of analytic functions; e.g., if z
is constant, p must belong to q/v/v+(F0).

THEOREM 1.5. Every pair of solutions Ox, P2 to problem ii) corresponding to data Ux,
u 2 and belonging to the set K(E) satisfy the inequality

(1.21) [[Px- 102110 Ca( Z ) gl-al[Ul u 2110"
Proof of the theorem. The proof follows, analogously to the proof of Lemma 1.2,

from inequality (1.16) and from the following:

(1.22)

This one proves by using spherical harmonics and H61der’s inequality. Combining
(1.16) and (1.22), one gets

[1oll0 =< ( z )lNz[ o]; v_ I,

<= c.( z )lNz[o 1; Y111/<1- o)llNz o ]110,
from which (1.21) immediately follows.

2. The nonlinear Problems I and II.
2.1. A criterion for H61der stability.
Assumptions. a) X, Y are Banach spaces, x is an element of X; for every x2 X

belonging to some neighborhood of x we write x 2 Xl + h.
b) Let C: X Y be a map continuously differentiable in a neighborhood of xl and

such that

(2.1) IIC[x +h]-C[Xl]-C’(Xl)[h]l[y<=C(X)llhllY
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for some e>0. c) The linear map C’(x1): X---)Y is not invertible; but there exists a
linear operator S: X X such that, if we define the set

(2.2)

the estimate

(2.3) IIh _-< c( x1,E 3’ )II c’( X1)[ h ]1[
is valid for some 3’: 0 < 3’ < 1 and every x2 X with h x 2 x (E).

LEMMA 2.1. Assuming that a), b), c) hold, the following assertion is valid: if

(2.4) (1 +e)3’> 1,

then there exist numbers R R x1, E, 3’) and c c(x1, E, 3") such that the estimate

(2.5) Ilhllzl[f[x / hl-f[xlll
holds for every h(E) with Ilhll x< R.

As a consequence, if x1, x2 are solutions to the equation C[x]=f with f=fl, f2
respectively (and all the previous hypotheses hold), we get, by linearizing around x1, the
stability estimate

(2.6) IIx=- XlllZ c(xt, E, )l[f2 f I1.
We emphasize that the determination of the stability class ’(E) depends only on the
linear approximation C’ of C, provided that this class is of HOlder type (with suitable
HOlder exponent). A counterexample to the lemma is given in [8]; it shows that, if
hypothesis (2.4) is not satisfied, then a bound (on the solutions) which is sufficient to
stabilize the linear problem is completely inadequate to stabilize the nonlinear operator.

Proof ofLemma 2.1. Let us consider the identity

C’(Xl)[hl--f[x +hl-C[xal-(C[Xl +hl-C[xll-C’(Xl)[h]).

Now we apply first inequality (2.3), then the triangular inequality, finally (2.1); we get:

Ilhll x_-< c(x,E, ( IIc + h l-C[xllllY+ Ilc[xl + h l-C[xll- C’(Xl)[ h 111 }’
<= c(x1,E, 3"){ llC[x1 + h ]-C[x1][[;+ [[h[[+ }.

Because of (2.4) the last term at the right of the previous inequality is dominated by the
terms at the left when Ilhll x--’ 0. That proves the lemma.

2.2. Linear approximations oIA and B. Let us recall the definition of the potential
Uz6, given in (0.4), and write it by using surface coordinates

(2.7) UzO(X)=fro dtofoZ(,,) 6(6o+ tn,o)j(o,t)dt

We recall that the given function 6 is smooth (C say) and strictly positive, so that the
product 6(o + tn )j(o,t) is also smooth and there exist positive constants c1, c2 such
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that

(2.8) Cl <=16(o+tn,o)j(co,t)l<=c2.

In what follows 6 is considered as fixed and perfectly known and we will ignore the
dependence of the relevant quantities of 6. As we said in the introduction, the map A,
defined in (0.5), with domain in a, has values in H3/2(Fo); while the map B, defined in
(0.6), has values in C(F0). The next two lemmas describe a linear approximation of A
and B.

LEMMA 2.2. The map A: ?’cLZ(Fo)--+LZ(Fo) is differentiable at the origin; its
Frbchet derivative, A’(O) say, is given by

(2.9) A’(0)[O] Mo[p]

(here is {J( o )= 6(oa), see Lemma 2.3). Moreover the estimates hoM:

(2.10) IIA[ z ]llo =< c(z*) Ilzll0
for every z ’, and

(2.11) IIA[ o Mo[ tSp llo < clloll o

for every e: 0<e< 1/2. The constant appearing in (2.11) depends on z* and on the
Wl’(I’o) norm of p.

LEMMA 2.3. The map B: ace L2(Fo) __+ L2(0) is continuously Frbchet differentiable
at any point a/; its Frbchet derivative, B’(2) say, is given by

(2.12) B’()[ O] N[ fro ],

where a( oa ) 6(o + 2( oa )n ,o); the estimates

(2.13) liB[ z ]lloZ c(z*) Ilz Iio,

(2.14) I[B[$+ol-B[]- Ne[gJPl[[o<CllP[I o

hoM for every e: 0 <e < . The constant appearing in (2.14) depends on z*,5, and on the
WI’(Fo) norm of p.

Remark. For the operator A we can prove a more complete result, as we did for B:
The map A is continuously Frbchet differentiable at any point a’; we have

(2.9’) A’()[p] M[frO]+ g,p
where g: I R is the function so defined

(+()n-y,n)6(y)dy
(2.15) &(w)= f

[w+(w)n-ylUR

andR is the symmetric difference between Go and G. Moreover it holds an estimate quite
analogous to (2.11).

The proof of this assertion is rather lengthy;we refrain from writing it out, and
observe that in the next section we will use only the partial result stated in Lemma 2.2.

The next three lemmas are technical and will be useful in the proofs of Lemma 2.2
and 2.3.



178 CARLO DOMENICO PAGANI

LEMMA 2.4. Let o, o’ Fo, t, t’, l, t2, reals, 0__<6_<_2, It l, Itl, It2[ <z*- The
following inequalities hold:

(2.16)
(2.17)

(2.18)

(2.19)

< cltx- t2]-lo- ’
for some positive constants c, possibly depending on z*.

LEMMA 2.5. For every real valuedfunctions O, o L2(Fo) and a real number < 2 one
gets

(2.20) doa’ 0(oa d )4<c 0(oa do

(2.20’)SFoo(ODt)2dt(Sr,o(lD)d3)
2

C(So o()4d ) 1/2( So()4 )1/2d

LEMMA 2.6. For every real valuedfunction O Cl(Fo) andpositive 8 3 one gets

(2.2a) f. Io()1c(11o11’.o3- o()

Proof of Lemma 2.3. First we prove (2.13). We have

I[z](,o’)l= fro dOfoz() 5(+ tn,o)j(o,t)dt
I,,’ + an,o, ( ,,, + tn,o )

<_c(z,)fro Iz(<<,)l d,o

I.,-,<,’1
Here we have used (2.8) and (2.16). Then (2.13) follows from known properties of the
single layer potential.

To justify (2.12) and prove (2.14) it is sufficient, because of the definition of B, to
estimate the difference

(2.22)

We write it as follows"

u+,,<()- Uz()- wo,().

fro ff(,o)+ p(o)

d(o
+ tn )j(w,t)

dt
x o + tn

O(o+ tn,o)j(o,t)-[9(o)j(o,5(w))
dt

Ix-(,<,+tn<o)l

dtg>(o)j(o,())[lx-(+ tn<)l
-1 Ix- (,o + (,o)n<o)l-1].
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In the last equality the integrand of the first integral is estimated by It-5(0)1]o- o’
having put x=o’+ ano,, o’ Fo; we took account of (2.16) and the smoothness of
and j. The integrand of the second integral is estimated by
(0 < 6 < 2), thanks to (2.19). Then we get

]expression (2.22)[

<=c(z*)[fro d’f’+’) dt It- .( (o)] + fro d(f(,o)+ o(,o)
dt !t- Y.( o)[

Now the L2(I’o) norm of the first integral (in the last inequality) is plainly estimated by
]102]]o, while the L2(I’o) norm of the second integral, thanks to Lemma (2.5), is esti-
mated by IIIplllo So we got, for 0 < < 2,

II ( +O]- [ l-N [Polllo C(z*)lllo I!o"
Now (2.14) follows from Lemma 2.6. Lemma 2.3 is proved.

Proof of Lemma 2.2. Inequality (2.10) is proved in a quite analogous manner as
(2.13). To justify (2.9) and prove (2.11) we have to estimate the difference A[o]-Mo[{)p ],
that we write as follows:

*.- *o] + Wop )o *o].
The expression in the second bracket handles exactly as we did before in the proof of
Lemma 2.3; then its L-(Fo) norm is estimated by Ilpll+ with e < . The expression in
the first bracket is

The integrand is estimated by Io(0’)la-al0-,0’l -, thanks to (2.19). Then all the
expression is estimated by

io (

and its L2(Fo) norm by III0111o, because of (2.20’). Then (2.11) follows by applying
Lemma 2.6. Lemma 2.2 is proved.

Proof of Lemma 2.4. Inequalities (2.16) and (2.17) are almost trivial; (2.18) is a
simple consequence of the first two; (2.19) is derived from (2.18) by observing that

d

’ (+t)l-1’+ ,- =<l’+’.,-(+t)l-
and applying the fundamental theorem of calculus.

Proof ofLemma 2.5. From the Schwarz inequality, by taking 1 < a < 1, we have

(So 0()2d)2 f d fFoO()4dfFoO()4d(2.23)
I ’]n I- ’l

2(a-) I- ,12, ,12
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Then

S, oiF df,,o
i ( ’f" ) d’("d 4 d’ )4<c 0() d c 0( d

To prove (2.20’) we proceed analogously, by first applying the Schwarz inequality

o
2 < o(w’)4dw dw’

p()d

then, by applying repeatedly (2.23), we get

4

,4
I-’1

z 0( .
Lemma 2.5 is proved.

Proof ofLemma 2.6. In the Sobolev inequality

which holds withp N2, take u=lol3; then choosep 28/3; so we get

fro l()[2dc(maxl]+ 3max[Dol)2/3 2o()

Lemma 2.6 is proved.

2.3. Stabili results for Problems I and II. Now we are in the position to draw
some conclusions about the stability of the solutions of Problems I and II, for the
results of 1 give us information about the H61der stability of the linear operators A’
and B’. That is true for B’(z), which substantially coincides with N, while A’(z), as we
noted in the remark after Lemma 2.3, differs from M by the perturbation term g; so
the linearized equation A’(z)[o]=f is an integral equation of the second kind. This
equation presents problems of instability anMogous to those exhibited by the first kind
equation: M[o]=f discussed in }1; for the term g is actually small, and it can vanish
(if z 0, then, as we saw, g 0). Now, using the results of }1 directly, we will take, for
Problem I, $ 0; thus we will get a stability result for solutions of Problem I which are
close to the origin.

THeOReM 2.7. Let v L2(F0) be a given function and za solution of the equation
A[z]=v belonging to the set H(E) with a> . Then there exist numbers R=R(a,E) and
c c(a) such that the estimate

(2.24)
is validfor every z with Ilzll0R.

Proof. We have only to verify that the hypotheses of Lemma 2.1 are fulfilled. We
apply Lemma 2.1 by taking X= Y= L2(F0) and Xl=0. Inequality (2.1) is satisfied with
e < } (cf. inequality (2.11)). The stability class (E) is the set H(E) defined in (1.9)
and inequality (2.3) is satisfied with a (cf. inequality (1.10)); notice that the depen-
dence of the constant appearing in (2.3) on E is explicit in (1.10). Then the hypothesis
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(1 + e)3, > 1 can be satisfied with a > 1/4; so (2.24) follows. Notice that the dependence of
the constants on [[z[I wl.=Vo) (coming from (2.11)) has disappeared, because the stability
constraint" [[zll/x_<=E with c>-] also bounds the W1’ norm of z by the same
constant E. A more complete stability result can be proved for Problem II.

THEOREM 2.8. Let vl, o2 L2(1’0) be given functions and z, z2 o’be the correspond-
ing solutions of the equation B[z]=o. If z2-ZlK(E) with >1/4 then there exist
numbers R R(a,E, zl) and c=c(a, zl) such that the estimate

(2.25)
is validfor Ilz2- Zlll0=<R.

The proof follows from Lemma 2.1 in a way analogous to the previous theorem.
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ABSOLUTELY CONTINUOUS SPECTRA OF
SECOND ORDER DIFFERENTIAL OPERATORS
WITH SHORT AND LONG RANGE POTENTIALS*

D. B. HINTON" AND J. K. SHAW :

Abstract. For ordinary second order differential operators with one or two singular endpoints, the
problem is considered of determining when a continuous spectrum is absolutely continuous or is of class C(1).
Operators are considered which have a smooth part plus perturbation terms. The perturbation terms

considered are short and long range type potentials and also potentials of a highly oscillatory character. The
absolutely continuous spectrum found is either a ray )0, oe) or a whole line (-oe, z). For a certain class of
equations, the spectrum is also found to be bounded below. The theory developed is applied to the energy
operator of the hydrogen atom.

1. Introduction. As is well known, singular boundary value problems often have
continuous spectra. It is of interest in applications to know if this spectrum is abso-
lutely continuous. We consider here a class of such problems for second order ordinary
differential equations in both the half line and whole line cases. One version of the
problem may be described as follows. Let

(1.1) L(y)=w-t{-(py’)’+qy}=Xy, a<=x<oe,
(1.2) sin ay( a + cos a(py’)(a) 0

be an eigenvalue problem such that L is in the limit point case at infinity. Let q(x,X)
be the solution of (1.1) defined by q(a,X)= cosa, (p+’)(a,X)= sina. Then there is a
nondecreasing function p on (-m, m) such that the equations

g()k) f(x)w(x)q,,(x,.)dx,

define a linear isometry between the Hilbert spaces

w(a, oe)- f wlfl dx <

We refer the reader to [7. Chap. 9]. The above isometry is a unitary transformation
which takes the self-adjoint operator T associated with (1.1)-(1.2) to the self-adjoint
transformation in ,p2(_ m, z) which is multiplication by the independent variable .
We may then characterize the spectrum of T, o(T), as the points of increase of .
Further the eigenvalues of T, Do(T), are the jumps of 0, and the essential spectrum of
T, Eo(T), is the set of limit points of o(T). We define the continuous spectrum Co(T)

*Received by the editors July 12, 1983, and in final revised form April 19, 1984.
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300.
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

24061-4097.
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as Eo(T)\Do(T). The problem we consider is to find conditions on the coefficients of
(1.1) so that if [a,b]c Co(T), then [a,b] is an absolutely continuous spectrum, i.e., t) is
absolutely continuous on [a, b]. Our conditions will in fact imply O is of class CO).

In order to consider equations like (1.1), we define below a generalization of the
equation,

which will include (1.1) after a change of independent and dependent variables. In (1.3)
regard 01 as absolutely continuous with f, [0][ < , 02 as having a small integral, and

03 as being small in the sense of f 1031 < . Such 01, 03 are called long and short range
potentials, respectively. An example of the type of equation we wish to consider is,

y" + [k+ (X+ 1)-l+xsinx4+e-Xx-1/2] y=O,
This work is motivated by recent work of S. Itatsu and H. Kaneta [10], as well as by
classical work of E. C. Titchmarsh [16, pp. 116-128]. In [16], the case o1=o2---0 is
considered as well as certain equations in which a change of variable is made. The
change of independent variable is nonreal and places restrictions on the coefficients. In
particular, perturbation terms are not allowed. We are able to avoid many of these
restrictions by making the change of independent variable real. This however, may
make the terms 01, 02, and v -dependent. In [10], (1.3) is considered with 02-=0, and
the authors use the method of singular integral equations to obtain asymptotics for
(1.3). We find it more advantageous to develop the theory along the lines of Titch-
marsh.

A different approach to showing continuous spectrum is absolutely continuous has
been taken by J. Weidmann [18] and J. Walter [17]. They approximate the singular
problem by a sequence of regular problems and apply estimates on the number of
eigenvalues lying in a given interval. It does not appear that this method can be used to
show additional smoothness properties of 0, e.g., to show 0 is of class C {1). In [18], (1.3)
is considered with f, 1d011 < ao, f. Io31 < , and 02-- 0. In [17], (1.1) is considered with
p- w-= 1 and q sufficiently smooth.

Also related to the resutls here are those of M. Ben-Artzi and A. Devinatz [2] and
M. Ben-Artzi [3], [4]. In [2], [3], [4], the operator A + V is considered on R where V is
spherically symmetric. In addition to the question of absolute continuity of the spec-
trum, the existence and completeness of wave operators is discussed. The ordinary
differential operators considered are defined on (0, m), with both endpoints being
singular. In [2], [3] an operator of type (1.3) is considered. The singularity at infinity has
02--0, but allows a v term more general than that considered here. The singularity at
zero has more stringent growth conditions than that required by Theorem 4.2 below. In
[4], similar questions are discussed for (1.1) with p w= 1 and q sufficiently smooth.

Additional criteria for the continuous spectrum to be absolutely continuous may
be found in P. A. Rejto [13], [15], and P. A. Rejto and K. Sinha [14]. These operators
are of type (1.1) with p-w= 1, but with two singular endpoints. In [13], [15] operators
are considered on (0, oo), and in [14] they are considered on (- m, m). The method in
these papers is to apply an abstract criterion for absolute continuity based on the
resolvent operator. In [2], [3], [4] the criterion is similar but based on the Green’s
function. The method employed here uses a numerical component of the Green’s
function--the Titchmarsh-Weyl coefficient whose singular structure yields the various
components of the spectrum (cf. [6]).
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For two singular endpoint problems we follow the method of [10] which treats
each singular endpoint separately. This allows greater flexibility in placing constraints
on the coefficients. This permits, for example, a generalization of [13, Thm. 2.1] along
the lines of 6 where the singularity at zero is transformed to infinity.

A problem related to this paper is showing the absence of eigenvalues embedded in
the continuous spectrum. Some sharp bounds for cutoff of eigenvalues may be found in
the paper of F. V. Atkinson and W. N. Everitt [1].

In 2 below we define a generalization of (1.3) and show how it relates to
transformed equations. In 3 we develop the necessary asymptotics for solutions. In 4,
the Titchmarsh-Weyl m-coefficient is employed to obtain absolute continuity of the
continuous spectrum. In 5, the theory of 4 is applied to analyze the two-singular
endpoint problem, and a connection is made with recent work of R. Carmona [5]. In
6, the theory is applied to the hydrogen atom.

By the norm of a vector we mean the Euclidean norm; by the norm of a matrix we
mean the corresponding operator norm. Standard notation is used for the components
of vectors and matrices. For w(x)>0 and Lebesgue measurable, fl(I) denotes the
Banach space of all equivalence classes of complex-valued functions f satisfying ft wlp

2. A general equation. The equation considered is

(2.1) y"+[a()2+Vx(X,X)+v2(x,)+v3(x,)]y=O, ax<,

where the conditions on a, v, v, and v are given below. To motivate the form of (2.1)
considered, we return to (1.1) with a singular point at b, b , i.e.

(2.2) py’)’ + Xwy, a Z x < b.

Suppose in (2.2) we make the Kummer-Liouville change of variables,

y(x)=h(x)z(t), h=(pw) -1/4, t=f(x)

where p, w are positive and sufficiently smooth and f (w/p)/2= . Then (2.2) be-
comes

(2.3) -e(t)+O(t)z(t)=Xz(t), 0Zt< ,
with Q(t)=[q/w-h(ph’)’/f’](x). For appropriate p,q, and w, (2.3) is of type (2.1).
Using the Titchmarsh-Weyl m-coefficient below to analyze the spectrum of (2.2), we
need only know the asymptotics of (2.3).

Suppose now in (2.2), q= -n-r where n(x)> 0 is a smooth part of q and r is a
perturbation part. If we make the change of variables

y(x)=h(x)z(t), h=(pn) -1/4,

where fa(n/p)1/2-- , then (2.2) becomes

(2.4) -(t)-[1 + Q(t)]z(t)=O, 0__<t< ,
with Q(t)=[r/n+h(ph’)’/f’+w/n](x); hence the -dependence is changed to a o
term in (2.1), and a() is constant. The case n(x)<0 above is not considered since it
typically leads to an empty continuous spectrum.
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Let C+ { X llmX >__ 0} and Co { X C+ IReX >__ 0}. Our assumptions for (2.1) are"

(A1) For i=1,2,3, vi(x,X)=Vil(X)+Xvi2(x ) where each vii is real and locally
Lebesgue integrable. Further

a) Forj= 1,2, Vlj.(x) 0 as x m, oljis absolutely continuous with v’s(a, m);
O12(X)" 0.

b) Forj= 1,2, f v2 exists (conditionally), V2(x)= fx v2 is in &a(a, m); Wsj(x )
fxlV’lsV2l is in.a(a, ) for s,j- 1,2.

(c) Forj= 1,2, v3L’(a, ).
(A) a(X) is continuous on C+, analytic on the interior of C+, and a(C+)c Co.

There is a number X 0 C/ such that if U is a closed subset of C/ not containing )t o,
then a(U) is bounded away from zero.

Note that if Uis as in (A), then la(X)12>__e>0 on U for some e>0. Now if gis

compact or Vl(X)--0 we may, by redefining v if necessary, assume Iv(x,X)lNe/2 for
a __< x < m, X U. Without loss of generality we will always make this assumption for U
in (A 2) compact or vx(x)-- 0.

3. Asymptotic theory of (2.1). We suppose in this section that (A1)-(A 2) hold and
U is a closed subset of C/ not containing )t 0, and that either U is compact or
v2(x)--0. Hence

(3.1) K=K(x,X)= [a(X)2+oI(X,X)] 1/2

is a well-defined element of Co and satisfies for some e > 0

1/2
(3.2) Ig(/,X)l>_- X V, a<x<m.

Write (2.1) in system form as

(3.3)
y

First we transform (3.3) as in [10]. Set

s=( 1 _l/K ), -S- y, =" 1 -1/iK y’

hence (3.3) becomes

1 0 ) ( 02 ’ 03 )( 1
1 2iK ,, -1 -1 1

Define

1N=
-1

e=e(x,X)=

U2W=W(x,,)= 2iK"
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Then by the variation of constants formula, (3.4) can be written as

(3.5) g,(x,X)=E(x,2t) q.,(a)+ E-I[W’N+Rlq.,

Integrating the term fx E-IW,Nq, in (3.5) by parts and using g,’=[E’E- + IV’N+
we obtain after simplifying that

[I-W(x,X)Nlq(x,X)

(3.6) =E(x,h)([I- W(a,h)U]q,(a,h)

+ E--[R+E’E-1IVN IVNE’E-]4,

Equation (3.6) simplifies to

[I- W(x,X)] g,(x,X)
(3.7) --E(x,){[I- W(a,)k)N]/(a,)k)+faXE-1Rl/)
where

(3.8) Rx RI ( X, X) R (x X ) + 2iK(x, W(x )( 01
The definition of W and an integration by parts yields that

V (x,X)(3.9) W(x,X) 2iK(1X-) (Vzol/4iK3)

1)

where V2(x,X)= fx v2. Thus by (A1)-(A:z) we have for each compact set F in C+ a
constant MF such that for all X U F,

(3.10) Ilel(x,X)[ldx <=Mr, [W(x,X)I<=MF.

In case v:z./(x)=-O forj= 1,2,3, (3.10) holds for F=C+. Set

(3.11) (cl)c2
[I- W(a,,)Nl+(a,X),

Then (3.7) becomes

[I-W(x,,)NII(X,X )

(exp(2ifa K) 0

(3.12) 0 1

+ x ( exp(2ifX KoS
Note that by (3.10), for X U F.

(3.13)

pt(x,)) exp iK

O )
[1[I- W(x,X)Nl-lll-l[[I+ W(x,X)Nlll<=l + MvlINII.
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LEMMA 3.1. Suppose (A1)-(A2) hold, U is as above, Fc C+ is compact and (3.11)
holds. Then for X UC F and a <= x <

(3.14)

where
Proof. Recall ImK(x,)t)>__ 0. Thus by (3.12) and (3.13),

Ilql(X,X)]l --<’ c= + IlRl(X,X)lll[g’l(S,X)]l ds.

Equation (3.14) now follows by an application of Gronwall’s inequality.
Lemma 3.1 yields asymptotic behavior of ql as x o and hence of y,y’. First we

rewrite (3.12) as

(3.15)

[I-W(x,X)N]qI(X,X)= A ) 0

)l+(0 0

where

exp(2i K)](cl + X[exp(2i XK R
X C2) fa fs )] 1+11

0)((Cl n
1 c2) fa R11}

LEMMA 3.2. Suppose (A1)-(A2) hold, U is as above, and y(.,X) is a solution of (2.)
with y(O,X) and y’(O,X) independent of . Then A(X)=Ay(X) defined by (3.16) is

continuous in X for X in U and analytic on the interior of U.
Proof. The method of successive approximations for existence of solutions shows

y(x, X) is jointly continuous in x and X and entire in X for fixed x. Since K is analytic in
X for X in the interior of U and continuous in X for X in U, the functions Rl(X,k ) and
ql(x,X) have the same properties for fixed x; further they are jointly continuous in x
and X. Hence by the bounds (3.10) and (3.14), A(X) is the limit of a sequence of
functions which are (i) continuous on U, (ii) analytic on interior U, and (iii) uniformly
bounded on compact sets. By Vitali’s theorem, A(X) is analytic on interior U. Further,
(A 1) implies that f II Rl(S, )II ds 0 as n o, uniformly for N in compact sets. Thus
A(X) is continuous on U.

Fix now X U. If a(X) is in the interior of CO or a(X) is on the positive imaginary
axis, then K(x,X)a(X) as x o. Then expf2 iK--.O as x o, and we have the
following asymptotic behavior. (Note that W(x,X) 0 as x m.) As x m,

(3.17)
Y (x,X)= exp iK A(X)

-iK+o(1)

If a() is in the positive real axis, then

K (a(X)2+Vl) 1/2 a( X)(1 + vl/a ( k )2) 1/2
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from which we conclude that

ImK(x,X)dx= , Imvl(x,h)dx= .
If f ImOl , then (3.17) holds. If fff Imol < , then from (3.15) we conclude that
as x --- x),

(3.18)

where

1

If now in (3.18), y(x,h) is real and K(x,X) is real, then from Imy(x,A)=0 we

conclude that B(X) A X ).

4. Application to half-line problems. Consider first equation (1.1) with the boundary
condition (1.2). Define a fundamental set of solutions 0,, q of (1.1) by the initial values

(4.1)
pO,, p,’,

(a,X)=
cos a sin a

If L is in the limit point case at infinity, then the limit, for ImX 4= 0,

Oo(x,X)
(4.2) lim m (X)

exists and is analytic on Im 4: 0. Further the self-adjoint operator T determined by
(1.1)-(1.2) has spectral function O related to m by

(4.3) p(t)-p(s)=lim+o l__r f’ Imm (u+ ie)du

at points of continuity s, of O- (cf. [7, Chap. 9]).
Detailed relations between the singular structure of m and the spectrum have

been established by J. Chandhuri and W. N. Everitt [6]. In particular we note that the
isolated eigenvalues coincide with the poles of m.

In this section we solve the half-line problem for (1.3) and then show how the
Kummer-Liouville transformation, together with the asymptotic theory of 3 solves a
wider class of problems. For (1.3), we take in (A1)-(A 2) for some real X 0 that

(4.4) a( t ) (X-)to, /)12 =/)22 =/)32 --- O.
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The set U used in 3 may be taken to be any closed subset of C+ not containing X o- Let
Aq,, Ao be the functions defined by (3.16) for q, 0 respectively. Then Aq,, A o are
continuous on C/\(X0} and analytic on the interior of this set. Further for X real,
< o, iK and hence A,, A o are real. Thus by reflection, Aq,, A o have analytic continua-

tions into { : ReX <o }-
For real , > o, write

(4.5) A,=a, + ib,t,, Ao=ao+ ibo,

where a,, b,, a o, bo are real. From the asymptotic formula (3.18) we have as x ,
X>ho,

(4.6)
x fa(x, X) 2ao(X)cos K+ 2b,(X)sin K+ o(1),

,’,(x,X)=2K(x,X) ao(X)sin K+ 2b,(X)cos K +o(1),

with similar formulas for 0, 0’. From the Wronskian,

(x,2t)=4K(x,2t)[ao(2t)bq,(X)-aq,(X)bo(X)] +o(1),

we conclude that for X > X 0,

ao( X )bq,( h )-aq,( 2t )bo( X )
4(X-Xo)1/2"

This shows that A,(X), A0(X ) do not vanish for real X>)t o and hence also for X
sufficiently near this set. For ImX > 0 such that A,(X) g: 0, we have from the asymptotic
formula (3.18) and (4.2) that

(4.8) m(X)=-lim
exp(-ifaXK)[A(X)+(1)]

x--,o exp(-ifa K)[Aq,(X)+o(1)]
Recall that A o, Aq, are analytic on IMP>0 and Re <Xo and that they are continuous
on C+\ { X o }. From (4.5), (4.7), and (4.8), we have that for > o,

lim Imm(g+ ie)= Im A(l----)
o+

-aob,t + a ,t,bo
(4.9) (/)+aq,

4(/.t X o)1/9[ a,() + b, (/)]
Since A,()4:0, and the limit in (4.9) is uniform on compact subintervals of (X o, ),
we have from (4.3) that for > X0, O is class C) with

4(- )x 0)1/2 a()+b()]
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On the other hand Ao, A, are real for/ <X 0. Thus m(X) is meromorphic on ReX <X 0,

and on a compact subinterval of (- m, X0), 0 is a step function with a finite number of
jumps.

THFOREM 4.1. Assume in (1.3) that v 1, v2, v are locally Lebesgue integrable and (i)
vl(x)-h0 as x. (ii) V2(x)---fx u2 exists, and (iii) #1, 03, V2, and Wo are in

9’(a, ) where W0(x)= fx Iv]Vz[. Let O<=a <r and T inZ(a, ) be defined by
r,(y)= -(y"+[ol+vz+v3ly )

with domain T being all y.’2(a, ) such that y,y’ are locally absolutely continuous,
Ts(y ).’2( a, c), andy satisfies the boundary condition sin ay(a ) + cos ay’(a ) O. Then
T is self-adjoint, on (o, ) its spectral function Os is C (1) with O’()>0, on each
compact subinterval of (- ,ho), the spectrum of T is either empty or consists of a finite
number of eigenvalues, and the spectrum of Ts is bounded below.

Proof. The asymptotic form of solutions (4.6) shows that for ) > )0, (1.3) has no
solutions in 2(a, m). Thus T is of limit point type at infinity, and the theory of
self-adjoint extensions of symmetric operators shows T is self-adjoint. The only part of
Theorem 4.1 not proved above is that the spectrum is bounded below. We now prove
that under the above assumptions, a solution y of (1.3), with y(aX) and y’(a,X)
independent of X, satisfies

(4.10) lim Ay()=y(a)/2

where A(X)=A(X) is given by (3.16). First we show that (4.10) implies the spectrum of
T is bounded below. Since m is meromorphic on ReX < ’0, the conclusion follows by
showing m has a limit as -. For a4r/2, (4.10) implies
-Os(a,X)/rks(a,X)=tana as X-. For a=r/2, s(a,X)=0 and 0s(a,,)=l so
that (4.10) implies ms(X) -10 as )t m.

Thus the zeros of ms(X ) are bounded below; hence the poles of ms(X ) are
bounded below since ms(X) is real on (-re,X0). Further, Imm(X)> 0 for ImX > 0,
and we have by orientation preserving properties of analytic functions that ms(X)-
-c asX-.

To establish (4.10) we first note that in this case the bounds (3.10) hold for F= C/,

U= { X C+ [ReX __<)t 0-1 }. This is because of the way )t enters the various terms of
R(x,X).

From (3.11) and (3.16)

[1 1 y’(a) +f(Rld/l)a"(4.11) Ay(X)= -+ W(a,X) y(a)--
The definition of K and (3.9) show that for each x,

lim W(x,X) 0.

The definition of R shows fff II R(x, X)II dx 0 as X --. . Since +1 is uniformly
bounded on a =< x < , =< 0- 1, we conclude that

Thus to complete the proof of (4.10), we have from (4.11) and (3.8) that it is sufficient
to prove as )k m,

(4.12) f{2iKw(O 1) } f1 0 1 2iKW(l)lO.
2
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Since iK(x,,)=i(,-,O+Vl(X))1/2, we have from the equation (3.15) that
(ql(X,X))l0 as X -. Now from (3.9), we see that there is a constant k such that
for a<=x< o, -o <=<Xo-1,

(4.13) IK(x,X)W(x,X)l<_k[Ig_(x)l+ W0(x)].
Since ( (x, X)) is uniformly bounded for a __< x < m, m < X __< X 0 1, and for fixed x
tends to zero as X- m, application of (4.13) and the Lebesgue dominated conver-
gence theorem yields (4.12).

An example of an equation of type (2.2) to which Theorem 4.1 applies is

(4.14) -y"+[ C+r(x)]y=)tx-Y,/2(lnx ) e<x<c,_

where x is a constant and fe xlr(x)ldx < . The transformed equation (2.3) is (t=
lnx, h(x)= x1/9-, y(x)= h(x)z(t)),

c 2r 1]--,(t)+ -+X (x)+- z(t)=,z(t), l=<t<,

which satisfies the conditions of Theorem 4.1. A calculation shows that the change of
variable is a unitary map from Z,wE(e, oe) onto 02(1, m). Thus the spectral function
of a self-adjoint operator associated with (4.14) satisfies O’(/)> 0 on (1/4,

Examples given by M. S. P. Eastham and H. Kalf [8, p. 89] show that v terms in
(1.3) cannot be much larger without possibly introducing an eigenvalue in the continu-
ous spectrum. As shown in [8], the equation, on 1 __< x <

y"(x)+ [1-4x -1 sin2x + x-2(2 cos2x + 4 cos4x)] y=0
has a solutiony(x)= O(x-1). Thus X 1 is an eigenvalue in the continuous spectrum [0,
m) for an appropriate boundary condition imposed at x 1.

As a second application of the asymptotic theory of 3, we allow the potential to
go to infinity.

THEOREM 4.2. Suppose p, n, r, and w are real locally Lebesgue integrable functions on
a, b) with p, n, and w positive. Suppose p and n are of class C(2)[ a, ), fab (n/p)l/2
and fb wh2= z where h=(pn) -1/4. Set t=f(x)= ff (n/p)1/2 and suppose

+-- (X)--Oll(t)Wo21(t)Wl)31(t)

( W--)
where the vij(t ) satisfy the hypothesis (A1). Define an operator T in ’w2(a,b) by
T(y) w- 1[ (py,), (n + r)y where the domain of T is the set of all y in w2(a, b)
such that y,y’ are locally absolutely continuous, T(y)LZw2(a,b), and y satisfies the
boundary condition sin ay(a ) + cos a( py’)(a ) O. Then T is self-adjoint and its spectral
function O is of class C)( ,) with O’(l)>O for all real l.

Proof. As in (2.2), make the transformation

(4.15) y(x)=h(x)z(t), h=(pn) -1/4, t=f(x)=fX(n/p) 1/2,
aa

so that z satisfies

(4.16) (t)+ [1 +Q(t)]z(t)=o
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with, using the above notation,

O(t) [Vax(t)+vv_l(t)+v31(t)] +)t[v2(t)+v22(t)+v32(t)].
With a(;k)= 1, the theory of {}3 is applicable. Since

Vl2(t)dt__
b (w/l)(n/p)l/2dx [v22(t)+v32(t)] dt-- o,

we obtain from (3.17) and (3.18) that for a solution z(t,X) of (4.16), as --, oe,

ImX> 0" z(t,X) expl

(4.17) ImX 0" z (t, ;k) exp )iK [A(X)+o(1)1,

+ exp(f0t iK)[Az()+o(1)].
As in the proof of Theorem 4.1, it follows that Az(X)4:0 for X real. Since the

Wronskian of two solutions of (4.16) is constant, it follows from the asymptotic form of
z,2 for ImX=0 that Az,(X)/Az2(X ) is not real for linearly independent solutions z1, z2
of (4.16). After some calculations it follows that for some 8 > 0, 0 =< < oe,

]Zl(t A)I
:z 2

Ify and Y2 are the corresponding solutions of (2.2),

W ]Yl +IY.I -/2>= w(pn)

Thus (2.2) is of limit point type at b; hence T as defined above is self-adjoint.
Consider the solutions 0, of (2.2) defined by the initial conditions

0 ff’
(a,h)=

cos a sin a

and let zo, z, be the corresponding solutions of (4.16). Now for ImX > 0 in (4.17),

(4.18) m,,(X)=- lim O(x,X)=_ lim z(t’;k-------)=-A(X)
z (t,x) Az (X)

Since A,, Az, are continuous on C+ and do not vanish for X real, it follows as in (4.9)
that Imm(/ + ie) has a positive limit as e $ 0. This completes the proof.

The proof shows that the condition fab w(pn)-/2= c is required to prevent the
equation (2.2) from being of limit circle type at b. In this case the essential spectrum
would be empty. It is also required to produce the asymptotic behavior (4.17) for
Im > 0 which in turn implies (4.18).

An example of an equation which satisfies the hypothesis of Theorem 4.2 is:

y" + [X + x- + ax’sinx/ + bxf(x)] y=O, l=<x<oe,

with/3 > a + 2, fl[f[ < o, a and b constants.
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5. Application to whole-line problems. We consider here only the equation

(5.1) y"+[X+vl(x)+v2(x)+v3(x)lY=O, -m<x<m,

where the v satisfy the conditions of Theorems 4.1 at each of +, . The methods
employed here will apply to other classes of equations. Following [10], let

v+= lim -v(x).
x++o

Since (5.1) is in the limit point case at +_ oo, a self-adjoint operator T is defined in
&o2(_ oo, oo) by

T(y) --(y"+ [Ol(X)+V2(X)+V3(x)]y )
where the domain of T consists of all yoga2(-cxz, cxz) with y,y’ locally absolutely
continuous and T(y) ..oC*a2( cx:, ctz). We define a basis 0,q of (5.1) by the initial values

0 4,
0’ q,’ (1 0)(0,X)= 0 1

The Titchmarsh-Weyl m-coefficients m + are defined on ImX > 0 by

O(x,X)m+(a)=- lim
q,(x,X)

Then for Imk > 0, Imm+(k)> 0 and Imm_(k)< 0 (cf. [9]). The spectral function p of T
is a 2 2 matrix and depends on the choice of basis [7, Chap. 9]. However, any two
such O’s are similar [9]. For the basis above, we have at points of continuity t,s,

O(t)-O(s) lim+0 l__r t ImM( u + ie)du

where M is given by

1/(m_-m+)
M=

.(m++m_)/2(m_-m+)

m21 m22

(m++m_)/2(m_-m+))m+m_/(m_-m+)

Suppose we write for Im > 0, with a,b, c,d real,

m+(h)=a(h)+ib(h), m_(h)=c(h)+id(X).

Then a straightforward calculation yields

(5.4)

2 2D=(c-a +(b-d),

Imm12 Imm21
bc- ad

bc 2 a 2d + bd 2 b2d
D

det ImM
D
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Now apply Theorem 4.1 to T. Note that to apply Theorem 4.1 to (5.1) on
(-z,0], the change of variable t=f(x)= -x is made. This results in m_(X) m as
X . Assume v_ < v / (the other cases are similar). From the equations (5.4) we can
now draw the following conclusions. Note that a, b (c, d) have a continuous extension
to the real axis except at poles of m /(m_) (by the proof of Theorem (4.1)). Further,
(4.9) implies b(h)> 0 on (v+, m) and d(X)< 0 on (v_, m). The argument below follows
that of [10] in cases (1) and (2).

1. v+ <#< o. Then p is of class C(a)(v+, ); further O’xl(/)> 0, D2()>0 since
b()> 0, d()< 0. Also rank O’(/)= 2.

2. v_ < < v +. If/ is not a pole of m +, then

-d/O
ImM(#)

-ad/D

If/x is a pole of m +, then as , --*/

-1/2 m_() ImM(/)- 0 -d(/z)

Thus p CI)(o_,o+), rankp’()= 1 on (v_,v+). Also p’(/)> 0 except at a pole of m+
in which case p’(/)= 0, p2(/)> 0; p2()> 0 except at zeros of m+.

3. /<v_. m+ and m_are meromorphic on ReX<v_. Thus ImM=0 except at
poles of M. These poles occur either where a(/)=c(/) or where m+ and m_ have a
simultaneous pole. The poles of M, which are the eigenvalues of T, are bounded below
since m+() , m_(#) as o. Thus v_ is the only possible accumulation
point of these poles.

Finally we show at a pole/0 of M,/0 < v_, the residue of M at/0 is of rank one.
This means the eigenspace is of dimension one. If/z 0 is a pole of both m+ and m_, with
residues o + and o_ respectively, then a calculation using (5.3) shows that the residue of
M is

01imieM(o + ie) ( O0 0 )o+o_/(o_-o+)

If m_(/0)= m +(0) and m + are analytic at/0, then

m ___()) ag + al+- (,-/0) +

where all the a + are real. Further, a;-> 0 since Imm +(,)> 0 on Im>; similarly
a- < 0. A calculation using (5.3) again gives the residue of M at/0 as

(a? -a{) -1

(a +a)/2(a; -a{)
(a- + a)/2(a?-a;) 1.

a-a-/(a?

In both cases the residue has rank one.
The above calculations show a connection with recent work of R. Carmona [5].

Return to (5.3) and suppose on an interval I, one of m+,m_, say m+, has Imm+()
continuous on

I= (lReI,0 < Im__<e}
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with a continuous extension to the closure of the above set. Further suppose on I,
Imm /(?)> 0. Hence on I, Imm+() is bounded above and below by positive num-
bers. An examination of the formulas (5.4) shows that there is a constant k so that

Ilmm,j(A)l<-_k
for I, i,j 1, 2. This means that t is absolutely continuous on I and has Lipschitz
constant k. Thus the behavior of the potential at the other singular point cannot
prevent the spectrum from being absolutely continuous on I. This phenomenon has
been reported by R. Carmona [5] for a class of random polynomials which are of class
P, p 1, at one singular endpoint.

6. The hydrogen atom. In this section we consider the energy operator of the
hydrogen atom and show how the results of 4 and 5 apply. The equation is [11,
Chap. 10].

(6.1) y,,+[,+a b

-S y=0, 0<x< ,
where a > 0 and b l(l + 1) >__ 0. We split 0 < x < at x 1 and use any basis to define

m+ and m_. First consider (6.1) on 1 _< x < . Then a/x is a v type term of Theorem
4.1 and -b/x is a v type term. Thus m+ behaves as follows. (i) On 0<3 < ,
limImm+(X + ie) exists as e $ 0 and defines a continuous and positive function. (ii) On
ReX < 0, m+ is meromorphic and its poles are bounded below. If we appeal to the
connection between oscillation theory and spectral theory [12, p. 163], we conclude that
rn + has an infinite number of poles on (- , 0) (thus they converge to 0) because (6.1)
is oscillatory at infinity for X 0. The oscillation test f (as- bs- 2) dx ---, 0 as
x o shows (6.1) is oscillatory at infinity for X= 0 (cf. [12, p. 208]).

To consider m_, we transform the singular point at x 0. Let

y(x)=x/2z(t), t=-lnx, 0<x=<l.

Then x=0 is transformed to t= , and a calculation shows that z satisfies the
equation,

(6.2) (t)+ b+- +ae +Xe z(t)=0, 0_<t<.

By the Sturm comparison theorem (6.2) is nonoscillatory at infinity for every 3. Thus
(6.1) is nonoscillatory at 0 for every . This means (cf. [12, p. 163]) any eigenvalue
problem associated with (6.1) on 0 < x =< 1 has as spectrum a sequence of eigenvalues
increasing to infinity. Thus m_ is meromorphic on the complex plane with poles a
sequence on the real axis increasing to infinity.

Thus by the argument of [}5, we have for the spectral matrix of (6.1)"
(i) On (0,)" 10C(1)(0, OQ); ranko’(/)=l; 0’1(/)>0 except at a pole of m_

where 0’1= 0, O> 0; O(/)> 0 except at a zero of m_.
(ii) On (-o, 0): The sequence of (6.1) is purely discrete with spectrum bounded

below. The eigenvalues cluster at 0. This latter point follows from considering a graph
of Re rn +, Rem_ on (- , 0). rn + (which has negative residues) has a sequence of poles
clustering at 0. m_ (which has positive residues) has a finite number of poles on
(- o, 0). The two graphs have a finitely number of intersections with cluster point zero.
Alternatively, oscillation theory may be applied as in [12].
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By the theory of 4 we could add perturbation terms to (6.1), such as x sinx 4,
without changing the basic conclusions above.

Acknowledgments. The authors gratefully acknowledge helpful discussions con-
cerning this work with Professor S. G. Halvorsen of the University of Trondheim,
Norway.

REFERENCES

[1] F. V. ATKINSON aND W. N. EVERITT, Bounds for the point spectrum for a Sturm-Liouville equation, Proc.
Roy. Soc. Edinburgh, 80A (1978), pp. 57-66.

[2] M. BEN-ARTZI aND A. DEWNaTZ, Spectral and scattering theory for the adiabatic oscillator and related
potentials, J. Math. Phys. 20 (1979), pp. 594-607.

[3] M. BN-ARTZ, On the absolute continuity of SchrOdinger operators with spherically symmetric, long range
potentials, I, J. Differential Equations 38 (1980), pp. 41-50.

[4] On the absolute continuity of Schr?)dinger operators with spherically symmetric, long range
potentials, II, J. Differential Equations 38 (1980), pp. 51-60.

[5] R. CaRMONa, One-dimensional Schrbdinger operators with random or deterministic potentials: New spectral
types, J. Functional Anal., 51 (1983), pp. 229-258.

[6] J. CHANDHURI AND W. N. EVrRITT, On the spectrum of ordinary second order differential operators, Proc.
Roy. Soc. Edinburgh, 68A (1968), pp. 95-119.

[7] E. A. CODDINGTON aND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New
York, 1955.

[8] M. S. P. EASTHAM AND n. KALF, Schrbdinger-type operators with continuous spectra, in Research Notes in
Mathematics, vol. 65, Pitman, London, 1982.

[9] D. HNTON aND J. K. SHAW, On the spectrum ofa singular Hamiltonian system, II, submitted.

[10] S. ITaTSU aND H. KNITa, Spectral matrices for first and second order self-adjoint ordinary differential
operators with long range potentials, Funkcialaj Ekvacioj, 24 (1981), pp. 23-45.

[11] E. MrRznaCKr, Quantum Mechanics, John Wiley, New York, 1961.
[12] E. MtOLLr-PrrIrrE,, Spectral Theory of Ordinary Differential Operators, Ellis Harwood, Chichester,

1981.
[13] P. A. REJTO, On a theorem of Titchmarsh-Kodaira-Weidmann concerning absolutely continuous operators,

II, Indiana Univ. Math. J., 25 (1976), p. 629-658.
[14] P. A. REJTO AND K. SINHA, Absolute continuity for a one-dimensional model of the Stark-Hamiltonian,

Helv. Phys. Acta, 49 (1976), pp. 389-413.
[15] P. A. REJTO, An application of the third order JWKB approximation method to prove absolute continuity, I,

II, Helv. Phys. Acta, 50 91977), pp. 479-494; pp. 495-508.
[16] E. C. TITCHMARSH, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I,

Oxford University Press, Oxford, 1982.
[17] J. WaL:v.,, Absolute continuity of the essential spectrum of -d2/dt + q( t) without monotony of q, Math.

Z., 129 (1972), pp. 83-94.
[18] J. WIDMNN, Zur Spektraltheorie yon Sturm-Liouville Operatoren, Math. Z., 98 (1967), pp. 268-302.



SIAM J. MATH. ANAL.
Vol. 17, No. 1, January 1986

(C) 1986 Society for Industrial and Applied Mathematics
018

ASYMPTOTIC BEHAVIOR
OF PERIODIC STRAIN STATES*

KENNETH B. HOWELL"
Abstract. The asymptotic behavior of the general periodic strain elastic state is discussed. The compo-

nents of the elastic state are initially assumed to be bounded by an arbitrary polynomial. It is then shown that
many of the components--for the case of plane strain, all of the components--can be approximated by
second degree polynomials whose coefficients can be readily computed from data generally available in such
problems. The error in using the approximation at different points in the elastic body is on the order of the
reciprocal of any polynomial of the distance to the boundary of the body.

Consequences of these results are then discussed with regard to Saint-Venant’s principle, the periodicity
of solutions to periodic boundary value problems, the uniqueness of the solutions to periodic and "slightly
periodic" boundary value problems, and various formulations of the theorem of work and energy.

1. Introduction. When dealing with problems involving infinite domains, one must
have some concern about the asymptotic behavior of the functions "near infinity".
Often, for example, it is desired--and assumed--that one or more of the functions and
their derivatives rapidly and uniformly approach well defined (and computable) limits
"at infinity". Muskhelishvili [6] and Gurtin and Sternberg [1] have shown the extent to
which this type of asymptotic behavior can be expected in classical elastostatic prob-
lems on domains exterior to some compact set. (See also Knops and Payne [5, Chap. 6]
for a discussion of similar problems on the whole- and half-space.) Unfortunately, it is
not always clear that the asymptotic behavior one would desire or expect can be
guaranteed on more complex domains. Indeed, in many cases just determining what
behavior should be desired or expected is a significant problem in itself. The problem is
often complicated by the fact that the asymptotic behavior may be strongly dependent
on the direction along which "infinity" is approached. One class of problems in which
this difficulty arises is the class of periodic and slightly periodic boundary value
problems in elasticity. In this paper we shall examine the behavior of periodic strain
states at great distances from the boundary of the elastic body. It shall be discovered--in
Lemma 6.1 and Theorem 7.1--that certain (in some cases, all) components of the
elastic state rapidly approach fixed values as the components are measured at increas-
ing distances from the boundary of the domain. This "asymptotic state" is easily
computed from the values of the displacement and traction on a portion of the
boundary. In spite of the rather strong bounds which will be derived, the bounds
initially assumed are quite weak--namely that the components of the elastic state are
bounded by some arbitrary polynomial. After the derivation of these results, the
implications of this asymptotic behavior will be discussed (in 8 and 9) with regard to
such issues as Saint-Venant’s principle, the periodicity of solutions to periodic boundary
value problems, and the uniqueness of solutions to slightly periodic boundary value
problems. In addition, extensions of the theorem of work and energy will be discussed.

This is the second of two papers dealing with directionally dependent asymptotic
behavior of biharmonic functions. In the first (Howell [4]) bounds were derived on the
derivatives of the general biharmonic function based on bounds assumed for the
original function. The major results of this first paper will be used extensively here, and
are summarized here in 3.
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2. Preliminaries: Elasticity. Whenever convenient, the points in k-dimensional
Euclidean space will be identified with the vectors in R k in the standard manner--i.e.,
through the agency of a suitably chosen Cartesian coordinate system. The induced
orthonormal frame of vectors will be denoted by {et, e2, .,e k }. As usual, if v and T
are, respectively, a vector and a (second rank) tensor, then Vg will denote v.e and
will denote eg. Tej.

The (elastic) body will be denoted by and its closure by cl. It occupies an open
connected subset of k-dimensional Euclidean space such that, if is any ball of finite
radius, then (’N) consists of a finite union of smooth (k-1)-dimensional mani-
folds with boundaries. In this paper, it will be assumed that the ambient space is either
two- or three-dimensional and (within this range) k, the dimension of the space, will be
arbitrary unless otherwise noted. The terms "volume" and "area" are to be interpreted
accordingly. In particular, if k 2 then "volume" actually refers to area and "surface
area" actually refers to arc length.

The outward pointing unit normal vector field on the boundary of (or any
subbody of under discussion) will be denoted by n.

The displacement, strain, and stress fields of an elastic state will be denoted by u,
E, and S, respectively, and are related throughout 9 by

E sym Vu,
s=c[w],
divS+b=0

where C is the elasticity tensor field on ’ and b denotes the body forces. If n is defined,
s will denote the corresponding surface traction field, Sn. Unless otherwise noted, the
standard continuity and differentiability conditions assumed in classical treatments will
be assumed here. The reader is reminded that S is a symmetric tensor field, that C[W]
vanishes whenever W is a skew tensor, and that if E vanishes in some region, then u is a
rigid displacement in that region (i.e., Vu is a fixed skew tensor).

In this paper it shall always be assumed that the media composin ’ is homoge-
neous and isotropic. Thus, there will be two constants,/ and (the Lam moduli) such
that for any strain field, E,

S C[E] 2#E + k (tr E)Id
where Id denotes the identity tensor. The corresponding displacement satisfies Navier’s
equation:

gVu+ (g+h)V divu+b=0.

In addition, it is to be understood that tt(h + 2/):/:0. Under these assumptions, it is
well-known that, if b is both curl-free and divergence-free, then u, E, and S are
biharmonic and infinitely differentiable on .

At times, additional assumptions will be made on the elasticity field, C. One
common assumption will be that C is positive definite. This means there exists a
positive constant, c, such that given any symmetric tensor, E, then

E.C[E]>cIE[.
If 5 is two-dimensional, then C is positive definite if both g> 0 and X + 2/> 0. For
three-dimensional bodies positive definiteness is equivalent to the Lam6 moduli satisfy-
ing #>0 and 3X+ 2#>0. Occasionally, the slightly weaker assumption that C is
strongly elliptic will be made. In this case the Lain6 moduli satisfy /(+2/)>0,
regardless of the dimension of the space.



ASYMPTOTIC BEHAVIOR OF PERIODIC STRAIN STATES 199

For a given (mixed) boundary value problem, the Lam6 moduli, F and X and the
body force field, b, are specified and the boundary of N’ is partitioned into two
subsurfaces, 501 and 52, each of which is the domain of a predetermined vector field, ca
and g, respectively. A solution to the boundary value problem consists of an elastic
state, (u,E, S) satisfying

u=ca on 501,
s= on502.

If 51 consists of the entire boundary of , the problem is referred to as a (surface)
displacement problem, while if 52 equals the boundary of N’ (up to a set of surface
measure zero), then the problem is termed a (surface) traction problem. If the body is
unbounded, one also usually desires that the elastic state at the point x behaves
"reasonably" as Ix approaches infinity along one or more paths in N’. Precisely what is
meant by "reasonable" and the extent to which "reasonable behavior" can be expected,
depends on the particular problem at hand and is the main object of much of the study
presented in this paper.

Given any mixed boundary value problem, there exists the corresponding null
boundary value problem in which Ca, , and b all vanish on their respective domains (,, 501, and 502 are as in the original problem). An obvious, but important, fact is that
the difference between two solutions to the same mixed boundary value problem is a
solution to the corresponding null boundary value problem.

Other types of boundary value problems can be described. In this paper the term
"boundary value problem" implies that , ,, and b are prescribed and that if (u, E, S) is
the difference between any two solutions to the problem then u.s vanishes almost
everywhere on the boundary of . It is trivial to verify that this includes the mixed
boundary value problems described above. For this more general class of boundary
value problems, the corresponding null boundary value problem is defined in the
obvious manner.

The uniqueness of the solutions to various boundary value problems is discussed in
the following two theorems. They will be used and refined later on in this paper.

THEOREM 2.1. Let be an unbounded body with positive definite elasticity field.
Suppose that (u, E, S) is the difference between two solutions to the same general boundary
value problem on and that

f lul2da= O(R ) as g o
nR

where R is the ball of radius R about the origin. Then E and S vanish on and u is a
rigid displacement.

THEOREM 2.2. Let be a two-dimensional unbounded body whose Lamb moduli
satisfy

andfor which there exists a fixed vector, v o, such that

v.n>0
almost everywhere (in the surface measure) on 3. If (u,E, S) is the difference between
two solutions to the same traction problem on such that

IvllSla=o(1) as R- ao
n
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whereR is the ball of radius R about the origin, and

IS(x) o Ix[- 

then E and S vanish on and u is a rigid displacement.
The above two theorems, in somewhat more general form, appear in Howell [2]

(Theorems 2.1 and 5.2, respectively). In the same paper is a theorem very similar to
Theorem 2.1 dealing with the displacement problem on bodies with a strongly elliptic
elasticity (Theorem 4.1). It is not difficult, in fact, to show that all the results in the
present paper involving a "general boundary value problem" on a body with "positive
definite elasticity" will hold equally well for a "displacement problem" on a body with
"strongly elliptic elasticity". This will be left to the interested reader.

3. Preliminaries: Asymptotic behavior of biharmonic functions. We are specifically
concerned with the behavior of elastic states "near infinity". Since the components of
the states which will be discussed are biharmonic, it is appropriate to quickly review the
notation and major results reported in Howell [4] concerning the behavior of bi-
harmonic functions "near infinity".

Let x be a fixed point in space, v a unit vector, and 0 a scalar satisfying 0 < 0 < r/2.
The corresponding cone, .Vf=(x, v, 0), is the region in space given by

Of’- (y’(y x)’v < ]y x[cos 0 ).
This corresponds, of course, to the standard notion of a solid cone with vertex at x, axis
in the direction of v, and whose sides make an angle of 0 with the axis.

If, instead, one has a set of points in space, Z, and a unit vector field on Z, v(x),
and a single fixed 0 with 0 < 0 < 7r/2, then the corresponding cone, U=(Z, v, 0), is
given by

U

Finally, if n is a nonnegative integer, the nth subcone, /’,, of (Z, v,0) is defined
by

It may be noted thato
THEOREM 3.1. Let Y, be a set ofpoints in space, v a unit vectorfield on Y,, 0 a constant

with 0 < 0 <= r/2, andUg’=f’(Y, v,0), and assume that

Let f be a positive-valued, locally integrable, nonincreasing function on [0, o); let m be
some fixed unit vector, and let , v, and c be real constants with c positive and -1 < ,.
Finally, let p (x) denote the minimum distance from x to the closure of E.

i. If 1 < , <= 0 and ch is a biharmonic function on 3Usatisfying

for all x in U, then

I,(x) I__< c(1 + Ira" xl) [o(x)] f(o(x))

[vq,()l<=Bc(l+lm.xl)[o(x)l--lf( 1 )-o(x)
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for all x in ;U1, where

a=sin’ -0 B=- -a C
and C is a constant depending on , only.

ii. If 0 < , and q and are biharmonic functions on OUsatisfying

I,(x)l=< c(1 + Im.xl)[o(x)]f(p(x)),
+(a + ]m. xl) [p(x)] )f(o(x))

for all x in OU, then

Vb (x) I=< Mc ([p(x)] ’+,-

for all x in 9Ua, where

(1 )+ (1 + Im’xl) [O(x)] -l}f

(1+ (1+ [m. xl) p(x)] f-l}f -ap (X)

a=sin’ 0
9 [2 I1++1

B=
2+1 a

C,

912 : / Co+M=
2ll++l

and CO and C are constants depending only on ,.
4. Preliminaries: Periodicity. Let p be a fixed nonzero vector. A scalar-, vector-, or

tensor-valued function, q, with domain f is said to be periodic (with period p) if both
of the following hold:

1. x is in 2 if and only if x + p is in 2.
2. q(x + p)= q(x) for every x in 2.

For convenience, the following conventions will be implicit for the remainder of this
paper:

1. The Cartesian coordinant system mentioned in the first paragraph of 2 is
chosen so that

p =pe
where p

2. Unless otherwise stated, all periodic functions have the same period, p.
A periodic boundary value problem is a boundary value problem in which the

prescribed data (b and the boundary data) is given by periodic functions. An elastic
state, (u, E, S), on N’ may have periodic displacement, periodic strain, or periodic stress.
Clearly, if the displacement is periodic so is the strain, and if the strain is periodic so is
the stress. Likewise, if C (when restricted to the symmetric tensors) is invertible, then
periodic stress implies periodic strain. Periodic strain, however, does not necessarily
imply periodic displacement. A trivial example would be an elastic state in which u is a
rigid displacement and E vanishes everywhere. Less trivial examples will be found in
the next section. Perhaps even more disconcerting is an example of a solution to a
periodic boundary value problem in which the strain is not periodic. Such an example
may be found in Howell [3, 3].
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A somewhat more general class of problems is the class of slightly periodic boundary
value problems. A problem is said to be "slightly periodic" if its corresponding null
boundary value problem--but not necessarily the original problem--is a periodic
boundary value problem. An obvious example of a slightly periodic problem would be
any traction problem on a half-space.

For many slightly periodic problems it will be convenient to define corresponding
"period sections". Let x be any point in space and let .Wx be any plane through x which
is not parallel to p--that is, (y-x)-p is nonzero for every y 4= x in x. oW will denote
the intersection of .Wx with ’, while #x and #will both denote the set

= (y " for some 0 < < 1, y ap oWx )
# will also be referred to as a period section. It should be obvious that the boundary of
# is the disjoint union of 0n0 with the two parallel "faces" of , ’x and 5x+ p. It
should also be clear that if n is the outward normal vector field to on 0 and y is a
point onx, then n(y)= n(y + p).

Proofs of the following two theorems may be found in Howell [3, Lemma 4.1 and
Thm. 3.1, respectively]. The first discusses the extent to which the displacement corre-
sponding to a periodic strain state may, itself, fail to be periodic. The second theorem
deals with the uniqueness of solutions to certain slightly periodic boundary value
problems.

THEOREM 4.1. Let (u,E, S) be an elastic state on with periodic strain, E. Then,
there is a fixed skew tensor, W, a constant, x, and a fixed vector, u, such that

p.=0

and, for each x in ,
u(x + p)-u(x)= Wx + xp + ft.

Furthermore, ifw is the rigid displacement given by

w(x) =p-Z [(p(R) fi)_ (fi (R) p)]x
and given by

then, for every x in , u(x) +w(x),

h(x + p)-h(x) =Wx + xp.

THEOREM 4.2. Assume that the elasticity tensor & positive definite. Let (u, E, S) be the

difference between two solutions to the same general boundary value problem on and
assume that u is periodic. If, letting R be the circular cylinder of radius R about the

Xx-axis

(4.1) f [ul2da O( R ) as R --, ,
then E and S vanish on and u is a rigid displacement.

Henceforth, whenever (u,E, S) is a periodic strain state, W, x, and fi will denote,
respectively, the skew tensor, constant, and vector whose existence is guaranteed by
Theorem 4.1. In addition, if is two-dimensional, then 0 will denote the constant such
that

=( 00 0o)
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while if M is three-dimensional, then co x, co2, and co3 will denote the constants such that

W -col 0 co3 )092 0) 0

It should be observed that the proof of Theorem 4.2, above, required a rather
straightforward modification of the proof of Theorem 2.1. A similar modification can
easily be made in the proof of Theorem 5.2 from Howell [2]. The resulting theorem (for
two-dimensional problems) is given below. The details of the proof are left to the
reader.

THEOREM 4.3. Let be a two-dimensional unbounded body whose Lamb moduli
satisfy

andfor which there exists a fixed vector, v o, such that

v.n>0

almost everywhere (in the surface measure) on 0. Let (u, E, S) be the difference between
two solutions to the same slightly periodic traction problem on such that

(4.2) f IvullSlda--o(1) as R-
n

whereR is the cylinder of radius R about the Xl-axis, and

(4.3) IS(x)l=o(1) as lx[--, on.

If the stress field, S, is periodic and the corresponding skew tensor, W, is the zero tensor,
then E and S vanish on and u is a rigid displacement.

For virtually every case of interest, Lemma 5.3 from Howell [3] can be employed
to show that in Theorem 4.3, above, the assumption that W vanish is unnecessary. In 6
of this paper, however, the asymptotic behavior of periodic strain states shall be studied
in great detail. As a corollary of this study and Theorem 3.1, it shall be seen that, in
many cases, uniqueness theorems comparable to the above two can be proven without
assuming a periodic strain and with conditions (4.1), (4.2), and (4.3) replaced by much
weaker assumptions.

5. Three important periodic strain states. Three special examples of periodic strain
states will now be presented. To distinguish these states from the others, they shall be
termed "base periodic strain states." While of some interest as counterexamples dem-
onstrating the limitations of Theorems 4.2 and 4.3, the main reason for introducing
these states--especially the first state below--will be their intimate relationship with
the asymptotic behavior "near infinity" of other elastic states.

The base periodic strain state associated with two-dimensional periodic strain states.
If (u, E, S) is a two-dimensional periodic strain state with

u(x + p) u(x) Wx + p + fi,

then the associated base periodic strain state (u*, E*, S*) is given by:
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u*(x,y) -p -x 2
+ 0 2(2/+,)p oy2+2pxy - 7

E* sym 7u*,

4/(+X)(0y+p,, 0)S* 2E* + X(trE*) Id
t2 +Xp 0 0

The following are easily verified:
1) (u*,E*,S*) is a periodic strain state corresponding to zero body force (i.e.

divS* =0).
) u*(x + p)- u*(x) Wx +p+ u(x + p)- u(x).
3) [Wu*(x)]p=Wx+ xp+fi+ p.
4) The surface traction, s*=S*n, vanishes on any line parallel to the X-axis.

Hence, (u*,E*,S*) is a nontrivial solution to the null traction problem on any two-
dimensional body whose boundary is parallel to the X-axis.
e base periodic sain state associated with three-dimensional periodic sain

states. If (u, E, S) is a three-dimensional periodic strain state with

u(x + p) u(x) Wx + xp +,
then the associated base periodic strain state (u*,E*, S*) is given by:

() 2w1 2w22pu*(x,y,z)= x+ 0 xy+ 2w xz
--2 --2 0

+2(+X) -2p y + ya_ 2a yz+ z
Z 2 2 2

2p)+ POl x+
26o3yz-ply-p6o2z

0
0

2p- [(p(R) fi)- (fi (R) p)]x,

E* sym 7u*,

S*(x,y,z)=21aE* + X(trE*) Id

0 0 0
--3Y 0 0
P

The following are easily verified:
1) (u*,E*,S*) is a periodic strain state corresponding to zero body force (i.e.,

divS* =0).
2) u*(x + p)- u*(x) Wx + xp + fi= u(x + p)- u(x).
3) XTu*(x)]p x+ xp + fi + 1/2wxpe2 + 1/2o2Pe3.

4) (u*,E*, S*) is a nontrivial solution to the null traction problem on any body
whose boundary is parallel to the Xx-X plane.

5) If o =0, (u*,E*,S*) is a nontrivial solution to the null traction problem on
any body whose boundary consists of straight lines parallel to the Xx-axis.
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The alternate base periodic strain state associated with three-dimensional periodic
strain states. If (u, E, S) is a three-dimensional periodic strain state with

u(x + p) u(x) x+p+ fi,

then the alternate associated base periodic strain state, (u*, E*, S*) is given by

(01 (02 0_x

-x0

+-- xz +x 0
P -xy 0 2p (2/, +))

0

(01y
2

(0222

2(.+x)
+

2

(0 fi2 - + - +T+7 0 x

E* sym X7u*,

S* 2tiE* + X (trE*) Id

=p -1

/+X 2/+ 3X
4P’ 2p, +)t [(01Y+ (02z1 +P (03P P’(03Y

The following are easily verified"
1) (u*,E*,S*) is a periodic strain state corresponding to zero body force (i.e.,

divS* =0).
2) u*(x + p)-u*(x) Wx + xp+ fi=u(x + p)- u(x).
3) [Vu*(x)]p=Wx+xp+fi+ 1/2(0tpe2+ 1/2(0_pe3.
4) If (02 (03 =0, (u*,E*, S*) is a nontrivial solution to the null traction problem

on any body whose boundary is parallel to the X1-X plane.
5) If (or =(0.=0, (u*,E*,S*) is a nontrivial solution to the null traction problem

on any body whose boundary is a right circular cylinder centered on the
Xt-axis.

6) If (01=(0.=(03=0, (u*,E*,S*) is a nontrivial solution to the null traction
problem on any body whose boundary consists of straight lines parallel to the
X-axis.

6. The major lemma.
LEMMA 6.1. Suppose OU=U(, v, 0) is a nontrivial cone (0 :/: O) satisfying the follow-

ing conditions"
i. is a nontrivial closed subset of OoU;

ii. for each real *l and each nonnegative integer, m, x + /e is contained in U
oU(Y,,v, 2-m0) whenever x is a point in,)U1.
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Let (u, E, S) be a periodic strain state on of’( with period p) corresponding to a body force
with vanishing curl and divergence, and suppose that for somefixed >= 2, either

or

(6.2) E(x) O(IXl/-1) aslxl onOU

Then, given any integer, n >__ 2,

[Vu(x)]p-[Wx+xp+fi+h]=O(ot-n) astg

where p p(x) denotes the distance from x to Z and

2 ifE is a plane strain,
h= pez+ pe otheise.

Proof. It should be noted that (6.1) and (6.2) both imply

(6.3) E(x)=O(oa-x) aso on.
To see this, first observe that if (6.1) holds, then there must exist some nonincreasing,
locally integrable function, f(o), such that

for each x in . But, since E is the symmetric gradient of u, Theorem 3.1 (with v 0
and ) can be employed to show that

for each x in (M and a are constants from Theorem 3.1). Thus, by the geometry of
the period sections,

(6.4) fx)=O(o"-1) aso on:
where : is any period section. In a much more obvious manner, (6.4) also follows from
(6.2). (6.3) now follows immediately since E is periodic on 1.

Now, let (, g, g) be the elastic state defined by

=UU*

where (u*,E*, S*) is any of the corresponding base periodic strain states associated
with (u,E,S). Clearly, (,g,g) is a periodic displacement state on which also
satisfies (6.3), that is

t(x)=O(o"-a) one1.
Employing Theorem 3.1 again (this time with =0 and f= -i), it can be seen that
(6.5) implies

vt(x)=O(o one:.
But it is easily checked that

(6.1) u(x) O(Ixl as Ixl o on J:"
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and, thus,

v v(x)=O(-) s -, on.
By this, the periodicity of , condition ii., and basic calculus"

v(x)] v(x)]- [(x + )-(x)]

=0[P V(x)- V(x+oel)]e’do

=o(0-) so on,
which, of course, is equivalent to

(.0 a,(l=o(0-) aso on
since p=pe.

Theorem 3.1 can now be applied to u, using the bounds indicated by (6.6). The
result is that

a,(=o(o-) so on.
The above integration is still valid but now yields

Ivy(x)].=-
=o =o

=O(pa-a) asp on3.

Thus,

(6.7) [V(x)]p=O(pt-2) asp on’U2
implies

(6.8) [7l(X)]p--O(p/3-3) aspo on33.

Repeating the arguments which led from (6.7) to (6.8), one quickly discovers that (6.8)
implies

[Vl(x)]p=O(p/-4) asp---c,z on4

which, in turn, leads to

[V(x)]p=O(o-5) asp ong

and so forth. Taking the inductive leap, one obtains

[V(x)]p=O(0t-") as O onU.
for every integer, n >__ 2. This essentially completes the proof since by the definition of

Vh(x)]p= XTu(x)]p-[ Vu*(x)]p
and, as was observed in 5,

Tu*(x)] p Wx + rp+fi+ h

for any of the base periodic strain states associated with (u, E, S). []
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It should be observed that, often, Jg’=..U =af’2, etc. In these cases, the above results
are quite strong. Examples of such situations would be problems involving half-spaces
and bodies exterior to cylinders (more generally, periodic fractional spaces and periodic
exterior bodies, see Howell [4, {}7]).

In the next section Lemma 6.1 will prove extremely useful in establishing com-
pletely the asymptotic behavior of periodic plane strain states. A somewhat simpler
application of Lemma 6.1 can be found in the next corollary.

COROLLARY 6.2. Let it"be as in Lemma 6.1 and let f denote a locally integrable,
nonincreasingfunction on [0, oo) such that

f(o)=o(1) as o o.

Suppose that (u, E, S) is a periodic strain state on a body containing ;Uand suppose that
either

(6.9) lu(x) __<[p+ (1 + [x[)] f(p)
for every x in oUor that

(6.10) IS(x)l =<f(p)

for every x in oU1. Then IWl x 0.
Proof. Using the invertibility of the relationship between the strain and the stress,

and arguments similar to those used in the proof of Lemma 6.1, it can be shown that
either (6.9) or (6.10) implies that

and

VVU(x)=O(p -1) aso on,f"

El(X)=O(1) aspc onU2.

It then follows that

Vu(x + p)- Vu(x)

 u, (x+o  leo-o(0 as0--, 
--0

which is possible only if W is the zero tensor.
Now, since W is the zero tensor, Lemma 6.1 implies that

[Vu(x)]p-[p+u]=O(o-) asp-->o on4.

Here, we have also used the fact that h vanishes if W vanishes and the fact that by
either (6.9) or (6.10), 13=2. Taking the first component, rearranging slightly, and
recalling that E u,l gives

p=pE(x)+O(p-2) asp-o on:U4

which, since Ell(X) also vanishes as p o, forces x to be zero. u

7. Asymptotic behavior of periodic plane strain states. In this section and the next,
attention will be restricted to plane strain states on bodies containing the upper
half-plane, (x (x,y)"y > 0}. For convenience, the notation (x,y) rather than (xx, x2)
will be adopted for the components of x. It should be clear that the upper half-plane
can be viewed as the cone ’=(0,e2, 0), where 0 is the X-axis and 0 is arbitrary.
Thus, the results from the previous section can be applied. Let us also, at this time, take



ASYMPTOTIC BEHAVIOR OF PERIODIC STRAIN STATES 209

note of the following two observations:
1.0(x), the distance between Y’0 and x (x,y), is given by
2. For any nonnegative integer, n, oU,----.
It will be shown that at great distances from the boundary, any periodic plane

strain state, (u, E, S), can be closely approximated once four constants corresponding to
the state have been determined. Not surprisingly, two of these constants are
The other two constants are the components of the "negative mean surface traction,"
defined by

(7.1) g lim
1 fSnda

y -o p

where, for any period section,

5y= (’ {(x,))’)>__y }) ccl.
It will be seen that the negative mean surface traction does always exist.

Let (u, E, S) be a periodic strain state with corresponding negative mean surface
traction g= (gl,g2) and corresponding base periodic strain state (u*,E*, S*) (as defined
in {}5 for plane strains). The "asymptotic state", (u,E,S), corresponding to (u,E, S)
is given by the following formulas:

(7"2) u(x’y)=u*(x’Y)+
(2/, + X)

X ( [2/* + gly)/zg2y
( 0 )2p (2/, +) ay2+2pry

+(x0) + o fi2] 1

1 ( 0
(7.3) E= sym Vu=E* +

2/.t (2/, + X) (2 + )X)l

(7.4) S(x,y)=2tzE+X(trE)Id=( A[ay+xp]+Bg2s1 s 2

where

A= 4/, (/, +) B=
X

p(2/x+X) 2+X"

It is easily verified that (u,E, S) is a periodic strain state corresponding to zero body
force (i.e. divS=0) and that u-u is a periodic displacement. The next theorem
establishes much more, namely that (u,E,S) closely approximates (u,E,S) at great
distances from the boundary of the elastic body.

THEOREM 7.1. Suppose that is a two-dimensional elastic body containing the upper
halfplane, ((x,y) y>0), and that (u,E, S) is a periodic strain state on corresponding
to zero body force. Assume, also, that for some arbitrary real fl and some period section,

either

o(Ixl Ixl- o.
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or

Then the negative mean surface traction, g, exists. Moreover, there is a fixed vector, v o,
such that, for any positive

(7.5) u(x,y -u(x,y ) -v= O( y
(7.6) E(x,y)-E(x,y)=O(y
(7.7) S(x,y)-S(x,y)=O(y

where (u,E, S) is the asymptotic state corresponding to (u,E, S) given by formulas (7.2),
(7.3), and (7.4).

Proof. Let (u*, E*, S*) be the base periodic strain state corresponding to (u, E, S)
and let (,, g) be the elastic state on defined by

u(x)-u*(x).
It is easily checked that (, g, g) is a periodic displacement state on corresponding to
zero body force and, by Lemma 6.1,

[Vfi(x,y)]p=O(y -v-a) asy
for all positive y. By Theorem 3.1, then,

(7.8) i,2k(x,y)=O(y--) asy

for all possible i, j, and k except i=j= 2. However, since the body force is zero, the
two-dimensional Navier equatiOn can be written

fi, + fi,=+ +X(,+ 2,) =0,

2,11 +2,22 + ’’’+x (1,12 +2,22)=0

which can be solved for 1,22 and 2,22 in terms of the other second derivatives of
But, it is for these other second derivatives that (7.8) holds. Thus,

(7.9) VV(x,y)=O(y--2) asym

for any positive
Now, choose any pair of points (x,y) and (ff, fi) with Ix-lp and 0<y.

Integrating VV along a straight line path between (x,y) and (,) leads to

V(x,y)-

for any positive V. Straightforward "Cauchy sequence" arguments shows that this
implies the existence of a fixed tensor, , such that

V(x,y)-=O(y

Using either the periodicity of or the asymptotic behavior of u(x,y) as y + , il
is easily seen that is independent of the choice of x.
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Using XTu(x,y)-" instead of X7 XTu(x,y), the above succession of integration and
"Cauchy sequence" arguments proves that there is a fixed vector, v, such that

(7.10) (x)-J’x-v-O(y-v) asy oo

where x-- (x,y) and , is any positive real constant.
Letting (fi, 2, ) be the elastic state given by

= sym Vfi,

g 2g2+ h(trt) Id

and recalling the definition of ft, it becomes clear that (7.10) is equivalent to

(7.11) u(x)-u*(x)-a(x)-v= O(y-) asy-,

which by Theorem 3.1, implies

E(x)-r*(x)-2=O(y-) asy oe(7.12)
and

(7.13) S(x)-S*(x)-=O(y-v) asy oe

where x--(x,y) and , is any positive real constant. Comparing the last three expres-
sions with (7.5) through (7.7), along with (7.2) through (7.4), leads to the realization
that the theorem will be proven once g has been shown to exist and once it has been
shown that

(7.14) ’x= 1 ( [2F+X]gly )(2+X) Fg2y

for each x=(x,y). It should be observed that (7.14) certainly holds if both 1=0 and
i. gi for 1 and 2.

First, consider the fixed tensor ’. By the periodicity of and (7.10)

’p= [(x)-’x]- [h(x+p)-’x-’p] =O(y-v) asy-

for each x (x,y) and ,/> O. Thus,

’11 ’21 0.

Next, fix z and y > 0 arbitrarily, and let

=,.,
y= ( ( x,Y ) lY <y }
y= {(x,y)’y=y}.

It then follows that

(7.15)
0=f divSdv= fa Snda

n%

=f, Se2da+ f Snda+ f, Snda+ f,, Snda,
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where .e and Aaz+ p are the left and right faces of and 5a_3, is as defined by (6.1). S,
however, is periodic and, for each x in 0,, n(x)=-n(x + p). Hence, the last two
integrals in (7.15) cancel each other. What remains can be written"

l f Snda
l f Se2 da(7.16t

P _y - Oy

The limit, as y approaches infinity, of the right-hand side of (7.16), can easily be
computed using (7.13) and the definitions of S* and . The result is

(7.17) lim
1 f Sn da 3e

proving, in a single step, that ?, exists and that

for 1 and 2.
By the above, it makes sense to discuss the vector Se2 "at y= + m". Likewise, if 9

contains a lower half plane (i.e., a set of the form {(x,y):y<y } for some y0), then
Se2 at y m" is also a well-defined fixed vector. These two tractions, however, may
not be equal. Indeed, if ’ does contain a lower half plane, then (7.15) leads to

1 f s da- Se2[y= g Se
P J),n) +

from which the following observations may be made:
1. If is contained in a single half plane, then Se213,= + is determined entirely by

s on OM through the formula

2’3’ + P :n

2. If ’ contains both upper and lower half planes, then Se2ly= + equals Se213,=
if and only if

sda=O.
n

8. Consequences. It would be unnatural not to discuss the implications of Theo-
rem 7.1 with regard to questions concerning the finiteness of the total energy, the
uniqueness of solutions, Saint-Venant’s principle, etc. We shall not be unnatural. To
simplify the discussion it will be assumed in this section that any body, M, satisfies all
of the following in addition to being homogeneous and isotropic.

1. ’ is two-dimensional.
2. The characteristic function for is periodic (with period p).
3.3M9 is a bounded set in space.
The first theorem is simply the observation that Theorem 7.1 can be viewed as a

sort of Saint-Venant’s principle. Details of the proof will be left to the reader.
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THEOREM 8.1 (Saint-Venant’s principle). Let (ul, E1, S1) and (u2, E2, S2) be two

periodic strain solutions to two, possibly different, periodic boundary value problems on 5
both involving the same body force. Assume that one of the following holds"

i. ua(x)-u(x)= o(Ixl) as Ixl- on ;
ii. SI(x)- S2(x)= o(l) as Ixl- o on ;

iii. 9, the surface on which u is prescribed, is nontrivial for both i= 1 and i= 2, and
either

or

a lxl-  

Sle2- S2e2-- o(1) as Ixl--, o on ;
iv... is contained in a single halfplane and both of the following hold:

Slnda =f S2nda’
na

Sl(x)-gl(X)=O(1) as Ixl- on .
Then, for somefixed vector, v, and any positive constant, ,

ua(x)-u(x)-v=o([x[ -v) as[x one,

r  x)-r  x =o(Ixi
SX(x)-S=(x):o(lx] as on .

The next theorem is the extension of the well-known theorem of work and energy
which states that if (u,E, S) is an elastic state corresponding to a body force b on a
bounded body, f, then

The main difficulty in extending the classical theorem of work and energy to elastic
states on unbounded bodies lies in the difficulty of assuring the convergence of the
resulting improper integrals without making undesirably strong assumptions on the
behavior of the state "near infinity". Fortunately, Theorem 7.1 insures that periodic
strain states on ’ do approach their values "at infinity" quite rapidly. Thus, in this
case, extending the theorem of work and energy is a very simple exercise and will be left
to the reader.

THEOREM 8.2 (work and energy). Let (u, E, S) be a periodic strain state correspond-
ing to zero body force on which satisfies either

u(x)=o(Ixl) as lxl- on
or

S(x)=o(1) as lxl on.
Then the total work expended in the deformation of any period section, , is finite and is

given by

f2" Sdv=fnu’sda"
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If, however, (u, E, S) is a periodic strain corresponding to zero body force on which

satisfies either

o x) aslx{ on
or

then

S(x)-o(Ixl) aslxl  one,

exists and equals

where

and

lim
1 ffE.Sdv

[124/x( + ;k)
2+X y+x 1 )2 1

-’1- ; (’1 -1-
2/,+X

y the area of;
and oa, x, gl, and g. are the constants from the definition of (u, E, S) in Theorem 7.1.

Later (in {}9), a theorem of work and energy will be presented in which the body
force is not assumed to be zero.

The reader may have already recognized that the bodies being considered here are
the two-dimensional analogues of the periodic exterior bodies discussed in [4]. Indeed,
the restriction that periodic exterior bodies be three-dimensional could have been
dropped without affecting any of the theorems (Theorems 8.1 through 8.5 in [4]). The
advantage of waiting until now to discuss these theorems with two-dimensional prob-
lems lies, of course, in the fact that, with Theorem 7.1, these same theorems can be
simplified and strengthened. The resulting improvements are summarized in the two
theorems below. The proofs will not be given. To simplify the statements of the
theorems, the difference operator, , will be used where, for any suitable function, q,

iq (x)= ilq (x)=q(x + p)- q(x),

The reader is reminded, once again, that in all theorems in this section, is two-
dimensional.

THEOREM 8.3 (periodicity of solutions). Let have positive definite elasticity and let
(u, E, S) be a solution to a periodic boundary value problem on . Assume that there are
real constants, C and fl, such that, for some nonnegative integer, n, either

[8 "u( x,y ) l__< C(1 + [y[t)(1 + Ix[ 1/2)
for every (x,y) in , or

[8"v E(x,y)l__< C(1 + ly[)(1 + [xI 1/2)
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for every (x,y) in . Then E and S are periodic provided any one of the following hold:
1. u(x)= o(Ixl 2) as Ixl--) on ;
2. S(x)- o(Ixl) as Ixl--) on ;
3.5al, the surface on which u is prescribed, is nontrivial and either

or

and

s  -=o(Ixl) as one;
4. 5 is contained in a single halfplane, the traction is prescribed on almost all of,

5. for each x in

6. for each x in

S11(x)--o(lxl) as lxl--> one;

8S(x+kp)=o(1) as k c one;

8vS(x+kp)=o(1) as k--. m on N

and there are two points on at which s is prescribed such that the normals to at
these two points span g 2;

7. for some nonnegative integer, m, and each x in

vmu(x + kp)=o(1) as k- o on [

and the projection ofSa onto the Xz-axis has nontrivial interior.
THEOREM 8.4 (uniqueness of solutions to slightly periodic problems). Let have

positive definite elasticity and let (u,E,S) be the difference between two solutions to the
same slightly periodic boundary value problem on . Assume that there are real constants,
C and , such that, for some nonnegative integer, n, either

for every (x,y) in , or

Inll(X,y)l<. C(1 + lyl)(1 + Ixl/)

18"v E(x,y)l__< C(1 + lyla)(1 + Ixl /2)
for every (x,y) in 5. If any one of the following conditions holds, then E and S vanish
throughout 5 and u is a rigid displacement:

1. u(x)-o(Ixl) as Ixl--’ on ;
2. S(x)= o(1) as Ixl---) on ;
3. 91, the surface on which u is prescribed, is nontrivial and either

or

and

S1=0(1) as[xl-+ on.

Se:=o(1) as lxl- one’;

4. is contained in a single halfplane, the traction is prescribed on almost all of O,

Slx(X)=O(1) as [xl---> oz one;
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5. for each x in 8

6. for each x in

S(x+kp)=o(1) ask on[;

x7S(x+kp)=o(1) as k o on

and there are two points on at which s is prescribed such that the normals to at
these two points span R 2;

7. for some nonnegatioe integer, m, and each x in

V mll(X - kp)= o(1) as k ----) t3Q on

and the projection ofSa onto the Xz-axis has nontrivial interior.
It should be noted that conditions 5, 6, and 7 in the above two theorems were

discussed in the corresponding theorems in [4]. If one of these three conditions is the
condition which holds, then Theorem 7.1 need not be used in proving the claimed
periodicity or uniqueness.

The final theorems of this section involve the traction problem. The restrictions on
the Lam6 moduli will be greatly weakened, while an additional condition (along with
those assumed at the beginning of this section) will be imposed on the geometry of ’.
That condition is

4. There is a fixed vector, m, such that

rn.n> 0

almost everywhere on the boundary of .
The term "quasi-half plane" will be used (with some apologies) to denote a body

which satisfies Condition 4 as well as the conditions already assumed at the beginning
of this section. The only restriction on the Lam6 moduli is that

(2# + 2)(/ + ?) 4: 0.

The first result in this final sequence of theorems is the obvious improvement of
Theorem 4.3 using Theorem 7.1. The proof is straightforward and will be omitted.

THEOREM 8.5 (uniqueness of periodic strain solutions). Let be a quasi-halfplane
and let (u, E, S) be the difference between two solutions to the same traction problem on .
Suppose that E is periodic and, for some > O, satisfies

If either

or

E(x)=O(lxlt) as ]xl o on .
u(x)-o(Ixl) as lxlo on

Sl1(X)--o(1 ) as lxl---,o on
then E and S oan&h throughout and u is a rigid displacement.

In [4] it was shown that combining a general uniqueness theorem with a corre-
sponding uniqueness theorem for periodic strain states and successive applications of
Theorem 4.2 led to the assertion that certain periodic boundary value problems had
only periodic strain solutions (see Theorems 8.1 and 8.3 of [4]). Likewise, an intelligent
combination of Theorems 2.2 and 8.5, above, along with several applications of Theo-
rem 3.1 will prove the following theorem. The proof however, will be omitted since it is
both tedious and similar in spirit to those in [4].
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THEOREM 8.6 (periodicity of solutions). Let be a quasi-halfplane and let (u, E, S)
be a solution to a periodic traction problem on . Suppose that for some fl > O,

vu(x + p)- vu(x) O(ly[a) as lyl

S(x + p)- S(x) =o(1)

and

1 + lYl a

where ( x,y ) x. Then E and S are periodic.
Finally, consider an arbitrary, not necessarily periodic, traction problem on a

quasi-half plane. By the definition of quasi-half plane the corresponding null traction
problem is periodic. Thus, Theorem 8.6 can be applied using the difference between
any two solutions. Once the difference is found to be periodic, Theorem 8.5 can be
invoked to prove that, in fact, the difference is a trivial elastic state. This analysis is
summarized in the following theorem.

THEOREM 8.7 (uniqueness in the general traction problem). Let be a quasi-half
plane, and let (u, E, S) be the difference between two solutions to the same traction problem
on . Suppose that for some fl > O,

E(x) O(Ix]t) as Ixl-, on

Vu(x + p)- Vu(x)= O(lyla) as ly[

and

where ( x,y ) x. If either

S(x + p)- S(x)
l+lYl

=o(1) as Ixl

u(x)=o(Ixl) as lxl on
or

Sll(x)=o(1) as lxl m on

or

Sl(x)=o(1) as Ixl--. ,
then E and S vanish throughout and u is a rigid displacement.

9. Nonvanishing body forces. Although the major lemma, Lemma 6.1, was derived
without regard to the presence or absence of a nontrivial body force field, b, the
vanishing of b was an assumption in Theorem 7.1. If, instead, one assumes in Theorem
7.1 that the body force field, b, is curl-free and divergence-free and satisfies

b(x,y)=O(y-) asyoz

for some real constant, a, then (7.9) in the proof of Theorem 7.1 becomes

XTX7u(x,y)=O(y-) asyoe.
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If, in addition

where

lim f bda=O

then slight modifications in (7.15) and (7.16) still imply (7.17). With these changes,
Theorem 7.1 becomes

THEOREM 9.1. Suppose that is a two-dimensional elastic body containing the upper
halfplane, ((x,y) y > 0), and that (u, E, S) is a periodic strain state on corresponding
to a body force, b, satisfying both

and, for some a > O,

lim f bda=O

b(x,y)=O(y-) as y---> m.

Assume, also, that for some arbitrary real and some period section , either

u(x)- o(Ixl as Ixl-’ on

or

E(x) O(]xl/) as Ixl---> on .
Ifa > 1, then the negative mean surface traction, , exists and

E(x,y)-E(x,y)=O(y1-) asy---> ,
S(x,y)-S(x,y)=O(y1-) asym

where (u, E, S) is the elastic state defined in 7. Moreover, if > 2, then there is a fixed
vector, v , such that

u(x,y)-u(x,y)-v=O(y2-) asym.

From this can be derived the following theorem of work and energy (compare with
Theorem 8.2). is as described in 8.

THEOR 9.2 (work and energy). Let (u,E,S) be a periodic strain state on

corresponding to a curlfree and divergence free body force, b. Assume that

lim bdv=O
Y

and that, for some a > 2,

and that either

b(x) O(Ixl-) as [x[---> oz on

u(x)=o(lx[) as [xl---> on



ASYMPTOTIC BEHAVIOR OF PERIODIC STRAIN STATES 219

or

S(x)--o(1) as lxlo on .
Then the total work expended in the deformation of any period section, , is finite and is

gioen by

E. S dv fo u.sda+f.bdv.
In a similar fashion, versions of Saint-Venant’s principle (Theorem 8.1) involving

nonvanishing body forces can be derived as direct consequences of Theorem 9.1. These
will be left to the interested reader.

10. Asymptotic behavior of periodic nonplanar strain states. There does not exist a
theorem analogous to Theorem 7.1 for nonplanar strain states. This can be seen by
taking the two base periodic states from 4 associated with an arbitrary three-dimen-
sional periodic strain state in which 01 =02 =0. Letting M be the upper half space,
{(x,y,z)’z >0}, it is clear that the negative mean strain, , associated with each base
state is 0. Thus, provided a theorem analogous to 7.2 did hold for such states, the two
base states should approach the same "asymptotic state" as z approaches infinity.
Clearly, however, they do not.
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Abstract. Let f(z)-.,,=oa,,z g(z)=.,,=ob,,z be analytic functions in a disk D. For z D, define the
quasi inner product off and g by

1 2 -io b,z.f(z)o g(z)=" f(zei)g(ze )dO= a,,
lifo

In this paper, (i) we treat the analytic and algebrc properties of and (ii) apply this composition to

special functions. Included are treatments of the hypergeometfic functions, generating functions, and the
Lerch transcendent function. Certn generalizations of the composition are also considered.
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Key words, analytic function, quasi inner products, diagonal of product series, special functions, generat-
ing functions, representations

1. Introduction. Let x,y,z denote complex variables and let f(z), g(z) be a pair of
functions of z that are analytic in a disk D of radius R with center 0. Suppose that
f(z)=,,=oa,z" and g(z)=,=ob,z". Then if x, yD, we define the compositions
f(x) g(y) of f and g by the relation

1 fo2(1.1) f(x)o g(y)=--, f(xeiO)g(ye-iO)dO a,,b,,x"y".
n=0

The last member of this is simply the sum of the main diagonal terms in the product of
the series for f(x) and g(y). The integral in (1.1) defines a convolution of two functions
and is a modified version of a contour integral employed by M. L. J. Hautus and D. A.
Klarner in their treatment of the diagonal terms of a double power series whose
coefficients are defined by a linear recurrence relation [8]. In addition, J. Hadamard
made use of an integral analogous to (1.1) to determine the singularities of the function
defined by the series En=oa,b,z (Hadamard’s multiplication theorem) [13]. If the a
and b,, are real, then the right member of (1.1) assigns a real value to each fixed pair of
reals x, y D and has the form of an inner product. Similar inner products appear in
H2 space theory [5], [9], [12]. In our discussions, we permit x and y to vary in D in (1.1)
and refer to the composition in (1.1) as a quasi inner product which we abbreviate by
qip.

Our interest in qip (1.1) (and a number of its generalizations) is motivated by (i) its
utility in developing integral representations and related results for special functions
and (ii) its applicability to transmutations (see [1], [3]) and the representation of
solutions of partial differential equations. Qip’s can be used as function builders and
(1.1) permits the introduction of multipliers. Thus, if g(y) is analytic in a region which
includes lyl 1, then by selectingy- 1 in (11.) we have the formula

1 f2r iO -iO(1.2) a,b,x"=---..to f(xe )g(e )dO
n=0

*Received by the editors February 3, 1983, and in revised form March 14, 1984.
*Department of Mathematical Sciences, Oakland University, Rochester, Michigan 48063.
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in which the coefficients a, in the expansion of f(x) are multiplied by the b.’s (see [6]).
As an example of (i) suppose we select f(x)= g(z)= e z/2. Then (1.1) immediately yields
the familiar result"

2n--. eZcosOdO=eZ/2 eZ/2=
22 n!) 2--=Io(z),

a modified Bessel function of index 0. By making other suitable choices for f(z),
g(z) in (1.1) as special functions or generators of special functions, one can easily
obtain numerous integration results that would, at best, be more tedious using
standard methods. With modifications in the right member of (1.1), one can also

nyconstruct superdiagonal sums (i.e. Y’.’=oa’b’+jx "+Jj> 1) or subdiagonal sums

(}2"=oa"+jb"x"+Jy",j> 1) from the product f(x).g(y). For instance, if we replace f(x)
in (1.1) by xJf(x),j a positive integer, it is easy to verify that

(1 3)
1 f02r iO -iO y’+j29" eJif(xe )g(ye )dO= Z anbn+jX

n=0

Again, takingf(z)= g(z)= e z/2 in this, it follows that

Ij (z) =-- eJgeZ CSdO=--- (cosjO ) e dO.

One can construct other qip’s such as

1 ’2r piO qiO(1.4) f(Z)pOqg(y)=---.jo f(xe )g(ye- )dO

with p,q positive integers and, for simplicity, (p,q)=l. This will select out sums of
terms from f(x)-g(y) along rays other than the usual diagonals. Modifications similar
to (1.3) can also be developed for this qip. The qip’s (1.1) and (1.4) bring together
notions from both analytic functions and Fourier analysis.

In this paper, we will treat the basic properties of these qip’s and certain of their
applications to special functions while deferring their uses in p.d.e’s. Section 2 will be
concerned with the analytic properties of qip’s (1.1.) and (1.4). By making use of
relations such as (1.3) for superdiagonal and subdiagonal sums, we construct a partial
sum integral that approximates the product f(x)-g(y). Not surprising, the kernel
function in this approximation is the same as the one in the Fourier series case and
leads to analogous convergence results. We also note the algebraic and differentiation
properties of these quasi inner products. Finally, in {}{}3-5, we apply these qip’s to
obtain a variety of representations and results for special functions. Many of these
appear to be new while, in other cases, the method leads to simplifications over
standard treatments. In {}3, we apply these techniques to the hypergeometric functions
pFq. We apply (1.1) and (1.4) in {}4 to a number of generating functions of special
polynomials and functions. In {}5, we note some results for the Lerch transcendent
function. Finally, we consider some examples that involve extensions of the ideas
behind the compositions and p q.

2. Analytic properties of (1.1) and (1.4). If f(x), g(y) are analytic for x, y D,
then it readily follows that f(x) g(y) is analytic in x and y. For, there exists O > 0 with
max(Ixl, lYl) < O < R and M> 0, N> 0 such that lanl < M/p", Ib, < N/p’. Hence

1 f02,-" f(xei)g(ye-i)dO < E la’t Ib,,I Ixyl" < E MN IxYl-- n
=0 =0 p2n
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and this last series converges by the ratio test. Thus, f(x)o g(y) is well defined for x,
yD.

If at least one of the two functions appearing in the qip (1.1) is entire, say g(z),
then one can prove the following result.

THEOREM 2.1. Let f(x) be analytic in x with

limsup la,,[/ 1=, 0<R<o,

and let g(y) be entire in y. Then for Ix[ < R, f(x) g(y) is entire in xy.
In the proof of Theorem 2.1, the restriction imposed on x is necessitated by

requiring the integral in (1.1) to be well defined. However, the right member of (1.1) is
well defined for all xy. In practice, one can select x D, x 4: 0, and then choose y so
that xy takes on the value one wishes to use.

In addition to these results, there are a variety of algebraic and other analytic
properties associated with the qip (1.1). The following can be easily verified by the
reader.

THEOREM 2.2. Let f(z), g(z), and h (z) be analytic for z D. Then for x,y, z D, we
have

(i) f(x) g(y)= g(y)o f(x);
(ii) f(x)o[g(y)+h(y)]-f(x)o g(y)+f(x)o h(y);
(iii) if f(z) and g(z) have no powers of z in common in their expansions, then

f(z)og(z)=O;
(iv) for n a nonnegative integer.

g(z))= j [(z
j-- 0

The last of these can be checked by induction. On the other hand, we have, in
general,

(2.1) f(z)o [g(z) h(z)] 4: If(z) g(z)l (z)

(for example, select f(z)= g(z)-- z and h(z)= z2). Thus, relative to the composition o,
the set of functions analytic in D have divisors of 0 and are nonassociative. Further, if
g(z)= z, then 1 g(z)= 0 so that 1 does not serve as a multiplicative identity relative to
the composition. In using the qip (1.1) to construct "advanced" functions from
elementary ones, the failure of associativity usually presents no serious problems. One
computes, say, f(z)o g(z) and then replaces z 2 in this by a new variable before making
further applications of the composition.

In (1.3), we obtained an integral formula for the sums of terms of f(x).g(y) taken
from the superdiagonals. Similarly, if we replace g(y) in (1.1) by yJ.g(y), one can
verify that

1 fo2 iO iO
o

(2.2) 2r" e-Jif(xe ) g(ye dO
,=o

an+jbnx +Jy J >= 1.

The right member of this yields a sum of terms from f(x).g(y) taken over a subdiago-
nal.
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Finally, suppose we sum the left members of (1.3) and (2.2) onj from -N to N by
using (2.2) forj negative and (1.3) forj nonnegative. We get

(2.3)

;o 11. f(xeO)g(ye_O ) _, e dO= f(xe )g(ye )
sin0

dO.
2

j= N

Sincef(xe) and g(ye-) are analytic and periodic in 0 of period 2 for fixed x and y,
it follows, from the Dirichlet convergence criterion for Fourier series ([4], [13]), that

1 [2, ,o -,o sin(N+)0(2.4) lim ’Jo f(xe )g(ye ) dO=f(x).g(y).
N sin 0

Alternatively, one could assume that the sum of the diagonal, superdiagonal, and
subdiagonal terms of f(x). g(y) converges to f(x)-g(y). From this, we could then infer
the limit relation (2.4).

We observe that if f(z) is analytic in a disk D of radius R > 1, then

"fo1 2,, if(e,O)12dO= E a,,, a real.(2.5) 2rr

If, for example, we make the choice

1 b"z"

0f(Z)-a-bz a "+1’

then (2.5) leads to the integral evaluation

foa,r [a2+b2_2abcosO]_ldO= 2
Hence, if c > d> 0, we get

(2.6) 2, (c_dcosO)_XdO= 2r

For the qip (1.4), it is easy to show that

(2.7) f(x ) pOq g(y) y’ a,,qb,,px"qy"p
n=0

a>b>o,

(c2_d2)1/2

and the right member of this is analytic if x, y D. The properties (ii)-(iv) of Theorem
2.2 as well as the nonassociativity (2.1) are applicable to the qip pOq. We note that the
commutative law fails for this qip but we do have the relation

f(x) pOq g( y) g( y) qOp f(x).

One also obtains somewhat more general results than ones such as (1.3) or (2.6) for
(1.1). In fact, a straightforward calculation shows that

1 fo2r kiOf(xePiO qiOe )g(ye- )dO= E a,,bmx y k>=l..2.8_ 2q’/’
m, n>_O
mq-np=k
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Suppose that m0, n o are the least nonnegative integer values of m,n such that mq-np
k. Then we take m lp + m o, n lq + n 0, 0,1, 2, for this Diophantine equation.

The relation (2.8) becomes

(2.9)
1 fo2= ,iof( piO -qiO ,q+ +mo.e xe )g(ye )dO= Z, Ooy, 
2rr =o

If we desire a formula analogous to (1.3), select too=j and n0=0 in (2.9); then k is
required to have the value q. m 0 in the left member of (2.9).

3. The hypergeometric functions. Let a and fl denote a pair of vectors with
a--(al,...,ap,), fi--(l," ",ql ) where the a and fla. are real, q + 1 >=Pl, and fl>O for
j= 1, .--,q. Let (a), I-IPli= 1.[ Oi) where (ai),, =a(ai+ 1) (ai+ n- 1). Then we can
express the generalized hypergeometric function pFql(Ol.1,’’’,Ol.p; fil,’’’,fiq;Z) in the
form

(3.1) plFqx(Ol;fi;Z) E (Ol Zn

Next, suppose 7 and 8 are a second pair of vectors analogous to a and fl having P2 and
q2 components, respectively, with q2 + 1 >=P2. Denote the concatenated vector

(al,...,ap,Yl,...,yp2) of length pa +P2 by a7. It follows from (3.1) and (1.1) that if

Ixl < 1, lyl < 1, then

(3.2) p+p2Fql+q+l(V;fll;xy)

1 [2 iOxe ’)de

In the following, we develop integrals and related results for some special cases of
(3.2). To avoid lengthy details, we will not reduce all integrands obtained in real form.
In the last example, we will make use of the qip 2. For our purposes, we require the
following:

(a)

(3.3)
(b)

(c)

r0( )0 ,Z "-e z,

1F0(a;- ;z)=(l_z)-= y’, (a).
n! z,

n----O

1Fl(l.c,z), n0
(Z C>0.
C

I. The standard Bessel functions. In the introduction, we indicated how to use
(1.3). To obtain analogous but slightly more general forms for the J’s, v a nonnegative
integer, suppose we select j= Jt = iX> 0), and g(x)= e in (1.3). Then that
formula yields

1 fo2rr viOeX2Xe’Oe xe-’odO 1 fo2V xe e 1)x cosO

2r
COS (PO - ( )t2 q- 1) x sin 0 )] d0

(- 1) X-J(2Xx)
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or

(3.4) J,(2Xx) (- 1)’v fo2r (x2-1)xcs 1)x2r
e cos[ vO + ( )d + sin 0] dO.

It is useful to compare the above derivation of the integral for d(2Xx) with the
standard one starting with the generating function for the Bessel functions.

II. d 2F1 function. Suppose we select f(z)=(1-z)-, g(z)=(1-z)-, a>0,
fl > 0. Then for Izl < 1, we have, by (3.3b)

1 2 iO --iO -B(3.5) f(z)o g(z)=. (1-ze ) (1-ze ) de

=<(,;1;).
The integral in this can be expressed in the form

1 [2 cos( fl a) ff dO
2 4 [1-2zcosO+z2](a+B)/2

with

=tan_l( zsin0 )1 z cos 0
if z is real.

III. A definite integral involving ultraspherical polynomials. Let a =/3 in (3.5). Then,
for Izl<l,

(1 ze’)-(1 ze-’) -’= (1 2zcos O + z2) -,
this last being a generating function for the ultraspherical polynomials P2 (cos0) [10].
Hence

f( z) g(z)=---- (1- 2z cosO + z 2) ’dO

(. , (cosOl 0

=Ez" . 2(cos0)o.
n=0

But from (3.5) with fl a, we have

(3.7) f(z) g(z) 2r(a,a 1,z 2) [(a) ]2-Z2n.
.=0 (nt)

Comparing the right member of (3.6) with the right member of (3.7), we obtain the
familiar integral evaluation ([10])

 odd,
(3.a) P (cosO)dO ()

m n=2m.

The choice a= 1/2 in (3.8) gives the result for Legendre polynomials. We note the
economy in obtaining (3.8) using as compared with standard techniques.
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IV. A F1 type transformation. From (3.3b, c), the reader can verify that

(3.9) 1Fl (1;c;x)olFo(a; ;y)=iFl (O;c;xy ).
Now 1F1 (1; c;x) is entire and 1F0(a; -;y) is analytic with R= 1. Theorem 2.1 shows
that IF (e; c; xy) is entire in xy if lyl < 1.

V. A pOq example. If we select f(x)=e and g(y)=’(1-y) -, then it follows by
(2.7) that

f(x)2 g(Y)= (2n)! n!
"x

t
4. Generating functions. Quasi inner products, when used in conjunction with

generating functions, are convenient for developing results for special functions. This is
particularly true when the generating function is of exponential type and the Euler
relations can be called upon to express integrals in a real form. In the following, we
apply (1.1) and (1.4) to various generating functions to derive integral representations
for certain infinite sums of products of special polynomials. We include cases that
involve the Hermite, the generalized Hermite, and the ultraspherical polynomials. One
example is given, without detailed development, that involves products of two different
types of polynomials. Since these generating functions contain both variables and
parameters, it will be necessary to distinguish which variable or parameter multiplies e
or e -; (respectively, e pi or e --qiO) in the choices forf and g in (1.1) (or 1.4). We do this
by underscoring the designated variable or parameter.

A. Hermite polynomials. The Hermite polynomials are generated by means of the
relation

(4.1) f(x,t)=eZx,_t2

_
H,(x)t

n!
n=0

If we take g( x, )=f(x, ), then

f(x t)of(x t) E [H"(x)]2 t2n
n--O (n!)2

1 fo2r iO 2e2iO iO 2e 2i0

(4.2) 2--" exp(2txe )exp(2xte- ) dO

l---2r fo2’ exp(4txcosO 2t2cosZO) dO.

Similarly, the quasi inner product f(x, t) f(y, _t) leads to the relationship

y’ Hn(X)Hn(Y) t2n
(4.3) ,,=0 (n!)2

l__2rr f02’ exp(2t(x+y)cos0 2tZcos20)cos[Zt(x y)sin0] dO.

We note that (4.3) reduces to (4.2) when y x.
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B. The generalized Hermite polynomials. The generalized Hermite polynomials
g,,P(x) are generated by the relation

(4.4) f(x,t)=exp(pxt- p) n . gP (x)t"

(see [7], also [2]). Using a calculation as in A above, we get

1 f02 f(x,t)o f(x,t)=---, exp(2pxtcosO-2tPcospO)dO

E ( griP(x)}2
.=0 (n!)

t2no

One can similarly obtain a formula analogous to (4.3).
C. Ultrasphericalpolynomials. We refered to these earlier and have, in fact

(4.6) f(x,t)=(1-2xt+t2) -x= _, P)(x)t
n=0

with Itl < 1 and ;k>0. Formingf(x, ) fix, t_), we get

(4.7) Y’ [Pn(X)]2t2n--1. fo2r [1 +4xZtZ-4xt(1 +/2)COS0+ 2tZcos20]-xdO
,,=o 2r

D. Hermite polynomials using 2- Suppose we again select f(x, t) as in A above.
Then

f(x,t) lo2f(x,_t) E Hn(x)H2n(X)
,=0 n!(2n)!

3n

1 ,2)cos2O-- t2Cos4O)2r

cos[2xtsinO-(t+ 2xt)sin20-tsin40] dO.

Finally, it should be observed that one can use qip’s to compose generating
functions for different types of polynomials to construct examples involving mixed
products. For example, if we select fix, t) as in A above and select

g(x,t)=eX’cosh(tv/x2-1)= Y’ T(X)n! t
n--O

in which T,,(x) denotes a Chebyshev polynomial of degree n (see [10]), then
f(x, ) g(x, ) leads to the relation

y’. Hn(x)Tn(X) t2n
n!n!

n=0

1 f02 exp(3xt COS 0 2

2r cos20)h(x,t,O)dO

with

h (x, t, 0 ) cos a cos fl cosh’/+ sin a sin fl sinh
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where

a xt sin0 2 sin 2 0,

fl t/x 2_ 1 sin 0,

y tv/x 2-1 cos0.

5. Some further relations. In the following, we first apply (1.1) and (1.4) to obtain
transformations on the Lerch transcendent function. We then consider certain generali-
zations of integrals of the type involved in (1.1) and (1.4) that involve three functions.
This will lead to some results on Bessel functions and some integral evaluations for
Fourier coefficients.

A. The Lerch transcendent function. This function is defined by the series

(5.1) (z,s,a)= E (a+n) -’zn, Iz[ <l-
n=0

For our purposes, we assume that s > 1 and a 1. Then the series in (5.1) converges
when Izl 1. It follows that if [xl N 1, [y[ N 1, then

(5.2) (x,st,a)o(y,s,a)=(xy,s+s2,a) for Sl, s2> 1.

For the choice a 1 and sx sa s, this becomes

.f2 io ,1)(e-iO(5.3) 2 Jo (e ,s ,s,1)dO=g(Zs),

where ( ) denotes the emann zeta function. For 1 and (p, q)= 1, we also have

(x’s’Xq),q(Y’s’XP)=o (nq+Xq)Sl (np+Xp) s xqYp

-q’e" o (n+x)(s+s) (x )

or

1 (xqyp S q’-$2, ).dP(x,sa,Xq)pqdP(Y,S2,XP)=qSlpS
B. Some generalizations. Let f(z), g(z), and h (z) be analytic in D and consider the

integral

foI--" [f(xepi)g(ye+qi)h(ze-ri)] dO

where f and g have expansions as in the introduction and h(z)=E=oCnZ n. Then, by
replacing f, g, and h in I by their expansions, we obtain

(5.6) I= E
.j,k./=0

ajbkczxJy,zt
1 fo2r i(pj + qk-rl)O

-f--" e dO.

The integrals in this sum vanish unless the summation indices satisfy the following
Diophantine equation:

(5.7) pj + qk- rl=O, j,k,l>= O.
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If one is able to solve for, say, the values of in terms of the set of values for j and k,
then the triple sum in (5.6) reduces to a double sum. If a partial summation can be
carried out on this resulting double sum, then we can use (5.6) along with (5.5) to
obtain further integral relations orevaluations for sums of special functions.

To avoid the complications of solving a general linear Diophantine equation, such
as (5.7), in this paper we consider some specific choices for p,q,r. Suppose we first
select p q r 1 and use the minus sign preceding the q in (5.7). Then we get j k +
so that (5.6) becomes

(5.8) I= E ak+,bkc,xk+tY kz’’
k,l=O

As an interesting special case of (5.8), suppose we choose f(z)=g(z)=h(z)=e z.
Then the double sum I, with x =y z, becomes

(zo 1 2t+k(5.9t I= E l!(l+ k)’
z

k--0

k k0

zk.= --.Ik(2Z)"

By reducing the integral in (5.5) to real form in 0 using this choice of functions, we
finally get

(2z) 1 fo2(5.101 zklk 3z O

k=0
k! 2rr

e cos(zsinO)dO.

One can also use this method with p q r- 1 and a plus sign in front of the q in (5.7)
to deduce

(5.11) y’ (-1)’ t’ 1 fo2rl=0
1! Jt(2x)=--" e-‘cs cos[(2x + t)sin O] dO.

As a final example, suppose we selectf(x)=e x, g(y)=h(y)=(1-y) -x and p=q
r= 1 with a plus sign preceding the q in (5.7). The sum in (5.6) reduces to

oo 1 ()k)k ()k)j+k
I=

j! k’ (k;iixJyZk+J (by (4.5b))
j,k=O

(5.12) 2 (Xy)j ()k)j ()k)k()k-kJ)k y2k
j=o J! (1)j k=O k!(l -{-J)k

1 F(X +j) _!.xy) J"

r(a) 2F ( X,X +j; I +j;y2 ),

where F(-) denotes the usual gamma function. Further, since g(yei)h(ye-i)
(1-2ycosO+y2) -x, the corresponding integral (5.5) with integrand in real form in 0
becomes

1 fo2 e.oOcos(xsinO) dO(5.13) I=--. (1-2ycsO+y2) x
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Now, select X= 1. Then F(X +j)=j! and 2F1 (,X +j; 1 +j;y2)= 1/(1 _y2). The equal-
ity of (5.12) and (5.13) leads to the relation

(5.14) 2rl .fa2r e xcosO cos( x sin 0 )(1 _y2)
dO e xy.

(1-2ycosO +y 2)
The expansion of both sides of this in powers of y and a comparison of their corre-
sponding coefficients yields the following integral evaluations:

2,,’r
eX csO cos( x sin O ) dO 1,

1 fo2r e cs cos(x sin 0 )cos nO dO x--"-
2r n!

n>l.
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Abstract. The Area Theorem and coefficient inequalities for univalent functions are used to derive
inequality constraints on the accessory parameters in the Schwarz-Christoffel formula for the conformal
mapping of the unit disk onto the interior or onto the exterior of a polygon. The constraints restrict the
choice of prevertices and are necessary for the univalence of the mapping. The conditions are explicit, easy to

compute and are applicable to the numerical computation of the Schwarz-Christoffel map. The relative
effectiveness of the constraints is illustrated by elementary examples.

Key words, accessory parameters, area theorem, conformal map, exterior mapping, prevertices, univalent,
Schwarz-Christoffel formula

1. Introduction. In general it is very difficult to determine Zk--e iOk (k= 1,...,N),
the prevertices (accessory parameters), in the Schwarz-Christoffel formula,

N

(1.1) f(z)=C 51 (--Zk)-&d+f(O)’

N

(1.2) 01<02<... <Om<Ol+2rr --l<flk3 Y’. /k=2,

for the conformal map of the unit disk E ( z" Iz[ < 1} onto the interior of a polygon P
with interior angles r(1- flk at the vertices Wk=f(zk), k= 1,...,N. When -1 <ilk < 1
the vertex wk is finite and rflk measures the turning of the tangent at wk as the
boundary of P is traversed in a counterclockwise direction. Vertices at m correspond to
the flk with 1 __< flk =< 3 and the usual interpretation of interior and exterior angle at such
a vertex [2, Thm. 5.12 el, [6, p. 83].

It is well known that formula (1.1) forces the image of the unit circle, f(lzl= 1), to
be a polygonal path with vertices wk=f(zk) and the specified exterior angles rflk at
each vertex. The main difficulty in applying (1.1) is the choosing of C and the
prevertices so that f will be univalent in E and P will have the correct side lengths (see
[6, pp. 83-84]).

In this note we use results from univalent function theory to derive inequality
constraints on the prevertices that are necessary for f in (1.1) to be univalent in E. We
also give analogous conditions for the Schwarz-Christoffel mapping of E onto the
exterior of a polygon. The accessory parameter problem is the most difficult and time
consuming task in the numerical computation of the Schwarz-Christoffel transforma-
tion [6]. Although our results are extremely elementary, they provide explicit, computa-
ble constraints on the choice of accessory parameters.

*Received by the editors February 7, 1984.
Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514.
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2. The interior mapping. Since Zk5k 1 in (1.1) we may rewrite that formula as

N

(2.1) f(z)=C f I-[ (1--’2k)-d’+f(0)
"0 k=l

with a new constant C. Our necessary conditions for univalence of f involve the
weighted power sums

N

(2.2) s, E /k+ 1, n 0,1,. -,
k=l

that appear as the Taylor coefficients in

f"( z - k,k
oo

(2.3) f’(z) k=l 1--z2k n=0snz zE.

Note that (2.3) is independent of f(0) and the scale factor C=f’(0). Indeed, if f(z) is
univalent in E then

(2.4) F(z) f(z)-f(O) z,
C

=z+ a zE,
n=2

belongs to the class S of normalized univalent functions and

F"(z) f"(z) E , z S.
r’(z) f’(z)

THZORM 1. Let zk=ei and ilk(k 1,...,N) be given subject to conditions (1.2). If
the function f(z) defined by (2.1) is univalent in E then

(2.6)

(2.7)

and

N

I ol Y’ flkZk<=4,
k=l

[$1 q- S02[ E kZ .at- E kZk
k=l k=l

=<18

(2.8) s--sg 2 kZk-- 2 kZk <=6.
k=l k=l

Proof. Using the series expansion (2.4) in (2.5) we have

(n+ 1)(n+ 2)a+z"= 1 + (n+ 1)an+l2n Snzn
n=0 =1

and the system

(2.9) (n+l)(n+2)a,+2=s,+ E (k+l)ak+s,-, n=0,1,..-,

which can be solved recursively to express a, in terms of the s (k n 2). The first two
formulas are

(2.10) 2a 2 So, 6a s + s.
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Iff is univalent in E then F belongs to S and therefore

(2.11)

[5, p. 213], [1, p. 94], which with (2.10) give (2.6), (2.7), and (2.8) respectively.
Clearly one can continue the foregoing method of proof with (2.9) and the sharp

coefficient bounds ]a,]_< n [7] to extend (2.6)-(2.8) to an infinite sequence of conditions
on the s necessary for f to be univalent. Our second example below shows that (2.8) is
more sensitive to nonunivalence of f than either (2.6) or (2.7). Note that ]a3- a22] =< 1 is
simply the inequality Ibl]_< 1, obtained by applying the area theorem, ,n=in]bn]2<= 1 [5,
p. 210] to

1 1--+ bo + blZ +(2.12)
F(z) z

Thus it may be more fruitful to use the series expansion (2.4) in (2.12) to obtain the
system

n-1

(2.13) -b,=a,+2+ Z bkan+l-k,
k=l

n=0,1,-..

solve (2.9) and (2.13) recursively to express b, (n 1,...,m) in terms of the sk, and then
apply the area theorem inequalities y’.m=n __<1, m----1,2,....

Example l. Letf(z) bedefined by (2.1) withN=4, (fil, fl2,fl3,fi4)=( 4,

z =(- 5 + i7c1 )/6,z2=21,z3 -i, z4= 1. Then fis not univalent since

4113fl,zk 4-i-
k=l

violating condition (2.6).
Example 2. Let f(z) be defined by (2.1) with N=4, fl (k= 1,2, 3,4) the same as in

Example 1, z (- 47 + 1/]- )/60, z_ , z i, z4 1. Then easy calculations
show that both (2.6) and (2.7) are satisfied (3.9960... for (2.6) and 17.521... for (2.7)),
but (2.8) is violated (6.470... is the value of (2.8)).

Remarks. Condition (2.6) is the unit disk version of E. Johnston’s condition (3)
(with z0= i) in [3] for the Schwarz-Christoffel mapping of the upper half-plane onto a
polygon. We are able to construct nonunivalent examples with only four vertices
(rather than six as in [3]) because we permit vertices at with exterior angles as large
as 3r. Our formulation for the unit disk eliminates the need to translate results about
the class S from E to the upper half-plane [3, Lemma, p. 702]. Furthermore the
weighted power sums s, are easy to compute, and they have a nice geometrical
interpretation as moments of a distribution of weights fik (--1 flk

_
3), on the unit

circle.

3. The exterior mapping. If g(z) is analytic in 0<lz]<l with a simple pole at 0,
and if g maps E conformally onto the exterior of a bounded polygon P then g is given
by the Schwarz-Christoffel formula

N

(3.1) g(z)=C k=lH (1-,k)-ek-2d+C1,
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zk=ei., 01 <02 < <ON<O "1- 2r and

N N

(3.2) -1__<B<1, fi=-2, Z /=0,
k=l k=l

[4, p. 331], [2, pp. 413-414]. The points wk=g(zk), k= 1,.-.,N, are the vertices of P,
and since g reverses the boundary orientation, r/3k measures the turning of the tangent
at w as the boundary of P is traversed in a clockwise direction. The condition
=1/3=0 insures that g’(z) has zero residue at the origin and hence that g(z) is

single valued. Indeed, if this condition holds then g(z) has the Laurent expansion

(3.3) g(z)=C 1+ E bnz" O<lz[<l
Z

n=0

and

with

zZg’(z)=C H (1-zS)-k=C 1+ E nbnzn+l
k=l n=l

in

N

Res( g’(z); 0) C Y’. /3k5k 0.
k--1

The weighted power sums s defined by (2.2) now appear as the Taylor coefficients

(3.4)

(zZg,(z)),= [k___.___.__k o

Z:Zg’(Z) k=l
1 Z, n=aE
n(n+l)b,z" 1+ nb, z "+1

n=l n=l

zE.

THEOREM 2. Let zk=eik and flk (k= 1,...,N) be given satisfying conditions (3.2)./f
the function g(z) defined by (3.1) is univalent in E then

(3.5) ISll--

Proof. Using the series expansions in (3.4) we have 2b s and

n-2

(3.6) n(n+l)bn=s,+ E kbks,-1-k, n=2,3,...
k=l

If g is univalent in E then by the area theorem Y’.=ln[bl-__<l. In particular Ibl]=<l
which yields (3.5).

Again it is clear that additional univalence constraints on the s,, can be obtained
by solving (3.6) recursively for b in terms of the sk and then applying the area theorem.
The process is simpler for the exterior mapping than for the interior mapping where
there are two systems, (2.9) and (2.13), to solve.
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Example 3. Let g(z) be defined by (3.1) with N=5, (/1,/2,/3,/4,/5)--"
10,9 2,1 2,1 1), ), Z1 4 (4 + i6 )/9, z2= 3 i, z 1. Then the flk and z,

satisfy conditions (3.2), but g is not univalent since

5 41
fl,z[=l+->l.bl-
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CRITICAL VALUES AND REPRESENTATION OF FUNCTIONS
BY MEANS OF COMPOSITIONS*

Y. YOMDIN

Abstract. The structure of the set of critical values of a composition of differentiable mappings is studied.
On this base some explicit examples of differentiable functions, not representable by compositions of certain

types, are given.

The question of a representability of functions of a given class by means of
compositions of functions, belonging to some other given classes, has been studied in
many publications (see e.g. [1], [2], [3], [4]). The known results on a nonrepresentability
are mostly based on considerations of a "massiveness" of corresponding subsets in a
suitable functional space. Therefore, showing the existence of nonrepresentable func-
tions, they do not give explicit examples.

In this paper we consider some special question of the above type, which roughly
can be formulated as follows: what functions of a given smoothness and a given
number of variables can be represented in a form f=g h, where g depends on a
smaller number of variables than f (and, possibly, has a lower smoothness), while the
smoothness of h is higher than the smoothness of f.

We find an upper bound for the entropy dimension of the set of critical values of
the function, represented in such a form. Using this bound we give the necessary
condition for the representability, and some examples of nonrepresentable functions.

The result of Theorem I below can be considered as a generalization to the case of
composed mappings of the sharp estimates for the entropy dimension of critical values
of differentiable mappings, obtained in [6].

Let f: UR be a continuously differentiable mapping of an open domain
UcR". For-/>=0 define the set of ",-near-critical" points off, E(f,), by E(f,7)
(xU/l[df(x)ll<__7}, and let A(f,v)=f(E(f,y)) be the corresponding set of "3’-
near-critical" values of f. The set of critical points E( f, O) we denote by E(f) and the
set of critical values A(f, O) by A(f ).

For a compact domain DcR" let C’(D, rn) denote the space of mappings f:
D Rm, which can be extended to a k times continuously differentiable mapping of
some open neighborhood of D. Forf Ck(D,m) let

M,(f) max Ila f(y)ll, i=0,... ,k.

(The Euclidean spaces Rq and the spaces of their linear and multilinear mappings are
considered with the usual Euclidean norms.)

We recall the definition of the entropy dimension: for a bounded subset A c
and e > 0 let M(e,A) be the minimal number of balls of radius e, covering A. Then the
entropy dimension dim A is defined by

dimeA=inf{ fl>O/K, Ve, l >e>O,M(e,A)<K( l ) 1}
(See e.g. [3], [6] for some properties of M(e,A) and of the entropy dimension.)

Received by the editors November 29, 1983, and in revised form August 13, 1984.
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Now let BcR"- be closed balls of radii p, respectively, a= 1,..-,s + 1, and let
f: BlaBs+l be given as a composition f=fSof-1o of 1, where f" B--.B+1,
f C#(,B’,n+I), k>=2, a= 1,. .,s.

Below we assume that the dimensions n do not increase: n >= n2> >= n s>= n s+ 1-

(The problem of a factorization through lower-dimensional spaces has an essentially
different nature.) Without loss of generality we can also assume that k > k2 > > k.
Indeed, one can easily prove that if k2> k and n >= n2>= n3, then all the mappings
f: B ---B 3, belonging to ckl(Bl, n3), and only these mappings, are representable as

f=f2o fl, f. B<---Ba+x, fack"(B,n,+l), a 1,2.
Let f be represented as a superposition of s mappings as above. We call S=

(nl, ka, n2,k9.,...,n,ks) the diagram of the representation and say that f is representa-
ble with the diagram S.

For a given diagram S define o(S) as

n2--n n 1-nnl #72+ + + t-
kl-1 k2-1 k_- 1 ks-1

THEOREM 1. Iff is representable with the diagram S, then

dimeA(f)<-o(S).
Proof. Fix some e > 0, e =< 1. Below we denote by K/. some constants, depending

only on the set of data Q={p,n,k,Mi(f),a=l, .,s+ 1,i=0,..-,k<}, but not on
17.

For each a= 1,. .,s let r=17/(o-). Consider in each BcR"- the points with the
coordinates of the form mr/v-,m Z, and denote these poins by x, 1 =</7 =< d. The
balls Bfl of the radius r, centered at x, cover B.

Let P be the Taylor polynomial of order k of the mappingf at the point x.
For any s-tuple (/31,. .,/7), 1-5/7 =< d, denote by Ptl,.-., the polynomial map-

ping

P PsS -11 PJltto R,I R,s+.

We also denote by Da,,...,a the set

{ afa-axB,e/f f(x)B’++11,a=1, ...,s-1

LEMMA 2. For any s-tuple (ill,""" ,fls) andfor any x D,,...,/;
(i) Ilf(x)-P/1,...,/(x)ll <=K117
(ii) Ildf(x)- dP,...,.(x )l[ <_ gxe.
Proof. By induction on a. Denotefo fa-lo f by F, and poao PA by

Q and assume that (i) and (ii) are satisfied for Fa-l, Qa-1 with the constant K.
By the choice of r and by the Taylor formula we have for any y Bfl,:

IIs:(Y) Pal( y)ll=<
II, l I1__< K3r: K317.

Now denote F-(x) byy1, Qa- l(x) byy. Sincex D/t,,...,as, Yl Btt- We have"

F<( x ) Q(x )11 IIio( Yl PB:( Y2 )11
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In a similar way, for the first derivatives we have:

[]dF"(x)-dQ’(x)l] ]]df( yl) dF’-l(x)-dPl(Y2) dQ’-l(x)ll

<---- [Idfa( Yl ) dPl( Yl )[11[dFa 1( x )ll

q- IIdPl ( yl ) dF- 1( x dQ 1( x )11

-1- Ilde[ ( yl ) de[( Y2 )1111dQa- 1( x )11
< K,eK6 + KTK;- 1E -.[- M2 P ) Kr-leK8 K9e

Denoting max(Ks, Kg) by K, we obtain the required inequalities, with K1---K].
For any s-tuple (ill,’" ",fls) let Eal,...&=Z(f)cD&,...,scB1 and let Aal,...,&=

f(]fll,. .,B.)"
LEMMA 3. For any (/31,.. ",fls), A&,...& can be covered by Klo balls of radius e.

Proof. By Lemma 2 ii, Zaa,-..& c (P&,...,B,,Kle). By i, A&,..., is thus contained in
a Ke-neighborhood of A(Po,...&., Kle). Now by [6, Cor. 2.14], this last set, being the set
of near critical values of the polynomial mapping Pax,...&, on the ball B of radius 01,
can be covered by N balls of radius PlK1e, where N=N(nl, ns+l, kl.k2.., ks) depends
only on the dimensions n and on the degrees of differentiability k. Hence b,,...& can
be covered by the same number of balls of radius (01 + 1)Kle, or by
N[ns+a (201 + 2)K1]"’+=K1o balls of radius e.

Of course, all the sets A, ,. .,,, 1 =<fl=<d, cover A(f). But in fact many of these
sets are empty. So to prove Theorem 1 it remains to estimate the number of nonempty
Aal,...,t.,, which, in turn, does not exceed the number of nonempty DI,...,..

LF,MMA 4. Let 1,’",-1 be fixed, 1,...,s. Then the number of the indices ,
for which Dfll,...,fl_,,fla,fl,+l,...,fl. is not empty for some fl+l,’" ",fls, does not exceed

def
Kll(1/e) -n/(k"---l)+n/(k"-l) (where ko ).

(x)B,,a=l,...,s}. HenceProof. By definition, D&,...,, { x B/F -1

F’-I(D#,,..,&)c B nf-lzn’-la Now B& t,,,_ . &_ is a ball of radius ra_l, and therefore

f-l(B7) is contained in some ball B in Ro of radius Ml(fa-1)ra_l gl2ra_l But
clearly B has nonempty intersection with not more than

balls B.
Thus the number of nonempty D,1,...& is bounded by

K1(1) ns/(ks-l-1)+ns/(ks-1)

Since by Lemma 3 each A&,...&. can be covered by K0 balls of radius e, we have

M(e,A(f))<= KloK13(1/e)(s). Theorem 1 is proved.
Theorem 1 can be applied to the representability question in the following way"

clearly, any mapping f, representable with the diagram S=(nl, kl,...,ns, ks), n > na
=> >= n s, k > k > > ks, is at least ks-smooth. On the other hand, any k1-smooth
mapping is representable with the diagram S by the remark above. Hence, the question
is nontrivial for mappings f: B Bs+l of smoothness q, k > q> ks.
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Now we use the sharp estimate of the entropy dimension of the set of critical
values, obtained in [6]. By [6, Thm. 5.6], for any fCq(Bl, ns+l), dimeA(f)<=nl/q,
and for any q<nl/q there are mappings fCq(Bl, ns+x) with dimeA(f)>/. Thus we
have the following:

COROLLARY 5. Let S be a given diagram and let kl>q>k. If nx/q>o(S), then
there are mappings f Cq(B1, n .+ ), not representable with the diagram S.

As a criterion of existence of nonrepresentable mappings, Corollary 5 is weaker
than the result of Vitushkin, Kolmogorov and Tikhomirov [3], [4]. Indeed, by [3, Thm.
XXVII], there are mappings in Cq(Bx, n+l), nonrepresentable with the diagram S, if
n/q> max(n/k). But easy computations show that always 8( S) >= max,(n/k,),
and usually the strict inequality holds.

The reason is that the entropy dimension of critical values of a composition can be
greater than that of each of the composed mappings, while the functional dimension of
the class of representable mappings (considered in [3], [4]), is equal to the maximal
functional dimension of classes, participating in the representation.

But this functional dimension, as an invariant of the whole class, does not allow to
find explicit examples of nonrepresentable functions. On the contrary, the entropy
dimension of critical values is the invariant of individual mappings, and the mappings
with the "big" set of critical values can be built explicitly. Hence in any situation,
covered by Corollary 5, we can find explicit examples of nonrepresentable mappings.
In particular, let B c R be the closed unit ball and let hn Cn-I(B, 1) be the Whitney
function (see [5]) with A(f)= [0,1]. Since dim e[0, 1]= 1, we obtain

COROLLARY 6. h cannot be represented with the diagram S (n, k1, n 2, k2), if
n2n n2+ <1.

kx-1 k2-1
In particular, hl0(Xl,"" ",Xl0 ) cannot be written as hl0(Xl,...,Xl0)--(yl,-. ",Ys),

yi=+i(Xx,..-,xl0), i= 1,...,5, with+ Cv and +i C 32.
There is some similarity in the properties of functions representable by means of

compositions of smooth functions and maximum functions of smooth families (com-
pare [7]), although the last class contains nondifferentiable functions.

It is interesting whether direct connections between these two classes can be found.
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POLYNOMIAL ANALOGUES OF PROLATE SPHEROIDAL
WAVE FUNCTIONS AND UNCERTAINTY*

MARCI PERLSTADT

Abstract. Slepian, Landau, and Pollak used prolate spheroidal wave functions to demonstrate how nearly
"time" and "bandlimited" a square-integrable function can be. In this note we show how their results extend
easily to cover orthogonal polynomial expansions. In particular, we study how close a square-integrable
function can come to being a polynomial of degree < L and simultaneously to vanishing off some set ’.

1. Introduction. Let f L2() with Fourier transform f. We say that f is time-
limited to the set z’c if X.,.f=f and that f is bandlimited to the set
(here X,, X are the respective characteristic functions of the sets ’, ). It is well
known that f cannot be simultaneously time and bandlimited and the extend to which f
can be "approximately" time and bandlimited has been the subject of many inquiries.

In a remarkable series of papers ([1], [2], [3]) Slepian, Landau, and Pollak demon-
strated the key role of the prolate spheroidal wave functions in understanding this
problem. The prolate spheroidal wave functions were shown to be the eigenfunctions of
the operator.that timelimits, then bandlimits, and then again timelimits a function. This
interpretation of the prolate spheroidal wave functions led to a very exact picture of the
trade-off involved in the time and bandlimiting of functions, including a generalization
of the Heisenberg uncertainty principle.

In a recent series of papers ([4], [5], [6], [7]) the notion of "time" and "bandlimit-
ing" was explored for more general "Fourier-type" situations, in particular for expan-
sions in terms of orthogonal polynomials. The operator that "time", then "band", and
then "time limits" a function was studied and, for some special cases, an efficient
means of determining the eigenfunctions of this operator was given (analogous to the
method employed in [1]). The purpose of this note is to take the eigenfunctions
generated in this new situation and show that they too enable us to draw an accurate
picture of the extent to which functions can be "time" and bandlimited". One should
note that the techniques employed in [2] generalize readily to this new situation and
thus the real work has already been done. We further remark that many of the
properties we will be discussing were shown in [8] for the case of expansions in
Legendre polynomials.

2. Background. Let f be a square integrable function with Fourier transform. Let
A be the operator that timelimitsf and let B be the operator that bandlimits f, i.e.

Af f x, Bf="X.
Let F and F- denote the operations of Fourier transform and inverse Fourier trans-
form:

F(f) =f, F-l(f)=f.
The (self-adjoint) operator that time-band-timelimits a function is given by

AF-1BFA E’E, where E BFA.
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The operator E*E is a finite convolution integral operator. For the case when ’=
[- T, TI and= [- W, W],

E*Ef(x)=( sin W(x-y) f(y)dy, x’
x--y

and the eigenfunctions of E*E are the prolate spheroidal wave functions [1].
Extensions of this work to more general "Fourier-type" situations were discussed

in [4], [5], [6], [7]. In particular we will consider complete orthogonal families of
polynomials (pi(x)[i=O, 1,2, } with continuous nonnegative weight functions w(x)
on set c. Thus for f square integrable (with respect to w(x), if) we can write

f(x)= E :(i)p,(x), f(i)=( f(x),p,(X))w(x),
i=0

Where the p(x)’s are suitably normalized and

(g,h)wx),=fg(xlh(xlw(x) dx.

Our analogues of time and bandlimiting will be given as follows:

Af=f’xg

B:(i)=(:(i), i=O,l," -,L,
0, i>L

where’ c cg has positive measure strictly less than the measure of cg, i.e.

(2.0)

Thus

where

E*Ef(x)=f,K,(x,y)f(y)w(y)dy, x,.

L

KL(x,y)= , p(x)pg( y).
i=0

We note that in addition to the time-band-timelimiting operator E’E, one can
equally well study the band-time-bandlimiting operator EE*. This operator is given by
the (L + 1) (L + 1) matrix G with entries

Gij=( Pi(x),pj(X))w(x),,=fPi(x)pj(x)w(x) dx, O<=i<=j<L.

The duality between the operators E*E and EE* is given in Lemma 2.1 below and will
be exploited shortly.

LEMMA 2.1. Iff is an eigenfunction of E*E=AF-1BFA with eigenoalue 4=0, then

BFf is an eigenoector of EE*= BFAF-1B with eigenvalue . Similarly iff is an eigenvec-
tor of EE* with eigenvalue 4= O, then AF-lf is an eigenfunction of E*E with eigenvalue

For a proof of Lemma 2.1, see [4].
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We also remark that by taking’c Was in (2.0), we are assured of the existence of
a complete orthogonal family of polynomials on ’with respect to w(x). The complete-
ness of polynomials for Lw(x), ,follows immediately from their completeness in L2w(x), 4.

The linear independence of {1,x, x2, ) in follows readily since e’has positive
measure and any polynomial p(x) has only a finite number of zeros.

3. The eigenfunctions of E’E: polynomial analogues of the prolate spheroidal wave
functions. It follows from Lemma 2.1 that for any expansion in terms of a complete
orthogonal polynomial family and set ’c ff(as in (2.0)) the eigenfunctions of E*E
can be obtained by determining the eigenvectors of matrix G. In particular if c=
(c0,cl,-..,ct.) is an eigenvector of G with eigenvalue X4:0, then setting q(x)=
’Ii=oiPi(X), we have Aq(x)=q’(x) is an eigenfunction of E*E (we will use f’(x) to
indicate Af). Note that (x) is "bandlimited" (q(x) is a polynomial of degree < L)
and that qe(x) is "timelimited". The q(x)’s are our polynomial analogues of the prolate
spheroidal wave functions. Many of the properties of the q(x)’s listed below (such as
their double orthogonality on’and , Lemma 3.1), are readily seen to be analogous to
the properties of the prolate spheroidal wave functions (see [1]).

From Lemma 2.1 it follows that E*E has at most (L + 1) linearly independent
eigenfunctions corresponding to nonzero eigenvalues. If we denote these eigenfunctions
(before chopping to ’) by o(X),I(X),’’’,k(X) with corresponding eigenvalues
X0 >= 1 >= >= Xk, then we note that in fact k L. This follows since every function f,
square integrable with respect to {.,. )wx),,, can be rewritten as

k

f’(x)= E a,qf(x)+h(x), where
i=0

E*eh’(x)=O and (h’(x),q,i(X))w(),=0, i=0,1,-..,k.

Thus for all x zg’we have

L

E*Eh(x)=fh(y)Kt(x,y)w(y)dy E Pi(x)(h(y),Pi(Y))w(),=0.
i=0

and conclude that (h(y),pi(Y))w(,),=O. Therefore for any polynomial q(x) of
degree <_L, (h(x),q(X))w(x),=O. Since there is a complete orthogonal family of
polynomials qi(x) (i=0,1,2,..., degree qi(x)=i) with respect to (., ")w(),, we
have that for i=0,1,...,L, q(x) can be written as a sum of the (x)’s, j=0,1,---,k.
Thus k=L and we see that {qi(x)li=L+l, L+2,...} form a basis for H=
{h(x)lE*Eh(x)=O}.

The lemmas below summarize a number of properties of the ’s that will be used
in the next section.

LMMA 3.1. Let {Pi(X)) be a comp&te orthogonal family of polynomia& (i=
0,1,2,..- degree p(x)= i) with respect to the nonnegatioe continuous weight function
w(x) on . Let be as in (2.0). Then the operator E*E has L + 1 linearly indepen-
dent eigenfunctions o(X),(x),...,(x) corresponding to the nonzero eigenoalues 1 >

o > O. Without loss of generality the i’s can be normalized so that
(a) f K(x,Y)i(y)w(y)dy= Xii(x ) for all x .
(b) ((x),(X)}w,),=8.
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(d) The q;’s comprise a complete orthonormal set for the space of bandlimited

functions.
(e) The ?f’s together with the polynomials qL+l, qL+2,’’" where (qi(x)) is the

orthogonal polynomialfamily for (.,.) w(x), form a complete orthogonal set for the space
of square integrable timelimitedfunctions.

Proof. (a) Corresponding to each Oi is an eigenvector c=(c0,..-,cL) of EE*:

BFAF-iBc=,ic.

Applying F- on both sides of the above yields (a).
(b) and (c) That the qi’s can be chosen orthogonal on ’ follows since E*E is

self-adjoint. From (a) and the fact that

fKt(x,y )K( x,z )w( x ) dx Kc ( y,z ),

we have that

(dPi’dPJ)wx’,’--XiXj i(Y)KL(X’y)w(y)dy

"( fq,.i(z)K(x,z)w(z)dz)w(x)dx
i

=XTkj i(y)7(z)w(y)w(z) KL(X,y)K(x,z)w(x)dx dydz

Thus orthogonality on implies orthogonality on and without loss of generality the

’s can be chosen to be orthonormal on and (b) and (c) hold. Furthermore taking
=j in the above shows 0 < XN 1. That X< 1 follows from Lemma 3.2 below.

(d) and (e) are clear from the earlier discussion in this section.
We will also be interested in looking at our operators on the set where is

the complement ofin(=-). Using the notation,

Af( x ) =f( x )" X-, (x) f-e( x ),

we see that
LEMMA 3.2. (a) ( Adpi Ai) w(x), ’-- 1 k i.

(b) [- AF-1BF’-.-A]dpi(x)=(l Ai)dpi(x).
Proof. (a) is immediate.
(b) follows since F-1BFdpi--d?i and thus F-XBF(A+ .--A)+i=d?i. Therefore,

F- 1BFAdpi + F- 1BF. Adpi= X ifi + (1 X i)l)i.

We will also need"
LEMMA 3.3. For h (x) such that E *Eh (x) 0 (x’) we have in fact F-BFAh(x)

0 for all x .
Proof.

L

F-1BFAh(x) E p(x) feh(y)p(y)w(y)dy=O
i=0
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for all x cg since

f, h ( y) p,( y)w( y) dy=O for i-O,1,. .,L.

4. The uncertainty principle. The Heisenberg uncertainty principle measures how
closely a function f and its Fourier transform (f-f_of(s)e-iSds) can be simulta-
neously concentrated about a point. In particular, if--- f(x-x)2lf(x)12dx

and f2___ f(-o)2lf()l2d
flf(x)12dx flf(6)12d6

then for any xo, 6o we have fY-_>_ 1/2 and thus f and Y-cannot both be small [9].
In many situations, however, one is more interested in the extent to which a

function can be concentrated on some subset of the real line (e.g. an interval). Thus in
[2] Landau and Pollak studied the quantities

aa_llAjll and fl2_llBj122

Using the fact that the prolate spheroidal wave functions are the eigenfunctions of
E’E, they were able to determine all possible values of (a, fl) for f square integrable.
Thus, for example, to determine how nearly "timelimited" a "bandlimited" function
can be, simply maximize a for fl 1.

What we will do here is to consider the quantities a and fl for the case of
orthogonal polynomial expansions. The theorem below will follow from minor modifi-
cations of the arguments given in [2].

THEORE 4.1. Let (p(x)), 0,1, 2,. ., be a complete orthogonal polynomial
family (degree pi(x)=i) with respect to the inner product (f,g)w(x), where w(x) is

nonnegative and continuous. Let aglc be as in (2.0). Then there is a square integrable
function

such that

f(x)-- E f(i)p,(x)
i=0

if and only if
(a)for 2_. 1, La2

(b) for a2=l,
(c)for 0/2---0, 012 1 --)kL,
(d)for f12=O, 0 <_a2__< 1,
(e) for ) z. <= a2 <_ ;k o, 0__<f12=<l,
(f)fr)to <a2<l cs-la+cs-lfl>cs-lvo (fl_>_0),
(g) for O <__ a2 <_ X a, cos-(1 -a)+cos-lfl>__cos-l(l-Xc (/3>__0).
Before proving Theorem 4.1 several comments are in order. If we look at all

possible pairs (a,/3) in the square 0 __< a2 __< 1, 0 __</3 2 __< 1, then (a)-(d) tell us the attaina-
ble boundary values, indicated by the darkened lines in Fig. 1 and (e) is handled by the

a
IIAJ]I 

and f12=
IIBj]I22 ELof(i)

Ilfll ET_-of (i)



POLYNOMIALS AND UNCERTAINTY 245

shaded area

The areas marked by

follow readily from (f) and (g). Thus it is only in the two upper corners that the picture
becomes complicated. The similarity of this result with the result for the standard
Fourier transform in [2] is readily apparent. The only real change here is the upper
left-hand corner.

2

FIG. 1

Some information about the geometry of the space g/’+Y-where YV’= {bandlimited
functions} and 57-= {timelimited functions} will be needed for the proof of Theorem
4.1. These results were obtained for the standard Fourier transform in [2] and the
proofs there apply readily to our more general situation and will not be repeated here.
A brief outline of the results will be given below.

Define the angle 0 between two functionsf and g ([[)q[, [[g[[ > 0) as

-1O(f,g) =cos

Note that forf /’and gq-, O(f,g)> 0 since gc3Y-contains only f=0. Landau
and Pollak show that there is a least angle between zCV’and Y-;

THEOREM 4.2. There exists a least angle between and -. This angle equals
COS- V0 and is assumed by o g/’and DOo Y-, i.e.,

min 0 (f, g) cos-1o
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Landau and Pollak also give the following lemma which extends directly to the
situation we are studying:

LEMMA 4.3. +Y-is closed.
Proof of Theorem 4.1. (a)/3= 1" Thus f is "bandlimited," f(x)=E/i=0ciqi(x) and

without loss of generality II/]l I]]]l 1. Thus

L L L

Af= E cii(x), O
2 Y[ C/2x where Y’ c2 1.

i=0 i=0 i=0

Clearly Ot 2 is maximized for co=l (f=qo) and minimized for cL=l (f= q1 )- Thus
a2_-<X0 and X L_<a2. To see that we can obtain all values of a2 between X0 and X c,

consider g=aqo+ bqz. where a2+ b2-- 1. For g we have/32= 1 and a2=a2X + bZk0 L"

Thus as a, b range from 0 to I all values of a2 between X0 and X are attained.
(b) a 1. Thusf is "timelimited". Iff= qo then a2 1 and since FBF- 1A q,’= , oqo,

/3 X o. If f= h’(x) (E*Eh (x) 0) then a2 1,/3 0. That all values of/3 2 between 0
and X0 are attained can be seen by taking g(x)=a’(x)+bh(x) with 0=<a, b__<l.
Thus a2=l and F-aBFAg(x)=aXoqo(X) which gives 2=a2XZo/(aXo+b21) where
/ IIh(x)l[ . This produces all intermediate values.

That/3 2 cannot be greater than ’0 follows from Theorem 4.2 (see also the proof of
part (f)).

(c) a=0. This is the opposite of a= 1 in that we now have f-(x)=f(x). Taking
f(x)=it/=oCi’’(x)+h’(x) where h(x) satisfies --AF-1BF--Ah(x)=O, we
have F-1BF Af(x)=Ei=oCi(1- Xi)qi(x) and reasoning analogous to that in (b) yields
0flZ<l--)L

(d) fl-0. Choose hf(x) so that E*Eh(x)=O and let h(x) be as in part (c).
Thus for h(x), fl=0 and a= 1 and for h(x), fl=0 and =0. That all values of c

between 0 and 1 can be attained is seen by taking g(x)=ah(x)+a2h(x) where
0<a,a2<l.

(e) X1__<a _-<Xo- Fix some a, X=<a _-<X0. Thus we can findf and g such that:

l)/ll =1, II:-)l--a, --o, :=alhl’--]-a2h< (see (d))

and

Ilgll- l, IIg ll: a, g: blq0+ bzqL (see (a)).

Since (f,g)w(x),e (f,g)w(x),,=O, letting t(x)=clf(x)+cg(x ), c+c= 1, we can
attain all values of fl between 0 and 1.

(f) h o=<a=<l. We begin by showing that if IIJql-1 and IIOj51-(, then /3=<
COS (COS- 1V0 oos- o) with equality attained for

-a
2 a /1-a2

f=Po+qD’o withp= 1-X o
and q- X 1-Xo

This result follows exactly from the argument in [2] and we will just briefly outline
the steps here. Since g/’+Y-is closed for any f with II)ql 1 and Ilf’ll a, we can find g
orthogonal tofandf=F- XBFf such that

(4.4) f Xf’+ lf+ g.
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By taking inner products of (4.4) with f, f, fe, and g and eliminating (g,f), X, and/
from the resulting equations, we get (for a/3 g= 0)"

Setting

COS0
IIfllllfll

one obtains

(/-- 0 cosO)2_<_ (1 a2)sin2 0

with equality if and only if g= 0. Therefore

/ __< cos (0 cos- a)

and since by Theorem 4.2, 0 >__ cos-1 V0,
(4.5) COS- 10[ q- COS- 1/ > COS- /0

Equality in (4.5) is attained by

(4.6) f( x ) =pq0(x)+ qq’’( x )

with

2 a 1-a2

P= 1-Xo
and q= o 1-)t o

To see that in fact 0 =</3 =< cos (cos--1 V/o cos- a) simply consider

g(x)
cf(x)/dllg(x)l

where g(x) is as in the proof of (d) (g(x)=alh(x)+a2he(x)) and f(x) is as in 4.6
and c 2 +.d 2 1.

(g) O<=a2<=?tL Consider all f&o2 with IIJql-1, IIfll-a. We first determine the
maximum ft. This is really equivalent to part (f) with a’-llf-’ll 1-a and
Thus

0__</3’ =/3__< cos(cos- 1 X L cos-l(a’))
completing the proof.

We note that when/3=1, a2__<X 0 and aa=?t0 forf(x)=q,o(X). Thus q,0(x) is the
polynomial of degree =< L that has the greatest proportion of its norm in s. Similarly
qV(x) represents the polynomial of degree =< L that has the least proportion of its norm
in cg. For some graphs of these functions for the case of the Legendre polynomials
(w(x)= 1, cg=[- 1,1]) see [8].



248 MARCI PERLSTADT

5. Conclusion. Recall that the values X 0 and X L needed in Theorem 4.1 are
respectively the largest and smallest eigenvalues of the matrix G of 2. Thus if L is not
too large (and the entries of G are available) the work involved in the computation of

0 and t is not excessive. In certain special cases (notably the classical orthogonal
polynomials where cg= (, e) and z’= (’, e), i < i’), there is a relatively simple means of
obtaining the eigenvectors ([4], [5]).

It should also be noted that while the prolate spheroidal wave functions depend
only on the product c WT, the eigenfunctions in the polynomial case depend on both
L and z. Thus in [2], the authors are able to write a Heisenberg-like bound:

WT>=(a,B), wheresC=[-W,W], N’=[-T,T]
for some explicit function q. In the polynomial case we have been unable to do this.
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SYMMETRY AND STABILITY IN
TAYLOR-COUETTE FLOW*

MARTIN GOLUBITSKY" AND IAN STEWART $

Abstract. We study the flow of a fluid between concentric rotating cylinders (the Taylor problem) by
exploiting the symmetries of the system. The Navier-Stokes equations, linearized about Couette flow, possess
two zero and four purely imaginary eigenvalues at a suitable value of the speed of rotation of the outer
cylinder. There is thus a reduced bifurcation equation on a six-dimensional space which can be shown to
commute with an action of the symmetry group 0(2)S0(2). We use the group structure to analyze this
bifurcation equation in the simplest (nondegenerate) case and to compute the stabilities of solutions. In
particular, when the outer cylinder is counterrotated we can obtain transitions which seem to agree with
recent experiments of Andereck, Liu, and Swinney [1984]. It is also possible to obtain the "main sequence" in
this model. This sequence is normally observed in experiments when the outer cylinder is held fixed.

Introduction. The flow of a fluid between concentric rotating cylinders, or
Taylor-Couette flow, is known to exhibit a variety of types of behavior, the most
celebrated being Taylor vortices (Taylor [1923]). The problem has been studied by a
large number of authors: a recent survey is that of DiPrima and Swinney [1981]. The
experimental apparatus has circular symmetry, and the standard mathematical idealiza-
tion (periodic boundary conditions at the ends of the cylinder) introduces a further
symmetry. As a result the Navier-Stokes equations for this problem are covariant with
respect to the action of a symmetry group 0(2)SO(2). It has become clear that the
symmetries inherent in bifurcating systems have a strong influence on their behavior. In
this paper we study a series of bifurcations that occur in Taylor-Couette flow placing
emphasis on the role of symmetry. (Schecter [1976] and Chossat and Iooss [1984] have
also studied the problem from this viewpoint, and we discuss the relations between our
work and theirs below.)

DiPrima and Grannick [1971] have found that when the outer cylinder is rotated
in a direction opposite to that of the inner cylinder, the Navier-Stokes equations,
linearized about Couette flow, possess six eigenvalues on the imaginary axis. It follows
that aspects of the dynamics can be reduced (either by Lyapunov-Schrnidt or center
manifold reduction) to a vector field on R6; furthermore, this vector field commutes
with an action of 0(2)S0(2). Moreover, as we explain in 7, recent experimental
results due to Andereck, Liu, and Swinney [1984] seem to confirm the existence of the
six-dimensional kernel.

We point out in particular that the six-dimensional kernel is a codimension one
phenomenon, and hence it is not surprising that it should be possible to find it by
varying only one parameter. Indeed, this degeneracy should occur relatively often in
various circumstances, and so deserves detailed analysis.

We study the general class of bifurcation problems on R6 having this 0(2) SO(2)
symmetry. We derive the general form possible for the vector field, and by classifying
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the possible ways to break symmetry, obtain equations for the bifurcating branches
(subject to certain nondegeneracy conditions). We also obtain the (linearized orbital)
stabilities of these branches.

By introducing an additional parameter et we split the kernel R6 into two subspaces
R2 and R4 corresponding to a steady-state and a periodic bifurcation respectively.
Depending on the sign of a, one or other of these bifurcations occurs first.

By inspecting the symmetries of the physically observed solutions we may tenta-
tively identify them with various branches: in particular the flows known as Taylor
vortices, wavy vortices, twisted vortices, helices (or spirals) seem to correspond natu-
rally to solution branches; and there is also a branch described by DiPrima and
Grannick [1971] as the "nonaxisymmetric simple mode".

The experimental results of Andereck, Liu, and Swinney may be summarized as
follows. In the weakly counterrotating case (that is, when the speed of the outer
cylinder 2o is slightly less than the critical speed 2 where the six-dimensional kernel
appears) the following transition sequence is observed as 2i, the speed of the inner
cylinder, is increased.

Couette flow Taylor vortices wavy vortices

where the final state obtained when the wavy vortices lose stability seems not to be one
representable in the six-dimensional kernel. In the strongly counterrotating case (that
is, when f0 is slightly greater than fl) the observed transition sequence is:

Couette flow ---, spiral cells wavy spiral cells.

We shall show in [}7 that it is possible to make a nondegenerate choice of vector
fields on R6 having 0(2)S0(2) symmetry which produces the same transition se-
quences in the following sense. It is possible to determine constraints on the Taylor
expansion of this vector field, given only by inequalities on coefficients in this Taylor
expansion, so that the solutions corresponding to these states are (orbitally) asymptoti-
cally stable and lose stability in a way that should produce the desired transitions.
Moreover, when these inequalities are satisfied, no other solutions are asymptotically
stable.

We also show in [}7 that it is possible to choose these constraints differently, so
that the "main sequence" of transitions occurs, namely,

Couette flow Taylor vortices wavy vortices

modulated wavy vortices

This transition sequence is usually observed when the outer cylinder is held stationary
(20 =0). What we show is that it is possible for the "wavy vortex solutions" to lose
stability to a torus bifurcation, where two Floquet exponents cross the imaginary axis.
This tertiary bifurcation has never been demonstrated theoretically hitherto. At this
point, however, we cannot prove that the branch of "modulated wavy vortices" is
asymptotically stable, though we hope that the results of Scheurle and Marsden [1984]
will provide the techniques required to carry out this computation. We do show,
moreover, that no other solutions are asymptotically stable when these constraints hold.
In particular, stable spiral cells should not occur in this experimental situation.

The paper is organized as follows. In 1 we describe some of the flows observed in
the Taylor experiment and review the evidence for the existence of a six-dimensional
kernel. In [}2 we discuss the symmetries that act on the six-dimensional kernel, and in
3 we discuss the symmetries of the observed flows. In [}4 (and the Appendix) we
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discuss the reduction procedure and derive the exact form of the reduced mapping (or
vector field) on the six-dimensional kernel prescribed by those symmetries. We classify
the (conjugacy classes) of isotropy subgroups (which describe the type of symmetry-
breaking that occurs at bifurcations). The heart of the paper is 5, where we analyze the
branching equations and the stability of branches. In 6 we use these to obtain a list of
the sixteen inequalities that must be imposed to ensure (what we mean by) nondegener-
acy. Finally, in 7, we compare the six-dimensional model with experimental observa-
tions in both the counterrotating case and the case when the outer cylinder is held
fixed.

1. The Taylor problem. By the term "Taylor problem" we mean the study of both
the possible states of fluid flow between two rotating concentric cylinders, and the
transitions between these states. The Taylor problem provides a beautiful example of a
bifurcation problem with symmetry. In this paper we discuss how these symmetries
affect the structure of the bifurcating solutions.

We denote the angular velocities of the inner and outer cylinders by fi and 0
respectively. To specify a direction, we assume that i >_-0. In the standard experiments
the outer cylinder is held fixed (f0 0) and the inner cylinder is speeded up in stages
from i =0, at each stage allowing the flow to settle into a stable pattern; see Taylor
[1923], Gollub and Swinney [1975]. Experiments have been performed in both the
corotating case (0>0), see Andereck, Dickman and Swinney [1983], and the counter-
rotating case (f0 <0), see Andereck, Liu, and Swinney [1984]. (These papers cite the
earlier experimental work.) The experiments begin by rotating the outer cylinder at
constant speed, and allowing the flow to stabilize; then the inner cylinder is speeded up
as before. The experiments reveal a large number of fluid states, only some of which are
understood on theoretical grounds. There can exist multiple steady states whose ex-
ploration requires different experimental procedures; see for example Coles [1965],
Benjamin [1978a, b], Benjamin and Mullin [1982]. In our discussion we shall assume a
fixed (but unspecified) value of 0, and treat fi (or the corresponding Reynolds
number) as a bifurcation parameter. Our main concern will be with the series of
bifurcations that occurs as i is increased steadily. We mention this because many
numerical computations fix the ratio f0/fi, and hence do not correspond directly to
the usual experimental procedure--a fact that, in the presence of multiple states, raises
some problems of interpretation.

In the standard experiments, with f0=0, the first transition is from Couette
(laminar) flow to (Taylor) oortices. Both flows are time-independent. This transition
was first described, in terms of a steady state bifurcation, by Davey [1962]. He showed
that as fi is increased, the Navier-Stokes equations linearized about Couette flow have
a double zero eigenvalue at the first bifurcation. At this eigenvalue Couette flow loses
stability, and a branch of vortex solutions bifurcates. Davey’s observations have been
reproduced by several authors in different contexts, cf. the survey by DiPrima and
Swinney [1981, 6.3]. Note that the appearance of a double zero eigenvalue might be
surprising were it not for the existence of symmetries (which can couple eigenvalues
together and force a degeneracy).

Again, in the standard experiments with 0 0, a second transition is observed, in
which vortices lose stability to a time-periodic state known as wavy vortices. Presumably
this transition takes place by way of a Hopf type bifurcation in which several eigenval-
ues (governing the stability of vortices) cross the imaginary axis as fi is increased.
However, this presumption has never been established directly. What has been shown
(in Davey, DiPrima, and Stuart [1968]) is that along the Couette branch of solutions
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several eigenvalues of the linearized Navier-Stokes equations cross the imaginary axis
as 2 is increased. In particular the next set of eigenvalues to cross the imaginary axis is
a complex conjugate pair of purely imaginary eigenvalues, each of multiplicity two.
Again, it would be surprising to see four eigenvalues crossing the imaginary axis
simultaneously were it not for the symmetry. We note in passing (and amplify these
remarks below) that the 0(2) symmetry which couples these four eigenvalues together
forces the occurrence of two branches of time-periodic solutions bifurcating from the
(unstable) main Couette branch: see Schecter [1976], and Golubitsky and Stewart
[1985]. However, neither of these solutions can correspond to wavy vortex states, since
their symmetries do not match those of wavy vortices. In fact, one of them has the
symmetries of spiral cells (helices).

There are three additional facts which suggest that there might be a relatit)ely
simple local explanation for many of the observed states in the Taylor problem, at least
in the counterrotating case 20 < 0. First, as observed in DiPrima and Grannick [1971],
and Krueger, Gross, and DiPrima [1966], there is a critical speed of counterrotation

f < 0 such that, as 2i is increased, Couette flow loses linearized stability by having six
eigenvalues cross the imaginary axis. These six eigenvalues are obtained by amalgamat-
ing the double zero eigenvalues and the complex conjugate pair of purely imaginary
eigenvalues of multiplicity two, described above. Further, when 20 is slightly less than
f, the first bifurcation from Couette flow occurs when four eigenvalues (a complex
conjugate pair each of multiplicity two) cross the imaginary axis; and there is a double
zero eigenvalue at a higher value of

Second, in experiments in which 20 is sufficiently negative, the primary bifurcation
is not to the time-independent Taylor vortices, but to time-dependent spiral cells, see
Andereck, Liu, and Swinney [1984].

Third, it is possible to produce a solution from the interaction of the four-
dimensional center manifold (associated with the purely imaginary eigenvalues) and the
two-dimensional center manifold (associated with the double zero eigenvalues) that has
the same symmetry as wavy vortices. This suggests that it might be possible to prove
the existence of a Hopf-type bifurcation from vortices to wavy vortices as a secondary
bifurcation. This was observed by DiPrima and Sijbrand [1982] and again by Chossat
and Iooss [1984].

Given these three facts, it would appear reasonable to study the Taylor problem in
terms of perturbations of the degenerate case f0 2, using either a center manifold or
a Lyapunov-Schmidt reduction from the Navier-Stokes equations. We call this degen-
eracy the six-dimensional kernel since the linearized equation has a kernel of dimension
six and the reduced problem may therefore be posed on R6. The hope raised by the
above facts is that one might be able to find a six-dimensional model which explains
the observed prechaotic states and transitions in the counterrotating Taylor problem.

Let us consider the reduction in more detail. Rigorously, one can use the center
manifold theorem to reduce the (infinite-dimensional) dynamics of the Navier-Stokes
equations, near f0 f and near Couette flow, to the study of some vector field g on a
six-dimensional center manifold. Alternatively, one can focus only on time-independent
and time-periodic solutions and use a reduction of the Lyapunov-Schmidt type to
show the existence of a smooth (i.e. C) mapping h: R6R6 whose zeros are in
one-to-one correspondence with the small-amplitude time-periodic (and time-indepen-
dent) solutions of the Navier-Stokes equations. In either case, to study the dynamics
+/-= g(x) on R6 or to solve h(x)=0 in R6 would be a highly nontrivial taskmwere it not
for the symmetries in the Taylor problem. Both reduction procedures can be performed
so as to respect these symmetries. Therefore, g and h will commute with an action of
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the symmetry group O(2)xS as we explain below. This places considerable restric-
tions on the form that g and h may take. When, as here, we are studying only steady
and periodic states, it is sufficient to use the simpler Lyapunov-Schmidt reduction.
This is our approach. For a complete study of the dynamics, the same restrictions’ on
the form of g will be true provided a smooth center manifold exists. (It is plausible that
the symmetry might imply this, but we have not attempted to address this issue here.)

In this paper we give an explicit representation for all smooth mappings that
commute with this action of 0(2)S1. We use the symmetries to show how to solve the
equation h 0 (in the Lyapunov-Schmidt interpretation), and to determine (in most
instances) the signs of the eigenvalues of the 6 6 Jacobian matrix dh[h__ 0. In particu-
lar we compute these eigenvalues for the solutions corresponding to wavy vortices.

In this respect our results resemble those of a recent paper of Chossat and Iooss
[1984]. However, instead of working on the six-dimensional kernel, Chossat and Iooss
track the bifurcations step by step using the symmetry in the primary bifurcation to
analyze the possible types of symmetry-breaking at secondary bifurcations, in terms of
the linearized eigenfunctions. The types of solution that they find can all be expressed
as combinations of the six linearized eigenfunctions that make up the six-dimensional
kernel; but no reduction to R6 is used explicitly. Thus, although the various pieces of
the bifurcation diagram are studied, their overall arrangement (and consistency) is not.

In our approach group theory is used to provide a coherent framework that
organizes the analysis and in particular the computation of stabilities, leading to more
detailed results. In particular we confirm, in our setting, a conjecture made by Chossat
and Iooss [1984] about tertiary bifurcation to modulated wavy vortices. We show that
(with suitable parameter values) the branch of wavy vortices loses stability by a torus
bifurcation. In experiments this transition is observed, the new state being called
modulated wavy vortices. See Rand [1982], Gorman, Swinney, and Rand [1981], Shaw et
al. [1982].

The analysis of the simplest (nondegenerate) O(2)Sl-symmetric bifurcation
problems on the six-dimensional kernel leads to a picture that includes branches
corresponding to a variety of the observed flows: Couette, vortices, wavy vortices,
twisted vortices, spiral cells, modulated wavy vortices, wavy spirals and an unstable
flow found numerically by DiPrima and Grannick [1971] which they call the "non-
axisymmetric simple mode." By "correspond" we mean that the, solutions we find on
the six-dimensional kernel appear to have the same symmetries as the experimentally
determined states. As we indicated in the introduction, it is further possible to choose
parameters in the model to mimic the observed transition sequences when the outer
cylinder is held fixed, and also in the counterrotating case.

DiPrima, Eagles, and Sijbrand [1984] are currently making numerical calculations
of certain of the Taylor coefficients of the vector field g obtained by a center manifold
reduction. These or similar numerical results should make it possible to determine to
what extent the six-dimensional model reflects the expected transitions in the Taylor
problem, at least in the counterrotating case.

2. Symmetries on the six-dimensional kernel. Symmetries are introduced in the
Taylor problem in three distinct ways:

(1) by the experimental apparatus,
(2) by the mathematical idealization,
(3) by the mathematical analysis.

Since each of these ways introduces a circle group of symmetries the result may seem
confusing at first. However, these symmetries do affect the mathematically determined
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solutions and, moreover, seem to be present in the experimentally determined states.
The symmetries arising through the apparatus would appear to be the most

natural. All formulations of the Taylor problem are invariant under rotation in the
azimuthal plane, a plane perpendicular to the cylindrical axis. Rotation through O in
this plane moves one fluid state to another. We denote these symmetries by SO(2).

Next we discuss the symmetries introduced by the mathematical idealization. In
the experiments, when vortex flow is observed these vortices tend to have square
cross-sections; that is, the height of each vortex is approximately equal to the distance
between the cylinders. As a result, in an apparatus whose cylinder length is long
compared with the distance between the cylinders, many vortices form at the initial
bifurcation. Moreover, the vortex flow appears to be invariant under translation along
the cylindrical axis by two band-widths, at least away from the ends of the cylinder. (In
the cross-sectional regions vortex flow alternates between clockwise and counterclock-
wise.)

Thus in the mathematical idealization we assume that the cylinders have infinite
length and look only for periodic solutions of period equal to two band-widths. As a
result, the Navier-Stokes equations are invariant under both translations along the
cylindrical axis and reflection of the cylinder through the azimuthal plane. Periodicity
implies that translation by two band-widths acts as the identity. Thus the effective
action of this group is by the (compact) group 0(2).

Finally, we consider a circle group of symmetries which is introduced into this
problem by the technique we use to analyze the bifurcation structure. We use a
Lyapunov-Schmidt reduction to determine time-periodic solutions of the Navier-Stokes
equations which lie near Couette flow and the parameter values yielding the six-dimen-
sional kernel. The circle group S1, acting by change of phase on periodic functions,
introduces symmetries into this problem. The addition of these S symmetries by the
Lyapunov-Schmidt procedure, to the symmetries mentioned above, is described in
Sattinger [1983] and Golubitsky and Stewart [1985].

We summarize our discussion here as follows. The full group of symmetries of the
Taylor problem on the six-dimensional kernel is:

(2.1) 0(2) S0(2) S

where 0(2) acts by translation and flipping along the cylindrical axis, SO(2) acts by
rotation of the azimuthal plane and S acts by change of phase of periodic solutions.
For simplicity of notation we assume that the period of the cylindrical translations is
2 rr and that the period of patterns around the cylinder (in the azimuthal plane) is also
2rr. In particular, rotation of the cylinder by half a period is rr SO(2). Moreover, we
assume that solutions are 2 r-periodic in time.

These assumptions do not affect the group-theoretic formulation of the problem,
or its analysis; but they must be correctly interpreted in connection with the observed
flows. Since the situation is potentially confusing, a few clarifying remarks may be in
order. There is no problem in arranging period 2 rr for translations: we merely scale the
distance along the axis. For periodic solutions in the azimuthal direction a little more
caution is required. For example, it is commonly observed in experiments that wavy
vortex solutions may appear with wave numbers 3 or 4 (say); that is, with 3 or 4
complete periods relative to a single turn of the cylinder. Provided only one such mode
is present, we may scale the azimuthal angle to "factor out" this additional periodicity.
The angle 2r then represents one period (2rr/3 or 2r/4 on the physical cylinder). In
group-theoretic terms, an action of SO(2) for which 0 SO(2) produces a rotation by
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kO, k an integer, can be viewed as the standard (k= 1) action of SO(2)/Zk and this
group may be identified with S0(2).

On the six-dimensional kernel, only one such periodic mode occurs, and this
procedure may be followed. If two modes with different wave numbers occur, it would
be necessary to make S0(2) act by kO and 10 (where k, are the respective wavenum-
bers) on the corresponding spaces of eigenfunctions and to carry out the analysis for
the appropriate action of 0(2) S0(2) Sx. See Chossat [1985].

3. Observed solutions and their symmetries. In the experiments a number of pre-
chaotic states are observed. In this section we discuss the symmetries of each of the
following states: Couette flow, Taylor vortices, wavy vortices, spiral cells, and twisted
vortices.

Both the Couette and vortex flows are time-independent. As noted above, vortex
flow produces bands along which the flow is in the azimuthal plane. See Fig. 3.1(a).

When fl0__<0, vortex flow loses stability, and a time periodic state called wavy
vortices appears. See Fig. 3.1(b). This periodic flow has the special form of rotating
waves. More precisely, the solution u(t) is a rotating wave if u(t + 0) RoU(t) where R 0

denotes rotation by angle 0 in the azimuthal plane. We shall see in {}4 that all periodic
solutions obtained from the six-dimensional kernel must be rotating waves.

When f0 fl, wavy vortex solutions lose stability, and a new quasi-periodic solu-
tion with two independent frequencies appears. This new state is called modulated wavy
vortices. It is interesting to observe, at this point, how the modulated wavy vortex
solution might be detected by our proposed method using a Lyapunov-Schmidt reduc-
tion. The idea is to compute the Floquet exponents along the wavy vortex branch of
solutions and show that certain of these exponents cross the imaginary axis. Then apply
the Sacker-Neimark torus bifurcation theorem to conclude the existence of quasiperi-
odic solutions. We show in 7 that this scenario is possible. A similar remark holds for
identifying wavy spiral states when fl0 < 0.

We note that the actual transition to chaos cannot be explained by our analysis.
Nevertheless, chaotic behavior may be present in our model and this point deserves
further investigation.

We also note here that in the corotating and counterrotating Taylor problems
solutions with different planforms are observed. For example, in the corotating case
Andereck, Dickman and Swinney [1983] have observed twisted vortices. See Fig. 3.1 (c).
In the strongly counterrotating case, Couette flow loses stability to a helicoidal pattern
called spiral cells, which are time-periodic rotating waves. See Fig. 3.1(d).

We can distinguish each of the states described above by their isotropy subgroups;
that is, by the subgroup of (2.1) which leaves the given state invariant. In Table 3.1 we
list the isotropy subgroups for each fluid state described above.

We now discuss the entries in Table 3.1. The steady-state solutions are invariant
under change of phase ($1); the periodic solutions are all rotating waves .and are
invariant under A since a change of phase may be compensated for by rotating the
cylinder. Couette flow is invariant under all symmetries. Taylor vortices are invariant
under all rotations (SO(2)) and the flip along the cylindrical axis r. We denote by
Z2(r) the two-element group generated by r.

Isotropy subgroups for the periodic solutions are obtained as follows. The helical
state, spiral cells, is invariant under SO(2) since a translation along the cylinder axis
may be compensated for by a rotation of the cylinder. Next observe that wavy vortices
are invariant under the group element obtained by composing the flip (r) with rotation
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(a) Taylor vortices (Ro= 1164, Ri= 1161). (b) Modulated wavy vortices Ro= 100, Ri= 350).
In a still photograph wavy vortices and modulated
wavy vortices have a similar appearance.

(c) Twisted vortices R 721, Ri= 1,040). (d) Spiral cells R 295, R 237).

FIG. 3.1. Observed flows in the Taylor experiment. Reynolds numbers for the inner (Ri) and outer (Ro)
.ylinders. Photographs kindly supplied by Harry Swinney and Randy Tagg. Similar photographs will appear in
Andereck, Liu and Swinney [1985].
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TABLE 3.1
Isotropy subgroups of observedfluid states.

State Isotropy subgroup

Couette flow
Taylor vortices
Wavy vortices
Twisted vortices

Spiral cells

0(2)S0(2)S
Z2 Ic X SO(2) X S
Z_(x,r)A
Z2(/)A
so(2)xzx

a {(O, -O)SO(2)XS
0(2) is the flip z z along the cylindrical axis
SO(2) is rotation of the azimuthal plane by one-half period

SO(2) (+, k) 0(2) SO(2)

of the cylinder by half a period r SO(2). Finally, twisted vortices are invariant under
the flip .

It is worth noting that the first three bifurcations in the standard Taylor problem
(f0 0) break symmetry in a simple way. Couette flow to Taylor vortices breaks the
translational symmetries; Taylor vortices to waw vortices breaks the rotational symme-
tries (SO(2)); and wavy vortices to modulated wavy vortices breaks the rotating wave
symmetries (A).

4. Group theory and the six-dimensional kernel. In this section, we answer four
questions:

(1) What is the exact form of the six-dimensional kernel?
(2) What is the action of the symmetries of the Taylor problem on this kernel?
(3) What is the form of the reduced mapping h, obtained by the Lyapunov-Schmidt

procedure?
(4) What are the possible isotropy subgroups of points in the six-dimensional

kernel?
We answer the first question by referring to DiPrima and Sijbrand [1982]. Let

rl Ri/Ro be the ratio of the radii of the inner and outer cylinders. We quote:

Thus, for example, for /=0.95 and f0/f -0.73976, Couette flow is
simultaneously unstable to an axisymmetric disturbance with wave numbers
(X,m)=(3.482,0) and a nonaxisymmetric disturbance with wavenumbers
(X,m)=(3.482,1). We also note that...there are 6 critical modes with axial
(Z) and azimuthal (19) dependence as follows:

(4.1) cos)kZ, sin X Z, e +- io cos()kZ), e ---iO sin()Z).

The action of the translations in 0(2) on the eigenfunctions in (4.1) is generated by
translations of the axial (angle) Z and the flip (x) which acts by Z- -Z. Rotations in
the azimuthal plane act by translations in . (We have omitted the radial dependence
of the eigenfunctions here as the group 0(2)XS0(2) acts trivially in the radial direc-
tion.) Observe that the resulting action of 0(2)xS0(2) on the six-dimensional space
generated by the eigenfunctions in (4.1) leads to the following equivalent action. We
identify the six-dimensional kernel with

(4.2) V=a2 (R2(R) C)

and let elements of 0(2) act on R2 in the standard way and elements of SO(2) act by
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multiplication on C. That is

(0, )(v, w(R) z)= (Roy, ( Row)(R) (ei+z))
where Ro is the usual rotation of R2 through the angle 0. Similarly, the flip x acts by
(Kv, Kw (R) z), where K is the matrix (l). The action of the phase shifts S in V turns
out to be identical with the action of SO(2) on V. This fact can be verified by direct
computation. First observe that the R2 summand in Vis spanned by {cos(XZ), sin(XZ)},
a steady-state kernel. As such, S acts trivially on R2. Next, observe that S commutes
with 0(2)SO(2) and hence the actions of S and 0(2)S0(2) on R2(R) C commute.
Since the only matrices acting on R-(R)C commuting with 0(2)xS0(2) are scalar
multiples of matrices in SO(2) (see Golubitsky and Stewart [1985, Lemma 3.2]), it
follows that the elements of S act in a fashion identical to elements of SO(2). Without
loss of generality, we may identify the actions of SO(2) and S1.

One consequence of this identification is that the subgroup A= {(q,-q)
SO(2) x S } is in the isotropy subgroup of every element in V. Thus, we have proved"

LEMMA 4.1. Every periodic solution found in the six-dimensional kernel is a rotating
wave.

A second consequence of the identification of the actions of SO(2) and S is the
simple form that the reduction bifurcation equation h" V V, obtained via a
Lyapunov-Schmidt reduction, must take. (The function h depends on a number of
extra parameters, 20 for example. We suppress this dependence here.) Let the purely
imaginary eigenvalues of the linearized Navier-Stokes equations be + 0i. For simplic-
ity, use a scaling argument to assume = 1. Then the idea behind the
Lyapunov-Schmidt reduction is to look for small amplitude periodic solutions of
period near 2 r. One does this by rescaling time in the original equation by a perturbed
period parameter and looking for precisely 2r-periodic solutions to the scaled
equations. What results, after appropriate applications of the implicit function theorem,
is a reduction equation

where h: VR V is smooth and commutes with 0(2)S0(2)S. We claim that we
may assume that the dependence of h on is particularly simple. In fact,

(4.3) h(v,)=g(v)-(1

where J is the matrix form of the action by r/2 S on V.
To verify this claim, suppose for the moment that there exists a smooth center

manifold. Let g(v) be the reduction vector field on that center manifold. It was proved
in Golubitsky and Stewart [1985] that if the Lyapunov-Schmidt reduction is applied to
g, introducing r, then the resulting function h has exactly the form (4.3). This fact relies
on having the spatial symmetries SO(2) identified with the temporal symmetries Sa.

If we perform the Lyapunov-Schmidt reduction directly from the Navier-Stokes
equations, then the reduced function has the same form as (4.3), at least to first order in
r. In any case, the form (4.3) is used later only to solve certain equations for
explicitly. If higher order terms are present, then these equations may be solved
implicitly, which is sufficient for our purposes. Therefore we lose nothing by working
with h in the form (4.3). Moreover, we note that g commutes with the action of
0(2)S0(2)S on V and may be identified with the mapping on V obtained by a
center manifold reduction, at least up to any finite order in its Taylor expansion.
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For the remainder of this section we describe precisely the form that mappings g
which commute with 0(2)S0(2)S must have. Note that a third consequence of
identifying the actions of SO(2) and S is that at this stage we may ignore one of them.
Henceforth, we assume that

(4.4) r=o(2)xs’
is our group of symmetries and turn attention to the action of F on V.

At this point we choose coordinates on V. First write V= V V2 where V1 R2 C
and V2= 112 (R) C---M(2, R), the space of 2. 2 matrices with real entries. Thus elements
of V have the form

(4.5) (z,A)
where

z=x+iyC and A=( a b)M(2 R)
c d

In these coordinates the group action of F O(2)S on (z,A) is defined as follows:

(4.6) (0, q)(z,A)= (eiz,RoAR)
where

Ro=(CosO sin0)sin 0 cos 0

is the rotation matrix. See Golubitsky and Stewart [1985, 3] for more detail.
We now answer the third question by describing in detail the invariant functions

and the equivariant mappings corresponding to this group action. (Recall that :
V V is equivariant if d(v)=,ld(v) for all 3,F, v V.) Proofs are found in the
Appendix.

PROPOSITION 4.2. Let q: VR be a smooth function defined in a neighborhood of the
origin which is invariant with respect to the action of F in (4.6). Then there exists a smooth
function h: R R defined near 0 such that

where

(v)=h(fl,N,82,7,o)

fl= z= x2 +y 2,
N=a2+b2+c2+d2,
=detA,, Re(z2),
o= ii Im( z2)

and

=a2 + b2-c2-d 2 + 2i(ac+ bd).

THEOREM 4.3. Let b: V- V be a smooth F-equivariant mapping defined near O.
Then there exist F-invariant functions

p,q,r,s,p,p2, Q1, Q2, Q3, Q4,R1,R2,R3,R4,M3,M4
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such that

(4.8) ( 4

b(z,A) pz + qiz +r+si, E (SJK+ TL)
j=l

where

and

KI=( ac
(-cEl= a

d d c -c -d

b a a b L4__ ( -db

(4.10)

S1--p1,
S2=p -,
Tl=Rl+Ollm(z2),
T=R28+OIm(z2),
S 0 Re(-) +R38 Im() +M36 Im(2),
$4= Q4Re(2) + R4t Im() -[- M4i Im(2 ),
T Q3 Im(2) +R38 Re() +M31 Re(22),
T4= Q4 Im(:z) +R4 Re() -1- M41 Re(2).

a),

We shall exploit the form of q, in (4.8) to solve explicitly the reduced bifurcation
equation g 0. In order to understand what types of solutions one may find in g 0 we
answer the fourth question of this section. By determining, up to conjugacy, the set of
all isotropy subgroups of elements in V, we determine the symmetries that possible
solutions to the Navier-Stokes equations found by reducing to V may have.

The lattice (of conjugacy classes) of isotropy subgroups for I’ acting on V is given
in Table 4.1. Containment of one conjugacy class in another is indicated by arrows. In
Table 4.2 we list these isotropy subgroups along with the states in the Taylor problem
which have those symmetries. We use the notation Z2 to indicate a two-element group
and Z2(a) to indicate the two-element group generated by F.

We emphasize that the containments in Table 4.1 are of conjugacy classes. For
example, Z(xr,r) is not contained in Z2(/c)xS1. However, Z(xr,r) is conjugate to
Z2 ( x, r ) which is contained in Z(x) x St.

TABLE 4.1
Lattice of conjugacy classes of isotropy subgroups of F acting on V.

/, o(2)xs

z_ () s’ " so()

( z(,)z ) z(,) .,,

Note: Z is generated by , (,), (,).
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TABLE 4.2
The symmetries associated with observedfluid states.

Isotropy subgroup Solution type

O(2)S
Z2()xS
so(2)

Z()

Couette flow
Taylor vortices

spiral cells
wavy vortices
twisted vortices

We derive the lattice pictured in Table 4.1 by first considering orbit representa-
tives. Begin by considering the action of 0(2) S on R2 (R) C M(2, R). Let A be a 2 2
matrix. As shown in Golubitsky and Stewart [1985, {}7], we can choose an element of
O(2)xS so that A is conjugated to the diagonal matrix () where a>__ d>__0. It is then
easy to show that there are four types of orbits as shown in Table 4.3.

TABLE 4.3

Orbit representatives of 0(2)S acting on M(2, R)

Orbit representative Isotropy subgroup

0

0
,a>0

(a O)’a>O0a

0
,a>d>0

o(2)xs

zi

SO(2)

Z2 (gr, qT"

Having put the matrices in M(2,R) into normal form, we now use the isotropy
subgroups of these matrices to conjugate the elements z C-= R2. In this way we obtain
representatives for all the orbits of 0(2)XS acting on R2 (R2(R) C). These results are
summarized in Table 4.4.

TABLE 4.4

Orbit representatives of 0(2)S acting on R (9 (R (R) C).
Orbit representative (z, A) Isotropy subgroup

0(2)S
Z2(K)S

z

SO(2)

z2(,)
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TABLE 4.5

Fixed-point subspaces of 0(2)S acting on I/.

0(2)S

Isotropy subgroup Fixed-point subspace Dimension

Zz()xS

z
so(2)

Z:(r,)

Z(,)

(x,0)

(0,(;

In the last table of this section we present the fixed-point subspaces of the various
isotropy subgroups. More precisely, let c F be a subgroup. Define

(4.11) Vy= (ve Vlov=v for allo2:}.

Observe that if " V V commutes with F, then maps V to itself (see Golubitsky
and Stewart [1985, (1.6)]).

5. Branching and stability. Let h (z,A, X, ) be the mapping on the six-dimensional
kernel obtained via the Lyapunov-Schmidt reduction. Note that h depends explicitly
on the bifurcation parameter and the perturbed period z. In addition, we know that h
commutes with the symmetries in the Taylor problem. We shall use the consequences of
this fact to explain how to compute both the solutions to h- 0 and the eigenvalues of
the 6 6 Jacobian matrix dh along branches of solutions to h- 0. One consequence of
the 0(2)S0(2)S symmetries is that the eigenvalues of dh determine the orbital
asymptotic stability of solutions.

Let us be more precise. Recall the form of h in (4.3) with its simple --dependence,
namely

h(z,A ,z)=g(z ,X)-(l+’)(O,(-bd a))c
where A =(,a.). In deriving this form we note that if the Navier-Stokes equations
admit a smooth center manifold then h will have exactly the form (5.1), where g is the
reduced vector field on that center manifold. We proved in Golubitsky and Stewart
[1985, Thm. 8.2] that the eigenvalues of dh determine the orbital asymptotic stability of
solutions to the vector field g on the center manifold. Moreover the center manifold
reduction implies that the stabilities of solutions to the vector field g are the same as the
stabilities of the corresponding solutions to the Navier-Stokes equations.

If there should not exist a smooth center manifold (which we doubt) then we are
computing the correct stabilities for g, accurate to any finite order, by using the
eigenvalues of (dh) h--0-



SYMMETRY AND .STABILITY IN TAYLOR-COUETTE FLOW 263

We now describe how to compute the eigenvalues of dh. Recall that (4.8) restricts
the form of g in (5.1) to:

( 4

(5.2) g(z,A,,)= pz + qiSz +r+ sii2, E SJKj+ TJLj
j=l

where p,q,r,s and the coefficients p1,...,M4 appearing in (4.11) are invariant func-
tions, hence functions of the five variables fl, N,8 2, ,, o defined in (4.7) and . More-
over, since h is obtained via the Lyapunov-Schmidt reduction, the linear terms must
vanish. Hence

(5.3) p(0)=0, pI(0)=0, e2(0)=l.

Equivariance shows that to solve the equations h 0 we need only evaluate h on
typical orbit representatives. The resulting equations are listed in Table 5.1. See Table
4.4 for the list of orbit representatives and their isotropy subgroups.

Remarks. (i) The equations involving r serve only to determine the perturbed
period of the associated periodic solution. Note that (5.1) allows us to eliminate r by
solving these equations explicitly (or implicitly if there does not exist a smooth center
manifold, see 4 above).

(ii) Observe that r is indeterminate on the Z2(x)S branch, which is to be
expected since the bifurcation is to a "steady state."

(iii) Observe that the theoretical basis of our explicit calculations is given by (4.10):
fixed-point subspaces V are mapped to themselves by equivariant mappings. There-
fore we may restrict h to V and seek solutions to h V= O, considering each isotropy
subgroup Y in turn.

Table 5.1 also lists the coefficients that determine the signs of the (real parts of
the) eigenvalues of dh. We consider the branching equations briefly first, and then
describe in more detail the eigenvalue calculations.

By writing (4.9) in coordinates we obtain

a b))=(X,y,(5.4) h(x’Y’(c d

where

(a) X=px-qSy+ rxRe(f)+rylm(f)+sSyRe(f)-sSxlm(f ),
(b) Y=py + qSx ry Re(’) rx Im(’) +sSx Re(’) +sSy Im(’),
(C) A--(sX+S3)a+(-S2-S4)bnt-(-Tl+ T3)c+(T2-T4)d,
(d) B--(S2+S4)aq-(sX-t-S3)b+(-T2-t-T4)c+(-TI+ T3)d,
(e) C--(TI-t-T3)a+(-T2-T4)b+(S1-S3)c-t-(-S2nt-S4)d,
(f) D=(T2+T4)a+(TX+T3)b-t-(S2-S4)c+(S1-S3)d.

The branching equations always take the form X= Y A B C D 0, evaluated
on the appropriate orbit representative. The entries in the table follow readily. How-
ever, a few comments should be made regarding the last four entries of "unknown"
type.
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TABLE 5.1

Branching equations and eigenvalues for solutions with given symmetry.

Solution type"
Isotropy;
orbit

Couette flow
0(2)S
(0,0)

Taylor vortices
Z2(1) XS
(x,0)

unknown

spiral cells

S0(2)

Branching equations
(to be evaluated at
orbit representative
shown)

None

p=0

at’ (x-, 0, 0, 0, 0, X) Ill

p1 0
p2=l+z

at: (0, a2, 0, 0, 0, k

p1 + a2R =0

p2 a2R 1 + r

at: (0, 2a2, a4,0,O,k)

Signs of
eigenvalues

Pa _+ i(p2 1 -r)

0

(p1 + x2Q3)+i(Pp#2_ l_r + x2Q4)
(p2_ x2Q3)+_i(p2_ l-r- x2Q4)

0
p+ ra

p-- ra

PIN + a2p
R + a2R4

o
P _+_ iqa

2P + R + a2(p2 + 2R2N)+a4R22
(R2+2a2Ra)+i(R +2a2R4)

Multiplicity

2,2

1
1

1,1
1,1

1
1

1

1,1

1

1,1

wavy vortices
Z2(r,r)

twisted vortices
Z2()

((ax 0

p-a2r=O
pa _y2Q3 =0
p2 _y2Q4._ 1 + "

at: (y2,a2,0,- a2y2,0,k)

R2a2 + 2Q3y2 + ay2Q
+a4R4-a2y2M4

Ay
det =p/ pX (PN r)(PA Q3)+

trace=py +pa +

unknown
Z2(r,r)

o))
p+a2r=O
p1 + x2Q3__O
p2 + x2Q4 1 + r

0

R2a2-2Q3x

ax2Qt + a4R4+ a2x2M4

at: x a 2, O, a2x 2, O, ,

R2+(a2+d2)R4=O
plus others

at: (0, a + d a2d O, O, ))

X Xa ][2]A A,
det =pt P-(pN_+ r)(P Q3)+

trace=p/x +P}a +
not computed

1,1

1,1
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TABLE 5.1 (continued)

unknown
1

Oa))
unknown
1

(x+iy,( a
0

unknown
1

q=0
plus others

at: (x2,2a2,a4,0,O,h)

r=0
plus others

at: (x +y2,a2,0,(x2-y2)a2,0,)
X=Y=A=B=C=D=O

at: x +y2, a + d, a2d
x -yZ)(a2 d),2xyad(a d2), k)

not computed

not computed

not computed

Notes: [1] The equations must be evaluated at (fl, N,82,’,o,)) where these in turn are evaluated on an
orbit representative to yield the form stated.

[2] The remaining eigenvalues are those of the specified 2 2 matrix. Its determinant and trace are
shown to lowest order (omitting positive factors) to determine their signs.

When the isotropy group is Z2(r, r) we take two of the equations, namely A --0
D, which reduce to:

(aid S3)a+(T2- T4)d= 0,

(T2+ T4)a+(S1-S3)d=O.
Now observe that $1+ S and T2+ T4 have a factor d. Divide this out and subtract.
The result has a factor (a-- d2), and the entry in the table follows. We do not require
the remaining equations, because an appeal to nondegeneracy (6) now rules out this
case.

For the next two cases, the equations X= Y= 0 lead, among other things, to the
listed equation, which is also ruled out. by nondegeneracy. The final case is extremely
complicated and it remains possible that such a branch might occur: see 7 for further
discussion.

The computation of the eigenvalues, particularly those along the Z2(x) and
Z2(xr,) branches, is the most difficult part of this section. This computation is
facilitated by the use of several results in Golubitsky and Stewart [1985, 8b]. The first
is that along a solution branch (v0, 0, %) with isotropy subgroup Z, the derivative

(dh)v0,x0, commutes with Z. This implies (Lemma 8.4 of that paper) that (dh)vo,X0,
leaves invariant the subspaces W of V formed by adding together all subspaces of V on
which Z acts by a fixed irreducible representation. We use the Wj. to put dh into block
diagonal form.

The second fact is that (dh)o,x, vanishes on all vectors tangent to the orbit of v
under the action of 0(2) S1. These null-vectors are given by:

(5.6)
(a)

(b)

-1
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We now outline the explicit computation of the eigenvalues listed in Table 5.1.
(a) Z2 S (Taylor vortices). Decompose V= R2 (9 (R- (R) C) into irreducibles for

Z S1. We get V= Wo (9 W (9 W (9 W where

a b((0, (0 0))),
WI=((iyO)} W3=((0,(0 0)))c d

The actions are given by

-1 1
1 R

which are distinct irreducible actions. Therefore, dh leaves each invariant. Let
(j= dhlWj., so that dh has the block form:

y ab cd

0 0 0
(I)

0 (I)2 0

(I)

We evaluate the (I)j at the orbit representative (x, 0), with the following results.
(I)o= Xx=p +PxX=pxx since p=0 on this branch by Table 5.1. Now x > 0 so we

can divide it out.

(l Yy=p +pyy=O,

[aa hb]=[ sl+s3(= Ba Bb S- + S4 -S2-$4] [ pI+x2Q
SI + S p- l -,r + x2Q4

-(P-l-’+x2Q4)

Since a matrix ( -) has eigenvalues a + ifl, the entry in the table follows. Similarly

De Da $2-S4 S1- S =[ pI-x2Q3
p2 -1- ,r x2Q4

( p2-1- "r- x2Q4 )
x2Q

The entries for vortices in Table 5.1 follow. Note that (I)2 and (1) have to be scalar
multiples ( -,) of rotations since dh commutes with $1; direct calculation confirms
this.

(b) Z (unknown). We use the same decomposition V= Wo (9 W1 (9 W2 (9 W3 as in
(a). The actions are:

Wo Wa W2 W

x 1 -1 1 -1
(r, rr) -1 -1 1 1
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So the irreducible components on these spaces are distinct. Therefore dh leaves each
invariant: set j= dhlW. We have

d#o =p + ra 2, b =p ra 2.

Now dh has one eigenvalue 0 on each of W2 and W3, so the remaining eigenvalues are
Tr 2, Tr3. Use (5.4) here. These are computed as follows.

Tr*2=Aa+Ba=(SI + S)+(Sa + S3a )a+(Sl + $3)+(Sa2+ S)a
since b c d 0 on the orbit. The branching equations show that S + S 0, so the
sign is given by S + S +S+ S. Now on the orbit we have z 0, 8 0, " a 2, 8 0,
8b=0. So by (4.11) we compute this as pl+p. But Nb=O on the orbit, so this
becomes P. 2a. Dividing by 2a > 0 gives the table entry. (From now on, we omit such
details from the calculation.)

Similarly,

Trd3=Cc+Dd=Sl-S2+(Tcl+ Zc3)a+(Sx-S3)W(Zf + Tff )a.
But S -[- S --0 on this branch, so this is

4SI + a( TI. + Tc3 + T+ T) a:ZRg- + a4R4.

(c) SO(2) (spiral cells). Let

a b }}
These are irreducible under S6(2); and (0,-0) S6(2) acts on W0 as e i, on W as
the identity, and on W2 as e2 (see Golubitsky and Stewart [1985, (10.5)]). Hence the
Wj. are invariant under dh. Let j= dhlWJ. as usual. We compute

which has the form (-) required to commute with SO(2). Now (I) has one zero
eigenvalue on W, so the other is

TrdPl =Aa +Ad+ Bb- B

by Golubitsky and Stewart [1985, (10.11)]. We compute this on the orbit (0, (g 0a)). The
result is

TRY1= 2a(Sa + Sa + Ta- Ta4+ S + Sd4+ Td2- Tff).

In deriving this, note that S + S + T3_ T4__ 0 by the branching equations. Also,
the b- and c-derivatives of the invariants are equal, so the b- and c-derivative terms
cancel. The a- and d-derivatives of/3, N, , ,, 0 are equal, whereas a 2a -’d. Hence
the only terms that remain, on dividing out positive factors, are

2pIN+ R2+ a(P2 + 2RN)+ a4R22.
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The matrix of (I)2 can be computed as

Aa-Ad Ab+Ac]Ba-Ba Bb+B

and must be of the form (-) by Golubitsky and Stewart [1985, 10]. Much as above,
we find that

Aa-Aa= 2a2(R2 + 2a-R4),
Ab+Ac= -2a2(Rl+2a2R4),

as required for the entry in the table.
(d) Zz(xr, r) (waoy oortices). We decompose V= Wo W1 where

W0 {y, a, b) + 1 eigenspace,

W (x, c, d) 1 eigenspace,

and take a basis in the order

y,a,b;x,c,d.

Let 9 dh[W. The null-vectors for the two zero eigenvalues of dh may be found from
(5.4) and are

0 0

0 and _0y
0 a
0 0

with respect to this basis, when evaluated on the orbit. So column b of dh is zero and
columns x, e are linearly dependent. Direct calculation yields Cx Dx=0, whence by
linear dependence C,. Dc= 0. So dh is of the form

y a b x c d
y 0 0 0 0
a 0 0 0 0
b 0 0 0 0

x 0 0 0
c 0 0 0
d 0 0 0

0 0
0 0

The eigenvalues of 2 are therefore

Xx=2ra 2,

Dd= aZR2 + 2yZQ + ayZQ+ a4R4 aZyZM4,

and those of I) are given by
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Now

Yy=p +pyy ra 2 ryya - =pyy rya2y
Ya=pay-(aZra+2ar)y,
Ay=(Sy+S3y)a,
Aa=(SI+s3)o since $1 + $3 =0.

To evaluate the y- and a-derivatives, note that on the orbit,

Ny=O, fly=2y, (82)y=0, yy=-2ya2, oy=O,
Na=2a, fl=0, (2)a--0 "ya’---2ay 2, Oa=O.

The y-derivatives introduce a factor y, the a-derivatives a factor a. So the matrix is
of the form

[ 1e11Y
2

el2aY

e21ay e22a
2

for certain functions eij. We therefore evaluate the eij to lowest order. The result is

ellY

e21aY e2.a - (Sly+S3y)a (Sla+S3a)a

-[ 2pCy2 2(PN--r)ay

2(P-Q’)ay 2Pa2

The determinant and trace of therefore have the signs indicated in the table.
(e) Z2(x) (twisted vortices). This is similar to (d). The decomposition into invariant

subspaces is now V= W0 Wx where

W0 (x, a, b) + 1 eigenspace for x,

W (y, c, d ) 1 eigenspace for x.

We take a basis for V in the order

x,a,b;y,c,d.

Then dh has block form, and we let dhlW .
There are two zero eigenvalues of dh given by (5.4). In the basis above the

associated eigenvectors are

x 0 -y

ab ba c

--* 0
and x

d

i dc a
b
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Evaluation on the orbit representative (x, (g )) yields the eigenvectors

0 0

0 and 0
x

0 a
0 0

Therefore column b of dh is zero and columns y and c are linearly dependent. Putting
the zeros in column b, we get

x

a

dq= b

Y
c

d

x a b y c d

* * 0 0 0 0
* * 0 0 0 0
* * 0 0 0 0

0 0 0
0 0 0
0 0 0

Direct calculation, evaluating at y b c d 0, yields Cy 0, Dy 0, whence by linear
dependence of columns y and c we also have Cc= Dc= 0. So

(I)1"-- 0 0 Cd
0 0 Dd

This is triangular, so its eigenvalues are

O,
Yy=p- a2r 2ra 2,

Dd= a2R2- 2x2Q ax2Q+ a4R4 4- a2x2M4,

using the branching equations.
Since column b of 0 is zero, the eigenvalues of 0 are 0, together with those of

Now

Again the matrix is of the form

Xx =pxx + rxXa 2,

X=px+(a2G+2ar)x,
Ax=(S+S)a,
ao=(S +SJ)a.
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and we may retain only the lowest order terms in the fij. The result is

[2px22(PN+r)ax ]2(P-Q3)ax 2Pva2
so the determinant and trace have the indicated signs.

Notice the "duality" between wavy and twisted vortices. This completes the verifi-
cation of Table 5.1.

6. Nondegeneracy conditions. We now proceed to a detailed analysis of the solu-
tions to the branching equations, and the signs of the real parts of the eigenvalues along
branches, which determine (orbital asymptotic) stability. The main qualitative features
of the bifurcation diagrams, and their associated stabilities, depend upon the signs of a
number of coefficients. We therefore impose appropriate nondegeneracy conditions:
these coefficients should be nonzero.

Recall from 1 that in order to obtain the six-dimensional kernel we had to fix the
speed of counterrotation of the outer cylinder at some critical value f. At this speed
we found a two-dimensional eigenspace associated with zero eigenvalues, 112, coalescing
with a four-dimensional space associated with a pair of complex conjugate purely
imaginary eigenvalues, R2 (R) C. Thus, in order to model the effects of counterrotation in
the Taylor experiment, we must introduce a perturbation parameter a which will split
apart the bifurcations corresponding to R2 (vortices) and R2 (R) C (spiral cells and Z22).

We choose to do this by replacing p1 in (5.2) by a+P. If a <0, then the
bifurcation to vortices occurs second (in the bifurcation parameter k= f;); if a > 0, it
occurs first. Thus, we may think of a as f]0-f]. See Fig. 6.1.

vortices

Couette

vortices spiral cells

g h

a<O a>O

FIG. 6.1. Schematic rendition of the effect of the perturbation a. The directions of the branches are chosen

arbitrarily and secondary branches haoe been suppressed.

The nondegeneracy conditions we impose on h are stated when a 0 and when
z=O,A =0.

In Table 6.1 we list sixteen nondegeneracy conditions; a F-equivariant bifurcation

TABLE 6.1
Nondegeneracy conditions for h.

(a) Pt (h) R
(b) Px (i) 2P + R
(Cl) (P + Q3)Px PPB (j) 2(pNP-_Pvpx)-pxR
(ca) (p_Q3)px_pp (k) pp-(p +Q3)(Pu+r

p1() P O) p-(P-Q )(e-r)
(e) P (m) r

( P(p+r)-exP (n) Q3
() P(p-r)-exP (o) q
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problem h is called nondegenerate if these sixteen expressions are nonzero for h. In
Table 6.2 we list the lower order terms for each solution branch of h=0 and each
eigenvalue of dh along these branches. For nondegenerate h these lower order terms
determine the direction of branching (super or subcritical) and the (orbital) asymptotic
stability of each solution. In Table 6.1 we use the convention that all quantities are to
be evaluated at the origin. So, for example, PN means P(0,0,0, 0, 0, 0). The terms
(a)-(n) in Table 6.2 refer to the corresponding expressions in Table 6.1.

TABLE 6.2
Branching equations and eigenvalues to lowest order for nondegenerateproblems.

Couette flow
(O(2)S1)
(0, 0)

Taylor vortices

Z2 (/) XS

(x,0)

unknown

spiral cells

so(2)
a 0))

wavy vortices

Z2 (to q’/’,

Branching equations

None

a lx2

-1
h=’-[a + (d)a

x= _1___[
(e)

a+(i)a

(c2) y2+ (g)
a

(b)

(all !d a

Sign of real part
of eigenvalues

Multiplicity

(b)X
a+(e)X

(e)
(b)
(e)

0
(f)

a

(g)a+-a
(d)
(h)

0

(b) j) a2(e--- a+ -(i)
-(h)

(m)

2(n) y2 4- (h)a

det
Y"

=(l)Aa

=(a)y2+(d)a

(b)

0

(a)

Oq-
(Cl) X2

Oq-
(C2) X2
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TABLE 6.2 (continued)

twisted vortices

o))

C1
X

(f)
a

b +-(- =a

a (ka2,_(a) +
C1 1

tr[ x

-(m)

2(n)x +(h)a

det[ XxAx

Z r, r) No solutions by (h)

02
Aa =(a)x2+(d)

No solutions by (m), (o)
except perhaps on the orbit

*The terms (a)-(o) are defined in Table 6.1 and required, by assumption of nondegeneracy, to be nonzero.

In our analysis of the bifurcation diagrams and the asymptotic stability of the
associated solutions, we use only the equivariant form of the bifurcation equations and
the implicit function theorem. Moreover, in each appeal to the implicit function theo-
rem we find a neighborhood of the origin in (z,A,?, a)-space on which its consequences
are valid. Since we use the implicit function theorem only finitely many times, all of our
conclusions hold simultaneously in some fixed neighborhood of (0,0,0,0) in
(z,A,?,a)-space. This neighborhood does depend, however, on the particular values
that enter into the nondegeneracy conditions.

The computation of the entries in Table 6.2 may be completed in a routine fashion
using the entries in Table 5.1. We give the flavor of these computations by presenting
the results for wavy vortices.

The branching equations for Z2(Kq/" q?) are

p ( y2,a, 0 2, a2y 2, O,2 ) -a2r( y2,a2, O, a2y 2, O,X) =0,
a + p(y2, a2, O,a2y 2, O, X)+y2Q3 (yZ,aZ, O, a2y, O, X) O.

See Table 5.1. (The third branching equation in that table is used only to eliminate -.)
Expanding to lowest order, we have

0 =pt(0)y2+(Pu(O) --r (0))a 2 +px(0)2 +...,

O=a +P(0) y 2 + PN(O)a 2 + Px(O) 2- Q3(O) y2 + ....
Using the implicit function theorem, we can solve for ) and y2 as a function of a 2 if

(o)( (o)), o.
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This is condition (c_) of Table 6.1. We then obtain

P(O)p#(O)- (PJ(O)- Q3(O))( pN(O)- r(O))
a2+ ...,

px(O) Px(O)p(O)-P,(O)( plN (0) r (0)) a2+ ....

Using the entries in Table 6.1 along with some rearrangement of terms, we obtain the
entry in Table 6.2.

7. Comparison with experiment. In this section we discuss how the above model
bifurcation problem(s) on the six-dimensional kernel compare with experimental ob-
servations in the two main settings.

(1) Experiments by Andereck, Liu, and Swinney [1984] in the counterrotating case,
including parameter values near a point at which the six-dimensional kernel ap-
pears to occur.

(2) The standard "main sequence" of bifurcations in the case where the outer cylinder
is held fixed:

Couette flow Taylor vortices wavy vortices modulated wavy vortices

We will show below that it is possible to make choices for the signs of the
coefficients that appear in Table 6.1 as nondegeneracy conditions, so that the resulting
bifurcation sequences are in qualitative agreement with the experimentally observed
bifurcation sequences. In the counterrotating case we have direct (numerical) evidence
for the existence of the six-dimensional kernel through the work of DiPrima and
Grannick [1971]; no evidence for this six-dimensional kernel currently exists when the
outer cylinder is held fixed. We hasten to add, however, that the existence of the
six-dimensional kernel is, because of symmetry, only a codimension one phenomenon;
it should occur frequently in various forms of Taylor-Couette flow. We also note that,
unfortunately, there are many different choices for the signs of the nondegeneracy
conditions in Table 6.1 (over 10,000), so many different bifurcation sequences are

possible besides the ones we consider here. However, the possibilities are not totally
arbitrary, as we see below.

7.1. The counterrotating case. In a private communication, D. Andereck gave us
the (qualitative) form of the experimental results for counterrotating Taylor-Couette
flow, which have since appeared in Andereck, Liu, and Swinney [1984]. We present
these results in Fig. 7.1. There are three features that deserve mention here.

(i) There is a critical speed of counterrotation f at which the primary bifurcation
from Couette flow changes from Taylor vortices to spiral cells. This corresponds to the
critical speed of counterrotation found numerically by DiPrima and Grannick [1971].
However, they presumably performed the calculations for values of the dimensions of
the apparatus which differ from those used by Andereck, Liu and Swinney [1984].

(ii) In the weakly counterrotating case f0<f--this corresponds to the case
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(a > O) where our perturbation parameter a is positive--the observed bifurcation se-
quence is"

Couette vortices wavy vortices

See Fig. 7.2.

20

weakly
counterrotating

( > o) ao > a

( < o) 0 < "
strongly
counterrotating

Taylor

modulated

\ wav_y
waves

Couette flow -,vy spirals interpe.netrating

FIG. 7.1. Qualitative version of the experimental results of Andereck, Liu, and Swinney [1984] showing
observed transitions between stable states in the counterrotating Taylor-Couette system.

Couette

rtices

FIG. 7.2. Schematic bifurcation diagram when a > 0 corresponding to the observations of Andereck, Liu,
and Swinney [1984]. (Secondary branches may or may not join other branches, depending on the values of the

coefficients.)

If the speed of the inner cylinder is increased further, then the wavy vortices lose
stability to another state which does not appear to correspond to any state in our
model.

(iii) In the strongly counterrotating case where f0 is slightly greater than f--this
corresponds to our a < 0--the observed transition sequence is:

Couette spiral cells wavy spiral cells



276 MARTIN GOLUBITSKY AND IAN STEWART

See Fig. 7.3.

Couette

rals "at*’
spiral,,

g ,,cel.s

FIG. 7.3. Schematic bifurcation diagram when a < 0 corresponding to the observations of Andereck [1984].

In order to reproduce qualitatively the experimental results, we demand the following:

(a) Couette flow is stable for 2 << 0.
(b) Vortices bifurcate supercritically and stably when a > 0.
(c) There is a secondary bifurcation from vortices to wavy vortices when

a>0.
(7.1) (d) Wavy vortices are supercritical and stable at the initial bifurcation from

vortices.
(e) Spiral cells bifurcate supercritically and stably when a < 0.
(f) Spiral cells lose stability to a Hopf bifurcation.

We claim that it is possible to choose signs for the nondegeneracy conditions in
Table 6.1 so that each of the conditions in (7.1) is satisfied. Moreover, we claim that
when these nondegeneracy conditions are satisfied, it follows that:

(7.2) Any bifurcation from vortices to Taylor vortices occurs
after the bifurcation from vortices to wavy vortices.

The assumptions in (7.1) correspond, in order, to the following nondegeneracy
conditions (cf. Table 6.1):

(a) (e) <0, (b)<0.
(b) (a)>0.
(c) > 0.

(7.3)
(d) (/)>0; (m)>0, (n)>0.
(e) (i) >0, (h) <0.
(f) (j)>0.

It is a simple matter to check that the conditions (7.3) are precisely the conditions
needed to satisfy (7.1). The only point which requires comment is asymptotic stability
of the wavy vortex branch. Observe that at the bifurcation from vortices to wa_vy
vortices, a 0 and y =# 0. It follows from Table 6.2 that the wavy vortices are stable if

(m)>0, (n)>0, (/)>0, and(a)>0.
However, (!) > 0 when the branch of wavy vortices is supercritical, and (a) > 0 has
already been assumed in (7.3b). Observe that the branch of wavy vortices can lose
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stability if either

(7.4) (d)<0 or (h)<0.

If (d)< 0 then this branch will lose stability to a torus bifurcation. However,

(7.5) (d) ((i)- (h))/2,
and the assumption that spiral cells are stable implies that (i)> 0, (h)< 0 (cf. (7.3e)) so
this possibility cannot occur. Nevertheless, (h)< 0 is satisfied, and wavy vortices may
lose stability by a single real eigenvalue passing through zero. This observation verifies
(7.2a). It is possible that a new solution branch with isotropy subgroup 1 will appear at
this bifurcation, but we have neither confirmed nor eliminated this possibility. See
Table 5.1.

Finally, we verify (7.2b). The wavy vortex branch begins at )tw(a)/(c2) while a
branch of twisted vortices would begin at )t=(a)/(c2). We compute sgn()/-w).
Now

(7.6) sgn(X,-Xw)=sgn (cl) (c2)
since (a) > 0 by (7.3b). However,

(c2)- (cx) 2Q3px 2(n )(b) > 0

using (7.3a, d). Hence (7.6) implies that t>w as claimed in (7.2b). Observe that it is
possible, under different circumstances, for twisted vortices to bifurcate supercritically
and stably from vortices. Such a transition has been observed in the corotating case.
See Andereck, Dickman and Swinney [1983].

7.2. The main sequence. Here we verify that the main sequence of bifurcations
can also occur in the six-dimensional model. This sequence of bifurcations is observed
in experiments when the outer cylinder is held fixed. For this sequence to hold, we need
Couette flow to lose stability first to vortices. This happens in our model when a > 0,
and we concentrate on this case.

To obtain the main sequence, we need (7.1a, b, c, d) to hold. Of course, this is
possible precisely when the nondegeneracy conditions (7.3a, b, c, d) hold. If we wish to
show in this model that, in addition, the wavy vortex solutions lose stability to a torus
bifurcation, then two complex conjugate eigenvalues must cross the imaginary axis
along the branch of wavy vortices. This can happen only if (d)< 0. Note that if (d)< 0
then (7.5) implies that (7.3e) is not valid, and that spiral cells cannot be asymptotically
stable.

As we saw above, wavy vortices can lose stability by a real eigenvalue crossing
through 0. However, this eventuality cannot occur if (h)> 0, which is possible, since we
have assumed nothing about (i). Thus, assuming

(d) <0, (h)>0
leads to the main sequence. (See Fig. 7.4.) Other choices for the main sequence are
possible.

We conclude that both the main sequence and certain regimes in the experiments
of Andereck, Liu, and Swinney [1984] appear to be qualitatively consistent with our
six-dimensional model, for suitable values of the coefficients. (Note that aside from the
states discussed above, no other stable states occur except perhaps with isotropy group
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1, as mentioned.) Since the coefficients can in principle be computed by
Lyapunov-Schmidt reduction from the Navier-Stokes equations, further numerical
work should be able to provide a more stringent test. It would also be of interest to
determine, in terms of the physical parameters in the problem, the location of the
codimension one set of values at which the six-dimensional kernel occurs.

vortices

Couette 1

Vortices

FIG. 7.4. Schematic bifurcation diagram corresponding to (one occurrence of) the main sequence.

Appendix. Equivariant mappings on the six-dimensional kernel. Let V= R2 (R2 (R)

C) be the six-dimensional kernel described in [}4. Recall that I" 0(2) S acts on V by

( O, )( v, w(R) z)= (Roy, (Row) (R) (eiZ)).
For computational purposes we choose coordinates by identifying the first R2 with C,
and R (R) C with 2 x 2 matrices as described in 4, so that an element of V is written
(z, a) where

zC, A=( a b)c d’
a,b,c,dR.

Recall that a (smooth) function : R is incariant under F if

,()=,(), r, v,
and a (smooth) mapping : V Vis equivariant if it commutes with F, that is

The aim of this appendix is to describe completely these invariant functions and
equivariant mappings, as promised in 4 above. The main result, wch will yield
Theorem 4.3 when appropriate terms are collected together, is:

PROPOSITION A.1. (a) Every invariant function on V is of the

#r a smooth #nction h: R R, where

=Z=x2+y 2,
N=a2+b2+c2+d 2,

(A.2) 82=(ad-bc)2,
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and

(A.4)

(A.3) ’= (a : + b:- c:z- d 2) + 2i(ac + bd ).
(b) Every equivariant mapping, V V is of the form

d (z,A) ( pz + qiSz +r+siS,

P Re(H) +P2 Re(H2)
+ Q11m( z 2g)lm(Hx) +eIm( zg)Im(H)
+O Re(e n )+e4Re(e .4)
+ RX8 Im(H)+R28 Im(H)+R38 Im(gH3) + R46 Im(gH4)

where

and

c+ ia d+ ib Ha= -c+ ia -d+ ib

d-ib c+ia H4= -c+ia

p,q,r,s,p1,p, 01, Q2, Q3, Q4,R1,R2,R3,R4,M3,M4
are invariant functions.

In more abstract language, Proposition A.1 says that the ring of invariant func-
tions is generated by fl, N,82,7,o; and that the module of equivariant mappings is
generated over the invariants by the twelve mappings in (A.4), whose coefficients are
p,q,r,s,P, .,M4. By standard results of Schwarz [1975] and Po6naru [1976] we may
assume q, and are polynomials when proving Proposition A.1.

The computation comes in two stages. First we compute the (polynomial) S-invariants and -equivariants; then we use this information and the O(2)-action to
obtain the O(2)S-invariants and -equivariants. Since S acts trivially on z R, we
need consider only the action on A R2 (R) C. We take complex coordinates

z =a+ ib, z=c+ id.

Then we may identify R2 (R) C with C C, where S acts diagonally:

O(Zl,Z2)=(eizl,eiz2).
LEMMA A.2. The real sl-invariants on C$C are generated by zl51, z252, Rez152,

Imz52. The Sl-equivariants are generated over the invariants by (z,O), (0,Zl), (z2,0),
(0,z_), (ix, 0), (0, i), (i2,0), (0, i2).

Proof. These results (which generalize easily to S acting on C") are no doubt well-
known, but for completeness we sketch a proof. The idea is first to find the complex
invariants and equivariants and then to read off the real ones.

Consider a C-valued polynomial function
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Since eig=e-i, we can use sl-invariance to exclude all terms other than those for
which

a-B+-=0.
So p is a polynomial in__z121, z222, 1z2, and z122. If p is to be real in a,b,c,d, then we
have p =, so Aav=A/v. This leads to the real invariant generators stated.

For the equivariants, we consider a pair of functions p,p_ of the above form.
Equivariance excludes all terms other than those for which

a-fl+7-3=l.
This yields equivariant generators which are complex scalar multiples of (z1, 0), (z2, 0),
(0,Zl), (0,z2). Taking real and imaginary parts, we obtain the stated real equivariant
generators.

In () coordinates, we have the invariant generators

z,x=a2+b,
._C2 2

(A.) zz +d

Re(z) ac + bd,

Im(z) be ad=

and the equivariant generators (a) ___>

(A.6) (a b)E2=(0 0)E3=(0 0)E4.__(C 0d)El= 0 0 a b c d 0

-b a 0) ET=( 0 0) E8=(-dEs=(0 0) E6=( 0b a cd

Note that there is a relation

(a 9- + b2)( c2 + d 2 ) (ac + bd )2 + (ad- bc)2.
We are now ready for the:

Proof of Proposition A.1 (a). The calculations are easier if we use complex notation.
Let

’= (a 2 + b2- C2- d 2) + 2i(ac + bd).
Then every real-valued function of the four invariant generators can be written in terms
of N=a2+bZ+c2+d 2, , , and 8. Note that N and 2 are O(2)-invariant. See
Golubitsky and Stewart [1985, 9].

Since S acts trivially on z R2, we can write the sl-invariants on R2 (R2 C) in
the form

+(z,5,N,,,6).
Under the O(2)-action these transform as follows:

z 8 N

x z
2io -8 N

0 eiz e-i e2i e- N

(The expressions " and " are introduced because of this pleasant transformation behav-
ior.)
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Since z, ’, N, and 2 are O(2)-invariant, we can write the general O(2)S1-

invariant in the form

(A.7)

where a, b,-.. ,h C[z,N, 8 2]. (Note" ’g= N-42 SO no ’g terms are required.) Reality
of q, implies that

while r-invariance leads to

b=, e=h, /=g,

a=b, c=d, e=-h, f=-g.

Hence a, b, c, d are real and e,f, g, h are purely imaginary.
Finally we apply SO(2)-invariance. Since i is SO(2)-invariant and is independent

of z,2, ’, ’, we must have q0 and 1 separately SO(2)-invariant. This excludes all terms
other than

(A.8) a(z"a+") when a+ 2fl=0,

(A.9) b(z/+’) when a 2/3 0,

(A.10) ie(zO-) when a+2fl=0,

(A.11) if(z’l-) whena-2fl=0,

Now (A.8) and (A.10) imply a fl 0, giving nothing new. The others yield a 2/3.
We claim that only a 2, fl 1 yield new generators. For example

(ZX + 2fl+ ..[..,a+2fl+l)=(Zafl.4y,afl)(Z2..,2)__(Z,)2()(Zt-2fl-1 .+. a-2fl- 1).
Since b is real and f purely imaginary, we obtain generators

Re(2), ii Im(zZg)
in addition to z, N, 8 2. This proves part (a) of Proposition A.1.

Proof of Proposition A.1 (b). Write the general equivariant in the form

where

(z,A)

o" R2 (R2 (R) C) R2,
(I) R2 (R2 (R) C) R (R) C

We begin with o- Since the Sl-action on R2 is trivial, the Sl-equivariance condition
implies that o is Sl-invariant and hence can be written in the form (A.7) above.

However, this time there is no reality condition since we seek mappings into R2,
not R. The x-equivariance again implies a,b,c,d are real, and e,f,g,h are purely
imaginary. Replacing the latter by ie, if, ig, ih, we may assume all coefficients a- h are
real, and replace 8 by ii. Write o qo + ibl: again we can treat qo and ql separately.

Now SO(2)-equivariance excludes all terms other than

(A.12) zI, iSz; a+ 2fl= 1,

(A.13) z, iSz"; a- 2fl= 1,



282 MARTIN GOLUBITSKY AND IAN STEWART

(A.14) $"’/, i8"’/; a + 2fl= 1,

(A.15) $", i8; -a- 2fl= 1.

In (A.12) we have a= 1, /3=0, yielding z and iSz. In (A.13) we have a= 2fl + 1. As
before, we may use the invariance of z$ and ’" to reduce the size of a and fl:

Thus we can reduce/3 by 1 and a by 2. The process stops when/3 1, a 2. But now

Thus we get new generators 5’, ii5’. In (A.14) we can similarly assume fl __< 2. But fl 2
gives

+
so no new generator arises; and/3= 1 gives 5’ which is already included. Finally (A.15)
is not possible.

Thus we have found four generators (z, O)(iSz, 0), (5’, 0), (i85’, 0) corresponding to
mappings of 112 (R2 (R) C) into R2.

Now we look at

V R (R (R) C) --, R (R) C.

Again complex notation is more convenient. Define (in a notation consistent with the
statement of Proposition A.1) the complex matrices

(A.16)

H1--(E14-E3)4-i(E2-E4)
H2= (E5+E7)+i(E6-E8),
n3= ( E E3)4- i(E+ E4)
n4= (E ET)-4-i(E6 4- E8).

Then the Sl-equivariants on 112(R) C are generated over C by Hk, /k (k= 1,..., 4) and
over R by the real and imaginary parts of Hk (k 1,-.., 4). Since S acts trivially on
zR2 we can think of the Sl-equivariants mapping R2(R2(R)C)-R2 as Sl-equiv
ariants mapping R2 (R) C-R2 parametrized by z and 5. Thus they are linear combina-
tions of Hk, Hk, (k= 1,.-.,4) with coefficients in C [N, , ’, ’; z,5].

We write the equivariance condition q(3,v)= 3’(v) in the form

(A.17) (v) =’/-x (,v).
Suppose

where p" R2 (112 (R) C) R, H: R2 (R2 (R) C)R2 (R) C. Then (A.17) is equivalent to

(A.18) 0(v) H(v) -lp(,v)H()’v) O(3’v)’/-1H(’v).
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We compute this action on Hk (k=l,..-,4) when , O(2). Using (A.16) and noting
that

x(z,A)= ’ 0 -1

(z,A)=(eiq’z,Rq,A)
where

we find

(A.19)

sinp)Rq= sin+ cos+

H()

HI HI,
H: U
//3 H3
H4 U

e2in3
e2ie/H4

We can write the general Sl-equivariant (I) 1" R2 ( (R (R) C) ---) R2 (8) C in the form

(A.20) {4 )1 =Re E (Pk+Ok)Hk
k=l

where the Ok, k are polynomials over C of the form

Ok Pk(N,i, ’, ; z, ), ok=ok(N,8,,; z,5).

Since z2 and ’" are O(2)-invariant, we can write the Ok and ok as

(A.21) az’ + bz’ + cy,’ + dS’t

with a,b,c,d, C[N,(2].
We now apply x- and +-equivariance in the form (A.17), writing

o=o(z,A), ,=o(qz,qA).

Now x-equivariance (using (A.18) and (A.19)) implies that

(A.22) )k- k,

(A.23) Ok= --#k

and k-equivariance implies

(A.24) ( 0k (k= 1,2),
(A.25) tSk= t -2i4%e Vk (k= 3,4),

(A.26) ( ok (k= 1,2),
(A.27) 0k= I -2e iq’o

k (k= 3,4).
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Now write the Pk and % in the form (A.20) (we suppress unnecessary fine points of
notation in the interests of clarity). From (A.22) we get

(A.28) (for Ok) a=6, b=, c=?, d=a7,

and from (A.23)

(A.29) (for Ok) a=--, b=-, c=-, d=-a.

That is, the coefficients are real for Pk and purely imaginary for %. We therefore
replace ok by iOk, SO that Pk and ok are real: now (A.20) takes the form

(A.30) =Re (Pk +iSk)H,
k=l

The +-action multiplies z, ’, and Hk by complex constants e i+, e 2iq’, e 2ik respec-
tively. Hence we may consider each of the eight terms in (A.30) separately. From (A.26)
and (A.27) we obtain the following conditions on the exponents a, /3, required for
k-equivariance:

(A.31)
(A.32)
(A.33)
(A.34)
(A.35)
(A.36)
(A.37)
(A.38)

Real part of: k 1, 2 k 3, 4

a+2fl=0
a-2fl=0
-a+2fl=0
-a-2fl=0
a+2B=0
a-2fl=0
-a+2fl=0
-a-2fl=0

a+2fl= -2

a-2B -2
-a+2fl= -2

-a-2fl= -2
a+2fl= -2

a-2fl= -2
-a+2= -2

-a-2fl= -2

We deal with these terms case by case, first for k 1, 2; then for k 3, 4. So let k 1, 2.
(A.31) implies a =/3 0, leading to the generators

(A.39) Re(Hk), k=l,2.

(A.32) requires a 2fl, so we get

(A.40) z2ttHk +2k.

Similarly (A.33) requires c 2/3, and the result is

(A.41) -aaHk+ z2agak.
Forming the sum and difference of (A.40) and (A.41) we may replace them by

+ +

yfl__, ( Z2flfl__ , 2flfl )( Ok k)"
We observe the following identities"

x+= 2 Re(Z2)X--(222)X_ 1,

y# + x= 2 Re(z) y#- (zg)y#_ 1,
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which have invariant functions as coefficients. Since

x0=2Re(H,), Yo=0, Xl=2Re(z2)Re(Hg),

and these may be obtained from the generators (A.39), an inductive argument shows
that only Yl need be retained in a list of generators. So we obtain the new generators

(A.42) Im(z2)Im(H,), k 1,2.

For (A.34) we have ct fl 0 and nothing new results.
For (A.35) we have et=/3= 0, leading to new generators Re(iSHk), or equivalently

(A.43) 8 Im(H), k 1,2.

From (A.36) and (A.37) we get a 2/3, yielding

Forming the sum and difference, we replace these by

v/= i8( z2O + $2t./)( H,-/k),
wt= i8(z2- e2/’/)( H/, +//,).

We note the identities

0,8 + 2 Re(z (z 0,8_1,

Wfl+ 2 Re(z2)w# (z22’)w/_ 1,

Wl=S Xm( z2 )Re( Hk).
It follows by induction that no new generators arise here.

Finally (A.38) leads to a=fl=0, and no new generators. This completes the
analysis for k 1, 2.

Next, we let k 3, 4. The calculations follow a similar pattern.

(A.31) is impossible.

(A.32) and (A.33)lead to

u#= 5#+ZaH, + zZ’+ 2#Hk,

Now

tfl + 1--" 2 Re(z2) t/- ( z 252’) tt_ 1’

2 2 Re(z2)t ()U0,
U/+ 2 Re(z2) ua- (z 252’) u/_ 1’

u 2 Re(z2) u0- ( z 22) x

(fl>__2),

(fl>=l),
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Hence inductively the only new generators are ta and u0; that is,

(A.44) ’Hk + ’Hk, k 3,4,

2H+ z2/k, k=3,4.

However, we observe that the identities

NRe( H1) 2 Im(H2 ) Re(H3),
26 Im(H1)+NRe(H2) Re(n4)

are valid. Thus the generators .2Hk + z2k (k 3, 4) are redundant and can be omitted.
From (A.34) we have either a=0,/3= 1 or a= 2, fl=0. These lead to and u0

again.
For convenience we now consider (A.38), for which a 2, /3=0 or c =0, fl= 1.

These lead to new generators

(A.45)
i Im(H), k=3,4,

3 Im(2Hk), k=3,4.

Finally we take (A.36) and (A.37), yielding a= 2/3-2 (/3> 1) and c= 2/9 + 2
respectively. So we have terms

r13-- ia213-2f13Hk-- i213-213k (fl__> 1),

As usual, we find that

Taking (A.45) into account, we find no new generators.
This completes the analysis. We have found twelve generators (A.39), (A.42),

(A.43), (A.44), (A.45). Proposition A.l(b) now follows.
Note that the invariants (A.2) for 0(2) S do not form a polynomial ring: there is

a relation

02.._ (Z)2() .._/ 2(N- 432).

Further, the equivariants do not form a free module, although the relations have degree
9 or more. For example

[01[ 8 Im(H1) [821 [Im(z 2)Im(/-/) ].

(There are other relations too). In consequence, the singularity theory of O(2)xS on
the six-dimensional kernel would be extremely complicated to compute.
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Finally, we turn to the statement of Theorem 4.3. We obtain the form stated there
for the equivariants from that used in Proposition A.1, by defining

Kj.=Re(Hj), Lj.=Im(Hj.), j=1,2,3,4,

and collecting terms according to the matrices K, L that occur.
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BIFURCATIONS IN DOUBLY-DIFFUSIVE SYSTEMS III.
INTERACTION OF EQUILIBRIUM AND TIME PERIODIC

SOLUTIONS*

WAYNE NAGATA? AND JAMES W. THOMAS:

Abstract. The bifurcations associated with a double zero eigenvalue which occur in equations describing
double-diffusive convection in a layer of fluid are studied. Two-dimensional roll-like, and three-dimensional
rectangular, square and hexagonal convection cell patterns are considered. The equations are reduced to a
center manifold and further reduced to a normal form so that the complete unfolding of the codimension two
bifurcation can be determined. In addition to primary pitchfork and Hopf bifurcations, saddle connections
exist for roll-like, square and hexagonal convective solutions. For certain parameter values, secondary Hopf
bifurcations and semistable periodic orbits exist for square and hexagonal convective solutions.

Key words, double-diffusive convection, codimension two bifurcation

1. Introduction. This is the final paper in a series of three concerning bifurcations
in double-diffusive convective equations. The equations model an idealized infinite
horizontal layer of fluid that is heated and salted from below. For more background we
refer to the first paper of this series [8], which we will call Part I, and the references
therein. In Part I we treated the bifurcation of equilibrium solutions corresponding to
steady convective cells, and in the second paper of the series [9], which we will call Part
II, we treated the Hopf bifurcation of time periodic solutions corresponding to oscillat-
ing (overstable) convection cells. In the present paper we consider the interactions
between equilibrium and time periodic solutions and show the existence of further
bifurcations such as saddle connections and secondary Hopf bifurcations, in some cases
(see Figs. 3.4 and 3.6).

We restrict the convection equations to classes of functions corresponding to
prescribed cellular convection patterns. The linearization of the restricted equations can
then have a nilpotent double zero eigenvalue, and the associated codimension two
bifurcation is analyzed using center manifold and normal form reductions to obtain our
results. However, our stability results are incomplete since we consider only local
asymptotic stability within a prescribed class of convection cell pattterns. For example,
our results may show that hexagon pattern solutions are locally asymptotically stable
with respect to hexagon pattern disturbances, but more generally they may well be
unstable with respect to roll-like disturbances. By considering instead a wider class of
solutions, namely those which are doubly periodic with respect to a hexagonal lattice,
one can treat rolls, hexagons, triangles and a class of rectangles simultaneously to
obtain pattern selection results. Motivated by the Rayleigh-B6nard problem modelling
an infinite horizontal layer of fluid heated from below (no salt), Golubitsky, Swift and
Knobloch [15] developed a theory of pattern selection in the hexagonal lattice. Bifurca-
tions of equilibrium solutions associated with a six-dimensional semisimple eigenspace
were treated. The third-order coefficients computed in Part I were sufficient (assuming
a generically satisfied condition involving fifth-order coefficients) to determine some
pattern selection results in the hexagonal lattice for steady convection. To treat pattern
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selection in the hexagonal lattice in the context of the present paper, one must analyze
the dynamic bifurcations associated with a twelve-dimensional nilpotent eigenspace.
This is a substantial project and we do not attempt it here. Should such a project be
completed, however, the third-order normal form coefficients computed in this paper
would be expected to be incorporated into the hexagonal lattice normal form to give
specific pattern selection results as in Part I.

In any case, results for the hexagonal lattice do not include square and most
rectangular convection cell patterns. Sattinger [16] includes a discussion of square and
rectangular lattices, but so far there are no results comparing the stability of solutions
in one lattice with respect to disturbances in another. Furthermore, we do not consider
stability of solutions with respect to more general disturbances, for example spatially
periodic disturbances with different wave numbers. For the stability of rolls in the
Rayleigh-B6nard problem with respect to a wide variety of disturbances, see Busse [13].
Finally, we do not consider the effects of sidewalls in a finite layer of fluid. These are
perhaps the most important effects (and most difficult to treat mathematically) which
must be considered in any complete treatment of pattern selection. For some results on
rolls, in the Raleigh-B6nard problem, see Daniels [14].

The plan of this paper is as follows: First, in this section we review the parame-
trized system of partial differential equations modelling double-diffusive convection,
and the symmetry conditions corresponding to cellular convection patterns. We then
consider the eigenvalue problem for the linearization, linearized about the constant
gradient solution. For certain critical parameter values, the linearization has a double
zero eigenvalue when restricted to functions satisfying the symmetry conditions. We
then reformulate the problem in terms of operators in Hilbert spaces. The operators
and spaces are equivalent to those used in Parts I and II, but instead are formulated in
terms of Fourier series. In {}2 we apply a version of the center manifold theorem due to
Henry [5] to reduce the parametrized partial differential equations to a two-parameter
family of ordinary differential equations on two-dimensional invariant manifolds. All
of the dynamics in the original family of partial differential equations for parameter
values near the critical ones are retained by the family of reduced ordinary differential
equations. We then further reduce the equations to a normal form, from which the
complete local bifurcation and stability behavior of solutions to the equations can be
deduced. In {}3 we present the results of our computations to find the normal form
coefficients. These coefficients determine the unfolding of the degenerate vector field in
the neighborhood of critical parameter values. Two-dimensional roll-like solutions can
exhibit only one case of the unfolding, but we find that three-dimensional cellular
solutions (rectangular, square or hexagonal) can exhibit further cases depending on the
values of auxiliary parameters.

We recall from Parts I and II that the deviation U--(Ul, U2, U3,U4, U5) from the
constant gradient solution satisfies the system of coupled partial differential equations

8-u o(Au Tp)+(rou4-sou)e

(1.1) --- u4=Au4+u3-(u" V)u4’

a--ius=rzXus + u3-(u v)us,

divu =0,

(u. xT)u,
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for x=(xl, x_,x3) in R 2 X (0,1), where e is the unit vector (0, 0,1), U--(Ul, U2, U3) is the
nondimensionalized fluid velocity, u4 is the nondimensionalized fluid temperature devi-
ation from the constant gradient solution and u is the nondimensionalized solute
concentration deviation from the constant gradient solution. The parameters r, s, 0 and

are all positive, with 0 < r < 1. We take free-surface boundary conditions for u and
Dirichlet boundary conditions for u4 and u at the boundary surfaces x 0 and x 1"

(1.2) Oul Ou2 U3[x=O,1 U4[xa=0,1 U51xa=0,1=0.X3 3=0,1 OX3 --’0,

We require that solutions of (1.1)-(1.2) are periodic with fundamental domain of
spatial periodicity f, where 2 corresponds to roll-like, rectangular, square or hexagonal
convection cells, as described below. Then we can express the functions u,, k 1,..., 5
and p as Fourier series (cf. Part I)

(1.3) w(x)= E v(J) e’(jl’xl+’+j’’x’), (J)=(-J),
jZ"

wherej=(jl,j2,J3 ), w=uk, k=l,...,5 orp, n=2 or 3, a2+a=r2/2 and a3=rr. The
Fourier coefficients uk, p are required to satisfy symmetry conditions

(1.4)

ftl(j) is odd injl, even inj2, even inj3,

f2(J) is even injl, odd inj2, even inj3,
ft3(j) is even injl, even inj2, odd inj3,

v(j) is even injl, even inj2, odd inj3,

where v ft 4, /5 or/, and

(1.5)
where ft 4, /5 or/, and g is a 3 3 matrix of the form

[cos -sinq 0]g= sin4 cosq 0
0 0 1

representing rotations by the angle q about the x axis.
We define the following classes of functions corresponding to the cellular convec-

tion patterns (cf. Part I)"
(a) Rolls. a r/21/2, a2= 0 in (1.3). For rolls only, we modify the definitions of x,

u and j to x--(Xl,X3) u--(Ul, U3) and J=(Jl,J3). The sum in (1.3) is over j7/2 for
rolls (n 2). q rr in (1.5) and 2 (0, 2 rr/al) (0,1).

(b) Rectangles. a +a r2/2, a1, a2>0, a2 4: %[m2-1]1/2 for any positive integer
m in (1.3). q=rr in (1.5) and f=(O, 2r/al)(O,2r/a2)(O, 1).

(c) Squares. ax=a=r/2 in (1.3). q=rr/2 in (1.5) and f (0,2r/cq)(0,2rr/al)
(0,1).

(d) Hexagons. a1=21/2r;/4, a2=61/2rr/4 in (1.3). 4=2rr/3 in (1.5) and =H
(0,1), where H is the open hexagonal region in R2 enclosed by the six lines x2=
+__ /31/20:1, X 2

q- 31/2Xl-- _1_ 2,/r/31/20tl, X 2 31/2X _+_ 2qT’/31/20tl"
We observe that by (1.4) we have

(1.6) fi,(O)=O, k=1,...,5, b(O)=O
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and furthermore, all the k(j), P(J) are pure imaginary. Thus, if desired we can write the
Fourier series (1.3) as (cf. Part I)

Uk(X)= E k(Jl,J2,0) + E 2k(j)cosj3rrX3 ei(Ja’xl+Jax)
jl,J2 --ot

for k 1, 2 and

(x)= E E 2ifv(j)sinj3rx3 ei(Jaxl+jax-)
j,j2= o j3=l

where w=u3, u4, u or p. For rolls there are slight modifications (a2=0, u=(ul, u3)
sum only overJl,J3 ).

If we substitute the Fourier series (1.3) with the Fourier coefficients satisfying the
symmetries corresponding to one of the cellular convection patterns (a)-(d) into the
eigenvalue problem for the linearization

with the boundary conditions (1.2), we find that the critical eigenvalues ) belong to the
lowest mode and are given by the roots of the cubic equation

(1.8)
h + (3r 9-/2) (1 + o + r)) + (9r 4/4) ( o + + o)- (1/3)o(r- s)] )t

+ (27r6/8)o" + ( rf 2/2)o(s rr ) 0

with the same multiplicities. Higher modes correspond to eigenvalues whose real parts
are negative when (1.8) has solutions , with real part near 0. For o > 0, 0 < z < 1 and for
the critical parameter values

(1.9)
r r0 (27r 4/4) o- 1(1 ’r)- 1( O -I- "/’),

S=So =- (27r4/4)z (1- z)- 1(1 +0-1)

the equation (1.8) has a double root )t 0 and the remaining root is real and negative
(cf. Part I).

Thus for > 0, 0 < " < 1 and for each f corresponding to roll-like, rectangular,
square or hexagonal convection cells, the eigenvalue problem (1.7) for uk, k 1,..., 5
and p satisfying (1.3)-(1.5) has a double zero eigenvalue when (1.9) holds. All other
eigenvalues have negative real parts for these critical parameter values.

We now reformulate the eigenvalue problem (1.7) in terms of an abstract differen-
tial operator in a space of functions. Let n 2 (for rolls) or n 3 (for rectangles, squares
or hexagons) and define the spaces of functions corresponding to one of the cellular
convection patterns (a)-(d)

/:/(f) {w w(x) has the form (1.3) Ijl2Bl#(j)l }< ,v(j) satisfy (1.4) and (1.5)
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and

I:t(fl) {u" u(x) have the form (1.3), k= 1,-.. ,3,

E IJla](J)l < , (j) satisfy (1.4) and (1.5)
jZ"

where flR, and the numbers a1, o2, a in (1.3) and the matrix g in (1.5) are
appropriate to rolls, rectangles, squares or hexagons. The function spaces/:/(f) and
I:l(f) are closed subspaces of the Hilbert spaces/:/fl(Q) and fl(Q) defined in [12]
with Q=(O, 2,n’/Otl)X(O,2,tr/ot3) for rolls or Q=(O,2,a’/oq)x(O,2,tr/ot2)x(O,2,rr/ot3) for
rectangles, squares, or hexagons; hence the statements made in [12, pp. 7-11] regarding
/:/(Q), (Q) and the Stokes operator A carry over with minor modifications to our
present case.

In particular,/:/(f) is a Hilbert space with norm

[[W[lfl= [ EjZn IJ[2#l(J) [2]
and H(f) is a Hilbert space with the product structure of [/:/(2)]". The closed
subspace

J (u l:l(f) divu 0)
of/_:/o(f) has the orthogonal complement

G= (u I:I,()" u= Vp for somep /:/#(2) }.
Let X=Jx/:/()x/:/(fl) with the norm induced by the product structure of
[/:/0(f)] n+ _. By solving the boundary-value problem

o(a.-
mu4"-f4
au =f,
divu=0

with boundary values (1.2)explicitly for the Fourier coefficients of U’-’(II, U4, U5) when
o > 0, 0 < - < 1 and f=(Lf4,fs) X as in [12], it follows that p =0 and that the operator
defined by

(1.11) D(A)=XO [[-t2(a)] n+2,
Au=(oAII, Au4,’rAus) for uD(A)

is a closed, densely defined selfadjoint operator in X with compact inverse A- 1. X X.
The norm
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on D(A) is equivalent to the norm induced by the product structure of [/@2()]n+2.
The operator -A is sectorial (cf. [5, p. 19]), and hence we can define the powers (-A)
for all real a _> 0 and the Hilbert spaces

)
with norms

lul,--II(-A)"u[l.
We have D(A) X c X" c X X for 0 =< a =< 1, the inclusions being continuous. In
terms of the spaces/:/(2) we have

X’= ( u=(u, u4,us)H’(f)B2’(f)l’(), divu=O)
and the norm lul is equivalent to the norm by the product structure of [/:/2(2)]n+ 2.

Let II denote the orthogonal projection of I:I(2) onto J, and let

II o II X I X I J X [-I ( fl ) Xt# ( l’l ) --+ X,

where I is the identity mapping on/:/#(tl). Then II 0 is a continuous linear mapping,
and for o > 0, the operator

(1.12) B(r,s)u=IIo((rou4-sous)e3,u3,u3)
is a continuous linear mapping in u, from X into X, for each fixed pair (r,s) IR 2.
Furthermore, B(r, s) depends analytically on (r, s).

We let

(1.13) L(r,s)u=Au+B(r,s)u, uD(L(r,s))=D(A).
Since A has a compact inverse, the argument in the Appendix of Part I can be used to
show that the spectrum of L(r,s) consists entirely of isolated eigenvalues of finite
multiplicities. The eigenvalue problem (1.7) can now be written as

(1.14) L(r,s)u=hu, uD(L(r,s)).
The eigenvalues of (1.14) corresponding to the lowest mode are given by (1.8). Thus
L(ro,so) has a double zero eigenvalue, and the rest of the spectrum of L(ro,So) consists
of isolated eigenvalues with negative real parts. Note that the space X corresponds to a
particular choice of cellular convection--rolls, rectangles, squares or hexagons.

Finally, we express the nonlinear double-diffusive convection equations in abstract
form. From the argument given in [5, pp. 79-81] and from the continuity of II 0, it
follows that the operator M: X X X, defined by

(1.15) M(u,v)=
is a continuous bilinear mapping for 3/4 < a < 1. Thus

(1.16) f( u,r,s) B( r,s)u + M( u, u)

is analytic mapping f: X R 2 _+ X. We write the double-diffusive convection equations
(1..1), with the boundary conditions (1.2) and one of the cellular convection patterns
(a)-(d) as

du(1.17) -=Au+f(u,r,s)
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where -.4 is sectorial and f is analytic. Furthermore, the linear part of the right-hand
side of (1.17) is

(1.18) Au+ Duf(O,r,s)u=L(r,s)u,

where Duf is the partial derivative off with respect to u.
We note that (1.17) generates a unique parametrized family of local semiflows near

the origin in X’, -] <a < 1, which are the solutions of (1.17) with initial conditions
u(O)=uoX [5, p. 54]. This family of semiflows is jointly analytic in (t, uo, r,s ) for
> 0 on its domain of existence [5, p. 66].

2. Center manifold reduction. The study of bifurcation and stability in differential
equations can often be greatly simplified by the use of the center manifold theorem.
This theorem allows one to reduce the dimension of the state space while preserving the
local behavior of solutions of a differential equation. As an example, consider the
ordinary differential equation

(2.1) du
dt

-Lu+g(u), UR

where L is an m m matrix, g: R _...) m is a smooth nonlinear mapping with g(0)= 0
and g’(0)= 0. Then the origin u=0 is an equivalent solution of (2.1), and to study the
stability of the origin we determine the spectrum of L, E(L). Suppose that the origin is
a degenerate equilibrium of (2.1), i.e. E(L) contains eigenvalues with zero real part. For
example, if E(L) consists of m,. eigenvalues with zero real part and m eigenvalues with
negative real part, m,.+ ms= m, then the phase space m splits into a direct sum of
L-invariant subspaces Y,. (the center eigenspace) and Ys (the stable eigenspace)

where dim Y,. m,. and dim Ys m s, and thus every u can be uniquely expressed as

u u,, + us, for some u,.

Furthermore, the restrictions L I,. and LI r have spectra consisting of the eigenvalues
of L with zero real parts, and the eigenvalues of L with negative real parts, respectively.
Provided g is smooth enough, the center manifold theorem then states that there is a
(not necessarily unique) local invariant manifold W,.ma submanifold of defined in
some neighborhood of the origin, consisting of solution curves of (2.1)mtangent to Y,.
at the origin

<-- {u--u,.+u,’" u,--h(u,.),lu,.l<a}

where h is a smooth function from a neighborhood of the origin in Y,. into Ys, with
h (0) 0 and h’(0) 0. W,. is called a center manifold.

The asymptotic behavior of solutions of (2.1) near the origin is determined by the
m,.-dimensional equation in Y,.

(2.2) du,,
d,
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where L,. L K. and Pc. is the projection of R " onto Y,., along Ys. More precisely, if the
origin is stable (asymptotically stable, unstable) for (2.2), then the origin is stable
(asymptotically stable, unstable) for (2.1) [1, p. 4]. Thus, center manifold theory allows
one to study the stability of an equivalent solution by locally reducing the differential
equation to one of lower dimension.

To study bifurcations near the origin in a k-parameter family of differential
equations

(2.3) -d-=L(l)u+g(u,l), URm, Uk

where L(/t) is an m x m matrix depending smoothly on/, L(0) has m,. eigenvalues with
zero real part and m eigenvalues with negative real part, m c + m m, g(0,/)= 0 and
D,g(O, I)= 0, we apply the center manifold to the (m + k)-dimensional system

(2.4) du dtx-d-F-
for (/,/,/1) m+k. m splits into a direct sum of L(0)-invariant subspaces m

X,.E) Xs, where ReY,(L(0) x,.)=0, ReY.(L(0) x,)<0; and m+k splits into a direct
sum I "+ k Yc E) Y,, where Y,. X,. x k, Ys= Xs. The center manifold theorem applied
to (2.4) gives the existence of a center manifold defined by a smooth function h(u,.,/)
mapping a neighborhood of the origin in X k into Xs. Bifurcation and stability of
solutions of (2.3) near the origin, for/ near 0, is determined by the reduced system

(2.5) du’=PcL()u +P,.g(u+h(u x) x)7

for u,.X,., pER k [1, p. 12], [6, pp. 471-473]. Thus local bifurcations in (2.3) can be
studied by means of a reduced system (2.5). Moreover, in many applications it suffices
to determine only the first few terms in the Taylor series expansion of the right-hand
side of (2.5) in order to obtain the complete unfolding of (2.3) near/= 0.

In this section we apply a suitable version of the center manifold theorem to
reduce the (r,s)-parametrized family of abstract differential equations (1.17) to a
two-parameter family of ordinary differential equations in a two-dimensional phase
space, the dimension two of the phase space being determined by the multiplicity two
of the zero eigenvalue of the linearization (1.14). We explicitly describe X,., Pc and the
first few terms in the Taylor series expansion of a center manifold function h when the
state space X of (1.17) corresponds to rolls, rectangles, squares or hexagons.

We apply the following theorems due to Henry [5, Thm. 6.2.1 and Cor. 6.2.2, pp.
168-171]:

THEOREM 1. Consider the abstract differential equation

(2.6) - Au +f( u ),

where -A is a sectorial operator in a Banach space Y, 0 <= ( < 1, U is a neighborhood of
the origin in Y", and f: U Y is C with f(0)=0 and f’ Lipschitz continuous in U.
Assume L=A +f’(0) has Re(L)=<0 with E(L)cq(ReX=0} a spectral set. Let Y= Y,.
+ Ys be the decomposition into L-inoariant subspaces with Re Y.(L r,.)=0 and
Re(L y,)<0.
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Then there exists a C local invariant manifold (a center manifold)

W.= (u=u.+u’u=h(u.),u. Y.,

tangent to Y. at the origin. The flow in W. is represented by the ordinary differential
equation

(2.7) duc’
dt

where g(u)=f(u)-f’(O)u, L=L r,. and Pc. is the projection of Y onto Yc. along Y. If the
origin is asymptotica@ stable for (2.7), then the origin is asymptotica@ stable in Y for
(2.6); if the origin is unstable for (2.7), then the origin is unstable in Yfor (2.6).

If the nonlinear part f in Theorem 1 is smooth enough, the center manifold W. is
smooth and we can approximate h(u.) by the first finitely many terms in the Taylor
series for h(u .) [5, Thm. 6.2.3, p. 1711:

TnEOR 2. Assume the hypotheses of Theorem 1, and assume that g: U Y is Cp,
where g(u)=f(u)+f’(O)u. If there is a C function with Lipschitzian derivative from a
neighborhood of the origin in Y into Y, with range in D(L rs), such that

(2.8)

as u0 in Y., where L=L I., L= I, P is the projection of Y onto Y. along Y,
P I- P., then

(2.9) Ih (u,.) =o (11 u,.ll’)
as ucO in Y,., where h(uc) defines the center manifoM of Theorem 1. If g is Cp near the
origin, there is a unique polynomialfunction of order p satisfying the conditions above.

We apply Theorems 1 and 2 to the system

du dr

in the Hilbert space Y= Xx 2, where X is the space defined in 1, -A is the sectorial
operator defined by (1.11) and f is the operator defined by (1.16).

By the remarks in 1,

+ uf(O, ro, o)
has ReZ(Lo) 0 with E(Lo) (Re=0} (0}. Suppose we find a Jordan basis for the
zero eigenspace satisfying

(2.12)
Loq 0, L*oq*l q*2,
Loq2 ql, L*oq*2 0,

(qj,q* )=j, j,k=l 2k

where (,) is the inner product in X and L*o is the adjoint of Lo (see Part I). Then the
operator Pc.: X span( ql, q2 } defined by

(2.13) Pcu ( u, q*i) + ( u, q*2)q2
is a projection onto the double zero eigenspace span( q, q2 }, with

(2.14) Pc.Lou LoPc.u for all u D(Lo).
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Thus L0 leaves the subspaces

R ( P.) span ( ql, q2 ) N(P,.) ( q*, q*2 ) +

invariant, with

(2.15) X=R(P.)N(P.)

and

(2.16) 51(LoIRCp,.)) (0}, ReY,(L01sCP,.)) <0.

Define

(2.17) X.=R(P.), X=N(P.).

Then by (2.15) and (2.16), X,. is the generalized eigenspace for the double zero eigen-
value of Lo and X is a complementary subspace. By Theorem 1 applied to (2.10), we
obtain the existence of a local center manifold

S tStWe ((Uc,r’,)+h(uc, r )" IlUcllx<, Ir’l <, Is’[ <},
where r’= r-r0, s’= s-so and h is a C mapping from a neighborhood of the origin in
X,. R 2 into X XsX, 3/4 < a < 1, with h(0, 0, 0)= 0, h’(0, 0, 0)= 0. Actually, h is Cp

for any integer p > 0 (although h is not necessarily analytic) since f in (2.10) is analytic.
The flow in W,. is represented by

(2.18) duc =pcL(r,S)Uc+p.g(u.+h(u r’ s’))c,

where g(u)=f(u,r,s)-Duf(O,r,s)u=M(u,u). Bifurcation and asymptotic behavior of
solutions near u=0, with r near r0 and s near so in the abstract differential equation
(1.17) can now be studied by means of the oridinary differential equation (2.18).

We get explicit expressions for ql, q)_, q*l and q*2 in (2.12) by substituting the
appropriate Fourier expansions into (2.12) and solving for the Fourier coefficients. For
rolls, we obtain

(2/2/N)sin alx cos rx3
(1/N)cos alX sin rx

q2--(2.19a) ql (2/3S)cos1x1 sinx
(2/3rN")coslx sinrx

21/2C sin alx cos rrx

Ccosaxx sin rx3

O2.4cosaxxl sin rx3
Q2,scosalx sin rx3

q*l (40r0/9/"4)cOsalx sinrx q*2

(4aSo/9"tr4"r 2 )COS alX sin rx

21/2 sin alx cos wx

cosalx sin rx

(2oro/3r 2)cos atxx sin rx

(2OSo/3,zr2,r)cosoqxx sinx3-
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where N= 21/2(1 + o + ’r)/’n’2"r, C 2(1 + o + " + o" + r2)/3r2(1 + o + r)Nr, Q2,4--
(2C/3r2)-(4/9r4N) and Qz,5=(2C/3r2)-(4/9r4Nr). For rectangles and squares,
we have

(2.19b) ql q2

(2ialC/rr)

C
Q2, 4ti)3
Q2, 5ti)3

0
0
0

(4oro/9r 4 ) d3
(4OSo/9"tr4r2)d3

(2 iOtl/q’/’)
(2ia2/rr)2

3
(2oro/3r2),
(2O,o/3"lr2"r ) dP

where C, Q,4 and
16(1 + o + r)/ala2"r

Q2, are the same expressions as those for rolls,

(I)1-" 0)1,1-- 0)_1,1-- 0)_1,_ I’+’0)I,_I]cOSqTX3,
(1)2=[0)1,1 -I-0)-1,1 q’- 0)- 1,- "!- 0) 1, ]COS qTX3,

1I)3= 0)1,1 -- 0)-1,1 + 0)-1,-1 + 0)1,- 1]COS grX3,

ei(jlalXl +j2a2x2)
0)Jl ,J2

For hexagons we
24(1 + o + "r)/ala2’r,

obtain the same expressions as (2.19b), except with

(I)1-- 0)1,1-- 20)-2,0 + 0)1,-1--0)-1,-1 "+" 20)2,0-- 0)- 1,1]COS q’/’X3’

(I)2-- [0)1,1--0)-1,-1--0)-1,-’1+0)-1,1]C0S7rX3’
3 [0)a,x + 0) -2,0+ 0) -1,-1 + 0) -,-1 + 0)2, 0 + 0)- 1,1]sinrrx3

If we write

(2.20) Uc=Ylql +Y2q2,

q*whereyk (u,., k)R, k= 1, 2, we can obtain an explicit representation for P,.L(r,s)u,.
in (2.18) by substituting the expressions (2.19a, b) into (2.13) and computing

(2.21) PcL(r,s)=Y2ql + (lYl + #2Y2) q2,
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where u,. is given by (2.20), and

(2.22a)
(3(1 +o+) r

2or [ l+o+r+or+z
9r2(1 +o+r) [ 1 +o+r

for rolls, rectangles, squares and hexagons. One notes that/.1,/*2 are independent linear
functions of r’, s’, and that (2.22a) is invertible for o > 0 and 0 < r < 1. The inverse
transformation is

(2.22b) r’=

S
p---

3(1+o+r)
o(1+ o-t-,r 2 )

(o + ’r)/*l- (3’n" 2/2’r) (1 + o+’r)/*2],

3(l+o+r)
o(l+o-o-r2)

[(1 + o)/.1- (3rr 2/2)(1 + o +’r)z].

Thus, we can write equation (2.18) as an ordinary differential equation

(2.23) -7 Y2 /*1 /*2 Y2 g2(Y,/*)

where gk(y,/*)=(M(u,.+ h(uc, r’,s’),u,.+ h(uc, r’,s’)),q*k) for k= 1, 2, Y-(Yl,Y2), /*=
St(/.1,/.2), U =Ylql +Y2q2 as in (2.20), and r’, are given (2.22b).

Next, we apply Theorem 2 to obtain a polynomial approximation to a center
manifold. Let

1 2 1 2(2.24) q(Y,/*) Yql +YY2rkx2 + YEq22, q’j’k Xx,

where u=ylq +Y2q2 and/*-(/.1,/.2)" By substituting the expressions (2.20) and (2.24)
into (2.8), and equating coefficients of powers of yk, we obtain the equations

(2.25)
tslll,-1 2esM( ql, ql),
Lsq2 Ps M( qx, q2) +M( q2, qx) -+- qb11,
/,,_: 2,’,M(q,, q:) + 2q,1.

When the solutions j of (2.25) are substituted into (2.24), then by Theorem 2 we have
the approximation

(2.26) h(y,/*) (y,/*)+ O(lyl It l)+ o(l(y,/*) 13)
as ( y,/*) o in 4, where h ( y,/*) h ( u,., r’, s’), using (2.20) and (2.22b).

We can solve (2.25) uniquely and obtain explicit expressions for 11, 12 and q’22 by
substituting the expressions (2.19) for qk into the right-hand sides of (2.25) and solving
for the Fourier coefficients of the k. It turns out that PsM(qa, qk)=M(qa, qk), j, k= 1,
2, due to the multiplication and orthogonality properties of trigonometric polynomials.
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For example, for rolls

(2al/N2)sin 201X
1 (r/N2)sin2rx3(2.27) M(ql,q)= -II o (2/3rN2)sin2rx

(2/3rN 2. )sin 2rx3

belongs to (q*l q* +/-2} =R(Ps)- Similar results are obtained for the other M(qj, qk),
and for the other cellular structures. An explicit expression for _2 is not actually
needed to determine the unfoldings; solving for 1 and x2, we obtain, in the case of
rolls,

(2.28a)
0
0

qbl (1/63N2)sin 2’r/’x

(1/6r3N 2’1"2)sin 2rx

For rectangles and squares we obtain

(2.28b)
261,x(2,0,2)0, 1ql= 2i6x,3(2,0,2)0,3 +
2i1 4(2,0,2)1

2,z(O, 2, 2) 02, 2

2i1, 3(0, 2, 2)t92,
2i,4(0, 2, 2)192,

_2ib11, (0, 2, 2) 2,

0
0
0

_(4/3r3N2)sin2rx3
(4/33N2’r2)sin 2rx

22, (2,0, 2)Ox,
2i2 3(2,0,2)t9,
2i12’4(2, O, 2)19’ +

2i12’, 5 (2, O, 2) 01’,

-4C
3r3N
-4C

3raNr 9-

212,2(0, 2, 2)t92, 2

2i2, (0, 2, 2)192,
2ix2,4(0, 2, 2)192,
2i62, (0, 2, 2) 192,

0
0
0

9r5N
sin 2rx

7 )sin2rx9r 5N2,r
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where

O1,1 0)2, 0 2, 0 ]COS2 rrX 3,

Ox,3[ a2,o + a_ 2, o ]sin 2rx
O,_, o,,.- o,- ]cos 2x3,
02,3 [o, + Wo,- ]sin 2x3,

b,(2, 0, 2) (/a)bx, (2, 0, 2),

bt.3 (2, 0, 2) 2ia8/vN2o,

+.4 (2,0, 2) [1/4(a + 2)] [+1.3 (2,0, 2) + (2i/35N2)],

+1. (2, 0,2)= [1/4(a + 2)z] [+x.3(2, 0,2) + (2i8/35N2)],
b.(0, 2, 2) (/az).3(0, 2, 2),

+x.4 (0, 2, 2) [1/4(a+)] [+x, (0, 2, 2) + (2i/3N)],

+1.5 (0, 2, 2) [1/4(a + 2)r] [.3(0,2,2) + (2i/3N)],
+,(, o,2)= -/)+, (2, o,2),,(, o, 2) (/4o), (2, o, 2)

+ (8iai/3) [ C(24a124rN+ 15rz) (4a + 7r-) ( So)]36rS(+r2)Ng_ ro- -12,4 (2, 0, 2) 12,3 (2, 0, 2)/4(a2 + r) -x, (2, 0, 2)/16( a2 + r)

i8 [C6rr3( 2al+q ) N

12,5 (2, 0, 2) 12,3 (2, 0, 2)/4(a + r 2) x.3 (2, 0, 2)/16(

2.2 (0, 2, 2) (rr/ag_),. (0, 2, 2),

2.3(0, 2, 2) (1/4o).3(0, 2, 2)

+ (8ia/’)[ C(24a4rN+ 15r (4a + 7rr2) o so ]36;gi

_
r)V2 (ro- -)
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b12, 4 (0, 2, 2) =612,3(0,2,2)/4( ot + ’n" 2)- bll, (0, 2, 2)/16(c + .2 )2

,b12, 5 (0, 2, 2) 12, (0, 2, 2)/4(a + rr 2) r , (0, 2, 2)/16(a + r 2) 2 2r

i322 [C6r3(a+r2) r N

8=r+ (- 1)k2(a- a),

,6 64(a + r 2)3 27ar 4,

k=l,2,

k=l, 2.

For hexagons we obtain

(2.28c)

261,1(1,1,2)1
261,2(1,1,2)2
2i611,3(1,1,2)3
2i’xl,4(1,1, 2)3
2i1x,5(1,1,2)3

261, 1(3,1, 2)19
261, 2(3,1,, 2)192
2i611,3(3,1,2)193
2i11,4(3, 1,2)193
2i,4(3,1,2)193

0
0
0

(2/rr 3N 2 )sin 2 rrx

(/,,u,)sin,x

262,1(1,1, 2)x
212,2(1,1,2)2
2i612, 3(1,1,2)3
2i12,4(1,1,2)3
2i12,, (1,1,2)3

2612,1(3,1,2)t91
2612,2(3,1,2)t92
2ib12, (3,1,2)13
2i2,4(3,1, 2)193
2i12, s(3,1,2)193

,2C +
rr3N
-2C

r3Nr21

0
0
0
1 )sin2rx2rrSN 2

1 )sin2rx2qrSN2r3
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where

(I) 0)1,1 2o_ 2, o + 6)1,_ (-O- 1,- -- 2%,o- o_ 1,1]COS 2rx3,
o)1,1 Ol,_ o9_ 1,_

q- o_ 1,1]COS 2rx3,
[01,1 "" 0 2,0 if" 1,- 1-1" 0 1,_ + O2,o + o_ 1,1]sin 2rx3,
[3%, 1- 3o_,1- 3o_ ,_1 + o3,_ 1]cos 2’x
[o3,1+o ,1-2oo, 2-o 3, 1-3 +2wo,z]cOs2rrx3

O [%,1 + o-,1- oo,-+ o- 3,- + 3,- + o, ]sin 2rx3,

611,1(1,1, 2) 21/2611,3(1,1,2),
11,2(1,1,2) --61/211,3(1,1,2),
11,3(1,1,2) i/13rN2o,
11,(1,1,2)=(2i/9rr3N2)[1 +(1/13o)],

11,5 (1,1,2)= (2i/9rr3NZ ) (1/r 2) + (1/13o’r)],

 11,1 (3,1,2) (21/2/3)11,3 (3,1,2),

 11,2 (3, 1,2) (61/2/3)11,3 (3,1,2),

(3,1,2) 36i/625rN 20,

(3,1,2) (2i/r3N 2)[ (1/33) + (36/6,875o)],

11, 5 (3,1,2) (2i/r3N2)[(1/33r2) + (36/6,875or)],

b12,4 (1 1,2)= 2b12, (1,1, 2)/9r2-4n, (1,1, 2)/81r 4

+ 2iC/9r3N 11i/162rSN 2,

12,5 (1,1,2) 2612,3 (1,1,2)/9r 2r 411, (1,1,2)/81r 4"1"2

+ 21C/9r3Nr2- lli/162rSN2 3,

@12,1(3,1,2) (21/2/3) 12,3 (3, 1,2),

12,2 (3, 1,2)= (61/2/3)12, 3(3,1,2),

12, 3(3, 1,2)= 8111,3(3, 1,2)/6,875r 20 + 36iC/675rNo

-4,356i/390,625r3N202- 7i/1,650rTN2 ro- (So/3)],
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(bx2.4 (3 1,2)= 2(bx2, (3 1,2)/11r 2-411, (3,1,2)/121r 4

+ 2iC/33r3N 35i/2,178rSN 2,

12,5 (3,1,2) 2t12, (3,1,2)/11q7" 2’i" 4t11, (3,1,2)/121q’/" 4’r2

+ 2iC/33r3Nr2- 35i/2,178r5N2-3.

If we substitute (2.20), (2.24) and (2.26) into equation (2.23), we obtain

(2.29) dYx
dt =Y2 + ay3 + byy2+ clylY2 + dly32 + Pl (Y, ),

dye.
dt txYx + tx2Y + a2y3 + by?Y + c_yy + dzy3 + 02(y,/x),

where O(y,/)-- 0(lYll/l + lYll/l)+0(l(y,#)14), and

1(2.30) ak--(M(q ll)+M(ll,ql)q* )k

1
bk ( M( q1, ck12 ) +M( ck12, q) q*k ) + - (M(q,)+M(,q), q*),

1
c ( M(q, ,x ) +M(,2 q), q* ) + - (M(q,,) +M(,2,q) q* )

1d,=-(M(q2 22)+M(q22 q2)q* )k

for k= 1, 2. We have used the fact that M(qj, q,) (q,q2 }’, J, k= 1, 2 so that the
quadratic terms in y vanish. In fact, since the functions in X and equation (1.17) are
covariant with respect to the ’2 symmetry represented by (1.4), the reduced equations
(2.29) are odd with respect to y. Thus, no even-order terms in y occur in (2.29) [4, p.
256] and we have in fact

0k(Y ,) 0([yll.I ,)+ lyl I1 + ly[ k--l, 2.

In the following section we determine the unfolding of the degenerate vector field
represented by the right-hand side of (2.29) about /=0, and hence determine the
unfolding of the parametrized family of abstract differential equations (1.17) about
( r, s ) (r0, s0) for almost all o > 0 and 0 < < 1.

3. Normal form coefficients and results. The flow of a nonlinear ordinary differen-
tial equation near a degenerate equilibrium point can be analyzed, after a center
manifold reduction, by means of a nonlinear change of coordinates which simplifies the
expression of the vector field. A normal form is a "simplest" expression resulting from
a smooth nonlinear change of coordinates. More precisely, for certain differential
equations the first finitely many terms in the Taylor series expansion of the vector field
are sufficient to determine the asymptotic behavior of solutions near a degenerate
equilibrium. In such cases, the normal form theorem ([11], see also [6, p. 459]) is used to
find the minimum number of terms essential to describe the local flow. One can then
construct coordinate transformations which transform the original vector field into a
normal form, modulo higher-order terms. This procedure can be modified for use with
parametrized systems such as (2.29) to determine the unfolding of a degenerate vector
field [6, pp. 473-474].
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In this section we present the results of our computations of the normal form
coefficients which determine the unfolding of (2.29). The values of these coefficients
completely determine all the local bifurcations which occur in (2.29) for/ near 0, as
well as the stability of each of the bifurcating solutions. In this way we obtain complete
information about local bifurcation and stability in the abstract equations (1.17) for
(r,s) near (ro,So), for almost all values of o > 0 and 0 < < 1.

For equation (2.29), terms of order three in y are sufficient to determine the flow
for (y,) near (0, 0), and a suitable normal form is

(3.1) dYa dy2
dt -Y2, dt P’lYl + lx2y2 + a2yl + bg_y2y2,

if a 4:0 and b_4:0 [6, p. 474]. Since two parameters /1 and /2 are necessary and
sufficient to determine all the local bifurcations in (3.1), this is called a codimension
two bifurcation. By a suitable smooth change of coordinates preserving the symmetry
y -y, we can transform (2.29) into

(3.2) dYl
dt =Y2 + OI ( Y I ) y2-. =xyx +y2+ aly3x + by?y+ P(Y,t),

where Ok(y,) O(lyll/xl 2 + lyl31/xl+lyl 3) for k= 1, 2, and the normal form coefficients
are

(3.3) a’2 a2, b2 3al +b2
[6, p. 466], [1, p. 81]. The values of a and b; completely determine the qualitative
behaviors of all the local flows of (3.2), and hence of (2.29) for near 0.

We compute the values of the normal form coefficients by substituting expressions
(2.19), (2.28) and (2.30) into (3.3). For rolls, we obtain

(3.4a) a’ 9 l+o+’r] ,- 21 1+o+’r+o’r+’r 2

2"- 2x/8N . b2= 21/916r 2N3 ’r
2

For rectangles, we obtain

(3.4b)
1 + o +’r+ a’r+’r 2

o, (a

1 9a(r--2a)(5r:+8a)+
k=l
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Note that the quantitites in square brackets are positive. For squares, the expressions
(3.4b) simplify to

a_=- r 2,365

(3.4c) b_=
’/r2N3 r 2

For hexagons, we obtain

2,352 [l+o+r+or+r2 ]2,365 or(1 + o + r)

.[ 44118,816 l+o+r +11,875 or 2,365
1

a2-- 31/2N r 89,37--- o

48 (2__[l+o+r+or+r2] 242,928[l+o+r+or+r2](3.4d) b2-- 31/2r/.2N3 r2 89,375 or(1 + o+ r)

471,269,04011]}1,092,828 l+o+r +983,125 or 726,171,875 -7
The bifurcation structure of (3.2) is now a straightforward application of the

theory already developed for (3.1). The unfolding of (3.2) is completely determined by
the signs of the coefficients a and b. The following cases are possible [1, Chap. 4], [3,
Chap. 7]:

Case la. a>0, b <0" See Fig. 3.1 for bifurcation set and associated phase
portraits.

c’

E

B

FIG. 3.1. Bifurcation set and corresponding phase portraits for Case la unfolding a’ > O, b’ < 0).
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B 0

FIG. 3.2. Bifurcation set and corresponding phase portraits for Case 2a unfolding a’ < O, b’ < 0).

Case lb. a > 0, b > 0" Bifurcation set and associated phase portraits for this case
are obtained from Fig. 3.1 by the transformations/2 -/2, Y2 -Y2 and t.

Case 2a. a <0, b <0: See Fig. 3.2 for bifurcation and set associated phase
portraits.

Case 2b. a < 0, b > 0" Bifurcation and associated phase portraits for this case are
obtained from Fig. 3.2 by the transformations 2 "- 2, Y2 -- --Y2 and t.

The lines A’O’C’ and O’B’ in (/,/2)-parameter space shown in Figs. 3.1-3.2,
correspond to the lines AOC and OB in (s, r)-parameter space shown in Figs. 3.3 and
3.5. The corresponding bifurcations--pitchfork and Hopf, respectivelyare local ones
branching from the trivial (constant gradient) solution u 0 of (1.17) when s q: s0. They
are treated in Parts I and II.

However, we have further local bifurcations. The line O’D’ in Fig. 3.2 corresponds
to Hopf bifurcations from two equilibrium points symmetrically located about the
origin in phase space. The curves O’E’ and O’F’ in Figs. 3.1 and 3.2 are tangent to
straight lines at the origin in parameter space, and correspond to saddle connections
and coalescence of xperiodic orbits. For more details consult [1] or [3].

It is clear from (3.4a) that for rolls, only Case la unfoldings occur for all o > 0 and
0 < " < 1. However, different cases of unfoldings can occur for rectangles, squares and
hexagons. For example, from (3.4c, d) it follows that Case lb unfoldings occur for
squares and hexagons when o << 1 and and 17o << 1, and Case 2a occurs when o << 1
and = 25o << 1. Cases lb and 2a can also occur for rectangles. From (3.4b, c, d) one
can see that Case 2b unfoldings occur for rectangles, squares and hexagons provided o
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C

E B

0

o

FIG. 3.3. Case la bifurcation set in (s, r) parameter space.

2

FIG. 3.4. Bifurcation diagrams corresponding to parameter paths 1 and 2 in Fig. 3.3. Solid lines represent
stable equilibrium solutions, broken lines represent unstable equilibrium solutions, solid circles represent stable

periodic solutions, open circles represent unstable periodic solutions and asterisks represent saddle connections.

is sufficiently small compared to , and the Case la unfoldings occur when o is
sufficiently large compared to z.

The bifurcation sets in terms of the original parameters r and s of the double-
diffusive convection equations can be found by means of (2.22a, b). The slopes of the
tangent lines to the curves O’D’, O’E’ and O’F’ in Figs. 3.1-3.2 depend on the
numerical values of a and b, but their relative positions with respect to each other and
to the lines A’O’C’ and O’B’ are unchanged. Thus, the corresponding tangent lines to
the curves OD, OE and OF in (s,r) parameter space maintain their relative positions
with respect to each other and to the lines AOC and OB. For example, in Case la we
have the bifurcation set illustrated in Fig. 3.3, valid for r near r0 and s near s0.
Following parameter path 1 in Fig. 3.3 (s fixed near s0, s <s0, r increasing) gives a
subcritical pitchfork bifurcation, and following parameter path 2 in Fig. 3.3 gives the
more complicated bifurcation diagram illustrated in Fig. 3.4. In case 2b, parameter
paths 3 and 4 in Fig. 3.5 correspond to the bifurcation diagrams of Fig. 3.6. It is
possible that the unstable subcritical branches of equilibrium solutions in Figs. 3.4 and
3.6 may "turn back" and regain stability as they have been shown to do in the case of
rolls for s near Sx=27qra’r3/4(1-’r 2) [10]. However, we do not address this question
here.
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4

@o

FIG. 3.5. Case 2b bifurcation set in (s,r) parameter space.

0 000 000

OOO OOOOoo OO OO OO O OOOo

3 4

FIG. 3.6. Bifurcation diagrams corresponding to parameterpaths 3 and 4 in Fig. 3.5. (See Fig. 3.4 legend).

"Physically reasonable" parameter values are o near 1 or greater, and z << 1. These
correspond to Case la unfoldings for all four types of cellular convection patterns
considered. However, the possibility exists, at least mathematically, that rectangles,
squares and hexagons can have a different unfolding than the one that rolls must have.
This is implied by our previous results in Part I and II.

For parameter values o and such that a=0 or b=0, the normal form (3.1) is
inadequate to determine the unfolding of (1.17) about (ro,So), but such values con-
stitute a set of measure zero in the space of parameter values o > 0, 0 < < 1.

4. Conclusion. We have studied bifurcations which occur in a system of equations
describing double-diffusive convection in a layer of fluid. The partial differential
equations were expressed as a single abstract evolution equation in an infinite-dimen-
sional Hilbert space corresponding to two-dimensional roll-like convection cells, or
three-dimensional convection cells with rectangular, square, or hexagonal plan-forms.
At the critical parameter values r0 and so for which the linear part of the equation has a
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double zero eigenvalue, the infinite-dimensional equation was reduced to a finite
dimensional one by means of center manifold theorem. The resulting equation was then
further reduced to a normal form, from which one obtains a complete description of
the local bifurcations which occur in the double-diffusive convection equations, for
almost all o <0 and 0<< 1. The bifurcations take place in a phase space that
corresponds to a single type of cellular convection pattern. We have found that the
three-dimensional convection patterns can have different bifurcations from those asso-
ciated with two-dimensional roll-like convection.

Our result for rolls agrees with that of [7], who applied perturbation methods to a
system of ordinary differential equations obtained from the partial differential equa-
tions by modal truncation. In addition, our result was obtained via center manifold and
normal form reductions, and so no other bifurcation behavior occurs locally. One
cannot conclude this from the perturbation methods alone. Numerical studies of the
same ordinary differential equations show that the bifurcation results obtained locally
actually extend to parameter values some distance away from the critical ones which
give the double zero eigenvalue [2]. A related problem of thermally driven convection in
a rotating fluid layer was treated by [4]. Center manifold and normal form reductions
were applied to a similar system of ordinary differential equations resulting from modal
truncation. The normal form used was the same as (3.1), and the same case of
unfoldings were present. All three papers [7], [2] and [4] treated only two-dimensional
roll-like convection, and in all three papers a system of partial differential equations
was first reduced to a system of ordinary differential equations by means of a modal
truncation.
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SECONDARY BIFURCATIONS OF A THIN ROD
UNDER AXIAL COMPRESSION*

ERNESTO BUZANO

Abstract. We study the post-buckling behavior of a prismatic rod with rectangular cross-section, under
axial compression. We employ the nonlinear rod theory stated in [2]. Let 8 be the difference between the
sides of the cross-section. When 8 4:0 there are two distinct eigenvalues which coalesce when -0 and the
cross-section becomes a square. By employing equivariant singularity theory [4], we unfold the bifurcation
problem corresponding to 8=0 and study also the case 8 s0. We obtain bifurcation diagrams with second
bifurcations when 8 : 0.

Introduction. A fruitful way of studying secondary bifurcation problems is that of
forcing two eigenvalues to coincide by varying some parameter of the problem and then
unfolding the multiple eigenvalue so obtained. This technique, due to Bauer, Keller and
Reiss [11], has been coupled with singularity theory by Schaeffer and Golubitsky in [9],
where they give an explanation of the phenomenon of mode-jumping observed experi-
mentally in the post-buckling behavior of a rectangular plate under compression. Other
applications are given in [3] and [10].

Here we apply this procedure to the study of secondary bifurcations of a prismatic
rod with rectangular cross-section. Let 8 be the difference between the sides of the
cross-section. When 8 : 0 there are two distinct eigenvalues which coalesce when 0
and the cross-section becomes a square. In this last case we can apply the results
obtained in [2], where the bifurcation problem has been reduced to finite dimension.
The problem obtained in this way has topological codimension 1 in the module of the
mappings which commute with the symmetries of the rectangle. Therefore it is possible
to unfold it and study also the case 8 #: 0. The bifurcation diagrams we obtain are given
at the end of the paper. They show that secondary bifurcations occur when : 0.

The classical rod model, based on linear constitutive equations (see for example [6]
or [7]), has infinite codimension in our context. We reduce our problem to finite
codimension by employing the nonlinear rod theory stated in [2].

Evidence for secondary bifurcations of a prismatic rod has also been obtained by
Kovari in [5], by using elliptic functions and numerical computations. However these
bifurcations do not coincide with ours because they concern the case i 0 where we do
not obtain secondary bifurcations.

1. Geometry of the deformation. In [2, Chap. 1] a simple nonlinear director theory
has been employed to understand the effects of the symmetry of the cross-sections on
the post-buckling behavior of a thin rod under axial compression. This theory is a
special case of a more general situation studied in [1], but it relies upon a weaker
transverse isotropy condition in order to distinguish between rods with polygonal and
circular cross-section. Here we recall briefly such a theory in the case of a rectangular
cross-section. The reader should refer to [2, Chap. 1] for the details.

We denote by c the axis of the rod, that is the line of centroids of the cross-sec-
tions. We assume that is of length 1 and parametrize c by arc-length s[0,1].
Throughout the paper we set J [0,1] and denote by a dash the derivative with respect

* Received by the editors July 19, 1984, and in final revised form November 16, 1984.
*Dipartimento di Matematica, Universitb, di Torino, Via Carlo Alberto 10, 10123 Torino, Italy.
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to sJ. Let us consider a right-handed orthonormal reference flame {el, e2, e } fixed
in space. We assume that the rod is naturally straight with the end s 0 at the origin
and its axis cg along the direction e3. We take such a configuration as a reference
configuration. We describe the deformed configuration by three vector functions r, a l, a 2

of the variable s J, such that r(s) is the position oector joining the origin 0 and the
centroid t=s, and ax(s), a2(s) are two orthonormal vectors fixed flat to the cross-sec-
tion Y through the centroid s. Define

and assume that the rod can suffer neither extension nor shear; that is that (Kirchhoff
hypotheses)

(1) r’(s) a,(s).
Let u(s) be the unique vector satisfying

Let

and

j=1,2,3.

3

r(S)=EXi(S)e,
i=1

3

i=1

In our theory uj are the strains. From (1) we have

,2 (S) ..i.. X.52 ( 1/2(2) x3(s)=[1-(x s))]
Let/9, q, be the (English) Euler angles describing the rotation of {a(s)} with respect
to {e } (see [7, Article 253]), and let

then it is easy to compute uj in terms of x, x and , obtain (see [2, {}1.1])"

(3)

u

u2

u3

cos a sin a 0

sin a cos a 0

0 0 1

XIX
l+x

X2X
l+x

X1X2--XIX2

l+x

Actually it is easy to realize that {ai(s)} can be obtained from {ei) by rotation -a
around the e3-axis (torsion) followed by rotation around an axis in the (el, e2)-plane
and taking e onto a3(s (flexure). This makes it clearer that the state of the strain may
be described purely in terms of x1, x2 and a.
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2. Deformation energy. Following the usual director approach (see [1] and [2]), we
assume that the deformation energy is given by

(4) foZg/" (u( s ) ) ds,

where is a smooth function such that g/’(0)=0 and satisfying suitable symmetry
hypotheses, which we describe below. We assumed that does not depend explicitly
on s; this means that the cross-sections do not depend on s, that is that the rod is
prismatic. As we said above, satisfies also suitable symmetry conditions which
reflect the geometry of the cross-section. More precisely, the usual Kirchhoff transverse
isotropy conditions state that if the principal moments of inertia of the cross-section are
equal, then is invariant with respect to the action of 13(2)<97/2 c 0(3) on (Ul, U2,U3),
defined by

I’YII 12 01 IUl 1(’y,e)’U-" 21 22 0 U2
0 0 e u

where 3’ [’k] is an orthogonal matrix and e + 1. The invariance of with respect
to the second summand, i.e. to 7/2, represents indifference with respect to left-handed
and right-handed twist. As regards the first summand, i.e. (2), we already pointed out
in [2, 1.2], that this hypothesis does not take completely into account the geometry of
the cross-section . For example, if is a regular n-gon, its group of symmetries is D
rather than (2); thus it is more natural to assume that :IK is invariant only under the
action of Fy. <9 7/2 c O(3), where F is the subgroup of 0(2) which leaves invariant the
cross-section F.. As we already said, if is a regular n-gon we have F D,; while if Y
is a rectangle, then F 7/2 <9 7/2.

Let us assume that the cross-section is a rectangle with sides 2b and 2b2 as in
Fig. 1. Define by 8 b2- b the aspect of the cross-section. When 8 0, becomes a

TYb
b

FIG. 1

square. On the ground of what we said above, we assume that is a smooth function of
u and i, invariant with respect to the action of 7/2 <9 7/_ <9 7/2 when i 4:0 and with respect
to the action of []4<97/2 when 6=0. Hence is an invariant of the reflections

uj---> -u., j= 1,2, 3; thus, in a similar way as in [2, Prop. 1.13] one can prove that .r
depends on uf only. Therefore there exists a smooth function K such that
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Of course when 3=0, that is the cross-section Y, is a square, K must also be an
invariant of the rotation r/2 in the plane u =0; therefore by [2, Prop. 1.13] (with
n 4) there exists a smooth function H such that

(6) K(u2, u22, u, 0) H( 1, "/2, 3 ),

where 1 Ul
2 q- U2, ’1"2 U-- 6U2xU22 + U 2, 3 U In the following we shall write

K(u2,8)=K(u u u2 ) H(r) H(’q, :, 3).

Naturally if we expand K up to first order, we must obtain the classical quadratic
energy of a rod (see [6, 18]):

eo(7) K(u2’)=--(II()ua+I:()u)+ 2 u+h.o.t.,

where E0 is the Young modulus, 11(3 ) and I2(8) are the principal moments of inertia
of the cross-section and C(3) is the torsional rigidity. It is possible to verify by a direct
computation (a bit long for C(3)) that 11, 12 and C depend smoothly on 3, that is
consistent with our assumptions on K. Moreover the following is true:

(8) I1()<I2() ifandonlyif <0.

3. The variational problem. We can now give the energy functionalf to be (locally)
minimised by the rod. We hold fixed the end s =0 and apply a terminal load force P
along the axis of the rod at the end s= 1. Thus the total energy of the rod is the
deformation energy minus the work done by P in moving along its line of action. The
end s 1 moves (x (0) 0):

1 x,(1)=f01(1 x’3(s)) as.

Thus from (4) and (5) we have

(9) f(xl,x2,u,P,8)= fol { ds.

We consider the rod clamped at both ends; that is satisfying the following set of
boundary conditions:

(10) xl(O)=Xl(1)=x2(O)=x2(1)=O,
(11) x(O)=x(1)=x’(O)=x’(1)=O,
(a2) (0) (a)-- 0.

Conditions (11) and (12) mean that the ends s=O and s= 1 cannot rotate. In particular
it is possible to prove that boundary conditions (10) to (12) correspond to have (see [2,
1.2])

al(0)=al(1)=e2, a2(0)=a2(1)=-el, a3(0)=a3(1)=e3,
which fix the position of the rod in the unstressed state.

In order to state our variational problem, define the following Banach space

X= C(J) X C(J) X C( J),
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where Co(J)=(g’JR [g is continuous with its derivatives g(J) for O<=j<=k and
g(J)(0)=g(2)(1)=0, for 0=<2j=<k}. Moreover Co(J) is equipped with the maximum
norm Igl- sup(Ig2)(s)l sJ and 0 <_j =< k } and X with the product-norm Ilxll x. We
denote by x=(xl,x2,a) the elements of X. Let

sJ

It is easy to see that fl is open and that by (2) and (3) we havef C(f, R).
The equilibria of the rod are given by the critical points with respect to x X of

the energy functional f: . In particular we are interested in (statically) stable
equilibria, which correspond to (strict) minima of f. Let

inf f ’’- ds(13) P(8)=4r2EoI(Sl=Eol(8)q,Co(,) fO k,ds
j=1,2.

PROPOSITION 1. For each P and , the unstressed configuration (XI, X2, O[)
(0, O, O) is a critical point of the energy functional f. For P < inf(P1(8), P2(8) } the

unstressed configuration (0, O, O) corresponds to a strict (local) minimum of the energy
functionalf and hence to a stable equilibrium. Finally the second derivative D2xf(O,P, 8) is
a degenerate quadratic form for P Pj. (8), j 1, 2.

Proof. From (9), (5), (7), (3) and (2) one can compute easily the second derivative
at (0,P, 8):

D2f(O,P,3)tx,xl=fo{ Eo(Ii()x;’-+ l(lx;2)+C()a’-P(x[2+ x’) } ds

and the result follows immediately. U
From Proposition 1 it follows immediately that (0, Pj.(), 8), j 1, 2 are possible

bifurcation points for f. On the other hand we have P(O)=P(O), consequently it
makes sense to state the following perturbed variational bifurcation problem: find the
number of (stable) criticalpoints offfor (x, P,) near (0, Po, 0), where Po P(0) Pg_ (0).

4. Bifurcation analysis. In order to solve the problem stated above, we first reduce
it to finite dimension, then we employ singularity theory. By applying Magnus’ splitting
lemma (see [2, Thm. 2.1] and [8]), we reduce the functional f to a function f on a finite
dimensional space in the same way as we did in [2]. Here we outline the reduction steps,
referring to [2, Chap. 2] for the details. Let Io=I(0)=I(0); then P=Po (-PI(0)
P2(0)) is the first eigenvalue of the boundary-value problem

Eolodp(4)-P" O,
+(o) =+(o) =o,
+’(o) +’(o) =o.

The relevant eigenfunction is #0(s)= 1 -cos 2rs. Let

Define the Banach space

c(J) x c(J) x c(j),
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where C(J) { g:JR g is continuous) and the continuous linear mapping w Y
X* (where X* is the dual space to X) by

2

foXyjx fo(y,x}= E ds+ y,a’ds,
j=l

where x--(Xl, X2, a)X and y=(y,y,y3) Y and .,.) is the duality between X*
and X. Define F:a Y by

F(x,P,8)=( j=l
(g’uJuJ’xT-1g’uuJ’xdt)+Pf(l-x;)’x{dt’

’( )_, K, vUj, xi’ K, vuj, xl dt +P 1- x ) xldt
j=l

K, ujUj, , K, ujUj, dt
j=l

where a subscript following a comma indicates partial differentiation. We have F
C(f, Y). Moreover, by an integration by parts one verifies that

Dxf(x,P,S)[2l=(F(x,P,6 ), 2).
Let

T= DxF(O,Po, O).

Following the same steps as in [2, 2.3], we obtain that:
1) There exist decompositions X= VZ and Y=WQ such that V= T-1W and

T z: Z -- Q is an isomorphism.
2) There exists a neighborhood U of (0,P0, 0)XR such that:
a) There exists a smooth mapping h: U’ Z, with U’= Un(V ), which is

the unique solution z h ( v, P, 8) of the equation

PQF(Vz,P,8)=O,

where PQ is the orthogonal projection onto Q.
b) If we let ’0---(11,/2) 2, o=(’OltO,2to,0) V X-P-Po and f(/,k,6)=
f(v h(v,P,8), P,8), then

(l,k,8)(vVh(v,P,8), P,8)
defines a one-to-one and onto correspondence between the critial points of
f(/, 3, 8) in U’ and those of f in U. Moreover this correpondence preserves the
minima.

3) f(rl, h,6) is an invariant of the action of ’ 2 ’ on generated by the
symmetries (1,12)-- (--’/1,’02) and (1’1,12)"-’) (’Ol, --’02)"

In this way we reduce our problem to finding the number of (stable) critical points
of f for fixed , and for (r/, ,, 8) near (0, 0, 0). This is equivalent to solving the following
perturbed bifurcation problem"

(14) G(,,6) =0,
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where G Dnf, )t is the bifurcation parameter and 8 is the perturbation parameter. Of
course the minima of f, i.e., the (statically) stable equilibria, correspond to positive
eigenvalues of the Jacobian matrix DnG. Finally we have that the invariance of f forces
G to be 7/a 7/a-equivariant i.e."

G1(-x,2,X,)--
X,

and

where Gj=Of/3rj, j= 1,2.
In order to study the bifurcation problem (14), we employ, in the case of the

symmetry group being/[2 * 2, the theory formulated in [4]. Recall briefly that two
bifurcation problems G and G are 7/a * 7/a-equivalent if (see again [4, 1 and 4])

for some smooth family of invertible matrices T and a smooth diffeomorphism (i, )--*
(E(I,X), L(X)) such that (L/0X)(0)>0. Moreover we require that T and E be
Z 2 Z 2-equivariant. It is easy to see that such an equivalence preserves the number of
solutions for fixed X, wNch is the information we are looking for.

Coming back to our problem, we have that in [2, Thm. 5.13] we have proven that if
the function H in (6) is such that (0H/0$2)(0)0 and the rod is prismatic, then
G(,X, 0) is -equivalent, hence Z 2 Z 2-equivalent, to

(15) (A+)-A +e =0,

where A > 1 and e=[sgn(OH/Ora)(O)]l. Moreover the above equivalence preserves the
signature of the real part of the eigenvalues of DnG, thatis the stability assignments of
the solutions. This essentially solves our problem for i 0.

It is worthwhile to remark that if H does not depend on r2 (and so in particular
(0H/0a)(0)=0) then one can prove that g(rl,),0) has infinite 7/a 7/a-codimension
and our analysis fails. This is the main reason to consider nonlinear constitutive
equations in our model.

Now we study G(r/,5,,8)= 0 for 19 near 0. Rewrite (15) as

[ ( A + e) 13 + (A 3e) 11l 2t111 --0,(16)
(a-3e)rlrla+(A + e) ri- Xrl2

then multiply (16) by the matrix

0

and divide r/j by v/A + e. We obtain that (16) is 7/2 * 7/2-equivalent to

(17)
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with

A-3e
(18) =v= A +e

Now (17) is a double cusp bifurcation problem and has been studied in [4, 4] and in [9,
6]. If it satisfies the nondegeneracy conditions

(19)
it has universal unfolding

/4:1, v4:l, /,v4:l,

(20) ----0,
,nrl2 + n3- ( X + a ) n2

with /2 and near/ and v and a near 0. The Universal Unfolding Theorem (see
[4, Thm. 1.8]) says that G(r/,,8) factors through (20), that is that there exists a smooth
mapping 8-->(/2(8),(8),a(8)) such that for each 8 near 0, G and (20) are
equivalent. Now the nondegeneracy conditions (19) split the (/, v)-plane into 7 regions
such that for fixed a all the bifurcation diagrams inside each region are topologically
equivalent (see [9, 6]). Now if (/2(8), (8)) belongs to one of these regions for 8=0, it
will stay there also for each small 8 4: 0. It follows that for a given 8 our problem is
associated to one of the regions according to the value of/2(0) and (0). Finally in each
region there are three different diagrams according as a(8)0 (see [9, 6]). Now for

a < 0 ( < o)

T

FIG. 2
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our problem we have/2(0)= (0)=(A- 3e)/(A + e), thus there are only two possibili-
ties" (A 3e)/(A + e)>< 1, corresponding to e + 1. So we have inspected all the possi-
ble cases and we are able to give the bifurcation diagrams. However, first we prefer to
make some observations:

1) The bifurcation diagrams relate only to the number of solutions for fixed ,
their stability and their buckling features, as explained below.

2) As we did in [2, [}[}3.4 and 5.3], we can classify the solutions in three types,
besides the trivial ones, according to their symmetry group and the kind of buckling the
rod undergoes; see Table 1.

TABLE

Solution type Symmetry group Buckling

T

II
III

712 f ’7] (reflection through 2-axis)

’ (reflection through fix-axis)

trivial equilibrium
in the plane x2 0
in the plane xx =0

spatial

2) Table 1 allows us to relate the sign of a to the sign of . In fact -a is the
bifurcation point of solutions of type II and this is negative if and only if the rod
buckles first in the plane xl=0. Now by Proposition 1 this happens if and only if

P2()< PI(), that is if and only if >0, by (8) and (13).

5. Bifurcation diagrams. In the diagrams in Figs. 2 and 3 we draw stable equilibria
(i.e. minima) in heavy black.

III II
>-r
x

III

a < 0(8 < 0)

a>0(a >0)

Iii/ ",,

a 0(8 0)

Fro. 3
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EXACT BOUNDARY CONDITIONS AT AN ARTIFICIAL BOUNDARY
FOR PARTIAL DIFFERENTIAL EQUATIONS IN CYLINDERS*

THOMAS HAGSTROM? AND H. B. KELLER*

Abstract. The numerical solution of partial differential equations in unbounded domains requires a finite
computational domain. Often one obtains a finite domain by introducing an artificial boundary and imposing
boundary conditions there. This paper derives exact boundary conditions at an artificial boundary for partial
differential equations in cylinders. An abstract theory is developed to analyze the general linear problem.
Solvability requirements and estimates of the solution of the resulting finite problem are obtained by use of
the notions of exponential and ordinary dichotomies. Useful representations of the boundary conditions are
derived using separation of variables for problems with constant tails. The constant tail results are extended
to problems whose coefficients obtain limits at infinity by use of an abstract perturbation theory. The
perturbation theory approach is also applied to a class of nonlinear problems. General asymptotic formulas
for the boundary conditions are derived and displayed in detail.

AMS(MOS) subject classifications. Primary 35A05, 35A40, 35C20, 65N99

Key words, artificial boundary conditions, asymptotic expansions for PDE’s

1. Introduction. Many of the boundary value problems arising in applied mathe-
matics are given on unbounded domains. Examples include the problems of fluid flow
and wave propagation in channels or past bodies. The numerical solution of these
problems, however, requires a finite domain. In this paper, we develop a theory for the
exact reduction of a boundary value problem for a partial differential equation on an
unbounded cylindrical domain to a problem on a bounded domain. That is, an "artifi-
cal" boundary is introduced and the proper boundary condition to be imposed there is
derived. In other works, [8] and [9], we use our theory to solve nonlinear problems of
both elliptic and parabolic type.

For ordinary differential equations, exact reduction theories have been developed
by many authors: de Hoog and Weiss [5], Keller and Lentini [11], Jepson and Keller
[10] and Markowich [12]. Few works on artificial boundary conditions for partial
differential equations, on the other hand, have discussed exact conditions. An exception
is the paper of Gustafsson and Kreiss [6], where the form of the proper conditions for a
general hyperbolic problem is derived. They go on to find representations of the exact
conditions in various simple cases for problems of both hyperbolic and elliptic type.

We illustrate the derivation of exact conditions with the following example"

a)

b)

(1.1) c)

d)

e)

V2u+a(x,y)u=f(x,y), (x,y)[0, oo)Xf,
Ou

c(x,Y)-v (X,y)+d(x,y)u(x,Y)=’Yfa(x,Y),

(Y) (0, y) + (y) u (0, y) r0 (y) yse
lim u(x,y) =0,
X

f(x,y) r.(x,y) 0, x>=Xo.

cRn-l,

y0,

a(x,y)=a(y), x>=xo,

*Received by the editors April 5, 1984. This research was sponsored by the U. S. Army under contract
DAAG29-80-C-0041, and supported in part by the U. S. Department of Energy under contract DE-AS03-
76SF-00767.

Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New
York 11794.

*Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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(We say that (1.1) has a constant tail, due to condition (1.1e).) We choose some point
x- >__ x0 as the location of the artificial boundary. In the "tail", x > , we have:

a) V2u+ao(y)u=O, (x,y) [, )2;
0u

(1.2) b) c (y) -v ( x, y) +d(y) u( x, y) O,

c) lim u(x,y) 0.

Problem (1.2) can be easily analyzed by separation of variables. Consider the following
eigenvalue problem:

a) vyYn (y) +

(1.3) b) c(y)-0-u Y,, (y) +d(y) Y,, (y) O,

c) fa dyY(y)= l.

Given certain assumptions on the boundary condition, (1.3b), the set of eigenfunctions,
(Yn), is complete in that subspace of L2(2) consisting of functions satisfying it. (See
Berezanskii [3].) For simplicity, we further assume that the co are distinct and that
0 0 is not an eigenvalue. We rewrite the ( co ) in the following way"

2>0, n=l .--m
(1.4) t% tn

%=_X2<0, n=m+ l, m+ 2,

Expanding u in terms of the Yn’s,

(1.5) u(x,y)= E Cn(X)Yn(Y)
n=l

problem (1.2) becomes:__
--OlnCn, n=l,...,m,

a) c x[,c);
(1.6) ,nc,, n rn + 1, rn + 2," ",

b) lim c,,(x)=0, n= 1,2,..-.

As (1.6a) can be trivially solved, we see that (1.6b) is satisfied if and only if"

a) Cn(’T)’-’Cn(q’)--O n=l,’’-,m;
(1.7)

b) c;(r)= -Xncn(r ), n=m+l, m+2,....

This allows us to replace (1.1) by an equivalent finite domain problem:

(1.8)

a)

b)

c)

V2u+a(x,y)u=f(x,y), (x,y) [O,’r];
Ou

c(x,Y)-r (x,y)+d(x,y)u(x,Y)=’ta(x,Y),

a(y)_0__x)u (0,y) +b(y)u(0,y) =0(y), y.,

d) dyu(’r,y)Y,,(y)= dy-o---X-x(’r,y)Yn(y)=O, n=l,.-.,m;

dy-ff-dx (’r, y) Yn (y) h dyu(’r,y)Y,,(y), n=m+ l, m+ 2,
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That is, (1.1) has a solution if and only if (1.8) does and the solutions agree on a finite
domain.

In 2 of this work we derive boundary conditions for the reduction of a general
partial differential equation in a semi-infinite cylindrical domain to a finite one. These
turn out to be the requirement that the appropriate data at the artificial boundary lie in
a certain affine set. We find it convenient to rewrite the problem as an ordinary
differential equation in a Banach space, making transparent the connection between
our reduction and the reduction theorems for the case of ordinary differential equa-
tions. In 3 we introduce the notion of a dichotomy for our abstract equation and use it
to develop error estimates and solvability requirements for the finite problem.

We first consider the problem of representing the boundary conditions in 4. Here
separation of variables is used to analyze constant tail problems such as the one
presented above. The exact representation we obtain is equivalent to (1.8d) in that case.

We develop a perturbation theory to analyze nonconstant tail problems in {}5.
Assuming the limiting problem at infinity can be solved by separation of variables, a
perturbation expansion of the exact boundary condition can be calculated. We carry
out this expansion for the Helmholtz equation exterior to a body, recovering the
conditions of Bayliss, Gunzburger and Turkel [2]. Finally, in 6, nonlinear problems
are considered. We use the perturbation theory of the preceding section to prove, under
certain conditions, the existence of an exact nonlinear boundary condition and to
calculate an expansion which approximates it.

We note that many authors have derived boundary conditions for specific prob-
lems. We do not, in general, attempt to examine the connection between their condi-
tions and ours. For more discussion of these connections as well as for a more extensive
bibliography, the reader is referred to Hagstrom [7].

2. Basic linear reduction theorem. We consider abstract boundary value problems
of the form:

(2.1)
a) -d--x A ( x ) u +f(x )

b) Bou(O) =3’0,

c) lim Bou(x)=O.
x ot

0<x<;

In addition we may impose:

d) bounded as x .
For some Banach space, , we seek u(x) for x [0, ]. We suppose that A(x), B0

and Bo are linear operators with domain in , to which we also constrain the range of
A(x). Finally, f(x).

Problems of form (1.1) can be obtained from general partial differential equation
problems in cylindrical domains. Specifically we consider

j=l -Y 3xj

on the cylindrical domain

ucan.
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Homogeneous boundary conditions are imposed on involving 0 and its normal
derivatives;

m

(2.3) E Ba,hj(Y)OJ (x,Y) =0, yOa
j=0 olJ

We further suppose that, subject to these boundary conditions,

exists for all x. Now (2.2) can be rewritten in the form of (2.1a) by introducing

(2.4) u

0 n- 10
OX n-1

0 n-260
oxn -2

The space, , is some space of n-tuples of functions on f] which satisfy the homoge-
neous boundary conditions, (2.3). It is necessary to eliminate inhomogeneous condi-
tions on Of in order to reduce the problem to the abstract form. This can be accom-
plished by subtracting a function that satisfies the inhomogeneous condition. We note
that the functions Bu,. affect P-1 and, ultimately, A(x).

Returning to (2.1) we choose some finite point, x r, and attempt to reduce the
infinite problem on [0, o) to a finite one on [0, ]. We define A(; f), the admissible set
of Cauchy data at x -, as the set leading to solutions, u, in the tail, x [z, o). More
precisely we have:

DEFINITION 2.5. The set A(,;f)c, the admissible set at x , is the set of all

Uo such that there exists u(x), x[z, ), satisfying:

(2.5) a) -d-x=A(x)u+f(x),
b) u(,)=u0;

as well as (2.1c, d) as appropriate.
It is now possible to write down an exact reduction of (2.1) to a problem on a

finite domain. We state the reduction as a theorem whose proof follows immediately
from the definition of A(r;f).

THEOREM 2.6. Problem (2.1) has a solution if and only if the following problem has a
solution:

(2.6)

do)
a) -x A (x ) o +f(x )

b) B0 (0)=’0;
c) 0 (-) A(-;f).

Furthermore, whenever (2.1) has a solution u(x), (2.6) has a solution which is identical
to u on [0, -].
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Proof. Suppose (2.6) has a solution. Then, by the definition of A(;f), there exists
u+(x), x[r, o), satisfying (2.1a) and (2.1c, d) as appropriate as well as w(-)= u+(’).
Define

Then, u is a solution of (2.1). Now, suppose that (2.1) has a solution. The restriction of
u to [r, o0) satisfies (2.5) and (2.1c, d) and, hence, by the definition of A(r;f), u()
A(z;f). This implies that the restriction of u to [0, z] satisfies (2.6), completing the
proof.

The set A(;f) is an affine subset of . A convenient representation of A can be
found in terms of its underlying linear subspace and some particular element of ’. We
consider the homogeneous problem in the tail associated with (2.1):

(2.7)
a) -d-x=A(x)v,
b) lim Bv(x)=O,

x oo

and, if (2.1d) is imposed,

c) ()11 bounded as x .
We define ’(-), the admissible space at x=z, as the set of all Cauchy data leading to
solutions of (2.7). That is:

D[FINITION 2.8. The set ()c, the admissible space at x o, is the set of all
vo such that (2.7) has a solution satisfying:

(2.8)

We note that (r) is independent of the inhomogeneous term in (2.1). We further
require a particular solution, up(x), which satisfies:

a)
dup
=A(x)up+f(x),

(2.9) dx
b) lim Bup(x)=O;

and, if (2.1d) is imposed

c) ( )II bounded as x

We note that if A(z;f) is nonempty, at least one such up(x) must exist. It is now
possible to prove:

THEOREM 2.10. Let uo 1. Then uo A(z;f) if and only if, for any particular
solution Up(x)

(2.10) u0- u, (’r)’(’r).

Proof. The proof is an immediate consequence of the definitions of A(;f), ’(-)
and Up(X) combined with the linearity of (2.1).
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If we assume that there exists a projection operator, Q(-), into sO(r), we can
rewrite (2.10)"

(I-Q(z))(Uo-U(Z))=O.

In particular, the boundary condition, (2.6c), can be replaced by:

(2.6c’) (I- Q(’r))w(’r) (I- Q(’r))Up(’r).

We emphasize that up(x) can be any particular solution.
Finally, we write down a corollary of Theorem 2.6 which concerns the uniqueness

of solutions.
COROLLARY. Suppose that for all vo() solutions to the Cauchy problem defined

by (2.7a) and (2.8) are unique. Then (2.6) has a unique solution if and only if (2.1) does.

Proof. Assuming uniqueness of solutions to (2.1) immediately yields uniqueness for
(2.6). In the other direction, note that the assumption above guarantees the uniqueness
of u+(x) which, combined with the uniqueness of the finite interval solution, implies
the uniqueness of u.

3. Solvability of the finite problem. In this section we assume that solutions to the
homogeneous Cauchy problems:

(3.1) a) -d--x=A(x)v,
b) V(Xo) =v0;

Xo<=X<=X if x>xo; x <__x<=xo if Xo>X1;

are unique for all x0, x [0, oe). We define a solution operator S(xl, xo;A) in the
following way:

D.FINITION 3.2. Let v0. If there exists a solution, v(x) to problem (3.1) then

(3.2) S(xx,xo; A) v0= v(xl).

Otherwise, 0 is said to be outside the domain of S(Xl, x0; A).
The linearity of the differential equation implies the linearity of s. The stated

uniqueness of solutions implies the consistency of the definition. Note that it is cer-
tainly necessary to restrict the domain of S for ill-posed Cauchy problems such as those
which arise in the study of elliptic equations. Whenever S exists, however, it does have
the familiar semi-group properties:

a) S(xx,x*;A)S(x*,xo;A ) S(xl,xo;A),
(3.3) b) S(xo,xo;A)=I.

The notion of dichotomies is very useful in what follows. First we present defini-
tions of exponential and ordinary dichotomies. These are adapted from Daletskiy and
Krein [4], with some modifications required by the poosible nonexistence of solutions.

DEFINITION 3.4. We say that the problem

(3.4) ---x=A(x)v, x [0, o);
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has an exponential dichotomy if, for any x* [0, ), the space ’ can be decomposed
into a direct sum of subspaces _(x*) and ’+(x*) such that"

(3.6)

(3.7)

a) If v

_
(x*) then, for some N_ and a > 0

i) S(x,x*;A) exists for any x>=x*;
ii) S( x, x* A ) o I1_-< N_e-’-(-x*ll v II,

b) If v +(x*) then, for some N+ and a + > 0

i) S(x,x*;A)v exists for any x =<x*;

iX) IlS(x,x*;A)oll<__N+e-=+x*-x)llvll.

c) There exists 7 > 0, independent of x*, such that

inf u+/ u_ {1>__
u++(x*)

Ilu+/-ll=l

(This infimum is typically called the angular distance between /(x*) and _(x*).)
An ordinary dichotomy is defined as above except that a_=0 is allowed. No

"continuity" of the spaces as functions of x* has so far been required. In general, we
impose a sort of continuity in the form of the following "no-mixing" condition.

DEFINITION 3.8. The dichotomy (3.5-3.7) satisfies the no-mixing condition if
whenever

a)
(3.8) b)

Q(x) is the projection operator into

_
(x),

S(xx,xo;A) v exists

then

c) Q(xa) s( X1, X0; a ) v S( x1, XO; A ) Q(xo) v.

Assuming that the homogeneous problem has a dichotomy in the tail and that
_(x) coincides with the admissible space, ’(x), it is possible to write down an
integral expression for a particular solution, up(x) which is valid whenever IIf(x)ll is
integrable;

(3.9) 1,1p(X)’-- S(x,p;A)Q(p)f(p)dp- S(x,p;A)(I-Q(p))f(p)dp.

(The validity of (2.9a) follows from the direct differentiation of (3.9) while (2.9b) is
insured by the identity of _(x) and ’(x) combined with the absolute convergence
of the integrals.) Note that it is always the case that _(x)=C(x) if there is an
exponential dichotomy. Then, only boundedness of II/]1 need be assumed.

Formula (3.9) is extremely useful in the development of a perturbation theory. For
now, we simply use it to write down a new expression for the boundary condition,
(2.6c):

(3.10) (I- Q(r))0() S(,r,p)(I-Q(p))f(p)dp.

Extending the dichotomy to the entire interval, we now can prove an existence
theorem for the finite boundary value problem (2.6).
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THEOREM 3.11. Suppose that solutions to all Cauchy problems (3.1) are unique for
xo, x [0, r] and that (3.1a) has a nonmixing ordinary dichotomy on [0, r] with projector
Q(x) into _(x). Also assume that _(,r)=’(r). Then (2.6) has a solution for
arbitrary f(x), up(r) and 3"0 in the range ofBo if and only if the operator

(3.11) oa={ (I- o(O)) a}Bow

has an inverse with domain containing all pairs of the form:

Range ( Bo).

The solution is unique and bounded in terms of the inhomogeneous data if and only if this
(restricted) inverse is.

Proof. We use the ordinary dichotomy defined by Q(x) to solve certain initial
value problems. Let

(3.13)
x

+(x)=S(x,r;A)(I-Q(r))Up(r)+ S(x,p;A)(I-Q(p))f(p)dp.

This exists for all x on [0, ] by the definition of Q. If we seek solutions to (2.6) in the
form

(3.14) ( x ) + ( x ) + ( x )

then is a solution if and only if
_

solves

(3.15)

d
a) dx =A(x)t_+ Q(x)f(x);

b) Bo_ (0) 3’o- Boo + (0)
c) (1- Q(’))_(r) 0.

We write 0 (x) in the form:

(3.16) o_(x)=S(x,O;A)o_(O)+ S(x,p;A)Q(p)f(p)dp.

The integral term again exists by the definition of Q so that this representation is valid
for any solution of (3.15a). By (3.15c) and (3.8c) we have:

0= (I- Q(r))o_(r)= S(r,O;A)(I- Q(0)) t_ (0)

which, by the uniqueness of solutions to the Cauchy problem, implies

(I- O(0)) _(0) 0.

Hence, we can find a solution to (3.15) if and only if we can simultaneously solve:

(I- Q(0)) 0;

which in component form yields (3.11), completing the proof.
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Estimates of the solution in terms of the inhomogeneous data are now obtained
from the explicit representation in terms of 0+ and o_. Assume that

(3.17)

a)
b)

c)

d)

IIS(x,p;A)Q(p)IIZK_(x,p), O<=p<=x<_-;

IIS(x,p;A)(I-Q(p)) IIzK+(x,p),

-(0) <Kq,lll Range(Bo).

IIBoll-_<Ko.

Then we have, directly estimating (3.13) and (3.16) and using the fact that Q(0)0_(0)=
o_(o),

(3.18) II,0(x) II=<K_(x,0)lloll+ max IIf(x)II K_(x,p)dp
x[0,]

)+ max IIf(x)ll K+(x,p)dp+K-(x,O)Kq,Ko K+(0,p)dp
x[0, r]

+ I1%,()II(K+(x,z)+K-(x,O)K,KoK+(O,’)).
Equation (3.18) allows us to estimate the errors caused by approximations to Q()

and up(C). Suppose we solve the following finite problem instead of (2.6)"

(3.19)
a)

b)
c)

d
--x =A(x)G,+f(x), O<_x <=,

Boc% (0)
,();(I Q*(’r))oJ,,(’r) (I Q

*() differ from Q() and up(c). We define the error, e(x), bywhere Q*() and Up

e(x) =-6o(x)-Oa(X )

and find that it satisfies:

(3.20)

a)

b)
c)

de
-x A (x ) e, O <= x <= "r,

Boe(O) =0,
(I- Q(’r)) e (’r)= (I- Q( ,r))( up( ’)- u,(’r))

--(Q( q’)- Q*( ’r))( /;( T)- 60a (
-=a(t).

Note that A(-), by construction, is in the range of 1-Q(’r). (We assume, of course,
that oa(x) exists.) Therefore we have:

(I- Q(r))A() =A(r).

We now plug into (3.18) to obtain"

(3.21) lie(x) I1 (K+ (x, ,r)+ K_(x,O)Kq,KoK+ (0, -))II A(-)I1.
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Further specializing to the case of an exponential dichotomy this becomes"

(3.22) Ile(x) ll<= (N+e’+-)+N_e--K,KoN+e-’+’)llA(,r) ].

That is, the large part of the error decays exponentially off the artificial boundary.

4. Problems with constant tails. In this section we restrict ourselves to problems
which are autonomous in x for x sufficiently large. That is, we assume there exists
such that:

(4.1) A(x)=-A, x>_,.

We also require that the constant coefficient problem in the tail be separable. That is,
we require that a complete spectral representation be associated with A"

Assumption 4.2. There exists a countable set of pairs, ()t,,u,), with X, a complex
number, u ’ and 0 not an accumulation point of (’n } and there exist adjoint pairs,
()t*,, v), with v Dual (), satisfying

i) Au,,=X,,u,,;
(4.2) ii) A* *v )kV,

iii) ( Vm U,, ) ,m,
Furthermore, any function u ’ can be uniquely written in the form:

(4.3) u= E CnUn, Cn=(Vn,U)"
n=l

Using the eigenfunction expansions defined above, it is easy to write down condi-
tions for the existence of dichotomies for the constant problem as well as representa-
tions of the various operators discussed in the preceding sections. In particular we haee
the following theorem, whose proof follows immediately from the (formal) solution of
the Cauchy problem in terms of the eigenfunction expansions. (For the details of these
see Hagstrom [7].)

THEOREM 4.4. a) If all eigenvalues, ,,,, ofA are bounded away from the imaginary
axis, then the homogeneous problem associated with A has an exponential dichotomy
with spaces

(4.4) N’+-- span( ui" REX,> 0}
_= span{ ui" ReXi<0}.

The exponents, a +, are given by:

a+= g.l.b. IReXI;
REX,.> 0

a_= g.l.b. IReXl.
ReXi<0

b) Let +/- be defined as above and let o be given by:

(4.6) N0-=span{ u,: REX,=0}.

Let -d be any direct sum decomposition of o. Then an ordinary dichotomy is
induced by the spaces + and ]_.
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We note that by the conclusions of part (b), there can be many ordinary dichot-
omies associated with a problem whose operator has eigenvalues with zero real part.
Which of these is the right one to use for the boundary condition depends on the
boundary operator at infinity, B. Representations of the solution operator, S, are also
easy to obtain.

The theorem above can be applied to the example of {}1, problem (1.1). Rewriting
the problem in first order form according to transformation (2.4), the operator A is
given by:

Its eigenvalues are given by + X, and +__ ian, defined by the reduced eigenvalue problem
(1.3) through equation (1.4). If (1.3) had no positive eigenvalues, the problem in the tail
would have an exponential dichotomy. In the case of an ordinary dichotomy, the
boundary condition (1.7a) corresponds to the choice:

If, instead of (1.1d), some other condition was imposed (for example a radiation
condition) this choice would change. We note that using the integral representation of
the boundary condition, (3.10), the condition that the inhomogeneous term vanish in
the tail can be replaced by an integrability assumption. The boundary condition, (1.7),
is then replaced by:

dse x,, (s )

which implies

1 k
1

1 0

(4.7) c;(r) -X,,c,,(’r)-f dse-X"(-)f,,(s), n=m+ 1, m+ 2,....

For the imaginary eigenvalues we have"

c’ r 1 e_ia.(s_r) -- e ia"(s-r) 1
C "1" --’--" ds 1

1
ion,, o

c’o(,)=

1 sin[on(S-’,’)]fn(s)ds.Cn ( q" ) O’n

which implies

(4.8)

(4.9)

For a general partial differential equation with a constant tail, the eigenvalue
problem of its operator, A, can be reduced to an eigenvalue problem for a partial
differential operator. In particular, it’s eigenvalues, X, correspond to solutions of:
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coupled with the appropriate boundary conditions. This is the eigenvalue problem
associated with the Laplace transform in x of the equation in the tail. We note that in
practice it is the reduced eigenvalue problem, (4.9), which we suggest be solved to
obtain the boundary conditions. The reduction to first order form is made in an effort
to simplify the theory. The use of (4.9) to derive boundary conditions was first
suggested by Gustafsson and Kreiss [6].

The completeness of the eigenfunctions of A oo depends on the completeness of the
eigenfunctions of (4.9). This property does not hold in general and is difficult to check.
For a class of elliptic and parabolic problems, Agmon and Nirenberg [1, Thm. 5.8]
establish the completeness of the eigenfunctions and generalized eigenfunctions of (4.9)
whose eigenvalues have negative real part in the class of solutions which are absolutely
integrable along with their first n- 1 x derivatives. In this case, the solution of (4.9) is
guaranteed to yield a representation of the admissible space.

5. Perturbation theory and asymptotic boundary conditions. In the preceding sec-
tion we found useful representations of the projection operator, Q(z), of the admissible
space and of the particular solution, up(x) for equations of the form (2.1) with
constant tails. In the present section we relax this assumption and replace it with:

(5.1) lim A(x)=A.
x--

Equivalently we write:

(5.2) A(x)=A + B(x), lim liB(x)]1=0.
x o

Assuming A has a dichotomy, it is possible to make an asymptotic analysis of the
perturbed problem defined by A(x). In particular, we obtain representations of the
projector, Q(), into the admissible space. Consider the homogeneous problem in the
tail:

dva) dx-Aov+B(x)v, x>r"

(5.3) b) lim Bv(x)=O;
X O

c) u(x)]l bounded as x .
Treating B(x)v as an inhomogeneous term, we have, by (3.10), that v(x) must satisfy:

(5.4) (I-Q(z)),(r)= S(,p;A)(I-Q(p))B(p)o(p)dp.

Also, from (3.10), we have a representation of v which must be valid if v exists;

ix(5.5 

S(x,p;)(-e(p))(p)v(p)p.

Let any o() be given and replace Q()v() in (5.5) by o. If the following
condition holds:

(5.6) sup S(x,p;Ao)Qoo(p)B(p)dp
x,r
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then the contraction mapping theorem can be used to establish the existence of a
unique bounded solution to equation (5.5), o(x; 0)- Furthermore, we clearly have that:

Qv(; o) =0;
(5.7) (i_Q(r))v(r;o) f, S(r,p;A)(i_Q(p))B(p)v(p;o)dp.

Hence, whenever (5.6) is valid, we can find, for any 0s’(r), a unique element,
o(r; o), of (). A projector into () is given implicitly by (5.7):

(5.8) Q(r)=Q(z)- dpS(,p;A)(I-Q(p))B(p)o(p; Q(z)).

These conditions lead us to the following theorem:
THEOREM 5.9. We suppose that either the unperturbed problem has an ordinary

dichotomy and IlB(x)ll is integrable or that the unperturbed problem has an exponential
dichotomy. Then, for sufficiently large, a unique solution, o(X;o), exists for any
o() and (5.8) is valid.

Proof. It is only necessary to satisfy (5.6). In the first case we have:

K(N++N_) IIB(x)lldx;

wle in the second we have:

K(N+ N)+ max liB(x)
+

_
x

For both cases, the assumptions on B allow us to make the right-hand sides arbitrarily
small by choosing sufficiently large, completing the proof.

The contraction mapping solution of (5.5) leads to a natural iterative procedure for
the approximation of v(x; 0) and, ultimately, of the operator Q. We let:

S(x,

Zx(5.9)

dpS(x,p;A)(I-O(p))B(p)v(")(p;o).

Then, by the contraction estimates:

Kn+l
(5.10) [I,(")(X;o)-V(X;o)lNlLKl]V()(X;o)[I.
We define our nth approximation to A(), Q(")(), by:
(5.11)

Q(")()=Q()- dpS(,p;A)(I-Q(p))B(p)v("-)(p; Q()).

The error due to this approximation is estimated by"

gn+l
(5.12)

(Note: in all cases the norm of a -valued function of x is taken to be the maximum in
x of its norms.)



ARTIFICIAL BOUNDARY CONDITIONS FOR PDE’S 335

We now apply these results to the case when the constant tail problem has an
exponential dichotomy and Ao has a complete spectrum. We assume that B(x) has an
expansion of the form:

(5.13)
1 Bo)+ 1

.--.

(The expansions could easily be carried out for more general forms.) Plugging into the
formulas above we have:

(5.14)

vO(x;)=

where

n rl m
ReXn<0 REX.<0 ReXm<0

fx dpeX"(x-p)Bnm ( P ) Cmexm(p-’r)

Re 2. > 0 Re)km < 0

dpeX.(x-p>Bnml( P )CmeXm(P-’);

Bnm(X)--(On,B(x)Um).

Using (5.13) and approximating the integrals using integration by parts yields to within
an O(1/-2) error:

(5.16)
B(1)nm (eXm(X-r) e x"(x-’) )V(I)( X’, ) E UnCnex"(x-’r) "1- E E Un k X cm X T

n n m
ReXn<0 ReAn<n ReXm<0

) B(1) eX,.(x-z)
CmX+E EUnXmXnu"B("c"eX"(x-’)lg

" x
n n m

ReAn<0 REX.>0 Re X,. < 0

Putting this expression into (5.11) and approximating the integrals in a similar fashion
yields"

(5.17)

Q(r)J E CnUn @ E E
n n m

Re h,,< 0 REX,,> 0 ReXm<0
( ) 1

Un BO +-1B c
T (Xm__kn),l

1+ E E U B(1)c
k kn)2

’r
2

n m
REX.>0 Re X,n <0

B(1)B(1)cE E E Un nj ’jm
n j m

Rehn>0 ReXj<0 Re)m<0
’r2( Xm-- Xn)( kj-- Xn)

nj jm

n j m
ReXn>0 Re)tj>0 Re)kin<0
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The generality of the expansion given above makes its automatic computation a
real possibility. Note that the expansion is equivalent to the one obtained by Jepson
and Keller [10] for ordinary differential equations.

Formula (5.17) can be applied to the Laplacian example, (1.1), where the potential
a(y) is replaced by:

/+/-
x
2a2(y)+’’’"

Then, the matrix elements Bi are given by"

(5.19) Bi)m=-, dYYn(Y)Ym(Y)a,(Y).

Expansions of a particular solution can be derived in a similar .manner. Let u(x)
be any particular solution of the unperturbed problem. Then, a solution of the integral
equation"

x

u(x)=u(x)+ 4k S(x,p)Q(p)B(p)u(p)dp

S(x,p)(I-Q(p))B(p)u(p)dp

is a particular solution of the perturbed problem. Given the inequality (5.6), a unique
bounded solution of (5.20) exists by the contraction mapping theorem. It can be
approximated by an iterative process analogous to the one described by (5.9). Perturba-
tions of the inhomogeneous term could also be included.

Finally, we note that (5.17) is valid for some problems which do not satisfy (5.6).
An important example is afforded by the exterior Helmholtz problem in two dimen-
sions. The equation in the tail is:

(5.21) O2U 1 3u 1
)r2 t---r- r2 002

+k2u=0, r[r, ), 0[0, 2r)

together with boundary conditions

(5.22)
a) u periodic in 0;

b) rlnl rl/2 ( O u-r iku
]

O.

Rewritten in first order form these become"

(0

b) ()periodic in 0"

c) lim rl/2(-- iku) =0.
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There are two obstacles to the application of the preceding theory to problem
(5.23). The first is that the perturbation

1 o
r 2

0 0

is apparently unbounded. The second is that the perturbation

1(1r 0
is nonintegrable while the limiting equation,

(5.24) -- u -1

0)

has an ordinary rather than an exponential dicohotomy. Nonetheless, it is possible to
apply formula (5.17), or any higher order approximation to the boundary condition, to
this problem. (It is necessary, of course, to identify the imaginary eigenvalue ik with
eigenvalues with negative real part and -ik with eigenvalues with positive real part
when applying the formulas.) The resulting boundary condition is:

1 u(’r)

1 ik
1 (1 1 2 ) 2 2

2ik5- - 2ik5- -2 1 1
2ik 2

1 -ik
2 2

1 1
2ik 2

1 1

4k 25"2 2

(I Q(5"))(15") ) 1( 1
1

u 5") ik

u(,)

1 -ik
1 1 2 2

4k25"2 4 1 1
2ik 2

1 1

4k :
5"

:z 4

1 -ik
2 2

1 1
2ik 2

which can be written:

(5.26) Ou 1 1 02u 1
--rr ( 5" O ) ku ( 5" O) -2-, u ( 5" 0 )

2ik5"2 0-0- ( 5" 0 )
8 k 5"

2

The validity of (5.26) can be established by other means. See, for example, Bayliss,
Gunzburger and Turkel [2]. We note that the error depends on higher 0 derivatives
of u.
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6. Nonlinear problems. In this final section we apply the perturbation theory to
nonlinear problems. We restrict ourselves to abstract problems of the form:

a) dU F( u) x>’r"

(6.a) b) lim u(x)=u;
x-’*

c) F(uoo) =0;
where u(x) is an element of some Banach space, , and F is a nonlinear operator with
domain and range in . Letting o u- u, we rewrite (6.1):

dva) -dx Fu (.u ) v + R ( o ) x >= "r

(6.2) b) lira v(x)=O;
X O

c) R(v)=F(u +v)-F,(u)v.
One approach to the solution of (6.1) or (6.2) would be Newton’s method. Then,

the theory of the preceding sections could be applied at each stage of the iteration. We,
however, choose to work directly with (6.2), deriving exact boundary conditions which
can be approximated by the methods of {}5.

We generalize the notion of an admissible set (Definition 2.5) to be applicable to
(6.2). Note that it is no longer an affine subset of . Central to our analysis is the
behavior of solutions to the linearized problem in the tail:

(6.3) d
dx F,(u) o, x>__’r.

Treating the nonlinearity, R(v), as an inhomogeneous term leads to the following
equations for v, which are analogous to (5.4) and (5.5);

(6.4) (I- Q(r))o(-) f S(r,p;F(u))(I-Q(p))R(o(p))dp;

(6.5) v(x)=S(x,;F,(u))Q(r)v()+ S(x,p;F,(u))Q(p)R(v(p))dp

fx S(x,p;Fu(u))(I-Qo(P))R(v(p))dP.

Here, Q projects into the admissible space of the linearized problem (6.3). As in the
linear case, the condition that (6.4) and (6.5) be simultaneously solvable is viewed as a
condition for the admissibility of v(r).

Following the derivation for the linear problem, we let 0’(z) be given and
use a contraction argument to establish the existence of a solution to the integral
equation, (6.5), with Q(r)v() replaced by 0. Due to the nonlinearity, some addi-
tional assumptions are needed:

Assumption 6.6. a) There exists 6>0 such that if Ul, U2(.., and Ilull__<, i=1,2,
then

sup S(x,p;F,(uoo))Qo(p)(R(Ul)-R(u2))dp
x>’r

S(x,p;F,,(uo))(I-Qo(p))(R(Ul)-R(uv_))dp

rll Ul U2 II, g< 1.
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b) There exists 81 > 0 such that if u and Ilull < , then

x>__’r

c)

sup S(x, Fu(u ))
x_>’r

Given these, a solution to (6.5) is guaranteed by the contraction mapping theorem.
Denoting this solution by o(x;0), an exact boundary condition, valid for small
boundary data, can be written down from (6.4)"
(6.6)
(I-Q())v()= fo S(,p;Fu(Uo))(i_Qo(p))R(v(p; Qo()v()))dP

An approximation to (6.6) can be obtained from an iterative approximation to the
solution of (6.5):

a) v()(X;o)=S(x,’r;Fu(uo))o,

(6.7) b) v(+)(X;o)=V()(X;o)+fXs(x,p;Fu(u))Oo(p)R(v(n)(p;o))dp
fx S(x,p;F,(u))(I-Qo(p))R(v("(p;o))dp.

The n th approximation to the boundary condition is, then, given by"
(6.8)
(I-Qo(z))v(z)= foo dpS(,p;F,(u))(i_Qo(p))R(v(n)(p; Qo(.) v(.)))"

Error estimates follow as in the linear case and will be proportional to
which, in turn, we expect to be proportional to [[v(’)[[ "+2. Note that R will often be
given as an expansion:

(6.9) R(v) -1 1
2F..(=) + gF...(u=) + ....

We take as many terms in this expansion when evaluating the integrals as is consistent
with the number of terms in (6.7) we intend to retain.

Assume now that the linearized operator, F,(uo ), has a complete spectrum. Then,
in order to satisfy part (a) of assumption (6.6), it is necessary to assume that there is an
exponential dichotomy. From (6.9) we derive the following representation of R(v) in
terms of the eigenfunctions of Fu(uo )"

a) v= E c,,u,,, c,,=(v,,,u);
n=l

(6 10) b) R(o)= E 7,,(V)Un "tn(V)"Ea(e+ E fl()CgCC+
n= i,j i,j, k

C) 0/;)= On, " Fuul,liUj i(k l)n, -- FuuuUiU+U ,’".
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The function v0)(x; ) is given by:

(6.aa)
/3(1)(X; ) E U,,C,ex"(x-’)

Reh,<0

n j
Re h. < 0 Re h < 0 Re hj < 0

n j
Re h,, < 0 Re h < 0 Re hj < 0

h + hj h

n j
Rehn>0 Rehi<0 Rehj<0

Cn--(Vn, ).

cicUnOtinj ( Xi+ kj__ kn)
( e(x’+xA(x-)-ex"(x-) )

h.(x-r)(UnOlijCiCje

1
UnOlijiCj ki + j-- k

e(X,+x)(x- ’) + O( I[J I1);

This yields the following approximation to the boundary condition, which we write in
terms of the expansion coefficients. Here, n is such that Ren> 0.

(6.12)

j
Rehi<0 Rehj<0

E E E E
j k

Rehi<0 Rehj<0 Rehk<0 Rehl<0

CiCj 1
OljXi.._Xj__Xn’t- E E E [ijkCiCjCkxi2t_Xj+Xk__Xn

j k
Rehi<0 Rehj<0 Rehk<0

j j 1
Ol jOlk + Ol)" Olk } C CkC ( X k "JI- k "+ k i-- k ) ( k -4 kj k )

c c c, )j k
Rehi<0 Rehj>0 Rehk<0 Reht<0

This general formula can be applied, for example, to nonlinear elliptic problems of
the form"

(6.13)
a) V2u=f(u,y), (x,y) [’, m);
b) Bu O, y f

c) lim u (x, y) uo (y);
X---

where u(y) satisfies;

a) 2VyUm=f(u,y), y;
(6.14)

b) Buo=O, y Of.

The linearized equation in the tail is given by:

(6.15) V2V-fu(u,y)v=O;
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which is of the form analyzed in [}3. The condition that (6.15) have an exponential
dichotomy is that all eigenvalues, an, of the problem

(6.16) a) Vy2Yn-fu(Uo,y)Yn=otnYn, yf;

b) BfYn=O,

be negative. Then, the following boundary condition can be derived from (6.12)"

(6.17)
o CiCj oo ot CiCjCk

i=1 j=l i=1 j=l k=l

"}-E E E E j CiCkC 1

i=1 j=l k=l 1=1 k k

n=1,2,3,....
Here we have:

(6.18)

The quadratic approximation to this condition is used in a numerical computation by
the authors in [8].
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CHEMICAL SURFACE REACTIONS AND NONLINEAR
STABILITY BY THE METHOD OF ENERGY*

CAROL L. McTAGGART AND BRIAN STRAUGHAN

Abstract. By means of energy stability theory, the nonlinear stability of a two-component reactive fluid,
composed of the dimer A and the monomer A, confined between two infinite parallel plates and subject to
the surface catalyzed reaction (A2 2A), is analysed. The stability boundary is calculated in the cases (a)
when the catalytic plate is conducting, in which case the linear and nonlinear energy parameter boundaries
coincide and (b) when the plate is insulating, for which a global stability criterion is found.

1. Introduction. The convective instability which results when a chemically inert
fluid in a gravitational field is heated from below has long been recognized as a
problem of crucial importance in many fields of fluid mechanics. More recently,
however, the effects caused by finer details such as chemical reactions or phase changes
have been shown to play an important role on convection in specific applications, see
e.g., Bdzil and Frisch [2], [3], Loper and Roberts [8]. The purpose of this work is to
provide a nonlinear stability analysis for the conduction-diffusion B6nard problem in
which the upper surface is stress free while the lower surface experiences a catalyzed
chemical reaction.

Throughout we confine attention to the effects which the heterogeneous surface
catalyzed reaction A22A may have on the hydrodynamic stability of the fluid
mixture containing the dimer A2 and monomer A, where we suppose the fluid is only
slightly removed from chemical equilibrium and contained in the layer between the
surfaces z 0 and z= d, the lower surface being catalytic. Bdzil and Frisch [2], [3] draw
attention to the application of such problems to the dissociation of oxygen, hydrogen or
nitrogen near a hot surface such as occurs in the vicinity of the gas-solid interface of a
space vehicle upon re-entry into the earth’s atmosphere. We would, however, anticipate
future applications of our results in laboratory controlled experiments.

The model we adopt is that of Bdzil and Frisch [2], [3] who restrict attention to
linearized instability analyses. The situation is described by a Newtonian fluid model,
to which a Boussinesq approximation has been applied, in which the basic fields are
those of velocity v, pressure p, temperature T and degree of dissociation a (= fraction
of pure monomers present). The novelty of the problem is best described in terms of
the heat flux q and mass flux J (local flux of a) in terms of which the conditions to be
satisfied at the catalyzed boundary (z 0) are

(1.1)
J-k=R, with either (A) T= To,

or (B) q-k-O,

where TO is a prescribed temperature, k is the vector (0, 0,1) and R is the rate at which
the monomer is formed by the surface reaction. The reaction rate is, in fact, taken to be
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linear in a, i.e.,

(1.2) R= o(o oe),

where o is the equilibrium value of a on the surface.
The solutions to the model in the steady state (vs= 0) are given by [2, (9)] and for

a, T are (the pressure pS is also easily calculated but not given here as it is not required)

(1.3) a’(z)=ad+ y(d-z), T(z) Td+ fl(d-z),

where ad, Td are the prescribed values of a and T on z d, and 3’, fl are constants which
for positive constants K1, K2 (given in [2]) may be written as

(1.4) = --Ogl(Otd--Ote),

(1.5) fl= ( (T- Td)/d if (1.1) (A) is adopted,

oK2(ad--ae) when (1.1) (B) holds.

Our object is to. investigate the nonlinear stability of (v, T, aS,p) and to this end
we must determine the governing equations for an arbitrary perturbation (u, , O,p) to
this solution. This calculation is routine and so omitted; however, after nondimen-
sionalization the required equations are seen to be (from the governing equations in [2])

(1.6) ui’t+ujui’J=-P’i+Aui+(Rig+sdp)ki’ (Pr(O’t+uii)=AO+H1RW’Ui,i 0, So( fl),t + u ,i ) mr1) + H2Sw,

which are to be solved in the layer R - (0,1).
In (1.6) u=(u,v,w), Pr, Sc are the Prandtl and Schmidt numbers, Hl=sgn fl,

H2 sgn , and R2, S2 are the Rayleigh and dissociation Rayleigh numbers, respectively.
Finally, the complete boundary conditions which the solution to (1.6) must satisfy

are:

0u 0v
U=0, z=0, z }z =w=0’ z=l’
0==0, z=l,

(1.7) O@
Oz re, z 0, either (A) 0 0, z 0,

or (B) -z -s, z=0,

where r,s are positive nondimensional surface reaction numbers. In accordance with
the observed cellular structure of B6nard instabilities in the presence of a free surface,
we shall restrict attention to perturbations (u, 0, ),p) which are periodic in x and y. A
typical period cell in the nondimensional layer will be denoted by f and that part of
the surface z 0 which forms part of the boundary of will be denoted by F.

It is convenient to refer to the two situations (A) and (B) above, which correspond
to prescribed temperature or thermal insulation, as cases (A) and (B).

2. Nonlinear energy stability for case (A). Mathematically, case (A) and case (B)
are very different. In this section we examine case (A) when the applied temperature
gradient is destabilizing, i.e., Hi= 1, and when Cd<Ce, i.e., HE= 1. Under these condi-
tions system (1.6) together with the appropriate boundary conditions (1.7) possesses the
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desirable property that the linear operator associated with the linear time independent
equations is symmetric with respect to the usual inner product on the Hilbert space
(L2())5. To verify this denote the linear operator defined by the right-hand side of
(1.6) and let D(&) be the subset of (L2(fl)) consisting of C2 functions whose first
three components are solenoidal and which satisfy the boundary conditions of case (A).
Then if (u’,0,q’)=a% a=1,2, are any two elements in D(’), and we denote by
{.,-) and D(., .) the inner product on (L2(fl)) and the Dirichlet integral, a routine
calculation shows that

( &a,a) D(u, u2) D( 01, 02) D(, )2)

io w +wlo l  

and the truth of our claim is established.
To determine the nonlinear stability limit we introduce an energy

(2.1) E (t) 2 Ilul12 + 2 s ll ll,

I1"11 denoting the L2(g) norm, and from (1.6), (1.7) case (A) we may then derive

( I
(2.2) =-N+IN-N l-maxN
where the maximum is taken over the set of admissible solutions and where

Here and for the remainder of the paper D(.) denotes the Dirichlet integral and {.,. )
is the inner product on L(a). Since 0==0 on 1, Poincar’s inequality ensures the
existence of a constant a > 0 such theN E, and so if

I

then (2.2) yields

__< -2E(1- max,),
from which it follows that E 0, , and the steady solution of (1.3) is nonlinearly
stable. In [5] it is shown that for a symmetric system (2.5) is equivalent to finding the
critical values of R and S of the time independent linearized system of equations from
which (2.5) arose. In the present context this means we must determine the lowest
eigenvalues R,S of the system (1.6), with the nonlinear terms and all time derivative
terms set equal to zero, which meet the boundary conditions (1.7) case (A).

This is a convenient point to observe that if the linearized system of equations
corresponding to (1.6) is studied then the symmetry ofensures that the eigenvalues ,
of linear theory arising from a time dependence like e -’’ are all real and so the results
for linear stability coincide with those for nonlinear stability. The connection between
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the linear and nonlinear results follows from the work of Galdi and Straughan [5]. The
importance of this fact is that subcritical instabilities cannot occur and so instability
may occur only by stationary convection.

The max(I/) problem of determining the criteria for nonlinear stability of solu-
tion (1.3) then reduces to solving the linear eigenvalue problem

(2.6)
AO+Rw=O,

in 2, with u solenoidal, and

(2.7)

Aq, + Sw O,

Ou
u=0, z=0, Oz Oz -w 0, z 1,

0=q=0, z=l 0---=rq 0=0, z=0OZ

Even this system does not seem solvable analytically because of complications
caused by the z=0 boundary conditions, although we could solve it numerically.
However, the case of constant temperature is of interest and was solved in the linear
case by Bdzil and Frisch [2] when both boundaries are either stress free or fixed. We are
able to present an analytical treatment in the isothermal case and this is given next.

For the isothermal problem (2.6), (2.7) hold with R 0=0. Due to linearity and
the assumed periodicity of the solution a representation in the form u(x)= e i(kx + my)u(z)
is possible, with a similar form for q,p. Let u3(z)= W(z), D=d/dz and a2=k-+ m2,
then (2.6), (2.7) reduce to

(2.8) (D2-a2)3W -a2S2W, z (0,1),
(2.9) W=DW=(D2-a2)2(D-r)W=O, z=0,

W=D2W=(D2-a2)2W=O, z=l.

Bdzil and Frisch [2] determine the first eigenvalue S2 of (2.8), but with (2.9)
replaced by conditions appropriate to both boundaries being simultaneously free or
fixed. Their procedure depends on a variational principle and approximate values of Sc2
are given for the limiting cases r0, r. For comparison with our results we
include their values below.

TABLE 1

Values for S in isothermal case; after Bdzil and Frisch [2].

Boundary conditions

2 free surfaces
2 rigid surfaces

ac
2.2 658
3.2 1700

r0

2.0 546
2.5 1066

In the above a denotes the critical value of the wavenumber, a, at the onset of
instability.

For the physically relevant problem (2.8), (2.9) we find it unnecessary to resort to a
variational principle: instead we employ an apparently less known technique of
Chandrasekhar [4] appropriate to the rigid-free surface problem.
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The idea is to shift the fluid domain to 1/2 < z < 1/2 and suppose (2.9)1 holds on
z 1/2, but temporarily replace the conditions on the upper plane z 1/2 by

(2.10) W=DW=(D-a2)(D+ r)W=O.

It follows from the evenness of the operator (D2-a2) and the boundary conditions
which now have to be satisfied at z= + 1/2, that the solutions to (2.8) fall into two
noncombining groups of even and odd functions.

The general solution to (2.8) may be expressed as a superposition of solutions of
the form W= e + where 2q, q is a root of the equation

(q2--a2)3= -S2a 2.

By letting S2 "r3a 4 the six roots of (2.8) are +__ iqo, +__ q, +__ q*, where * denotes complex
conjugate and where

qo=a(,r-1)1/2,

re(q)=ql=a -(1++ + 1+ -[l(l+r+r2)x/2 1( 1 )]1/2im( q ) q2 a - 1 + -’r
It will be seen later that it is sufficient to consider only the odd solutions. Then,

W=Aosinqoz +A sinh qz +A* sinh q’z,

for constants A0, A. Boundary conditions (2.9)1, (2.10) then determine three simulta-
neous linear equations for A0, A, A* and the solution of these requires the following
determinant to vanish:

(2.12)
1

1
qo cot qo

1
qo cot qo + r

1
1

q coth -q

(iv/ 1) qcoth q+ r

1
1

q* coth - q*- (igc + 1) q* coth -q* + r

This condition reduces to

( 1 )qoCOt -qo + r (ql sinq2-q_sinhql)(Coshql-cosq2)

(2.13)

)2 1 )2(ql sinh ql + q2 sin q2 rqo cot - qo (cosh ql cos q2

+ ( q2 sinh q q sin q2 )
2

( 1 )-(cshql-cosq2)(qlsinhql + q2sinq2) qoct -qo- r
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When the dimensionless reaction rate r (the ratio of the rate of reaction to the rate of
diffusion) is large (r o), (2.13) reduces to

1 ( q + q2)sinhq (q q2 )sinq(2.14) qct q= coshqx cos q.

consistent with that obtained by Chandrasekhar [4, p. 41], for the standard rigid-free
B6nard problem.

Equation (2.13) is a transcendental equation relating a and z which we solve
numerically. The idea is to determine for a given a; the corresponding characteristic
value of S 2 then follows. The critical S which governs the nonlinear stability boundary
corresponds to the minimum.

The even solutions obtained by taking

W=Aocosqoz +A cosh qz + A* cosh q’z,

also lead to a characteristic equation for S -. However, returning to the original problem
with

W=DzW= ( D:Z- a:Z)Zw--o,
on the upper surface, it should be noted that the odd solutions satisfy these boundary
conditions on z 0. Thus we consider only the odd solutions in the layer between z +_ 1/2
and recover the solution to the original problem on a layer of half the depth. The
eigenvalue, S 2, to the original problem is the lth the value obtained from the problem
under consideration.

The final results for the case of a lower catalytic rigid boundary and a free upper
boundary are given in Table 2.

10a 2.682
100 2.668
50 2.653
10 2.564
5 2.492
2.5 2.412
0.8 2.304
0.6 2.285
0.4 2.264
0.2 2.241
0.0 2.215

TABLE 2

a Sc
1100.65
1084.64
1070.46
996.50
949.64
904.77
853.30
845.19
836.46
827.01
816.74

Our numerical results are consistent with Chandrasekhar [4] in that when r
we recover the result of [4], viz. S,. 1100.65.

Notes. 1. It is worth observing that the above method may be employed in the
free-free boundary problem considered by Bdzil and Frisch [2].

2. Although the analysis presented here has been restricted to an isothermal system
we may, for the nonisothermal case, in the limit r , deduce the stability boundary
easily. In this case (2.6), (2.7) yield

(D2-a2)3W a-(R2 + S)W,
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subject to the boundary conditions

W=DW=(D2-a2)2W=O,
W=D:W= ( D:Z- aa)Zw=o

Stability follows in this case provided

R2 + S 2 _< 1100.65

this result being in agreement with those of Joseph [6], [7].

onz=O,

onz=l.

3. Nonlinear energy stability for case (B). In this section we return to the noniso-
thermal problem with a thermally insulated lower catalytic plate, the upper surface
being stress free. Thus we are investigating the stability of a solution to (1.6) subject to
boundary conditions (1.7) case (B). For clarity we rewrite the boundary conditions
appropriate to case (B) here,

)q =r,,
)0

-sq, z=0,(3.1) u=0,

u Ov
(3.2) -- )--- =w=0=q=0, z= 1

with u, q, O,p still periodic in x,y as stated in the paragraph following (1.7).
We are interested in the case where H 1 and so from (1.4) and (1.5), H + 1.

Case (B) is mathematically very different from case (A) partly because H -1 and
partly due to the boundary conditions on O/z at z 0. Both conditions lead to loss of
symmetry of the linear time independent operator in (1.6) and so we are no longer able
to infer nonlinear stability from an investigation of the equations appropriate to linear
stationary convection. Nevertheless, we commence with the energy functional (2.1) and
derive the energy equation as

(3.3)

Because of the integrals over F the analysis analogous to that leading from (2.2) to (2.7)
yields a complicated Euler-Lagrange system which we would only be able to solve by
means of numerical eigenvalue techniques. We have, therefore, developed an alternative
technique which avoids heavy numerical work and allows us to use the results of 2 to
obtain the nonlinear stability estimates appropriate to this section.

Basically, the idea is to first estimate the integrals over F by means of the
Cauchy-Schwarz, Poincar6 and trace inequalities (see e.g., Bandle [1, p. 101]). As we
wish to obtain quantitative stability results, however, we need specific values for the
constants in these inequalities and so proceed directly as follows. Since q= 0 on z--1,

1/2

dz

for x,y fixed we have

b(x,y,0) f01 b (f0l b 12-z(X,y,z)dz<= -z(X,y,z)
by Cauchy-Schwarz. Hence, squaring and integrating over F,

(3.4) fr ,dA <__D(,).

Obviously, the same inequality holds for 0.
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Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities together
with (3.4) allow us to show

1
O dA <=

where 1. Inequality (3.5) is employed in (3.3) together with the 0-version of (3.4) to
yield,

(3.6) <=-D(u)+2Sq,w)-(1-s)[D(q)+D(O)]-rfrqZdA.
To use (3.6) we must require

(3.7) s<2.

Denote by r/the number 1- 1/2s (> 0). Then by an argument similar to that used in

2 we obtain from (3.6),

(3.8) /_< -N 1- - -,1D(O),

where

I(3.9) llA=max,
with I=2(q,w), .@=D(u)+rlD()+A, and where the maximum is over the set of
admissible solutions u,q,. If S < A then since N and D(O) both satisfy Poincar6’s
inequality we may derive an inequality of the form /_<-E, >0, from which
nonlinear stability follows.

The nonlinear stability problem is, therefore, reduced to solving the maximum
problem (3.9). We are led naturally to the Euler-Lagrange equations2

(3.10) Au+ SEqk- Vp=0, Sew+,lAq=O,

to be solved subject to boundary conditions (3.1), (3.2). In (3.10) Se is an eigenvalue
which arises from the introduction of a Lagrange multiplier. It is easy to show that
Se A and so S < Se is a sufficient condition to guarantee the decay of not necessarily
infinitesimal disturbances. The functions u,v,p, q are next eliminated from (3.10) and
then due to linearity and the periodicity of w we may write w= W(z).exp[i(kx + my)]
to obtain,

-1S:aZW (0,1)(3 11) (D 2 a2)Sw rt e z

the solution to which must satisfy,

(3.12)
W=D2W (D2- a2)2W=O, z= 1,

W=DW=(D-a)2(D-q)W=O, z=0.

.A rfr q- dA
2With q= r/rl" cf. [9].
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Of course, (3.11) and (3.12) may be identified with (2.8) and (2.9) and so we may
use the results in Table 2 to deduce nonlinear stability in case (B), provided also the
restriction (3.7) is satisfied. To illustrate, we give two examples. The equilibrium
solution (1.3) is nonlinearly stable provided

(3.13) rO, s<2, (1)S2 < 816.74 1 --s
oi"

(3.14) r=0.6(1-s), s<2,

It might be observed that our stability criterion places no restriction on the size of
the Rayleigh number. This is due to the fact that H -1; in the absence of reaction
this corresponds to heating the layer from above and a similar conclusion is possible
there, see Joseph [7].

In the limiting case r 0, s--* 0 both the linear and energy stability boundaries are
easily obtained and serve a very useful purpose. Assuming stationary convection the
linear equations which arise from (1.6) yield

(D2-a)3W -a(S2-R)W,

with the boundary conditions

w=D2W=(D-a)2W=O,
W=DW=D(D2-a-)W=O,

onz=l,

onz=O.

Again the results of Table 2 apply and so the instability boundary is given by

$2-R2= 816.74.

From (3.13) there is nonlinear energy stabilty provided

$2< 816.74.

Therefore, there is the possibility of oscillatory convection (subcritical bifurcation) for
S 2 in the region

816.74 < S2 < 816.74 + R2.
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ON THE SPECTRAL PROPERTIES OF A CLASS
OF ELLIPTIC FUNCTIONAL DIFFERENTIAL

OPERATORS ARISING IN FEEDBACK
CONTROL THEORY FOR DIFFUSION PROCESSES*

A. VAN HARTEN"
Abstract. In this paper Dirichlet boundary value problems are considered for certain operators of the

form L + H, where L is a 2nd order, elliptic, formally self-adjoint PDO and H is a feedback operator with
finite-dimensional range.

The results concern mainly the resolvent (L + H-?)-1, the analyticity of the semigroup generated by
L + H, the location of the spectrum o(L + H) and the completeness of the eigenspaces and the eigenprojec-
tions associated to o L + II).

As a consequence of the completeness of the eigenprojections it is possible to derive quite a number of
interesting formulas of the "resolution of the identity" type.

1. Introduction. In this paper we shall consider problems of Dirichlet type on a
bounded domain D c R a for a class of operators of the form L + II. Here L will be a
linear, uniformly elliptic, formally selfadjoint, 2nd order partial differential operator
with time-independent real coefficients

L=Y’ Z-x a,jx
j

+ao.
= j=

For the sake of simplicity we shall usually assume that the domain D has a smooth
boundary OD and that the coefficients of L are elements of C(D).

Of course denotes the closure of D in R a.
The matrix A =(aij) is strictly positive definite, uniformly on D and symmetric.

The structure of H will be as follows:

P

(1.2) H= E c,Pi, P < .
i=1

The c’s will be real functions only dependent of the space-coordinates x D. They will
be chosen as elements of some Banach space Y of real functions on D.

The P’s will be time-independent real continuous linear functionals on some
Banach space X of real functions on D, i.e. the Pi’s are elements of X’ the dual space
of X.

Therefore the operator II can be interpreted as an element of .L’(X--)Y)= the
space of continuous linear operators from X into Y. Due to the requirement p < c the
operator II has a finite-dimensional range, i.e. is degenerate (see Kato (1966)). A
striking difference between the operator II and the differential operator L is that II
possesses a nonlocal character. This explains that L + II is referred to as a functional
differential operator in the title of this paper.

*Received by the editors July 2, 1980, and in final revised form September 12, 1984.
Rijksuniversiteit Utrecht, Mathematisch Institut, 3508 TA Utrecht, the Netherlands.
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The problems we shall look at can now be formulated as follows:

(1.3)
0v

v 0 on D, boundary conditions of Dirichlet type;

v (., 0) q,, initial conditions,

(1.4) (L+II-X)u=g,
u 0 on OD, boundary conditions of Dirichlet type.

Note that (1.3) constitutes a set of equations for the evolution in time of the function v,
whereas (1.4) is a stationary problem for the function u.

In (1.4) 3, has to be considered as a spectral parameter and the function g is some
inhomogeneous term.

The emphasis in this paper will be on the spectral analysis associated to (1.4).

1.1. On the relation to feedback control problems. The topics considered in this
paper have their origin in the study of controlled heat-diffusion processes. The control
applied to such a process will be instantaneous and of an automatic feedback type. The
heating/cooling of this feedback mechanism will flow directly into the domain (i.e. not
through the boundary). If we further suppose that no convection of heat will take place
and that the temperature is given on the boundary OD, then a homogeneous version of
a mathematical model which describes the evolution in time of the temperature is given
by (1.3). In (1.3) the effect of diffusion of heat and direct exchange with the surround-
ings is incorporated in L. The effect of the feedback control is described by the
operator H. in this context the functions c ar called the "control inputs" and the Pi’s
are called "observers". The operator II will sometimes be referred to as the feedback
control operator.

Very simple illustrations of what we have in mind may serve. The following
examples have p 1, II c1P1.

(i) c Hs(D) for some s>__0, P LE(D )’ f.e. the observer P1 observes the average
over D: Pw= fz__w(x)dx for wLE(D);.

(ii) c C"(D) for some a >_ 0, P1 C(D)’ f.e. the observer P1 observes the value in
a pointyD" Pw=w(y) forwC(D).

Here the following notation is used"
Lz(D)= space of equivalence classes of square integrable functions on D;
HS(D) Sobolev space of ,order S on D; (see Adams (1975); Lions and Magenes

(1971));
C(D) H61der space of order a on D (see Adams, (1975); Ladyzhenskaya and

Ural’tseva (1968)).
Other examples are explored in van Harten, Schumacher (1980). For further

information on this type of control problems we refer to Curtain and Pritchard (1978).
For a related class of problems in which the control enters in the b.c. we refer to
Triggiani (1980) and references given there.

1.2. Description of the contents. The results of this paper can be divided into two
groups. The first group of results concerns the solvability theory for the problem (1.4),
the properties of the resolvent (L + II- X) -1 and the solution of (1.3) in terms of the
analytic semigroup generated by L + II. These results are found in the {}{}3 and 4 and
they can be considered as basic material for the second group of results. The results on
the analytic semigroup generated by L + II are a generalization of an analogous result
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for bounded H, see Curtain and Pritchard (1978, Thm. 2.31) and also of Kato (1966,
pp. 498-499). The second group contains results on the location of the spectrum
associated to (1.4) and on the completeness of the eigenspaces and eigenprojections
associated to this spectrum. The completeness results given here are certainly nontrivial
since in general L + H is not formally self-adjoint in any sense. The results on com-
pleteness of eigenprojections are generalizations of Kato (1966, Thms. 4.15 and 4.16,
Chap. V, 4.5). From these results we can deduce very interesting "resolution of the
identity" formula’s in L2(D) and certain other Hilbert spaces. These "resolutions of
the identity" look promising with respect to applications, also applications outside the
control context. The second group of results can be found in the Theorems 5, 6, 7 and 8.

Let us conclude the introduction with a few remarks. Our first remark concerns the
spaces X and Y mentioned in the description of the operator II.

It is important to notice that for a given problem it is always possible to choose the
spaces X and Y in several ways. It is then of course logical to take Y as "small" as
possible and X as "large" as possible in order to get a most significant theory. In any
way building a theory for these problems (1.3)-(1.4) will depend strongly on what one
takes for X and Y. The choices which we allow for X and Y will be specified further on.

Secondly, though from a physical point of view it is natural to look at L and H as
operators on real functions, it will sometimes be profitable to extend L and II to
complex functions. Notationally we shall not distinguish between real operators and
function spaces and their obvious complex extensions.

2. The uncontrolled problem. The main purpose of this section .is to introduce
some notations and concepts, which will be used further on. First this will be done for
the solution(s), their regularity properties, the spectrum and the eigenprojections associ-
ated with the problem:

(2.a) (L-X)u=g,
(2.2) u=O onOD (BC).
In 2.2 we introduce some notation concerning fractional powers of -L + 0, 0 R
sufficiently large.

2.1. Solutions of (2.1), (2.2); spectrum and eigenprojections. It is well known that
for X X o, with X 0 real and sufficiently large > 0 the resolvent (L- 20)-1 is a compact,
selfadjoint operator from L(D) into L(D) (see Tr6ves (1975)). Consequently the
spectrum o(L) associated to (2.1)-(2.2) on L(D) consists of a denumerable infinite set
of isolated eigenvalues on the real axis bounded at the positive side and extending
towards -c without accumulation points (see Dunford and Schwartz (1963)). Each
eigenvalue has a finite algebraic multiplicity and the number of linearly independent
eigenfunctions corresponding with an eigenvalue equals its algebraic multiplicity. Fur-
ther the eigenfunctions can be chosen in such a way that they form an orthonormal,
complete basic system in L(D).

For the sequence of eigenvalues and corresponding linearly independent orthonor-
mal eigenfunctions we shall use the notation:

(2.1.1) #,, qn with n N.

The numbering is such that

(2.1.2) k>n = __< #.,, and (qk, q,) L2(O) 8,,k
In this numbering,each eigenvalue is repeated according to its algebraic multiplicity.
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For the system {qn;nN} we have the "resolution of the identity" formula
inherent to the completeness of this system in L2(D)"

(2.1.3) I=
n=l

For Xo(L) we shall denote by E(X): L2(D)--+L2(D ) the orthogonal projection on
the eigenspace corresponding to X. If X o(L) we define J(X)= { n N I/,, X }. Hence

(2.1.4) E(X)= E q,(q,l’)L2(D)"
nJ(X)

To conclude this subsection we mention some rather elementary facts on the
growth of the eigenvalues for n- m.

Using Minakshisundaram and Pleyel (1949) or Garabedian (1964) we see that for
n sufficiently large the eigenvalues satisfy

(2.1.5) Rln" <= I/,,l_< R 2n ", n >= n o

Here R1, R 2 are real constants > 0 and v 2/d with d the dimension of D.
The problem (2.1)-(2.2) possesses a unique solution for all g L2(D) if and only if

X o(L). This solution will be denoted by

U (t X) -1
go

In the case X o(L) the problem (2.1)-(2.2) possesses a solution if and only ifg L2(D)
satisfies E(X)g= 0. Under this condition the solution space of (2.1)-(2.2) is given by

(2.1.6) ue(/ x)
u=(L-h)lg-ul with

(L-X)-1--- E
nJ(X)

U span{q,ln d(X)}.
The operator (L-) will be called the restricted resolvent at X co(L). Once a
solution of (2.1)-(2.2) exists, it possesses the following regularity properties:

(2.1.7) gHS(D)=uHS+2(D), S.O, Sq-[ 2,

Moreover the operators (L X)- 1, )k o’(L) and (L X)- 1, X o(L) are bounded in
each sense suggested by (2.1.7).. For these results we refer to: Lions and Magenes (1972,
Part I) and Ladyzhenskaya and Ural’tseva (1968).

Note that as a consequence of (2.1.7) all eigenfunctions are elements of C(D).

2.2. Fractional powers of -L + Xo, X o N sufficiently large. In this section we
shall suppose that X o satisfies

(2.2.1) X>= m-ax a+z) 1 ef0.-

Let us introduce the simplified notation A for the operator induced by -L + )t o with
Dirichlet boundary conditions on either L2(D ) or C(D). Using variational techniques
and the maximum principle for 2nd order elliptic P.D.E., it is easy to check that the
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resolvent (s + A)- with s R, s > 0 satisfies the following estimates:

(2.2.2) I[l(s + A)-1111C(D) (1 +s )-1,
(2.2.3) IIl(s + (1 + s) -1.

Here we use the notation III III x for the usual norm on the space of bounded operators
from the Banach space X into itself.

The operator A defined on L2(D) is closed, its domain is dense is La(D and
because of (2.3.2) this operator is of positive type (see Krasnoselskii (1976, p. 279)).

Of course it is not true that the operator A defined on C(D) has a domain dense in
C(D). This is remedied by restricting the operator to

Co()= {f C()lf=O on aD).
On C0(D) the operator A is also closed, densely defined and of positive type.

These facts induce that on L(D) or Co(D ) fractional powers of A are well
defined; see Krasnoselskii (1976, pp. 280-288).

It will be very useful to introduce some Hilbert and Banach spaces connected to
these fractional powers of A. For a 0 we define"

(2.2.4) HD(a)= range of A on L(D)=domain of A w.r.t. L(D),
IlulIHD()=IIAUlIL(D), (U,O)HO() (Au,A)L(n),

(2.2.5) CoD(a)= range of A on Co(D)= domain of A w.r.t. Co(D),

(.2.6) CD(a)=(uenO(a)lATC(O)),
II ull co()= IIAull c().

It is not difficult to check that different choices of X0 lead to equivalent spaces and
norms, see also van Harten (1979).

Note that for a >a we have HD(ax)C aenseHD(a), CoD(a)c dense CoD(a2), see
Krasnoselskii (1976, pp. 286). It is also true that a > a CD(al)C CD(a), but in tNs
case the inclusion is not necessarily dense (see Appendix, Proposition A.4).

The spaces HD(a), CD(a) and CoD(a) will play a dominant role in the theory to
be developed further on.

A very natural and important question about the spaces and norms introduced in
(2.2.4)-(2.2.6) is how they are related to the Sobolev and HOlder spaces, H(D) and
CS(D), s > 0. It is possible to show, that

(2.2.7)

(2.2.8)

(2.2.9)

HD(a) {uH2(D)IL’u=O on OD, k integer, 0=<2k<2a- 1/2},
if2a+N;

CoD(a)c {uC2a())lLku=O on , k integer, 0=<k=<fl}, if 0=<fl<a;
CoD(a)3 { u C2a()]Lku--O on 3, k integer, 0 =< k =< a}, if/3> a;

A-CD(a)3CoD(a+B-e), a>=O, /3>0, 0=<e<a+fl
or equivalently,
CD(a)c CoD(a-e), 0 <e< a,
CD(a) CoD( a).

All these inclusions are accompanied by continuous injections.
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The relation between HD(o0 and Sobolev spaces as given in (2.2.7) is well known
(see for example Lions and Magenes (1972, Part I, Remark 2.3, p. 10)).

To this author’s knowledge the contents of (2.2.8)-(2.2.9) though not difficult to
prove, are not available in the literature. The proofs of the statements (2.2.8) and (2.2.9)
can be found in an Appendix.

Let us now look at the problem (2.1)-(2.2) with g in the space HD(ot), CD(a) or
CoD(a). The list given in (2.1.7) for the regularity of a solution can be extended as

(2.2.10) gHD(a)=uHD(a+l), a>O,
gCD(a)=uCD(a+l), a>__O,
gCoD(a)=uCoD(a+l), a>=0.

This is easily seen by rewriting (2.1)-(2.2) as Au (,0-)u-g.
We conclude this section with a remark on the eigenfunctions { qn: n N} intro-

duced in 2.1.It is straightforward to check, that { ’/II4’IID<);n} defines an
orthonormal sequence in HD(a). Using the selfadjointness of A- on HD(a), we see
that this orthonormal sequence of functions is also complete in HD(a). As a conse-
quence analogues of (2.1.3) and (2.1.4) can be given in HD(a).

3. The controlled problem: application of the Weinstein-Aronszajn theory. For
future reference we shall now present some well-known basic material on the solvability
of the problem:

(3.1) (L+II-?)u=g,
(3.2) u= 0 on 3D, boundary condition of Dirichlet type.

This theory is essentially due to Weinstein and Aronszajn and it is built in an essential
way on the degeneracy, i.e. finite-dimensional range property, of the operator II
EiP= liPi with C Y and Pi X’.

For the Banach spaces X, Y we allow the following choices:

(3.3) a. X=H+2(D), Y=H(D), s>O, sq-1/2+N,
b. X=C+9-(),Y=C(), a>__O, al%i or

c. X=HD(a+ I), Y=HD(a), a>O or

d. X=CD(ot+ l), Y=CD(a), aO or

e. X=CoD(a+ I), Y=CoD(a), a>O.

In our consideration we shall always take

(3.4) g Y.

Next we shall look for a solution u of (3.1)m(3.2) in the space X. Note, that L is a
closed operator on Y with domain X and that because of (2.1.7), (2.2.10) Ii is relatively
bounded w.r.t L. As a consequence the theory as given in Kato (1966, Chap. IV, 6)
can be applied and it leads to the following results.

First we consider case (i), where , o(L). Let c denote the p-vector of control
inputs, i.e. c YP. Analogously we define p as the p-vector of observers i.e. P { X’} P.

Let 2(?) be the pp matrix with the following matrix elements:

(3.5) [f (X)l i, P,(L-)-Cj"-ij.

follows:
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In case (i) the problem (3.1), (3.2) is uniquely solvable if and only if the matrix
2(X) is nonsingular.

The solution is then given by

(3.6) u---(L-Jr-II-X)-lg--(L-X)-lg-((L-X)-Ic, "(X)-Ip(L-X)-lg),

where (,) denotes the obvious pairing between Xe and C ’. The resolvent (L + II X)-
is an element ofZ(Y X).

If for X o(L) it holds true that the matrix f() is singular then h is a point of the
spectrum associated to to (3.1), (3.2). The homogeneous problem then possesses non-
trivial solutions which are given by

(3.7) u { (L h) -lc, } with null space of 2(h).

Let us now consider case (ii), where .o(L). We introduce the notation J(X)= (k
+ I1 =<i=< m) with m the algebraic multiplicity of the eigenvalue X o(L), and we
define terms as follows. Let q, X be the vector of eigenfunctions qk + 1," ", q’k + m" By
q/we shall denote the element of ( Y’} m with components

(0k+l’ "SLz(D)’’" ",(Ok+m, ")L2(D)"

Let us introduce the following matrices

a p p matrix,

a p p matrix,

a m p matrix.

Further we need the following ( p + m) ( p + m) matrix:

(3.8) (X) (ft,(X)d?’cT pT).0

It is easy to see that in case (ii) the problem (3.1.2) is uniquely solvable if and only if
the matrix (() is nonsingular. The solution is then given by

(3.9)

u (L+II X);lg (L x)-x (((L-x);xc) (g+
def t q/

g

In these circumstances (L + H-h) -1 is again an operator’(YX). If for X o(L)
it holds true that the matrix (X) is singular then X is a point of the spectrum
associated with (3.1-2).

The homogeneous problem then possesses nontrivial solutions given by

(3.10) u=
4, ((.) } with ((,) null Space Of o(x)"
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Hence, let o(L + II) be the spectrum associated with the controlled operator. Then a
Fredholm alternative is valid: Xo(L+ H)** the problem (3.1)-(3.2) possesses non-
trivial solutions in the space X. Moreover,

(3.11) )k (L + II)** (i) X o(L) and the matrix a(X) (see (3.7)) is singular or

(ii) Xo(L) and the matrix a(X) (see (3.10)) is singular.

If )k o(L + II) then the resolvent of (3.1)-(3.2) (L + II-X) -1 is a compact operator
from Y into Y, because of the compact imbedding of x into y. Hence for the spectrum
o(L + II) there are two possibilities.

1. The normal case" o(L + H) consists of a denumerable sequence of eigenvalues
of finite algebraic multiplicity without accumulation points,

2. the super-singular case: o(L + H)-C.
In {}7 an example will be given where the spectrum associated to (3.1)-(3.2) is super-
singular.

It is also possible to describe o(L + II) in terms of the following meromorphic
function:

(3.12) t0(X)=deta(X) with a()k) as in (3.5).

It appears that to()t) is the so-called Weinstein-Aronszajn determinant of the operator
L + II with Dirichlet b.c. (see Kato (1966, Chap. IV, {}6)). The following results are a
direct consequence of the theory given there.

Let i(Xo;to ) denote the Laurent index of the meromorphic function to(X) for
X X o, i.e. if to 0 then i(X 0; to) is the number 7/such that to (X). (X X o)- has a
finite limit:g0 for XXo; if to=0 then i(Xo;to)=oe for all XoC. Let m(Xo;L)
denote the multiplicity of )t o with respect to o(L), i.e. if Xoo(L) then m(Xo;L)=0;
if Xoo(L) then m(Xo;L)=N.J(?to) with J(Xo) as defined in (2.1.4). Now the
following characterization is valid:

(3.13) ?t o o(L+ l-I)** ()x0; to)+ m (?x0; L)>0.

If o(L+ H)4=C then for each Xoo(L+ H) its algebraic multiplicity is given by
i(Xo; to)+m(Xo,to ). This result shows clearly that each point of o(L+ H) is either in
o(L) or is a zero of the function to(X).

The solvability theory and the propertries of the spectrum will frequently be used
in the sequel.

4. Exponential stability of the null-solution of the time-dependent controlled prob-
lem. It is well known that in the. uncontrolled case the operator L with Dirichlet
boundary conditions generates an analytic semigroup on each of the spaces HD(a),
CoD(a), a >= 0 (see Dunford and Schwartz (1963) and Stewart (1974), (1980), respec-
tively). Furthermore the stability of the null-solution can be characterized in terms of

,=supxo)ReX. Analogous results hold in the case of the controlled system, see
Theorem 4.1. If the control operator H is a bounded operator from HD(fl) into HD(a)
as in case a.from Theorem 4.1 or from CoD(fl) into CoD(a) with 0__<a__<fl<a+ 1 this
is a direct consequence of a perturbation result for analytic semigroups see Kato (1966,
pp. 497-498)). This result is applicable here, because H is an A (see 2.3) bounded
operator with A-bound equal to zero, as one can easily verify using interpolation
inequalities.
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However, in the Banach space case we can improve on this result. We shall show
that L+ H generates an analytic semigroup on CoD(a) even if II=,f=lciP is a
bounded map from CoD(fl ) into CD(a) with 0__<t __<fl <t / 1. In comparison with the
previous result where range II c CoD(t) we can now allow for a more general class of
control functions ci" i= 1,...,p. For example, if a=0 it is no longer necessary that
ci= 0 on the boundary 8D. It will be clear that H is no longer relatively bounded w.r.t.
A in this situation. This improved result is formulated in Theorem 4.1(b). The proof of
that result is such that "mutatis mutandis" it also covers case (a).

THEOREM 4.1. Let II be .(X- Y) with

(4.1) a. X=HD(fl), Y=HD(a), O<=a<_fl<a+ l or

b. X=CoD(fl ), Y=CD(a), O<=ot<_fl<ot+l.

Then L+ H with Dirichlet boundary conditions generates an analytic semigroup on the
space Yo with

(4.2) a. Yo=HD(a),
b. Yo= CoD( a).

The solution of (1.3): v(., t)= e(L+ rt)tx# satisfies the usual estimate for t-, oo

(4.3)

with/,t supho(L+ l-I) ReX, e > 0 arbitrarily small. If < 0 this implies exponential stabil-
ity of the null solution of (1.1)-(1.3) with respect to initial perturbations in Yo.

Proof of Theorem 4.1. We consider case (b). Weshall first show that qoo > 0 such
that ’qX with Re >__ oo"

(4.4) Ill(L/ IX- x)- l < K(1 + IXl)

In order to derive (4.4) we make some preparations.
Step 1. :1o0>= 0 :IK>0 ’ with Rek>=OoV/fC(D)"

(4.5) II(L- X)

with II.ll=ll.llc(v).For fCo(_D) this estimate is a consequence of the fact that L
generates a semigroup on Co(D) (see Krasnoselskii (1976, pp. 270)). The estimate for
fC(D) follows by approximation with a sequence {f,;nN} in Co(D) such that
If, l_< [/] and measure {xDlf,(x)4=f(x)}0 for n o. Since

l( L- t)-lf(x )l I1( x)-V.II+ fo Gx(x’l)( f f")(l) dl

with Gx the Green kernel of (L-X)-1, it is then a consequence of the integrability of
the singularity of the Green kernel.

Step 2. 1Oo_> 0:IC> 0Zle > 0 VX with Re >= o0"
(4.6) Is’,(L- C(1 + 1 <__i,j<p.
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In order to prove this estimate, we rewrite Pi(L-X)-lCj_ as PiA -’. A(L-X)-lej with
A as in {}2.3, 8=fl-a<l and ej=A’cjC(D). Using (2.2.9) and (2.2.10), it is not
difficult to see that (L-X)-les. is an element CoD(7 ) with 8<7<1. Now we can
estimate

Iei( L- X )- lcjl ileiA-11, lIAr( L- x )-ej[

with I1.11’ I1.11Co),.
The second inequality is a consequence of Krasnoselskii (1976, Thm. 14.2, pp.

290).
Next we notice, that [IA(L X)-eall=IiA-A(A + X)-ll.with 9 (1-T)/2,

h-Xo and =A-ea. It is now easy to check that IIA(A+X)-alI(K+)IIII
h o o with o as in (4.5).

Consequently IIA(L h)- ell is bounded independently of h for Reh %.
Hence, (4.5) implies (4.6) with e 1 -8/T.
Step 3. A trivial consequence of (4.6) is that o> 0 such that Vh with Reh g o,

(h) as defined in }3, (3.5) is nonsingular.
Next using (3.6) and the results from the previous steps we find that Vh with

ReX g o the resolvent (L + H- h)- is well defined on Y and satisfies the estimate
(4.4).

(4.7) II1 + 1 +

Using (2.2.9), (2.2.10) it is easily verified that (L + H- X)- maps Y0 c Y into Yo-
Then (4.4) is the restriction of (4.7) to Y0-

In order to complete the proof that L + H generates an analytic subgroup on Y0 we
shall now use the famous characterisation for generators of analytic semigroups as
given in Krasnoselskii (1976, Thin. 13.2, pp. 270). Besides (4.4) tNs characterisation
requires that L + H X 0 is densely defined on Y0- In order to show this it is sufficient to
restrict ourselves to the case a 0, for the domain V(a, H)= { u CDa + 1) I(o- o +
H)u CoD(a)}=A-"V(O,) with =AHA-. Now take Uo Co(D)C(D); then
fo=(L + H-Xo)u0 can be approximated by a smooth function with compact support
fo in the sense of II II LOD) with q rbitrarily large. Now take q so large that because of
Sobolev’s imbedding theorems C() is compactly imbedded in w2’q(D) with
(see Adams (1975)). Using (3.6) and Agmon, Douglis, Nirenberg’s a priori estimates we
find that for o=(L+H-X0)-lfo it holds that Iluo-oll=.)Cllf-oll<o). The
conclusion is that indeed V(0, H) is a dense subset of Y0.

Using that (L+H-X)- and e(e+mt, t>0 are compact operators on Y the
contents of (4.3) are a direct consequence of Hale (1971, Lemmas 22.1 and 22.2).

The compactness of the resolvent (L + -X)- on Y0 for X with ReXg % in
combination with the compactness of e (e+n)t on Y0 for t>0 and Hale (1971, Lemma
22.1) has another nice implication for the location of the spectrum o(L + H). Namely"
if (4.1a) or (4.1b) is satisfied then we are in case 1 mentioned in Theorem 3.1 and
moreover V R

(4.8) (xeo( +n) I eXa.}

Equation (4.8) implies that the spectrum o(L +) can be given as a sequence { X,;
N } such that n > m ReX, N ReX and ReX, $ m for n { m.
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Hence, certainly in this situation the super-singular case cannot occur (see also
Kato) (1966, pp. 250(b)).

In [}5 more detailed information on the location of o(L + H) will be derived.

5. Some remarks on the location of the spectrum. Again we restrict ourselves to
cases where H falls into one of the classes of (3.3). Let us start with a few simple
consequences of the Weinstein-Aronszajn theory described in 3.

LEMMA 5.1. If ,oo(L) satisfies m(,o;L)> q=dimranII then ,oo(L+ H).
Proof of Lemma 5.1. If dimranH q then II= Eqi=loiPi with linearly independent

0i, i= 1,..., q and P, i= 1,.-., q. It is now easy to verify that the last m columns
of the matrix (’0) given in (3.5) are linearly dependent. Hence (3.11)(ii) yields
Xoo(L+II).

LEMMA 5.2. Suppose q o(L ). If one of the following conditions holds

(5.1) a.

bo

P

cj <1 forj l p or
i-.--1

P

_
[Pi(L-.)-acjI<I fori=l,...,p,

j=

then , q o(L + II ).
Proof. It follows from Gershgorin’s theorem (see Wilkinson (1965)) that 0 cannot

be an eigenvalues of the matrix 2(k) given in (3.6). This implies k o(L + II) because
of (3.11)(i).

The latter lemma appears to be very useful in the derivation of the following
theorem.

THEOREM 5.1. In the case where II lies in the class specified in (4.1a) i.e. Pi HD()’,
c HD(a), 1,. .,p; 0 <= a <= < a + 1 the following estimate holds true for the location

of o(L + II):

(5.2) o(L+II) {kld(k)<__NlX-Io[V}V{kld(k)<=N}
with 7=B-a, 8=(1-’1,) -1, #0= max9a0 + 1 and

N=2p max 1[911.o   lleiA- ll.o  )..
l<=i<=p
<j<__p

d(X) distance X, o (L)).

Proof of Theorem 5.1. We start with the following observation"

E
n>=l

with n q’,/ll,ll
Since PiA-VHD(a) there exists an element WiHD(a with IIWllm()

IIPA-Vllt/o), such that PA-V= {W, ")nD(). As a consequence we can deduce from
(5.3) the following estimate:

(5:4)
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An application of Schwarz’ inequality leads to

n>__l

n>__l n>l

N

1/2

Further it is clear that for each o(L)"

From (5.4)-(5.6) we deduce that for j= 1,..., p"

(5.7) E [Pi(L_k)_lcjl<__.N It o-Xl
i=1

+ d()k)v-1}.
If Nllo-XlV/d(X)<l and Nd(X)v-l<l we can conclude from Lemma 5.2 that
;ko(L+II) i.e. o(L+II)c (XlN[lo-X[/d(X)>=l or Nd(X)v-I >__ I} which are ex-
actly the contents of (5.2).

In some important cases it is possible to improve Theorem 5.1.
THEOREM 5.2. Suppose II lies in the class specified in (4.1a) with fl a, (i.e. 0 in

(5.2)). Then there exists a sequence ( p,; n IN } with p, $ 0 for n oc such that

(5.8) o(L+II)c U (,llX-t.lon}.
n=l

Explicit expressions for the p,’s are given in (5.13).
Proof of Theorem 5.2. Define:

(5.9) Nj ( k ) E Pi@n ( @n C.j HD(a) Nij Nij (1),
n Nl

/J,n --/-1 (Re ;k-/Zl)

N(h)=2p max Nig(h),
lip
lp

N=N(I).

It is not difficult to verify that N as defined here has the same interpretation as the N
of Theorem 5.1. It will further be clear that 0 =< N;j(,)=< N/j, 0 =<N()=< N and ReX $
oc implies Nij() $ O, N(,) $ O. Now we have

where

runs over n IN such that I 1 ----< 1/2(REX-/),
runs over n IN such that/.-/ > 1/2(REX 1)"
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In E we use that [)k--btn[-l=<d()k) -1 and in E2 we use that ])k-/3,nl-1--l)k-l1-1
"I1 (/, -/1)(x 1)- tl- =< 21 x 1]- t. This leads to

]ei(e_k)-i -1 -1(
So for allj= 1,- -,p

P

(5.11) E [el( g k) -1 1 - -1N.cjl<_-d(X) N(X)+ [k-l
i=1

Using Lemma 5.2 we find from (5.11) that certainly X o(L + H) if

3N(X) and [)t [> 3(5.12) d()t) > -/1-N.
Let us next give a sufficient condition in order to ensure d(X)> N()t). Define

/(X) as the largest/o(L) such that d(X)-I/-Xl. It is clear that
v_(#)__< ReX < v+(/). Here v+(/)= m if/=/1 and v+(/)= 1/2(+/+) else with/+ the
right-hand neighbour of/ in o(L). Further v_(/)= 1/2( +/t_) with/_ the left-hand
neighbour of / in o(L). If /(X)=/ then IX-/tl>-N(v+(/)) is such a sufficient
condition.

It is not difficult to verify that (5.12) is certainly satisfied if Vn

and this proves the theorem, rn
Some additional remarks to Theorem 5.2 can be made concerning the decay of the

p,’s for n ’ oe.
COROLLARY to Theorem 5.2.
a. Iffor either (i)" each c consists of a finite linear combination of eigenfunctions , br

(ii): each Pi is of the form Wi, ) L2(o) where W consists of a finite linear combination of
eigenfunctions q, then only finitely many O,’s are > O.

b. If for i=l,...,p: PiHD(fl)’ and ciHD(fl+7) with fl>=O and 7>0 then
VnN"

max(5.14) 0"<-3 2v Pl<=i<_p
jp

i.e. p,, O(n- 2v/d) for n .
c. lffor i=1," ’’,p" Pi=(Wi, ")HD(,) with WiHD(a+7) and ciHD(a), a>=O,

7 >- 0 then Vn IN.

(5.15) max IIA W ilHD(.)IlCjlI.D( )( O-- ./)0,<-- 3 2’Pl <_i<_ p
<=.]_p

i.e. to,= O(n -2v/d) for n o.
Note that parts b and c can be seen as dual statements.
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For part a of the corollary we use (5.13) and the fact that under the given
conditions the functions Nij(,) given in (5.9) vanish if ReX becomes too negative. For
part b of the corollary we use (5.13) and the estimate

nl.-(ReX-)

2 E
n

The last statement of the corollary is a consequence of the asymptotics of the eigenval-
ues. Part c is proven completely analogous to part b.

6. On the occuence oI the super-sinlar case: o(L + H)= C. First we shall give
an example which demonstrates that cases where o(L + H)= C really can occur.

In this example we take L as in (1.4) and

(6.1) II=c,$yL

with

y some point on OD, 8yW w(y),
c some function C () with the property,
c(y)= -1.

Note that this example falls in the context of 3, for (3.3a) is applicable for any
s > d/2, s q -1/2 + with d the dimension of the space or (3.3b) is applicable for any
a > 0, a t. Let us now calculate the Weinstein-Aronszajn determinant

(6.2) 0 (,) 1 +SyL(L-.)-lc 1+ By(1 + k(L- h) -1) c

1+8yC=0,
for all )qo(L)! Here we used that y(Z-)k)-l=0 because of the Dirichlet b.c. and
y OD. Consequently 0 0 on C and Theorem 5.1 yields o(L + II)= C.

We observe that in this example the operator L is not densely defined on the space
Y. Hence it is not very surprising, that perturbations of L can destroy its nice spectral
properties. Nevertheless, even in this situation though apparently cases with o(L + H)
=C can occur, one intuitively gets the feeling that the occurrence of these super-
singular cases is very rare. This feeling will be given a mathematical base in Theorem
7.1. First we introduce some concepts. From now on we suppose that X, Y are spaces of
real or complex functions as indicated in (3.3).

The set of admissible feedback controls is defined to be

(6.3) RC= ( II .o(X Y)[II real and dimranII <p }.
RC is a closed subset of (X-, Y), which we endow with the norm inherited from
(X- Y). Note that RC is not a linear space. It is true that II RCaII RC for
each a N, but II RC and IIRC does not necessarily imply 1-[ + II 2 RC!

Each element of RC is of the form E=ciP with some real (c,P) YPx(X’)p.
However quite a number of different (c,P)’s in YPx (X’) p correspond to the same
1I RC. This induces an equivalence relation on YP (X’) p as follows (c, P) (, P)
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So RC can be identified with {YP(X’) p }/--. The following statement, which
relates the topology of RC to the topology of YP (X’) p, can easily be verified. Let
IIRC be given with dimranII=q=<p, II =E=lciPi with ci=0, P/.=0 for i>q. Then
3M>0 3Co>0 Ve (O, eo) VII(1) RG:

(6.4) I[II--I-[(1)l[RC_<e=*Zl(C(1),p(1)) YPX(X’)p

such that II(c,P)-(c(),P())llr(x,) <= Md/ and I-i 0)= /P= l}l)Pi(1).
Let us further introduce RCo, RC the subsets of RC consisting of nonsingular,

singular controls

(6.5) II e RCo o(L + II ) C,

HeRCo(L+II)=C.
THEOREM 6.1.
a. The property of nonsing,ularity of the feedback control is generic: RCo is an open

and dense subset ofRC.
b. Singular feedback controls have a neglectable probability of occurrence in the

following sense: for each finite dimensional linear subspace H ofRC the Lebesgue measure
in H ofHtRC equals O.

Proof of Theorem 6.1. In order to express the dependence of the
Weinstein-Aronszajn determinant on H we introduce the notation o(X;II). Using
(6.4) it is easily checked that for each fixed o(L) the map co(X; .) from RC into (3 is
continuous.

(i) We shall show that RCo is open in RC. II RCo implies 0(; H)4:0 for some
X o(L), see Theorem 5.1. Consequently the following formula holds true:

RCo U (X;’)-(C\(O}}
Xqo(L)

C\{0} is open and 0(X; .)-{C\{0}} is open in RC. RCo is the union of open sets and
hence it is open itself.

(ii) Let us next demonstrate that RCo is dense in RC. Take H RCo. For fixed
X qto(L) we have that 0(X; (1 e)H) is a nonconstant polynomial in e. So for e0 and
e arbitrarily small we see that (1 e)II RCo.

(iii) Our last step is to show that for each finite dimensional linear subspace H of
RC we have meas (HCRCs)=O. Let H,...,rl be a base of H. For each fixed
X o(L) the function (k;.im=liIXi) defines a polynomial in 1,’" ",m which equals 1
for =0Rm. This implies that the set (Rml0();Eim=liII)=0} has measure=0
in Nm. In other words Z(t;H)={1-IHIo(X;II)=O} has measure=0 in H. So
certainly RCsfqH=fqxo(L)Z(X; H) has measure zero in H. E]

7. On the completeness of generalized eigenspaces and their eigenprojections. Let
us assume that II is of one of the types indicated in (3.3) and that o(L+ II)4:C. The
resolvent (L + II X)- is then a compact operator on Y for )t ff o(L + II).

Hence to each X o(L+ 11) there corresponds a generalized eigenspace N(;k) with
a dimension equal to the algebraic multiplicity of )t and a projection operator P(X) into
N(X). Here N(X) and P()t) with ;ko(L+ II) are given by:

N(X) null space of (L + II )t)’,
1 fr (L+rI-X)-df’P(’) -see Kato (1966, Chap. III).
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In (7.1) s is a sufficiently large number N. The smallest number s such that
(7.1) is true will be denoted by s(X). In (7.2) F(X) is a smooth contour which encircles
the eigenvalue X in such a way that o(L + II)\{ X } lies outside F()t).

In Lemma 7.1 we shall give somewhat more explicit expressions for the forms of
N(X) and P(X), X o(L+ H).

Further, in Theorems 7.1 and 7.2 we shall prove that under certain conditions the
system of eigenprojections is complete i.e.

I= E P(X).
Xo(L+H)

Let us now first introduce some further notation. For X o(L+ II) we define
q(X) 3’ and p xp matrices Q(X) with r ’, r _>_ q()t) by

(7.3) f(.)-l= E (’-X)Qr(X)
r>q(X)

Here (7.3) expresses the Laurent expansion for ’X of the matrix function
f(’)- with f as defined in (3.5). q()t) is such that Qq(x)()k) 4: 0, so q(X) is the
Laurent index of f- at the point X.

From the Weinstein-Aronszajn theory it follows, that if Xo(L+ II)\o(L) then
q(X)<0.

In Lemma 7.1 the notation (, } will be used analogous to (3.6) and (3.9).
LMMa 7.1.
a. If )t o (L + II)\o(L then

(i) N(X) has a basis (X): 1 =<i =< dimN(X)} with each Xxi a linear combination of
the functions (L )t)-%, 1 <= k <_ s ()t), 1 <=j <_p;

(ii) the eigenprojection P(h) has the form

(7.4) P(X)= E ((L-X)-c,Q(X)P(L-X)-’.)
r>__q(X)

k>l, m>l
k+m+r=l

b. IfX o(L + II)no(L) then
(i) N(X) has a basis {X,.x; 1 <-iN dimN(X)} with each Xxi a linear combination of

the functions (L- X)-kc, q, 1 <=k<_s(X), 1 <=j<=p, n J(X);
(ii) the eigenprojection P(X) has the form

(7.5) P(k)=E(k) E ((L-X)kC, Qr(’)PE()k) ")
r>=q(X)
k>l

k+r=l

E (E(X)c, Qr(X)P(L-X) m.)
r>=q(X)
m>l
m+r=I

+ E ((g-k)kc, Qr(k)v(g-)k)m’)
r>__q(X)

k>=l,m>=l
k+m+r=l

Proof ofLemma 7.1.
(i) Let us first prove a(i) and b(i). Let us denote by (L + II-X)-Xg with X

o(L +H) the space of solutions u of (3.1)-(3.2). In case a (L + II-)t)-lg is given by the
right-hand side of (3.6) with a(h)-P(L-X)-lg interpreted as the set of solutions of
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f(X)=P(L-X)-lg. In case b (L+ II-X)-lg is given by the right-hand side of (3.9)
where ((X)-l(g,(L-X);a)g is interpreted in the obvious way. Of course for Vc Y we
mean by (L + H X) 1V the union of the (L + II X ) with g V.

Now we have the formula

(7.6) N(X)= (L + H- X)-s(X){O}.
Repeated application of the adapted forms of (3.6)-(3.9) to (7.6) shows immediately
that a(i) and b(i) hold.

(ii) Let us now prove a(ii) and b(ii). From the definition in (7.2) we derive using
the expression (3.6) for (L + II ’)-
(7.7)

P()k)=- 2"/tie F(x,(L-)-ld+-I r(x, ((L-)-lc’()-I(L-)-I")d"
For F(X) we choose a contour IX-l=S with 8>0 so small that (o(L+ II)Uo(L)) n

Next we plug the Laurent expansion of a(,)-i given in (8.3) and the Laurent
expansion of (L ’)- for ’ X to be given here below in (7.8) into (7.7):

(7.8)
(t-) -1= E (t-k)-k-l(-)k) k in case a,

k=0

-k-1 k-(-)k)-lE()k) -t- E (L-X), (’-X) in case b.
k=0

The convergence of the sums in (7.8) is in L(HD(a) HD(o)). An application of
the Cauchy residue theorem then gives (7.4) in case a and (7.5) in case b. []

Let us now suppose that II satisfies the same assumption as in (4.1a), namely for
l, ,p" ci HD(a), Pi HD(B), 0=<a=<fl<a+l.
The spectrum o(L+II) can then be given as a sequence {Xn;nl} such that

n> m )t,, REX,_< Re) and Re)kn
Let us denote for a finite subset FeN by N(X,; n F) the finite-dimensional

linear subspace of HD(a) spanned by the N(X,)’s with n F.
Then since A is selfadjoint, A-xII is compact and A-" is of Hilbert type, it is a

well-known result (see Dunford and Schwartz (1962, p. 2374) or Gohberg and Krein
(1969, pp. 276-277)) that the generalized eigenspaces are complete in the following
sense

VuHD(a) :l{u,;kN} withuN(X,;l <=n<=k)
(7.9) such that lim

k--- x

This result shows that each element of HD(a) can be approximated with linear combi-
nations of generalized eigenfunctions.

Next we shall prove that the eigenprojections P(X) with X o(L+ II) are "condi-
tionally complete" in certain cases.

This means that elements of HD(a) can be expanded in terms of generalized
eigenfunctions. In order to prove this, we have to make rather strong assumptions. In
the first place"

(7.10) forl<_i<p’PiHD(a)’, cHD(a) with a >= O,
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i.e. Ii falls in the class of (4.1a) with a=fl. For our other assumptions we have to
introduce some notation. Let (n; nN) be the sequence of eigenfunctions of the
uncontrolled problem normalized in HD(a) i.e. -/llll, as in (2.1.1),
(2.1.2).

For n I we define the following numbers"

C(n+l)= - max
j i,. ,p

(7.11) Q(n+ 1)=p max
i=1,. .,p

r(n) 4C(n)Q n),

h(n)= r(n-1)

( 2)
< (,, )

_-< (,,

1/2

g(.)
( c(n)-t- Q(n) ) 2

Here we use the convention: a.0 -1= for a > 0 and 0.0 -1= 1. Note that r(n)$ 0 for
n $ and, that r(n)on with 0n as in Theorem 5.2 and (5.13), if n<n_l. Conse-
quently we have o(L + H)cUnN (, It- 1_-< r(n)}. This fact will play an important
role further on. In order to show the conditional completeness of the eigenprojections,
we now assume that there exists a strictly increasing subsequence of , which we
denote by (s(n); n }, with the following properties:

(7.12) lim h(s(n))=O,

(7.13) lim g(s( n ) 1) .
These conditions are rather frequently satisfied. Roughly speaking they require that the
expansion coefficients of the c;’s and Pj.’s w.r.t, the basis of eigenfunctions corre-
sponding to L decay sufficiently fast compared with the length of certain gaps in the
spectrum of L towards + . For example, in the case of the Laplace operator: L A on
a block: D { x Ix- ail < Li, 1,..., d ) in d dimensions, these assumptions are
fulfilled, because the difference between two different consecutive eigenvalues/z n-1 --/’
is larger than r2L-2 with L=mini=l,...,dLi, and"/1-/n ’ for n $ o, Cn), Qn) $ 0
for n $ o. From the general theory for the asymptotics of the eigenvalues given in
(2.1.5) it follows that:

:IK> 0 VM> 0:1 n > M such that

(i) l-P,n<_Kn 2/d and (ii) ._l-t.tn>=Kn (2-d)/d

with d the dimension of the domain D. The second part of this statement has to hold,
because its denial" VK>0 :IM>0 such that Vn>=M: ln_l--ln<=Kn2-d)/d, implies:
Il-In=o(n2/d) for n, which contradicts (2.1.5). For a suitable choice of K the
first part holds for every n. An immediate consequence of this statement is that

3K>0 /M>0 :In>M:

(i) h(n) <=K-lr(n 1).n (d--)/d and (ii) g(n- 1)>= K2n(4-d)/d.R(C(n)+Q(n)) -2.
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The conclusion is that (7.12) is automatically satisfied if d= 1,2 and that (7.13) is
automatically satisfied if d--1,2, 3, 4. In order to ensure that (7.12)-(7.13) are satisfied
in situations where the dimension of the domain is not as specified above, it is
sufficient to require more regularity for the ci’s and Pj’s:

ci HD( a + "y ),
Pi ( Wi, HD(,) with W/HD(a + " ).

It will be clear that both C(n) and Q") behave then as o((/ll-/.tn)- ) for n--, .
Therefore, (7.12) is fulfilled if , > max(0, 1/4(d- 2)) and in order to fulfill (7.13) we must
have -t_>max(0, 1/4(d-4)). Thus we have demonstrated that (7.11)-(7.13) are not very
restrictive.

Finally we introduce the notation for S c C

(7.14) P(X;XS)= E P(X),
2t Stqo( L + II)

e(x;x 

We shall prove the following result.
THEOREM 7.1. Suppose that the conditions (7.10) and (7.13) are satisfied. Then the

eigenprojections are conditionally complete in the following sense"

(7.15) I= Y’
n=l

where by definition" $1= (XlReX>#,(,_l)+r(1)} and for n> 1
ReX </s(,_ 1)+r(n- 1)}. The convergence of the sum in (7.15) is strongly in HD(a).

Proof of Theorem 7.1. The scheme of this proof is identical to the proof of Kato
(1966, Thm. 4.5, Chap. V, {}4.5, pp. 293-295). We already know that

(7.16) I= Y’
n=l

where E(X;XS,)=Exs.co(L)E(X) with E(X) as in (2.1.4). The convergence of the
sum in (7.16) is strongly in HD(a). We shall now show that

N N

(7.17) RN= Y’. P( )t; )t S,)- EE()t;XS,)0 forNm
n=l n=l

in ..(HD(a) HD(a)). It is then clear that (7.15) holds true. We have the following
formula

(7.18) RN=
1 ((L+ii_)-X_(L_)_}df,2ri vu

see, Kato (1966, p. 294, 4.19). Here 3’N is the contour consisting of
(i) half the circle (" I-,NI=R, Re_>_ t,U)
(ii) the vertical interval ( IRe ,u, IIml > R }, with ,u 1/2(/- s(U) "1" S(V 1) and

R sufficiently large. Of course, (7.18) holds since (o(L+II)Uo(L)}CU,,=aS,, lies
inside the contour 3’u, if R is sufficiently large (Theorem 5.2!)
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Using the form of (L + II + )-x given in (3.6), we get

(7.19)

Since on the half circle (II-vNI=R, Re>=vN} III(L--)-IlIIHD()=O(1/R) for
R ’ , we can reduce (7.19) to

(7.20) R N-- lfo2ri ((L-vN-il)-lc’(vN+il)-IP(L-vN-iI)-I) dl.

Thus we obtain the following estimate

(7.21)
7r

with

wo-- max
U,, X It*. Xl __< r(n)

Let us first show that w0 < o. Analogous to the proof of Theorem 5.2 one can
show that ’UnN (X I/n-X]__< r(n)) implies forj= 1,. .,p:

p p

E IPi(L--) Cjl-- d() /=1i=1 n

P’n--Pl < 1/2(Re ’-)
2 P

/xn -/x > -(Re- pq)

<r(n)_l lr(n)+2.r(1)-i 1 3.- .-r(1)=-.
Ep IZij it is true that III- (’)lla < -. Conse-So in the matrix norm IlZll maxj=l,.i.,p i=1

quently f](’) is invertible and IIf()- I1-_< 4. Since there is a constant M> 0, such that

IIl’lllc=<MIl’ll it is clear that Wo< .
In order to get further estimates from (7.21), we use the following trick. We

decompose

(7.22) c ENc + Ec, P PE1N + PE
with
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It is easy to verify that for " (0, )"

(7.23)

with io(N) s(N)-l-- i’s(N)"

C=V/7- max { E
j=l,. .,p k

/**-ga =< 1/2d(N)

max IIc+[I.o<:>,C2 mj=l,...,p

Q=v/- max { E
i= l,. ,p k Il

Q2 max IIP,II.<,.
i=1,. .,p

1/2

C(s(N)-I)

1/2

=Q(s(N)-I)

Using (7.22)-(7.23), we obtain from (7.21)

(7.24)

iiiRlll.o<)<w0= CINQ: _io(N +-2
-1

d

+ (c#o+ qoF)fo 1 o(N)2+"2
1/2 1 d(N)2 ]-1/2g + d

+ C2Q2fo
m 1 d(N)2 ]-1+

C2Q2 }CINQ1u CINQ2 + C2Q1u +<=w io(N ) + (io(N)d(N) d(N)

1
<= Wo -h(s( N)) +g(s(N)- l)-l/2( C2 + Q2) + C2Q2 }d(N)

Using (7.13) it is clear that limNoIIIRNIIIHD()--O and this proves the theorem. q

In the following theorem it is shown that at least in certain cases the eigenprojec-
tions are not only conditionally complete (i.e. complete for a prescribed way of summa-
tion) but even unconditionally complete.
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THEOREM 7.2. Suppose that:
(i) only a finite number of eigenvalues o(L) have multiplicities > 1;
(ii) the feedback operator H satifies (7.10) and instead of (7.13) the following

stronger condition holds:

(7.25) E
n=l

C(n)

i(n)

2 oo (n) ]2/.. < limC,n) n

r(n)
i(n)

=0

with C"), Q"), r(n) as in (7.11) and i(n)=the distance of tt, to o(L)\(/, };
(iii) the dimension of the domain D satisfies d <= 3.
Then the eigenprojections are unconditionally complete, i.e.

(7.26) I=
ho(L+II)

without any restriction on the numbering in the summation.
Proof of Theorem 7.2. We shall show that there is a constant M> 0 such that for

each subset A c o(L + H)

XA HD(a)

Let us first demonstrate that (7.27) implies (7.26). Let (A,: n N ) be a sequence of
subsets of o(L+II) such that each A n is finite, m>n=Am3A and o(L+II)=

Take e>0 arbitrarily small and pick uHD(a). Using Theorem 7.1, we can
choose N(e) > 0 such that

I- P( ); )k S U

n HD(a)

tN)C o(L + H). Then we have for m > M0(e)"Take Mo(e) such that A Mo(e
[D

ln

XA Xo(L+H)\A n=l

So II(I-F_.XAmP(X)}ullno)<=Me, i.e. I=lim,_ooEXA.P(k strongly in HD(a). In
other words (7.27) implies (7.26).

In order to prove (7.27), our reasoning proceeds as follows. Define Ol(L) as the
subset of o(L) consisting of all eigenvalues/, which have a multiplicity 1 and for
which r(n)/i(n)< 1/2, h(n)< 1/2 with h(n) as defined in (7.12). Note that because of the
conditions (i) and (ii) the set o(L)\ot(L) contains only a finite number of eigenvalues.
An important remark is that for each #,ot(L) there is exactly one eigenvalue
X,o(L+H) for which I)-nl < 1/2i(n) and the algebraic multiplicity of this eigen-
value n is equal to 1.

We observe namely that as a consequence of Theorem 5.2 for each 8 [0,1] the
curve F,= (?, I,-tl 1/2i(n)) separates the spectrum o(L +SII) into two parts. From
the theory given in Kato (1966, Chap. IV, {}3.5, pp. 213-214) it follows that the part of
o(L+81-I) inside F, consists for all 8[0,1] of exactly one point h,(6) which has
multiplicity 1 and varies continuously with 8. This implies the remark given above.
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Let us now for , ol(L) consider the difference between the one-dimensional
projections P(X,) and E(,). We have"

(7.28)

P(Xn)-E(n) 2rri

1 r. -lII -1

2r--- (L+ H-’) (L-’) d’

1 F -1 -1 -11-[
2ri ((L-) c,a() P(L-) (L-).)d

1 fr. lC -11-[ -1

2ri ((L- ’)- ,a()-Ip(L- ’) (L- ’) ) d".

The first and second equalities in (7.28) are obvious. For the third equality in (7.28) we
used (3.6). For the final equality in (7.28) we used (7.8), case b and Cauchy’s residue
theorem. Using analogous tricks as in (7.21)-(7.23) we derive the following norm
estimate for P(,,)-E(iz,) from (7.28):

(7.29)

=<20(n) i(n) + do(n )
+25("’

i(n) + do(C:.) )
do(") n) + do(,)

with

max
i=l,..-,p

5(,,)= 7- max
i=l,. .,p

1
-In_t +i(n) for n>=2,do(n)=

for n 1.

Note that because of (2.1.5) and condition (iii) we have Zn=do(n)-2< o. If we call
the right-hand side in the estimate (7.29) rhs(n) then rhs(n) makes sense for all n
and it is not difficult to verify that Y’.=lrhs(n)< oc. Now define Ol(L+ l-I)= o(L+ H)
(tA...o.()(X IX-.l< 1/2i(n)}}. It is clear that o(L+H)\Ol(L+II) is finite. For a
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subset A c o(L + H) we now decompose:

(7.30) E P(’) E P()+ E
XA ko(L+ H)cqA

Xn o1(/+ H) (’1 A

+ E
A GOl(L + H)N A

From (7.30) we deduce

E IIIe(x)lll + E
X Go( L+ H)\Ol( L + H)

XnGOl(L+H)

)k GOI( 1+ H)CA

=< E I[IP( x)lll + E rhs( n ) + 1.
Go( L+ 1-1)\o1( L + 1-[) n=

Here III III is a shorthand notation for III Illo.
In the second inequality of (7.31) we used the orthogonality of the projections

E(ft,) in the sense of {, ) no(,)-
Herewith (7.27) has been verified and the proof is complete. [3

Note that in the one-dimensional case with L= d2/dx2-q the condition (7.25).is
always satisfied.

This follows from the estimate Iftn+n2r2/12l<=maXxolq(x)l, l=length of the
interval D, which holds for n sufficiently large.

Theorem 7.1 can be seen as a generalization of a theorem given in Schwartz (1954)
or Kramer (1957) for the special case that their perturbing operator (i.e. II here) has a
finite-dimensional range. The advantage of the theorem given here is that it is also
useful in certain nontrivial cases with d> 1 whereas the conditions for the theorems
given in the above mentioned references are such that these cases are automatically
excluded.

For example, consider the case of the Laplace operator on a 2-dimensional rectan-
gular domain {(x,y) lO <=x <_L, O <=y <_ V/-.L} with pR\Q. For each aR there is
at most one pair n,m such that n 2 +pm2=a. The conclusion is, that all eigenvalues
r2L-2{ n 2 +pm2 } are simple; thus condition (i) in Theorem 7.2 is satisfied. In order to
satisfy (7.25) in this example it is sufficient that the coefficients Pi and (cj, )no()
decrease sufficiently fast for k ’ m compared with i(k).

8. Some remarkable "resolution of the identity" formulae. Using the results on
completeness of eigenprojections as given in 7 it is possible to deduce some remarka-
ble formulae of the "resolution of the identity" type. We shall formulate these formulae
without any reference to the control context where they come from. This is done in
order to emphasize the general character of these formulae, which makes them interest-
ing also outside the control context.

THEOREM 8.1. Let L be a linear, uniformly elliptic, formally selfadjoint, 2nd order
partial differential operator with coefficients C()), D c Nt d a bounded domain with a
smooth boundary. Let o(L) be the spectrum associated to the Dirichlet problem for L.
Suppose that each eigenoalue o(L) is simple and number these eigenvalues as ( ; l [N }
in such a way that m > n < "
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Let k and be two functions HD(7) with >= max(0, 1/4(d-2)). Suppose that q,
and are such that the meromorphic function o() 1 + (, (L )-1k)L2(o) has (i)
poles of order 1 in all points In o(L) (ii) only simple zeros.

Then it is possible to number the zeros of o(X) as {/n;nN} in such a way that for
n ’ o: Im(h,)$-, Re(h,)0. Further we have the following resolutions of the
identity in L2 (D )

, --(;k )n .(t-?n)-l. (t_Xn)-lxit ,,
L2(D)’

(8.2) i= E, [dw 1-1 -1 -1

Here E’nN means that the summation has to be done in a special order" E’nN
oz t,-’k(m + 1)-Em=X,k(m) ") with k(1)= 1, m > m 2 k(ml)> k(m2). The convergence in

(8.1)-(8.2) is meant in the following sense"

N (k(m+)-Im--1 kk(m) ) Ifor N o strongly in L2 (D).

In the special case d= 1 and L=(dZ/dx2)-q one can replace in (8.1) and (8.2)

’ by the normal summation ,.
The sequences of functions ((L-X,)-lq;nN} and ((L-,,)-lg;n[) which

appear in (8.1) and (8.2) satisfy a biorthogonality condition in Lz(D)"

(8.3) (L 2,,) 1) L2(D)
0 if k 4 m.

Proof of Theorem 8.1. Consider the operator L + 1-I with

(8.4) I-I1 <*," >L(o)-
Now the theory developed in the preceding sections is applicable to the Dirichlet
problem for L+ H with X= Y=L2(D). Note that 0(,) is the Weinstein-Aronszajn
determinant corresponding to L + II1, see [}3.

It is now clear that o(L+ H1) coincides with the set of zero’s of 0(,) and that
each eigenvalue of L + 1-I1 with Dirichlet b.c. has an algebraic multiplicity= 1.

As a consequence of Theorem 5.2 they can be numbered in the way of Theorem
8.1.

Using Lemma 7.1a we find that the projection on the one-dimensional eigenspace
N(,.), ?,,o(L+ H1) is given by:

d0 -1
-lq -1

Ida0 ]-1--(Xn) "(L-Xn)-l)((t-Xn)-lxIt, ")Lz(D)"

The resolution of the identity formula given in (8.1) is now found by applying
Theorem 7.2. Note that the condition (7.13) is satisfied since , HD(v) with
V max(0, (d- 2)).

By repeating the arguments above for L + H 2 with

(8.6)
the contents of (8.2) are found.
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The remark in Theorem 8.1 that in (8.1) ’nN can be replaced by nN in the
special case d= 1, L= dZ/dxZq follows from Theorem 8.3, especially the remark just
below the proof of that theorem.

The biorthogonality relation given in (8.3) follows directly from the following
property of the projection P(Xn): P(Xn)N(’,,)={0} for n4:m. Consequently
P(3n)(L-,)-lq=0 for n4:m and since [d/d,(n)]-(L-,n)-q4:0 we have to
have (8.3). []

Note that one way to look at Theorem 8.1 is that the theorem, given the operator
L, constructs for almost arbitrary q and q’ biorthogonal s.equences of the structure

((L- ’n)- lq, (L_n)- 1i,; n N ) which have a completeness property. The possibil-
ity of such a construction for almost arbitrary q and ,I, is not at all trivial!

Further we note that the idea of the proof of Theorem 8.1 can be used in many
other situations to find interesting resolutions of the identity.

We shall give two other examples.
THEOREM 8.2. Let L and o(L) satisfy the same conditions as in Theorem 8.1. Now

suppose that two functions q and I" HD(y) with > max(0, 1/4(d- 2)) are given with the
property that ln ["

(8.7)
with n=fl,n)L:(D), n=(,fln)Lz(D), n as in (2.1), (2.2).

Then the following resolution of the identity holds true in L2 ( D):

with

nl

0 /f+.# 0, (0a,= 1 irOn=O, fin= 1 ifn=O.
The sequence { dn anCn(L- tn); n [ ) are biorthonormal in L2(D ). In the special
case d= 1, L= d/dx-q we can replace E’nN by the normal summation Y"n"

Proof of Theorem 8.2. In this case we have 0(,) 1 + (xI’, (L ,) 1) 1 on C.
For the operator L+ H with II =q,(,I,, )L2(o) we find from the-Weinstein-Aronzajn
theory that o(L+ I-[)=o(L) and that lno(L+I-[) has an algebraic multiplicity= 1.
For the eigenprojection on the 1-dimensional eigenspace corresponding to/n o(L + H)
we find using Lemma 8.1b:

(8.9)

P(n) E(n) (L-n)1( E(n)/, ) L2(D)

E(n)fl)( ( L- n);l/’

E(n)- (L-n)l(E(n) ) L2(D
E(n)-E(n)fl)((L-n)ll )L2(D

if

if n=0

n(q’n-n(L-In); ’t’, )o) if’’n=0

(n n/n ( t "n ) ll ) ( fl)n nn ( t Ln ) l/ ) L2(D)"
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Using Theorem 7.2, we then find (8.8). The biorthogonality of the sequences of func-
tions associated to (8.8) follows from the projection properties of the P(,)’s, namely:

p ( tx ) ( Om Otmdt, ( L t, )1)={0 if m =/= n

ck-aq/(L-I.t) if m=n.

The last statement of Theorem 8.2 is derived analogous to the analogous statement in
Theorem 8.1.

THOF.M 8.3. Let L and o(L) be as in Theorem 8.1. Here we shall suppose that the
dimension ofD satisfies d <= 3. Now let q be afunction HD(a + 2,/) with a > , 3’ >= min(0,
1/4(d-2)) and let y be a point D. Suppose that q and y are such that the meromorphic
function 0()= 1 + [(L-h)-lq](y) has (i) poles of order 1 in all points of o(L) and (ii)
only simple zero’s. Then it is possible to number the zeros of o(X) as {X,,,nN} in such
a way that for n 0 ImX $ 0, ReX 0.

The following resolution of the identity formula is valid for HD(a + )"

,[ do(8.10) I= E --(’n) (t-)tn)-X(G(Y "’Xn) ’" >L2(D)
with G(x,; X) the Green’s kernel of the Dirichlet problem for L-X. The sequences of
functions {(L )k,)- lq; n N } and ( G(y, .;); n N } are biorthogonal in L2(D).

In the special case d=l, L=(d2/dx2)-q we can replace E’, in (8.10) by the
normal summation

Proof of Theorem 8.3. Because of Sobolev’s theorem (see Adams (1975)) and the
imbeddings given in (2.2.7) we see that for a > d/4 the functional 8y which maps u to
u(y) is a well-defined element of HD(a)’. oa(X) is now the Weinstein-Aronszajn
determinant corresponding to L + II with II q,Sy. Here we consider II as an element
ofZa(X Y) with X= Y=HD(a+y).

From here on the proof continues completely analogous to the proof of Theorem
8.1. We now find

-x
-1 -1(8.11) P(kn) -(h,,) .(L-X) "iSy(L-)n)

Since we required that d__<3 the singularity of the Green’s kernel G(X,’;,) is
quadratically integrable and we can rewrite

(8.12) iy(L--kn) -1= (G( y, ;,,),"
Next we apply Theorem 7.1. The condition (7.12)-(7.13) is satisfied since the C

corresponding to q and the Q(") corresponding to 8y are both O((/,x-
Thus we are led to (8.10). Further details of the proof are left to the reader.

9. On the possibility o| generalizations. Many generalizations of the results devel-
oped in the preceding sections can probably be given. Let us discuss a few of them. It is
rather obvious that most of the results can be generalized to feed-back control prob-
lems for 2nd order elliptic operators L as in 1.4, but with b.c. of Neumann-type, such
that the operator becomes formally selfadjoint. Generalizations to feed-back control of
higher order elliptic formally selfadjoint operators subject to Dirichlet or other b.c. that
make the operator selfadjoint are certainly also possible. Generalizations of our results
to some cases with L as in (1.4) and Dirichlet or other formally selfadjoint b.c. but with
a domain D with corners can also be given. Here one should be reminded that
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(L-X)-1 with Xo(L) operates from L2(D) to H2(D), but in general even for
f C() the regularity at the corners in the boundary of (L-X)-lfis not better than
H2(D).

Appendix. In this appendix c will always be meant in the following sense: "can
be considered as a subset, where the canonical injection is bounded". Let us start with
some simple observations: n

(A.1) CD(n)= (uC2()[Au=Oon OD,O<=k<n},
CoD(n ) = {u c2n()iAku=O on OD,Okn)

However the following proposition is less trivial.
PROPOSITION A.1. For a > 0 and 0 fl < a

(A.2) CoD(a)c {uC2()lAu=O on OD,Ozkzfl).
Proof of Proposition A.1. Using (repeatedly) the relation CoD(a + 1)=A-CoD(a)

and the properties of A- (see (2.1.7) and (2.2.10)) we see that it is sufficient to show
(A.2) for 0 < a < 1.

For a 1 it is possible to prove (A.2) from the properties of the Green’s kernel of
A- (see Ladyzhenskaya and Ural’tseva (1968)) analogous to their calculations on the
pp. 110-120.

Further details are left to the reader.
In the case 0 < a < 1 the following lemma will be useful.
LMMA A.1. Let fl (0,1) be given. Then"
a. Ve (0,1-fl) K(e)> 0 VuCoD(1)"

(A.3) Ilull c=<) < K(e) +e 1--eIlaullc< )llullc< >
b.e(0,1-fl) (e)> 00WCo():

(A.4) ][(A + t)-2fllc:<)(e)(1 + t)-++llfllc<.
Proof ofLemma A.1.
a. We have already shown that CoD(1)c C2a(). Because of an "interpolation"

argument for Ca() in between C(), fl <8 < 1, and C(), (see Miranda (1970))
the following estimate is valid"

Using the continuity of the injection associated to CoD(1)c Ca() we find

By putting fi/8 fl + e (A.3) is obtained.
b. Since (A + t)-2f CoD(1) we can use (A.3). This yields

zg(1 + +

For the latter inequality we have usea the formula
and (2.2.3).
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Now we shall show that for 0 < a < 1 and 0 __</ < a there is a constant M> 0 such
that Vf Co(D)

By definition (see Krasnoselskii (1976, p. 281)) we have

A-f=C(a) fo tl-(A+t)-2fdt.

Because of (A.4) the integrand satisfies

where e > 0 is still a free parameter. By choosing e= (a- B) we see that the integral
makes sense in C() and that (A.5) holds true.

From (A.5) we can conclude QD(a)c C()Co() and this completes the
proof of (A.2).

Our following step will be to prove the next proposition.
POOSTON A.2. For

(1.6) CoD(a)D {uCa"(5)lAu=Oon OD,Osksa}.
Proof. It is again sufficient to show (A.6) for 0 < a N 1. For a= 1 it is clear that

(A.6) is contained in (A.1).
For 0 < a < 1 the following lemma will be useful.
LMMa A.2. Let (0,1) be given. There exists a constant K()> 0 such that Vt 0

Proof of Lemma A.2. Let us introduce the notation u=A(A + t)-f. We shall
decompose u in the following way"

(A.S) u= (f-f3 + (/- w),
w=t(A + t)-f, #=t(A + t)-lf.

The function f will be an approximation of f which we construct from f by a "smooth-
ing" process"

f(x)= ,fext(y)d(x-y)dy.
Here fext is an extension off from D to the whole of R such that

I[fextllc2r(R .) =<
Further: (x) (ex)/e with a spherical symmetric, positive, m-differentiable
function which satisfies"

q (x) 0 for Ilxll >= 1,

,(x)dx=l.
The parameter e is taken equal to (1 + t)-1/2.
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We shall now estimate the norms of the three terms in the decomposition (A.6)"
(i) It is not difficult to verify that

(ii) Using (2.3.3) we find that

(iii) Since f- v A(A + t) if we obtain by applying (2.3.3)

It is easy to see that

By applying the triangle inequality to (A.8) and next substituting the estimates
given in (i), (ii), (iii) the desired result (A.7) is found, o

Let us continue the proof of (A.6). Of course we can now continue ourselves to the
situation 0 < a </3 < 1. For u CoD(1 we have

A’u C(a) t’(A + t)-’ A(A + t) -1udt

and

IIAullc<,<- C() fo t"(1 + t)-IIA(A +

Because of (A.2) the function u CoD(1) is certainly an element of C2() and
Lemma A.2 can be used to estimate IIA(A / t)-ullc(). In this way we obtain

(A.9) Ilhullc() <= gfo t’(1 + t)-(O + 1)at.

The estimate in (A.9) is not only valid for u CoD(I), but for all u C2()qCo().
This follows from the fact that CoD(I) is dense in C2())qCo()) (see A.I!). Herewith
the proof is complete. El

It is obvious that (2.2.8) is implied by Propositions A.1 and A.2. We shall continue
this appendix by proving (2.2.9).

PROPOSITION A.3. For a > 0 and 0 <= < a"

(A.10) CD( a) c CoD ( fl ).

Proof of Proposition A.3. It is again sufficient to show that (A.10) holds true for
0 < a =< 1. An argument analogous to the one given in the proof of Proposition A.1 gives
the result

CD(1) c C2t() n C0()

Because of Proposition A.2 this implies

for O_<fl<l.

CD(1)CCoD(fl ) for O__<fl< 1.
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Hence if we put a-= 1 i, fl a e, 0 < e =< 1 then it is also true that

CD(a) AaCD(1) cACoD(1 e)= COD(1 e-8)= CoD ( fl ).

Let us conclude this appendix with the following result.
PROPOSITION A.4. For a > O, N and fl such that a <= fl <= ] + 1 it holds true that

(A.11) CD ( fl is dense in CD(a).

Proof. Let u be an element of CD(a). Then there exists a sequence (f,; n N } in
C(D) such that f, Au for n m in C(D). Using regularity theory and (A.2), (A.3),
we see that A-"f, {wC()lAkw=O on OD,0__<k_<[a]}. Consequently A-f,
CD([a]+ 1) and A-f. u for n c in CD(a). This implies (A.11). []
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ON THE CONSTRUCTION OF SERIES SOLUTIONS
TO THE FIRST BIHARMONIC BOUNDARY VALUE

PROBLEM ON A RECTANGLE*

CHARLES V. COFFMAN"
Abstract. This paper is concerned with the problem of finding a biharmonic function u on a rectangle f

which vanishes on )f and has a preassigned normal derivative there. The solution u is developed in a series;
however the family of functions that enters into this series development is not orthogonal and thus the
determination of the coefficients requires the solution of an infinite system of linear equations. In implemen-
tation of this method of course the coefficients are obtained by solving a truncation of the original infinite
system. The bulk of the paper is devoted to the estimation of the error that results from this truncation.

AMS(MOS) subject classifications. Primary 35J40, 31A30, 65N99

Key words, clamped rectangular plate, series solution

1. Introduction. The difficulty in solving the first biharmonic boundary value
problem on a rectangle f may be said to reside in the particular case

(1.1) A2u=0 in
3u(1.2) u=0, --u g

(, denotes the interior normal). That is, the first boundary value problem with general
data can be decomposed into problems solvable by separation of variables and a
problem of the form (1.1), (1.2).

In this paper we discuss the representation of solutions to (1.1), (1.2) as infinite
series involving trigonometric and hyperbolic functions. To determine the coefficients
in this expansion, one must solve an infinite system of linear equations. The main
purpose of this paper is to obtain a priori estimates for the error that results from
truncation of this infinite system.

The methods employed here have a long history in the literature of both pure and
applied mathematics. Two principal ideas are involved: first, the reduction of the
general problem to the particular problem (1.1), (1.2); and second, the choice of the
appropriate set of functions in which to expand the solution to the latter problem.

Except for a difference in choice of coordinates, the procedure described below, as
it is applied to the problem of the clamped plate in 7, is precisely the same as that
presented by Timoshenko in [13] (see also [12]). The basic ideas involved trace back to
the beginning of the century (for references see [12]). The reduction to (1.1), (1.2) is
accomplished by solving the problem of the simply supported plate, or by finding some
other solution w to (7.1) that vanishes on f and then solving (1.1), (1.2), with
g= w/v, for the biharmonic function which when added to w gives the solution for
the clamped plate. This procedure is easily seen to be equivalent to the method of
Zaremba [1], [2], [4], [6], or the closely related method of the "nonharmonic residue" of
Rafal’son [11] (see also [10]).

*Received by the editors March 29, 1983, and in final revised form October 19, 1984. This research was
supported by the National Science Foundation under grant MCS 80-02851.

Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
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The expansion used below (formula (3.10)) can be traced back at least to Lauricella
[8] (however the procedure given there for determination of the coefficients is in error).
Prior to [2] no theoretical justification had been given for this representation and of
course neither had convergence estimates been given. The justification that is given in
[2] reduces to the demonstration that the angle/9, with respect to the inner product
(3.7), between the spaces generated respectively by the functions (3.1), j=0,1, n=
1,2,..., and (3.2), j=0,1, n= 1,2,... is positive. The a priori estimates there are in
terms of cos0; these are based on results of [1] where the procedure in [2] was already
outlined. As indicated in [2] these estimates are primarily of theoretical interest and are
too pessimistic to be of practical value. Here we obtain a priori estimates on the error
involved in the truncation of the infinite system that must be solved and which, while
they also may be excessively pessimistic in some cases, are nevertheless of practical
value. Specifically, we show that under rather mild assumptions on the smoothness of
the solution the error in a given coefficient is O(N-) for any o with 0 < o < 3, where N
is the number of equations in the truncated system.

2. Preliminaries. We shall assume that the boundary data g in (1.1), (1.2) is
sufficiently smooth that the solution u will have its Laplacian in L2(2). Accordingly,
we define Bo(f ) to be the Hilbert space that consists of real-valued functions u that are
continuous on , biharmonic on f, vanish on 02 and have Laplacian in L2(2); the
inner product on/30(G) is

(2.1)

Let G(x,y; ,r/) denote the harmonic Green’s function for f]. Then a function u
defined on f belongs to B0() if and only if

(2.2) u(x,y)--ff G(x,y;t,l)f(l,l)dldl,

wheref is harmonic and square-integrable on ; in this case of course

-Au=f
Since the L2-harmonic functions form a closed subspace of L2() the completeness of
Bo(fl ) follows from the representation (2.2).

The second boundary condition in (1.2) is assumed to hold in the following weak
sense

{2.3 ff.mAua dy= -fo wgd,,
for every q that is harmonic on some neighborhood of a.

We specify fl to be of the form

(2.4) a= ((x,y)" 0<x<a,0<y<b}.

We then express g in terms of sine series as follows

g(x,l) E a.()sinnrr--f-x
a

(2.5) .=1

g( Y)= E fl,,()sinnrryb

,/=0,b,

=O,a,
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where

(2.6)

We shall say that

if and only if

(2.7) Y’ n2’(a, a,(b)+ fl(O)+ fl(a)) < .
n=l

By expanding a function uB0() in a double sine series on f and computing
Ou/O, therefrom, one easily sees that:

(,) A necessary condition for (1.1), (1.2) to admit a solution uBo(f) is that
g_H1/2(Of).

The converse is also true.
PROPOSITION 2.1. The problem (1.1), (1.2) has a solution u Bo(fl ) if and only if

gH1/2(O).
The proof is deferred to the appendix.
It readily follows from assertion (,) and the weak formulation (2.3) of (1.2) that,

for a given g, the problem (1.1), (1.2), has at most one solution in B0(fl ).

3. Series representation of the solution. We define the functions (), (p),
j 0,1 as follows

cJ sin
nrx [(b-y)sinh nry +(-1)Jysinh nr (b-y)](3.1) nJ(x’Y)

v/2n r ---a--- -a--
dn(3.2)

x/ n rr
sin ( a x )sinh + ( 1) jx sinh--(a x)

where

(3.3) c= sinhnrr---b + (_ 1) in-rub cosh nwb + (- 1)
a a a

(3.4) d= sinh----+ (- 1)J- cosh-----+ (- 1) j

We then have

(3.5) Atp(x,y) -2V---c sin
nrx [coshnr--Y+(-1)coshn’rr(b-y)]a a a a

(3.6) d nry nx nrAp(x,y) --sin-----[cosh----+ (- 1)Jcosh----(a-x)
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and

+
dxdy-- [qJ(x,y)[ dxdy- a.,

forj=0,1,n 1,2, .
It is clear that the sets (p,: j=0,1; n 1,2, ) and ( +n: j=0, 1; n= 1,2, ) are

orthonormal with respect to the inner product

(. u,>: ]oUx.
Two terms + and + will have nonzero inner product only if their parities with respect
to the lines x a/2 and y b/2 are the same; this necessary condition for + and + to
have nonzero inner product can be written

(3.8) (-1)"+i= (-1)+= -1.

(,) If (3.8) holds, then

(a.9)

+(m++++++b+)++d t+C-t) +’+osh ++b t+C-a) +’+osh m++
a b

otheise

++,+)=0.
Suppose now that u is the solution to (1.1), (1.2), then by Green’s formula, (3.5)

and (2.5)

+,u)= (A+(x,b)g(x,b)+A+(x,O)g(x,O))dx

+(+os + <-,>+) ++< +> + <-,>+++ <0>>,
and similarly

+,+>: +:(+os++"+ -,>+)C+<>+ -,>].+<0>.
We put

and note that, in view of (3.3), (3.4),
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j-O, 1, so thatgHk(O) if and only if

a,,j, fl,,j < o j=O,1.
n=l n=l

We seek to represent the solution u to (1.1), (1.2) in the form

1 m
J J(3.10) u(x,y)= E E (AJnqgJn(X,y)+Bnn(X,Y)),

j=0 n=l

where

oo

j=0 n=l

When u is so represented, the coefficients must satisfy the infinite system of linear
equations

(3.12)

AJzn-l+i + Bik-l++ n-l+i,2k-l+j "-Ol2n-l+i,j,
k=l

Oi2n-l+jq- E AJ2k-l+i(lPn-l+j,()J2k-l+i)’-[-2n-1
i,j=0,1, n=1,2,....

The above computations yield immediately the following.
THEOREM 3.1. Let us denote the projection of u onto

sp (q0, in" i=O,1;n=l,2,...,2N)
with respect to the inner product (3.7). Then

2N

(3.13) uv(x,y )

_ _
(’ ,y)+-Anq)n(X Bnn(X,Y))

j=o n--1

where ( )

(3.14)

N

A-J2.- + + E k- +j(n- + i,k- +j)- ’2n- + i,j,
k--1

N

.-1 +j -Ji- E k-1+ i( i2.-1 +j, J2.-1) [--2n- l+j,i,
k=l

i,j= 0,1, n=1,2,...,N.

Proof. If uu is given by (3.13) and (3.14) holds, then

(u- u- 0,

forj= 0,1,n 1,2,...,2N.

4. Row and column estimates. In this section we will derive row and column decay
estimates for the inverse of the matrix that appears on the left in (3.12). These will be
used in the following sections to estimate the error that results from truncation of
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(3.12). The system (3.12) is of the form

A+FB=a,
(4.1) F*A + B;

moreover, it decomposes into four subsystems (corresponding to the four choices of the
pair (i,j)) all of the form (4.1). If the matrices I-F’F, I-FF* are invertible, then the
solution to (4.1) is

A (I rr,)-’(-rB)
= (i- r,r)-(B- r,).

In what follows, we shall assume (4.1) to denote one of the subsystems of (3.12), as
indicated above. It then follows from the results of [2], (see Appendix), that

(4.2) Ilrll<
where, here and throughout, IIFII denotes the norm of F as an operator on -. It follows
that the series

(4.3) rr,+(rr,)+ +(rr,)"+ ..., r,r+(r,r)+ +(r,r)’+ ...,
are convergent with respect to the norm I1"" II. Here we will be concerned with the
convergence of these series with respect to norms of the form

(4.4) Ilrll, sup IVm,lmax( m-1/2n3/2-/J, m3/2-n-1/2 },
m,n

where 0 < 8 _< 1/2.
LEMMA 4.1. Let 0 <= i <_ 1/2, let F { "mn ) satisfy

(4.5) lim m(3/-)- E I.ln-/= < p
rno

and let the matrix A { X,,, } satisfy the column decay inequalities

(4.6) [X,,,l<=com-3/-n1/- m n=l 2,...

Then the product A’ FA satisfies the column decay inequalities

(4.7) (max ( CIIAll, OCo })m-3/2nl/2-,
where C is a constant that depends only on F.

Proof. Choose N so that

(4.8) m3/2- E I/mk[k-3/ <0
k=l

for m >= N. Upon combining (4.6) and (4.8) we then have

(4.9) E ’mkxkn Pcom
k=l

-3/2nl/2-
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for m >_ N. For m <_ N,

(4.10) IX’m,[ E I’ml
2 E Ihn[

2

k=l k=l

=< (N  / - llrll)IIA IIm 3/2/,/1/2-3.

The inequality (4.7) thus holds with C= N(3/2)-311FII.
LEMMA 4.2. For i,j O, 1, 0 <= <= -, we have

lira m3/2-3 E Jm-l+,, tik-l+j
71" -n-* o k=l (1+S2)2’

lim m 3/2-3 E J2n_l+i,q)ik_l+j k3_3/2 =--4 _b 1-3 s3ds
,n k=

’/7" a (1 q- S 2)2"

Proof. Let i,j be fixed and put

s(k,m)=(2k-1 +j)b/(2m-1 +i)a,

and

Akx(k,m)=s(k+ l,m)-s(k,m)=2b/(2m- l + i)a.

Then it follows from (3.3), (3.4) and (3.9) that

m3/-3 E q,,-1 + i’ lPk-1 +j
k=l

(l+f(m)) E [s(k’m)13(l+g(k))Aks(k’m)
t=l (l+(s(k,m))2) 2

where

lim f(m)= lim g(k)=O.
m k---* m

The first of the asserted formulas follows readily; the proof of the second is exactly the
same.

LEMMA 4.3. Let (i,j) befixed (i,j 0,1) and let F= ( "mk } where

(4.11)

Let 0 < <= 1/2 and let

s3 ds
(4.12) Ilrll 4for (1 + s)2
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Then there exists a constant C’, depending only on F, x, 3, such that

(4.13) II(rr*)"ll., =1,2,....

Proof. Suppose that the inequality (4.13) holds for 1 through n and suppose
moreover that - a

where C is the constant in Lemma 4.1. It follows then from (4.11), the definition (4.4)
and Lemmas 4.1 and 4.2 that F*(FF*) ( X’,, ) satisfies the column decay inequalities

(4.15) IX’,,kl__< C’ x2n+lm-3/2k1/2-.

We multiply again on the left, this time by F, and repeat the same argument; taking
into account the symmetry of the matrix there results

Thus if C’ is suitably chosen, the first inequality in (4.13) follows by induction; the
proof of the second is exactly the same.

LEMMA 4.4. Let 0 < 8 <= 1/2. Then

(4.16) 4fo sds
r (1 / S 2)2

1.

Proof. We have

_4fo ds=1 _4fo sds =-2
r (1 +s2)= r (1 +s2)2 rr’

and

-fo4m sds <(4f0m sds )(4fom ds )
1-

r (1 + s2)2 r (1 + s2)- rr (1 + s2)2

Combining Lemma 4.3 and 4.4 and using (4.2), we obtain the following.
PROPOSITION 4.1. Let F= {Ymk} where (4.11) holds and (i,j) (i,j=0,1) is fixed.

Then the series (4.3) are convergent in the norm (4.4) for 0 < 3 <_ 1/2.
The above discussion leads readily to the following.
THF.ORF.M 4.1. The solution to (3.12) is given by a system of the form

aJ2n- l + 2n- + / E ( k 2n- + i,2k- + i12k- + -1- I 2n- + i,2k- +j2k- +j )
(4.17)

n-l+j 2n-l+j/ E n-l+j,2k-l+iOl2k-l+i/)k*2n-l+j,2k-l+j2k-l+j
k=l

andfor 0 < 8 <= 1/2,

sup {(IXm,l/ I/*m.l/ IX*m.l/ I * .l)max( m

i,j=O,1, n=1,2,...,

-1/2n3/2- m3/2-1li-1/2) } <
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Remark. It is easily seen that if the infinite matrix A ( mn ) has

for 0 < 8 =< 1/2 then

sup E ImAn-l, sup E m’ n- < c
n m=l m n=l

for 0 =<o < 1/2. It follows then from Young’s inequality that the matrix A induces an
operator that is continuous with respect to the sequence space norm

for 0 =< o < 1/2. It follows therefore from Theorem 4.1 (cf. 3) that ifg Hk(8f]), 1/2 =< k < 1,
then

j=0 n=l

5. Truncation estimates. It is not difficult to see that the methods of the preceding
section could be applied to obtain row and column decay estimates, uniform with
respect to N, for the inverses of the matrices that appear in the truncated systems
(3.14). Stronger results can be obtained by observing that, in view of (3.8) and (3.9), if
7(,,;),J)=V,,k is given by (4.11) and F’)= (.,(i,j)mk } then the matrices (-1)+JF,) have
nonnegative entries. Thus, for example, for any of the matrices F, if FN is a truncation
of F then FF*, FNF have nonnegative entries and the entries of I+(FNF)+

+(’N’v)n+ do not exceed the corresponding entries of I+(FI’*)+
+ (FF*)"+ .... We conclude the following.
PROPOSITION 5.1. Inoersion of the finite system (3.14)yields a finite system of the

form (4.17) with corresponding coefficients mn(N), t.tmn(N), IZ*mn(N), mn(N), m,n=
1,..., 2N. Moreover, if N’ > N then

0<, (N)<mn(N’)<mn O<k*mn(N)<*mn(N)<.*mn(N’)<*mn
Imn(N)l lmn(N’)l lmnl Ilffmn(N)l . lmn(N’)l , lffmnl

Finally,

(5.1) sup
m,n_2N

{ [kmn( N)[ + ItX,.n( N) + Ik*mn( N)] +

max(m-1/2n3/2-8, m3/2-SnS- 1/2 ) =< C
for 0 < <= 1/2, where C C(8) is independent of N.

Remark. Regarding the rate of convergence, it can be shown that

(5.2)

<Cm/Z-na/Z-N2-2 1 <m,n<2N,

for 0 _< ( =< 1/2, where again C depends on 8 but not on N.
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In the absence of a better estimate than (5.2) for the rate of convergence of the
inverses of the truncated matrices, in order to get better than O(N--) convergence of
the solutions to (3.14) we must assume an a priori hypothesis concerning the decay of
the coefficients AJ, B themselves. In the final sections we show when such an hypothe-
sis can be verified.

In what follows, as in 3, A=A(N),=J(N), i,j=O, 1; n 1,.-.,2N, denote
the components of the solution to (3.14).

THEOREM 5.1. Suppose that for some nonnegative number o, the solution to (3.12)
satisfies

i=0 n=l

Then for 0 < <= 1/2,

(5.4) Z Cnl/2-N-’-+,

where C C(3).
Proof. Put

a (N)=A(N)-Ai,, b(N)=i,,(N)-Bi,,.

The ain, b satisfy the linear system with the same matrix that appears in (3.14) and the
right-hand terms

k=N+l
O2k -l+j( 2Jn + i,k +j) =f-+i(N)

and

E Ak l+i(ln-l+j,tk-l+i) hi2n_l+j(N), i,j=0,1, n=l,...,N.
k=N+l

From (3.9) and (5.3) we have, for example,

If(N)l<= Cn 3/2 E
k--N+l

k-5/2Bk_l +j,

k=N+l

k -5-2 k2 Bik_l+j
k=l

< Cn3/2N- 2-0

(here ( 1)" + 1). Similarly

Ih (N)l=< Cn3/2N 2-0.

We then apply Proposition 5.1, specifically inequality (5.1), to obtain (5.4).

6. Smooth solutions. We now show that if

(6.1) g Hk()2), k>=),
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and if the solution u to (1.1), (1.2) belongs to H4() or at least

2(6.2) yzAUL2(),
then the coefficients in the expansion (3.10) satisfy (5.3) with o 2.

Indeed if (6.2) holds, then by i) of Proposition A.1 in the Appendix we have

where

2
0Y 2

Au= i=oE n=XE Ai Ai + BiAi.)

Thus

(6.3)
where

U=O+W,

(6.4) v -- i=0

and

(6.5) Aw C + C2x + C3y + Caxy.

To complete the proof of our assertion, we show that, given (6.1), we must have

(6.6) C1= C= C3= C4=0.
LEMMA 6.1. Suppose that u has the expansion (3.10) and (5.3) holds for some o on the

range

(6.7) 0=<o<.
Then

(6.8)
Ou HO+l/2

LEMMA 6.2. Suppose that

and (6.5) holds. Then

for k >= implies (6.6).

w Bo(e)

w
0’

Proof of Lemma 6.1. From (3.9) it follows that the matrices F= { ,,,, }, F as in
Lemma 4.3, satisfy

sup m E [lm,In-, sup n- E I7m,Im <= C
m n=l n m=l
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for 0 =< o < -. It then follows from (5.3)and Young’s inequality that

i=-0 n=l

provided (6.7) holds. Thus (cf. {}3) if (6.7) holds then (5.3) implies (6.8).
Proof ofLemma 6.2. If we decompose u as

(6.9) u-- 2 2 u(i’J)
i=0 j=0

where

(6.10) u(i’)(x y) 1/4[u(x y)+(1),= u(a-x,y)

+( 1)Ju(xb-y)+(1) i+j )]u(a-x,b-y

then it is clear that the smoothness properties (6.1) (g= Ou/Ov) and (6.2) are invariant
under u u (i’), i,j=O, 1. Let w(i’) B0(2 ) be determined by

Aw(i’J)(x,y)= 2x-1)ga
Then

(6.11) w{i’)(x,Y) E AJ2n-l+iJ2n-l+i "4- E i2n-l+jt2n-l+j,
n=l n=l

where

(6.12) J=(-1) "+J a (2__) 3/2

c[( 1)Jcosh(n rrb/a) + 1] rn

(6.13) = (-1) "+j

d[( 1)Jcosh(nra/b) + 1]
2 )3/2qrn

cf. (3.5), (3.6). We find the coefficients a,,/3 in the expansion (2.5) of g=(w(g’)/v)
as follows. The coefficients A, in (6.11) satisfy equations (3.12) with the n,,/gn,j on
the right defined in terms of the an, fin as indicated in {}3. A check of the signs in (3.9)
and (6.12), (6.13) shows that in all of the resulting equations (3.12) the first term on the
left and the summation always agree in sign. Thus, for example

[A.-I+iI< AJ2.-l+i + E 2k-l+j q)J2n-l+i,k-l+j
k=l

It readily follows from (6.12), (6.13), that

Ow(i,J)

for k >= .
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To complete the proof, we consider one of the U (i’j) given by (6.10). If we make the
decomposition (6.3), as indicated above, of u (i’j), then the second term w is of the form
Cw(i’J); however ()u(i’)/O,) Hk()f), for some k>_ ; by (6.4) and Lemma 6.1, the
first term v has (Ov/v)H(f) and thus we must have C=0.

We summarize the above observations in the following.
PROPOSITION 6.1. Let (6.1) hoM and suppose that the solution u to (1.1), (1.2) satisfies

(6.2). Then the coefficients in the expansion (3.10) of u satisfy (5.3) with

7. The clamped plate. The problem of the clamped plate is

(7.1) h2 u =f in ,
Ou

(7.2) u 0 on ).

The formula of Zaremba, in its usual formulation, (cf. e.g. [1], a more general formula-
tion is given in [4]) expresses the Green’s function F for (7.1), (7.2) as

(7.3) I’ I’1- r_,

where F is the Green’s function for the differential equation (7.1) and boundary
conditions

(7.4) u Au 0 on

(in the case of a rectangle, or more generally a polygon, conditions (7.4) are the
boundary conditions of the simply supported plate) and F2 is the reproducing kernel of
the space Bo(f ). Thus the solution u to (7.1), (7.2) decomposes as

(7.5) u--Ul-U2

where u is obtained by solving (7.1), (7.4) and u2 can be computed using I’ when the
latter is known. Alternatively, u can be found by solving (1.1), (12) with

Note that the representation of ux as a double sine series can be written immediately
once a similar representation forf is obtained.

It is easily seen that if

(7.6) fL(2),

then the solution u to (7.1), (7.4) belongs to n4(). Moreover, an argument similar to
that indicated for the proof of assertion (.) in 2 shows that (7.6) implies

(7.7)
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Finally, in the case of a rectangle f] the solution to (7.1), (7.2) is known to belong to
n4() when (7.6) holds [7]. We conclude that u2 n4() and thus in view of (7.7) u 2

satisfies the hypothesis of Proposition 6.1. If u 2 is to be found by the method described
above, then the truncation estimates (5.4) hold with o= 2.

$. Example. We consider now the special case of the problem (7.1), (7.2) in which
f is the square of side r and

f=l intl.

This computation has been performed repeatedly before, [5], [12], [13]. We are prim-
arily interested here in demonstrating how the coefficients of the truncated reduced
problem vary with N.

Following Hencky [5] (see also [9]), we write the solution u as

U-’W--I)

where

(8.1) w( x,y) =-xy(-x)(r-y)

and v is biharmonic on f with

Ov Ow
onv=O, v

Because of the symmetries involved we see that l) can be represented (with the notation
of [}3 and with a b r) in the form

v(x,y)= E A+k+,(pPO2k+t(x,Y)+d/O2k+ICX,Y))"
k=l

The equations that determine the A, are

(8.2) A,=il+cshnr [2 8n3/2

nrr + sinh n ,r n5/2 ,n" E rn 3/2 / 1 + coshmr

(m2+n2)2 mr + sinhmr

n 1, 3, 5,. .; the summation on the right in (8.2) is over the positive odd integers.
The form in which (8.2) has been written lends itself to an obvious iterative

procedure (a minor variant of Gauss-Seidel) for solution of the truncated systems.
Because the matrix need not be stored, this can even be carried out on a programmable
calculator such as e.g. the Texas Instrument TI-59. The number of computations can be
reduced by making the change of variable

,,-- ./ 1 +coshnrr
A2t V nr + sinh nr

in (8.2).
Using the TI-59 the truncated systems involving the first 8, 15, 20, 25 equations

were solved (it would be possible, but because of the time involved not practical, to
handle up to 50 equations). These systems were solved consecutively and, for example,
the first solution (of the 8 8) was augmented with 7 zeros and used as the initial point
for the iterative solution of the 15 15 system. The values obtained for the A, are
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shown in Table 1.

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

N=8

TABLE

N=15

1.503134712
-.0178766112
-.0096545055
-.0040740937
-.0019191169
-.0009972989
-.0005594979
-.0003333588

1.503134586
-.0178752812
-.0096503228
-.0040665724
-.0019086107
-.0009845646
-.0005453758
-.0003185945
-.0001936597
-.0001212241
-.0000774764
-.0000501694
-.000032663
-.0000211942
-.0000135498

N=20

1.503134725
-.0178753017
-.0096503056
-.0040665248
-.0019085294
-.0009844483
-.0005452258
-.0003184141
-.0001934535
-.0001209974
-.0000772344
-.0000499171
-.0000324049
-.0000209342
-.000013291
-.0000081303
-.0000046124
-.0000022004
-.0000005436
.0000005913

N=25

1.503134725
-.0178753021
-.0096503093
-.0040665347
-.0019085479
-.0009844771
-.0005452658
-.0003184658
-.0001935167
-.0001210715
-.0000773185
-.0000500102
-.0000325056
-.0000210414
-.0000134034
-.0000082467
-.0000047318
-.0000023216
-.0000006657
.000000469
.0000012401
.0000017554
.0000020898
.0000022958
.0000024105

Appendix. Here we shall fill in briefly the theoretical details on which the preced-
ing development was based.

Let H(f) denote the subspace of L2(a) that consists of harmonic functions and let
Hl(f) and Ha(a ) denote respectively the subspaces of H(f) that are spanned by the
sets

Sl=(Apin(x,y )" i=0,1;n=1,2,... },
and

$2= (Ai,,(x,y) i=0,;n=1,2,... };
cf. (3.5), (3.6).

PROPOSITION A.1. The following are equivalent:
i) H(f) admits the direct sum representation

ii) every u Bo(2) is uniquely representable in the form (3.10) where (3.11) holds;
iii) for each pair (i,j) the matrix F= ( (q0m_/, +J’- +;) ) satisfies
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Proof. Recall that the sets S and $2 are orthonormal in L2(f). The equivalence of
i) and ii) is immediate from the representation (2.2). To see the equivalence of i) and
iii), one notes that the matrices F can be used to represent the restriction to Hi(fl) of
the orthogonal projection onto H2(f) with respect to the orthonormal bases S1 and S2.

Remark. Assertion i) in Proposition A.1 is proved in [2].
PROPOSITION A.2. The following are equivalent:
i) every u Bo() is uniquely representable in the form (3.10) where (3.11) holds;
ii) if u Bo() then there exists a v Bo such that

} v Ou
on {(x,y)" O<x<a,y=O ory=b},

and

V
on {(x,y)" O<y<b,x-O or x=a};

iii) the problem (1.1), (1.2) has a solution u Bo(f] ) if and only if

(A.1) geH1/2(O).

Proof. We have already noted ((,) 2) the necessity of (A.1). To see that i) implies
ii), let i) be assumed; then if u B0(f] ) has the representation (3.10),

j=0 n=l

is a bounded projection in B0(2 ), call it P. Using Green’s theorem, one easily sees that
for uBo(2), v=P*u satisfies the conditions of ii); (P* denotes the adjoint of P).
Conversely, if ii) holds, then it follows from the necessity of (A.1) and the closed graph
theorem that u v is a bounded projection. The converse implication follows readily,
cf. [4]. The implication iii) implies ii) is immediate. Conversely, suppose data (2.5),
satisfying (2.6), are given. For simplicity assume fin(0)= fin(a)= 0, n 1, 2, . One can
then obviously find w of the form

o o

Ao%, E E
i=O n=l i=O n=l

such that

-g on {(x,y)" O<x<a,y=O ory=b},

the assumption ii) then implies the existence of a u B0(2) whose normal derivative
coincides with the given data.

Remark. As we noted in [4], the assertion ii) of Proposition A.2 follows readily
from the existence theorem for the first biharmonic boundary value problem on a
rectangle that is stated in [2]; the proof of that theorem was given in [3].

We shall now sketch an elementary proof of assertion ii) of Proposition A.2.
LWMMh A.1. Let v(x,y) be of class C on a neighborhood of

s= {(x,y)" O<=x,y,x2+y2<e2}
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and such that

i) v(0,y)=0, O<=y<_e, v(x,0)=0, O<=x<=e,

and

ii) v(x,y)=O, x2+y2>=1/2e2.

Let

w(x,y)=tan-Yv(x,y), x,ys.
x

Then

ff IAw(x,Y)ldxdy<= C ff IAv(x,Y)ldxdy,

where C is an absolute constant.

Proof. We have

0 --rr-r+---
2

rdrdO.

Since v is of class C on a neighborhood of (0, 0), it follows from i) that

lim
r--O r O0 Or O0

Using this and integrating by parts, we get

(A.3) f’/2fO({t rilV ) 10EY
o -r -r -- drdO

s:"-’0 OrdO)
We have

20v 02v ]drdO
r 2 O0 O00r ]

(A.4)
/2fo

2 Ov 020
r 2 O0 O00r

drdO <
-0 "0 OraO +77 drdO

-0 0 r drcltt
+ drdO"

16r -the last step follows by noting that f/2 (Ov/OO)dO=O for any r and expanding
)20/)0 2 in a Fourier series. From (A.3) and (A.4) we have

o rr- --drdO.
Upon expanding the right-hand side of (A.2) and using (A.5) we get
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Now

2 vAw A ( Ov ) OAr +
r - 0’

so that the asserted inequality follows from (A.6) and the inequality

Let X() denote the set of functions of the form

(A.7) u(x,y) E Eamnsinmx ny
sin

a b
m=l n=l

and let

,.[1.2 o o

4ab - -’ (a2n2 + bm:)2 2a (X)

m=l n=l

(note that Ilull 2: f fa IAulZdxdy) With the norm I1"" II, X(a) is a Hilbert space and
Bo(f ) is a subspace. The orthogonal complement of Bo(2) in X(2) is the space X0(fl )
of the clamped plate (i.e., the completion in X(2) of C(f))

and u Xo(f) implies

x(a)

)U
u =-3-- 0 onO.

Let Q denote the orthogonal projection of X(2) onto Bo(f ). Then if w X(f) and
Ow/O,=g, on Of then u= Qw is the unique solution to (1.1), (1.2). We claim that it is
possible to construct an operator A on X(f) such that if u=Aw then Ow/O, and Ou/O,
agree on the horizontal segments of Of while Ou/3,=O on the vertical segments. The
operator P* described above is then obtained as the restriction to B0(f ).

Let w X(fl) and be the sum of a finite series of the form (A.7). Using a partition
of the identity, we can write

w=u+v

where u satisfies the hypothesis of Lemma A.1 and

where C depends only on the partition. From Lemma A.1 it follows that

w=(1 ---r2tan-Y)wX(f)-x
and

Note that
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on the left-hand vertical segment of )f while OWl/Ol nd Ou/Ov agree on the lower
horizontal segment. The construction of the specified operator A can now be carried
out using appropriate partitions of identity and the above construction at the corners.
We thus can prove the following.

PROPOSITION A.3. There exists a bounded projection P* on Bo(f) such that for any
u Bo(f) if v= P*u then Ov/v and 3u/3v agree on the horizontal segments of3 while

Ov
-’0

on the vertical segments. Thus each of the equivalent assertions of Propositions A.1 and
A.2 is valid.
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ABSTRACT NONLINEAR VOLTERRA EQUATIONS
WITH POSITIVE KERNELS*

NORIMICHI HIRANO"
Abstract. The existence of the solutions of the equation

u(t)+fa(t-s)Au(s)dsf(t), O<t<T,

in a Hilbert space, is proved, where A H--> H is a pseudo-monotone operator and f L (0, T; H).

1. Introduction. In this paper we consider the existence of solutions to the abstract
Volterra integral equation

(1.1) u(t)+fota(t-s)Au(s)dsf(t), O_<t<=T,

in a Hilbert space H, where A is a nonlinear (possibly multivalued) operator from H
into itself, a(t) is a real function on [0, T], f is a function from [0, T] into H. General
existence results for (1.1) were obtained by Barbu [1], Crandall and Nohel [5], and
Gripenberg [6]. Recently Kiffe and Stecher [7], [8] obtained existence results for (1.1) in
case A is maximal monotone without assuming any continuity condition on A or
differentiability conditions on f. In the present paper, we also consider the problem
(1.1) without assuming any continuity on A or differentiability condition on f. Our
purpose in this paper is to establish existence results for the problem (1.1) under the
assumption that A is a pseudo-monotone operator on H. It is known that a broad class
of (multivalued) operators satisfy the pseudo-monotonicity. To prove our results we
make use of an existence result for pseudo-monotone operators [3].

In 2, we give notation, definitions, and the statements of our results. In 3, the
proofs of the results are given. We give examples in [}4.

2. Statement of results. Throughout this paper H will denote a real Hilbert space
with the norm denoted I’1 and the inner product (.,-). We will denote by L2(0, T; H)
the space of all H-valued function u’[O,T]H such that flu(t)ladt< / and by
L(0, T; H) the space of H-valued function such that esssuPtto, rl[f(t)l< . The
norm and inner product of L2(0, T; H) will be denoted by I1" II and (.,.). Strong and
weak convergence in L-(0, T; H) is denoted by" --->" and "" respectively. Let A be a
nonlinear (multivalued) operator from H into itself. We shall denote by D(A) the
domain of A, i.e., D(A)= (x H; Ax 4: }. For each z H, A denotes the operator
defined by Azx A(x + z), for x D(A). The multivalued mapping A" H ---> H is said to
be pseudo-monotone on H [3], if A satisfies the following conditions"

(1) D(A)= n.
(2) For any sequence { u } and { wn } in H such that u, converges weakly to u,

w, Au, for each n _>_ 1, and lim sup, (wn, u u) <= O, and for any v H, there exists
w Au such that

(2.1) (w, u- v) =< liminf (w,, u,- v).

*Received by the editors August 18, 1983, and in revised form January 25, 1984.
Department of Mathematics, Yokohama National University, 156, Tokiwadai, Hodogaya, Yokohama,

Japan.
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The mapping A:H H is said to be finitely continuous if Ax is closed convex subset
of H for each x H and for each finite set G of H, A is upper semicontinuous
mapping from the dosed convex hull of G into 2H, with respect to the weak topology of
H. The mapping A is said to be monotone if

(xl-x2,yl-y2)>O

for x H, Yi Axi (i= 1, 2). A monotone mapping A is said to be maximal monotone
if the range of I + ,A is H for all > 0. It is known that a maximal monotone operator
with D(A)=H is finitely continuous and pseudo-monotone (cf. [3]). A mapping A :H
H is said to be completely continuous if it is continuous from the weak topology of

H to the strong topology of H. For each a LI(O, T), L denotes a linear continuous
operator from L2(0, T) into itself defined by

(Laf )(t)= a(t-s)f(s)ds for0<t<T

for each f L2(0, T). Then the adjoint operator L* is given by

(L*f)(t)=ftra(s-t)f(s)ds for 0=<t=< T.

We now state the assumptions for the kernel function a(t).

a(t) Lx(O, T) is of positive type on [0, T], i.e., for each f L2(0, T),

r) a(r-s)f(s)dsdr>=O for0=<t_<T.

(2.3) L* is injective, i.e., L*f= 0 means f= 0.

Sufficient conditions for a(t) to satisfy (2.2) are given in [10] and [11]. It is easy to
see that a(t) satisfies (2.3) if a(0):0, aC(O,T) and a’L(O,T). It is also easy to
see that the sum of a function of positive type b(t) and a positive constant c,
a(t)= b(t)+ c satisfies (2.3).

Let A H H be a multivalued operator with D(A)= H. Denote by the opera-
tor defined by

u= {wL2(O,T; H)’w(t)Au(t) a.e. on [0, T]},
for each u L2(0, T; H). It is well known that if A is a maximal monotone operator on
H, then is a maximal monotone operator on L2(0, T; H). We now state basic
assumptions for the nonlinear operator A on H.

(2.4) There exist constants c, c2 such that

lyl=<Cl+C2lXl for allyAx, xH,

(2.5) lim inf (x,y)/lxl>-m.
y,4x, lxl

Remark. The condition (2.5) guarantees that for each e > 0, el+A is coercive, i.e.,
limy x/Ax, I1-, (x,Y/Ixl + . We note that if A is monotone, then A satisfies
(2.5).
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We next state assumptions for the nonlinear operator A on L2(0, T; H) corre-
sponding to (2.4) and (2.5).

such thatThere exist constants C1, C2

IIll<-cT/c’llull forall vAu, utZ(o,z; n),

(2.5)’ liminf (o,u)/llull> -.

Remark. If a maximal monotone operator A" H H with D(A) H satisfies (2.4),
then we can see that D()= LZ(0, T; H). It is obvious that if an operator A’H H
satisfies (2.4), then satisfies (2.4)’. It is also easy to see that satisfies (2.5)’
whenever A satisfies (2.4) and (2.5).

THEOREM 1. Let A be a finitely continuous pseudo-monotone operator on L2(0, T; H)
and satisfy (2.4)’, (2.5)’. Suppose that a(t) satisfies (2.2) and cllallLa(0,r)< 1. Then for
each f Lz(O, T; H), the equation

fta )(Au)(s)dsf(t), O<=t< T,(2.6) u(t)+ (t-s
"0

has a solution on [0, T].
Remark. It is known that the sum of monotone operator and completely continu-

ous operator, A =B + C is pseudo-monotone. Then Theorem 1 is applicable to the
existence problems of local solutions of equations of the form

(2 7) du foTk--+A(t.)u(t)+ (t,s)Bu(s)dsO, u(0) =u0,

where A(t)’H H is a maximal monotone operator for each 0 <= <= T, B’H H is
completely continuous operator, u0 H and k(t,s) L2([0, T][0, T]). In fact, by
integrating the above differential equation, the problem (2.7) arrives at the problem
(2.6).

COROLLARY 1. Let A’H H be a multivalued operator satisfying (2.4) and (2.5).
Suppose that for each t[0, T], is finitely cotinuous and pseudo-monotone on LZ(0,t;
H). Then for each f L-(O, T; H), (1.1) has a solution on [0, T].

COROLLARY 1’ (Kiffe and Stecher [7]). Let A" H--, H be a maximal monotone
operator with D(A)=H and satisfy (2.4). Let a(t) satisfy (2.2). Then for each f L2(0, T;
H), (1.1) has a solution on [0, T].

Remark. Corollary 1 is a reformulation of Theorem 1 in case where A is an
operator on H and we can obtain Kiffe and Stecher’s result (Corollary 1’) from
Corollary 1. But we can see that Theorem 1 (or Corollary 1) is not very effective for
operators on H because, except for monotone operators, operators on H rarely satisfy
the assumption that is pseudo-monotone on LZ(0,t; H). Thus it is desirable to
establish an existence result under the assumption that A’H H is pseudo-monotone
on H. We next state our main result.

THEOREM 2. Let A" H H be a finitely continuous pseudo-monotone operator on H
satisfying (2.4), (2.5). Suppose that a(t)Lz(O,T) satisfies (2.2) and (2.3). Then for
each f Lz(O, T; H), (1.1) has a solution on [0, T].

COROLLARY 2. Let A "H H be a maximal monotone operator with D(A)=H and
B" H H be a completely continuous operator with D(B)= H. Suppose that A + B satisfy
(2.4) and (2.5) with A replaced by A + B. Let a(t)Lz(O,T) satisfy (2.2) and (2.3).
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Then for each f L2(0, T; H), the equation

(2.8) u(t)+fota(t-s)(Au(s)+Bu(s))dsf(t ), O<t<T,

has a solution on [0, T].

3. Proo|s. We first give fundamental lemmas. The following lemma is a direct
consequence of the definition of pseudo-monotonicity.

LEMMA 1. Let F be a real Hilbert space and A be a pseudo-monotone operator on F.
Let { u, } and { w, } be sequences such that u, converges weakly to u, w, Au, for each
n >_ 1 and lim inf, ( w,, u, u) <_ O. Then lim inf, (w,, u, u) 0.

Proof. Choose a subsequence { u,, } of { u, } such that

lim (w,i ,u,,- u) lim inf (w,,u, u).

Then from the definition of pseudo-monotonicity, there exists w Au such that

0=(w u-u)< lim (w,, u,-u)

Thus we obtain that liminf,_ (w,, u,-u)=0.
LEMM, 2. Let F be a real Hilbert space and A be a finitely continuous pseudo-mono-

tone operator on F. Let { u, } and { w, } be sequences such that u converges weakly to u,
w, Au, for each n >= 1 and lim sup, (w,, u,- u) <= O. Suppose that w, converges
weakly to w. Then w Au.

Proof. By Lemma 1, we have that lim, (w,, u,- u)= 0. Then for each v F,

(3.1) liminf ( w,,u, v ) lim inf ( w,, u o ) lim ( w,,u v ) ( w, u v ),

while, for each o F, there exists w Au such that

(3.2) ( w u v ) <= lim inf ( w,, u O ).

Combining (3.1) with (3.2), we obtain that for any o F, there exists w Au such that

(3.3) (wo,u-v)<__(w,u-v).

Suppose that w Au. Then since Au is a closed convex set of F, there exists z F such
that

(w,z)< inf((y,z)"yAu }.

Put o u-z in (3.3). Then we obtain

This is a contradiction. Thus we obtain that w Au.
LMM. 2’. Let F and A be as in Lemma 2. Let u, } and { w, } be sequences such

that u, converges weakly to u, w, Au for e___ach n >= 1 and lim sup, (w,, u, u) __< 0.
Suppose that { w, } is bounded in F. Then CI co{ w," n >__ k } c Au.

Proof. Let W be the set of all weak subsequent__ial limits of {w, }. Then by
Lemma 2, WcAu. Since Au is closed and convex, co WcAu. Then since co W=

co{ w,," n >__ k } (cf. Bruck [4, Lemma 1.2]), the consequence follows.
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LEMMA 3. Let F and A be as in Lemma 2. Let L be a linear continuous and injective
operator from F into itself and f be an element of F. Then the mapping L*AfL is a
pseudo-monotone operator on F. Moreover ifA maps bounded sets of F into bounded sets,
then L*AfL is finitely continuous.

Proof. Let { un} and {wn ) be sequences such that u converges weakly to u,
w L*AfLu for each n >_ 1, and

lim sup (w., u. u) =< 0.

Let ( o, ) be a sequence such that v, A(Lu "f) and w L’on, for each n > 1. Then
we have that for each n >= 1,

lim inf ( w. u. u) lim inf ( v. Lu +f- ( Lu +f )).
n--- x n--

Then since A is pseudo-monotone and Lu, +f converges weakly to Lu +f, for given
z F, there exists v A(Lu +f) such that

(L’v, u- z)= (v,Lu +f-(Lz +f))

=< lim inf ( On, Zu --f- ( Lz +f ))

lim inf ( v,, Lu, Lz )

lim inf ( L’v,, u, z ).

Then since L*v L*A(Lu +f), L*AfL is pseudo-monotone.
Suppose that A maps bounded sets of F into bounded sets. Then to see that

L*AfL is finitely continuous, it is sufficient to show that L*AfL is demiclosed, i.e., the
graph of L*AfL is strongly-weakly closed in FF, because (L*AfL)G is relatively
weakly compact for each compact subset G of F (cf. Browder [1, Proposition 2.6] or
[2]). Let { u, } and { w,} be sequences in F such that { u, } is contained in the closed
convex hull of a finite subset G of F, un converges strongly to u, w, L*AfLu and w
converges weakly to w. Then since L*AfL is pseudo-monotone on F and
limsup,_.oo{wn,u,-u) <=0, we obtain, by Lemma 2, that wL*AfLu. This completes
the proof.

LEMMA 4. Let A L-(0, T; H)L2(O, T; H) be a multivalued operator with D(A)=
L2(0, T; H). Let a(t) LI(0, T) andf L2(0, T’, H). Then the equation

(3.4) u+LaAuf

has a solution u on [0, T] if and only if the following equation has a solution o on [0, T];

(3.5) v+A(Lav+f)O.

Proof. Let u be a solution of (3.4). Put z u-f. Then (3.4) is equal to

(3.6) z+LaA(z+f)O.

Then there exists v Llz which satisfies (3.5). It is also easy to see the "if" part.
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Proof of Theorem 1. For simplicity we write L instead of La. Let f L2(0, T; H).
For each n >_ 1, we set L, (L + 1/n)I. Then since L is positive,

(3.7)
1
n

for u L2(0, T; H).

We first claim that for each n >= 1,

(3.8) o+A(L,o+f)O

has a solution oL2(0, T; H). Since Ln* is bijective by (3.7), vL2(0, T; H) is a
solution of (3.8) if and only if v is a solution of

(3.9) L*v + *L,A(L,,o+f)O.

Then we show that (3.9) has a solution. For each n => 1 LnAfL is finitely continuous
and pseudo-monotone by Lemma 3. Then (1/n)I+ L*nAfL is also finitely continuous
and pseudo-monotone for each n=>l. From (2.4)’ we have that for each u
L2(0, T; H) and wA(L,u+f),

1 / 1 2
-u/t*.w,u --Ilull / (w,t.u>
1 n

(3.10) lllull=+ W,tnU-l-f) (w,f)

> --Ilu[[ +(w L,u+f)-IIf C1 nt-C2 I[al[v(0,)[lul[+ -I[ull+llf
n n

Then by (2.5)’, (3.10) implies that for each n > 1,

lim
z L*nAf L u (1-flu+ z,u /llull-

, *i.e., (1/n)I+L,AX’,, is coercive. By (2.4)’, (1/n)I+L,AfL, is bounded for each
n > 1. On the other hand, (3.7) implies that L*n-(1/n)I is positive for each n> 1. Then
by [3, Thm. 7.8], we obtain that the sum of (L*n-(1/n)I) and ((1/n)I+L,AfL,) is
surjective. Therefore (3.9) has a solution. Let (u, } c L(0, T; H) be a sequence such
that u,+A(L,u,+f)O, for each n>=l. Let {Wn} be a sequence such that w,
A(L,u,+f) and u,+w,=O, for each n>= 1. Then by (2.4)’, we have that

(3.11) u --< cl -r cill t.u +f __< ci / c; ( a llv(o,  )ll u. I1/ 111 u. /fn
Since cllall v(0, T) < 1, (3.11) implies that there exists M> 0 such that

U M for all n >= 1.

Then we can assume without any loss of generality that UnU and WnW. Since
u + w, 0, we have that

(3.12) ( bin, Lnun tu) -[- ( Wn, LnU Lu) --O.
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Since lim. Lnu Lu and weak-lim. Lnu weak-lim. Lu,, + (1/n)u Lu, it
follows that

(3.13) lim inf

liminf (Un-- u,Lnu,,- Lnu) + lim ( u,Lnun- Lnu) + lim (un,Lnu- Lu)
_0.

Thn combining (3.12) with (3.13) we have that

lira sup Wn Ln L) O.

Then by Lemma 2, we obtain that w A(Lu +f ), and this implies u +A(Lu +f) O.
Then by Lemma 4, (2.6) has a solution on [0, T].

Proof of Corollary 1. We first note that from the condition (2.4), we have that for
each [0, T ],

Ily I1 +<0. ,. .>=< fc
for all x L2(0, t; H) and y ,4x. This implies that for each [0, T], (2.4)’ holds with
c{= v/-cl and c’=c_. Then we choose T’ [0, T] such that cllalla<o,r,>< 1. Then by
Theorem 1, there exists a solution u of (1.1) on [0, T’], i.e., there exists w’[0, T’]+H
such that w(t)+Au(t) a.e. on [0, T’] and

By using the continuation argument employed in the proof of [1, Thm. 1], we show that
u(t) can be continued on [0, T]. Consider the equation

(3.14) v(t)+ a(t-s)Av(s)dsf(t+r)- a(r+t-s)w(s)ds,

where T"=min(T’,T-T’). Let f(t) denote the right side of (3.14). Then again by
Theorem 1, there exists a solution v of (3.14). We define a function " [0, T’+ T"] H
by

ft(t)={u(t) on [0, T’],
"]v(t-T’) on(T’,T’+T

Then is a solution of (1.1) on [0, T+ T"]. By repeating this continuation, we obtain a
solution u of (1.1) on [0, T].

To prove Theorem 2, we need some lemmas and propositions. The continuation
argument employed in Corollary 1 is available under the assumption of Theorem 2.
Therefore in the following propositions, we assume that C2[laIIL,(O,T)<I for a(t)
L(0, T) and A satisfying (2.4).

PROPOSITION 1. Let A" H H be an operator satisfying (2.4) and (2.5). Let a(t)
L2(0, T) satisfy (2.2) and (2.3). Suppose that

LAfL is finitely continuous(3.15) for each fLg-(O, T; H), *"
andpseudo-monotone on L2(0, T; H).

Then for each f L(O, T; H), (1.1) has a solution on [0, T].
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Proof. Let f L2(0, T; H). As in the proof of Theorem 1, we write L instead of
L. From (2.4), (2.5) and (3.15), it follows that ((1/n)I+ L*A/L) is finitely continuous,
pseudo-monotone, coercive and bounded. Then since L* is positive, by [3, Thm. 7.8],
we obtain that for each n >__ 1, there exists a solution u of the equation

(3.16) L,Un +
1 L*fLu--u + O.
El

Since L* is injective by (2.3), (3.16) implies

(3.17) 1
L* __jLu+ u + O.U

n

Multiplying (3.17) by u, gives

(3.18)
Un ll2 Un (fC1 + C2 (l[ tlln +f II))

<-II u. II(C Cl +c llallv<o, )llu.II + c ll f II).

Then it follows from (3.18) that there exists M> 0 such that

(3.19) IlUnll_<M for all n>=l.

Let ( w, } be a sequence such that w, L*fLun and L*u, + (1/n)u + Wn--O. Then by
(3.19) and (2.4), we may assume that Un--.U and w,w in Lz(0, T; H). Then since
(1/n)u,O and

lim inf ( L*u., u,,- u) lim inf ( L*u. L*u u u) + lim ( L*u u. u)

>=0,

multiplying (3.16) by u,-u gives

limsup (w.,u.-u) <=0.
n )

Then by Lemma 2, wL*/Lu and therefore we obtain that L*u+L*(Lu+f)O.
Since L* is injective, we have that u+(Lu+f)O. Then by Lemma 4, (1.1) has a
solution on [0, T].

Theorem 2 follows from Proposition I and the following proposition.
PROPOSITION 2. Let A H H be a finitely continuous pseudo-monotone operator

on H. Let a(t) L2(O, T) satisfy (2.2) and (2.3). Then for each f L2(O, T; H), the
operator L*fL is finitely continuous andpseudo-monotone on L(O, T; H).

For the sake of simplicity of the proof, we prove the case f= 0 in Proposition 2. To
prove Proposition 2, we need some lemmas. In the followings, we suppose that A and
a(t) satisfy the assumption of Proposition 2. We write L instead of L.

LEMMA 5. Let ( un }, { w } c L2(O, T; H) be sequences such that Un---U in
L (0, T; H), w .,Lun for each n > 1 and lim suPn ( Wn, Lun Lu) <= O. Then
lim,_o(wn,Lun-LU) =0.
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Proof. We first observe that for each t[0, T], (Lun)(t) converges weakly to
(Lu)(t) in H. For each zH, a(t)zL2(O,T; H). Then since unu in L2(0, T; H),
we obtain that for each [0, T] and z H,

lim (, (Lu,,)(t)-(Lu)(t))= lm z, a(t-s)(u(s)-u(s))ds

--0.

From the above observation and Lemma 1, we obtain that liminf,(Wn(t ), (Lu,)(t)
-(Lu)(t))O a.e. on [0, T]. We also have that there exists M>0 such that I(Lu,)(t)l
M for all n 1 and [0, T]. Then by the condition (2.4), we obtain that there exists
K>0 such that I(%(t), (Lu,)(t)-(Lu)(t))lK for all nl and t[0, T]. The by
Fatou’s lemma, it follows that

OZ frliminf(w.(t), (Lu.)(t)-(Lu)(t))dt
0 n

lim inf ( w Lun Lu)

lim sup ( w, Lun Lu
n

0,

and ts completes the proof.
LEMMA 6. Let { u }, { w } c L2(0, T; H) be sequences such that UnU in

L (0, T; H), w, Lu for all n 1 and lira sup ( w Lu Lu O. Then for given
e > 0, there exists n o 1 such that (for all n n o),

for all [0, T].
Proof. Suppose that there exist e > 0, a sequence { } and a subsequence { Un, } of

{ U ) such that

We may suppose without any loss of generality that ti o. Then since a(t) Le(O, T)
and uu in L(0, T; H), it is easy to see that (Lu,)(ti) converges weakly to (Lu)(to)
in H and (Lu)(ti) converges strongly to (Lu)(to) in H. Then (3.20) implies

On the other hand, by Lemma 1, we have that

iminf (w,(t,), (Un,)(t,)--(CU)(,O))=O.
This is a contradiction.

LEMMA 7. Let { u, }, ( w } be sequences such that UnU in L2(0, T; H), w Lu
for each n 1 and lim SUPn ( Wn, Lu Lu) O. Then there exists a subsequence { Un, }
of { U such that

 imsup(wn,(t), a.e.
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Proof. From Fatou’s lemma, we have that

0 lim (w,, Lug- Lu)
n.--o

T
__< limsup (w(t), (Lun)(t)-(Lu)(t))dt

lim [rsup(w.(t), (Lu)(t)-(Lu)(t))dt.
koz ’0 n>=k

By Lemma 1, we have that

(3.23) liminf (w(t), (Lu,)(t)-(Lu)(t)) >=0 a.e. on [0, T].

Then it is sufficient to prove that there exists a subsequence ( Un, } of ( U, ) such that

(3.24) lim forjo
sup (w,(t), (Lu,,)(t)-(Lu)(t))dt-O.
i>__j

In fact, if ( u,, ) satisfies (3.24), we have, by (3.22), that

(3.25) frlimsup (w,, (t), (Lu)(t)-(Lu)(t))dt=O.
’0 i---* o

Then from (3.23) and (3.25), (3.21) follows. For each n >_ 1 and i> 1, we put

P.(i) (t [0, T]" (w.(t), (Lu.)(t)-(Lu)(t))>= 1/i }.
We claim that there exists a subsequence {Un, } of {U,} such that m(P,,(i))< 1/2 for
all >= 1, where m is the usual measure on [0, T]. Fix > 1 and choose e > 0 such that
eT+ e < (i2i) 1. From Lemmas 5 and 6, we can choose n such that

( w,,, Lug,- Lu) < e

and

(w,(t), (Lu)(t)-(Lu)(t))>= -e a.e. on [0, T].

Then since

e > ( Wn, Lu, Lu)

,(i)(Wn (t) (Lu,,)(t) (Lu)(t))dt

+ rio (Wni(t)’ (tUni)(t)--(tu)(t))dt
T]\P.,(i)

>=i-m(P,(i))-e(T-m(P,(i))).
Then we obtain that m(P,,(i))<2 -i. Now we show that

(3.26) lim forSUp(w,,(t), (Lu )(t)-(Lu)(t))dt=O.
j--* o >__j
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Since ( un ) is bounded in L2(0, T; H), a(t) L2(O, T) and A satisfies (2.4), there exists
M>0 such that I(LUn)(t)l<=M and I%(t)l<=M for all n>l and t[0, T]. Then for
given e>0, we choose i0> 1 so large that Ti- + 2M2(Ei>=io2-i)<e. Then we have

forSUp (%,(t), (Lun,)(t)-(Lu)(t))dt
i>=i

"fl..J SRp(W (t), (LUn)(t)-(Lu)(t))dt
iio pn,(i) i2-io

+ f0 sup (w, (t), (Lu,,)(t)-(Lu)(t))dt
T]\UiioPn,(i) i>=io

Therefore we obtain (3.26). This completes the proof.
LEMMA 8. Let ( u ), ( w ) c L2(0, T; H) be sequences such that Un-U in L(O, T;

H), w .Lu for each n >= 1 and

limsup(wn(t ), (Lun)(t)-(Lu)(t))<_O a.e. on [0, T].
n--.o

Suppose that wn-.w in L2(0, T; H). Then w Lu.
Proof. It is easy to see that for each t[0, T], (%(t)) is bounded in H, because

(Lun)(t) is bounded in H and A satisfies (2.4), while, from the assumption, it is
obvious that wE co(wn’n >= k } for each k >_ 1. Then we have that there exists a se-
quence ( h/ } such that h/ co( w n >= k } and h k

--) w in L(0, T; H). Then we may
assume without any loss of generality that hk(t)w(t) a.e. on [0, T]. Then since
hk(t)co(%(t)’n>=k }, we have that w(t)fqkco(wn(t)’n>=k } a.e. on [0, T]. Then
by Lemma 2’, we obtain that w(t)A(Lu)(t) a.e on [0, T], i.e., wLu.

Remark. It is easy to verify that Lemmas 5, 6, 7, and 8 hold with replaced by
.f(f L2(0, T; H).)

Proof of Proposition 2. For the sake of simplicity of the proof, we suppose that
f= 0. We prove that L*L is pseudo-monotone on L2(0, T; H). Let { u ), (% } c
L2(0, T; H) be sequences such that un-u in L2(O, T; H), w Lu for each n >__ 1 and
lim supn ( Wn, Lu Lu) <= O. Let v L2(0, T; H). We show that there exists w Lu
such that w, Lu Lv) <= lim inf wn, Lu Lye. By Lemma 5, we have that lim
( w Lu Lu 0. Hence we choose a subsequence ( un } of ( u, } such that wni-w in
L2(0, T; H) and limi_. ( wn, Lun,- Lv lim inf (%, Lu Lye. Then we have
that

liminf (%,Lu-Lv) lim Wni,tUni-tu

lim w,,,LUn-LU + lim w,
i-*o i--

lim
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On the other hand, by Lemma 7, we may assume that

lim sup ( wn, ( ) ( Lu,, ) ( ) ( Lu ) ( ) ) <= 0 a.e. on [0, T].

Then by Lemma 8, it follows that wLu. Therefore L*.,L is pseudo-monotone on
L2(0, T; H). We can prove that L*L is finitely continuous by the parallel argument
as in the proof of Lemma 3. Then we omit the proof.

4. Examples.
Example 1. Let H be a real Hilbert space and let A’H H be an operator

defined by

Ax=
(x H: Ixl=<l.}

if x4:0,

if x=0,

where xo H. Then it is easy to see that A is finitely continuous and pseudo-monotone
on H. Let a(t) be an element of L2(0, T) such that a(0)> 0, a and a’ are nonnegative
convex on [0, ). Then a(t) satisfies (2.2) and (2.3) on each interval [0, T](T>0).
Moreover by Theorem 2, (1.1) has a solution on [0, T] for everyf L2(0, T; H).

Example 2. Let H be a real Hilbert space and A:HH be a multivalued
compact operator (i.e., A is upper semicontinuous and maps bounded sets to compact
sets). Suppose that Au is convex for each uH. Then A is finitely continuous and
pseudo-monotone on H. Suppose that A satisfies (2.4) and (2.5). Let a(t) be as in
example 1. Then for each f L2(0, T; H), (1.1) has a solution on [0, T].

Acknowledgments. The author wishes to express his hearty thanks to Professor W.
Takahashi, Professor J. A. Nohel and referees for many suggestions and advice regard-
ing this paper.
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EIGENVALUES OF DIFFERENTIABLE POSITIVE
DEFINITE KERNELS*

CHUNG-WEI HA

Abstract. The main object of this note is to answer in the affirmative a conjecture in [4] that for an

integral operator generated by a p times continuously differentiable positive definite kernel, the eigenvalues
are o(1/np+ 1).
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1. Introduction. A function K(x,t)L2[O,1] 2 is known as an L2-kernel. It de-
fines a compact operator on L2[0,1] by

Kf(x)= fol K(x,t)f(t)dt.
The adjoint K* of K is generated by the kernel K(t,x) so that the operator K or its
kernel K(x, t) is Hermitian if K(x, t)= K(t, x) for almost all 0 =< x, <_ 1. Suppose that
K(x, t) is Hermitian and positive definite, that is,

fo fo K(x,t)f(x)f(t)dxdt>=O

for all f L2[0,1]. Then the spectrum of K consists of a sequence of positive eigenval-
ues (Xn(K)} which converges to 0. These eigenvalues are arranged in decreasing order
and repeated according to their multiplicities. Assume also that K(x, t) is continuous
on [0,1] 2. If (q,n } is the corresponding orthonormal sequence of eigenfunctions of K,
then the well-known Mercer’s theorem says that K(x,t) has the eigenfunction expan-
sion

(1) K(x,t)= E .(K)q.(x)q’n(t),
n=l

where the series converges absolutely and uniformly on [0,1]. A kernel of this type
generates an operator of trace class; the trace of K is given by

., Xn(K)= folK(t,t)dt< .
n=l

Consequently

t 1 )(2) x
n

*Received by the editors January 17, 1984.
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as n . Recently Reade [4] showed that if it is also assumed that K(x,t) cl[0,1] 2,
then (2) can be improved to hn(K)=o(1/n 2) as n--* . It is also suggested in [4] that
if p > 1 is an integer and if K(x,t) CP[O, 1] 2 is positive definite Hermitian, then

(1)n(K) --0 nP+l
as n . The main object of this note is to prove this conjecture.

2. Singular values. Suppose that T is an integral operator not necessarily Hermi-
tian. Then T*T is positive definite Hermitian and so has a sequence of positive
eigenvalues which converges to 0. The positive square roots of these eigenvalues,
arranged in decreasing order and denoted by {sn(T)}, are called singular values of T
(see [3, Chap. 2]). It can be proved that T and T* have the same singular values (see [3,
p. 28]). If T is positive definite Hermitian, then the eigenvalues and the singular values
of T coincide. The singular values of T have the characterization that

s, (T) inf{ll 7"1. I1" H is a vector subspace, codimH =< n 1 ),
where Tin denotes the restriction of T on H (see e.g. [1]). The infimum is attained
when H is the vector subspace formed by f L2[0,1] which are orthogonal to the first
n- 1 eigenfunctions 1,"" ", qn-1 of T*T. Consequently, if r >= 1 is an integer and if H
is a vector subspace of codimension =< r, then

(3)
Moreover, if K is positive definite Hermitian, then we can write T*KT=
(KX/ZT)*(K1/2T), where K1/2 denotes the positive square root of K, and so

(4) 2x+,_(T*Kr)= Sm+,_x(T*KT ) ZSm(K )s (T)= km(K)X,(

To prove the main results, we also need to compute the singular values of the operator

Jf(x)= fl f(t)dt.

The numbers s2(J), which are eigenvalues of the operator J’J, must satisfy

1 f0x{ft },.(x)- n(s)ds dt,

that is,

1 On(O) O’n(1) O.

A simple calculation shows (see [3, p. 120]) that

2(5) Xn(S*J)=s,,(J)=
rr2(2n- 1)2"

3. The results. Suppose that the kernel K(x,t) is positive definite Hermitian. If
the symmetric derivative

2r(6) Krr(X")- Ox )t rK(x’t)
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exists and is continuous on [0,1] 2, then Krr(X,t)C[O, 1] 2 is also positive definite
Hermitian, and so by Mercer’s theorem, Krr(X,t ) generates an integral operator of
trace class. Indeed, it is shown in [2] that the eigenfunctions qn of K are in cr[0,1] and
the eigenfunction expansion (1) can be differentiated term by term so that

Krr(X,t)= E Xn(K)dp(nr)(x)d(nr)(t)"
n=l

The series converges absolutely and uniformly on [0,1].
THEOM 1. If K(x, t) is positive definite Hermitian and if the symmetric derivative

(6) exists and is continuous on [0,1] 2, then

(7) E H2rn(K) < (X).

n=l

Consequently,

(8) lim l’12r+lXn(g)=o.

Proof. The proof is suggested by a method of Krein (see [3, p. 121]). Let H be the
vector subspace formed by f L2[0,1] which are orthogonal to the constant function
e(t) 1 and the function K(t,0); then H1 is of codimension_< 2. If fH1, then

(9) folf(t)dt=O and fol K(O,t)f(t)dt=O,
and so we have the expression

(10) Kf(x)’- fo1 K(x,t)f(t)dt
=foX(folKll(Y,s)(fs
=J*KJf(x).

f( ) dt ) ds } dy

We also have an expression symmetric to (10). Let G be the vector subspace formed by
g L2[O, 1] which are orthogonal to the functions e(t) and K(t, 1). Then for g G

g( ) dt= O and fol K(1,t)g(t)dt--O,
and so

(11) Kg(x)=fo K(x,t)g(t)dt

=JK11J*g(x ).
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For r-2, let H2 be the vector subspace formed by fH which are orthogonal to the
functions J*e(t) and J*K11(t,1), then H2 is codimension=<4. If fH2, then in
addition to (9), f also satisfies

fO Jf(t)dt--O and fO Kl(1,t)Jf(t)dt=O.

Now (9) holds, and by applying (11) to the function Jr(t) with the kernel K1j.(x,t ) in
place of K(x, t),

KxJf( x ) JK2=J*Jf( x )

Substituting into (10), we have

Kf( x ) J*JK22J*Jf( x ).

If r >= 3, we can keep on applying (10) and (11) by turns. Let TO be the identity operator
and for 1 __<j __< r, let

where A =J if j is odd and A =J* if j is even; the operator T is the product of j
factors which are either J or J* appearing alternately. Let H be the vector subspace
formed byfL2[0,1 which are orthogonal to the 2r functions

Tj*e(t) and Tj*Kjj(t,a)

for j=0,1,-.-, r-l, where a=0 if j is even, a=l if j is odd and Koo(X,t)=K(x,t ).
Then Hr is of codimension =< 2r and forfH,

Kf(x ) T,,*K,Trf( x ).

Since T*T=(J*J) and is positive definite Hermitian, ,,(Tr*Tr) (n(J*J)} r. By
(3), (4) and (5) for n >= 2r + 1

(12) )k2,,(K) =< )k.,_l(K) <=)t2n-2-(T*KrT)

<__Xn_2r(Tr*Tr).n(Krr) (n_2r(J*J))"n(Krr)

r2r(2n-4r-1)
2r)tn(Kr)"

As noted above, the operator Kr is of trace class and so (7) is proved. (8) follows
immediately from (7) (see [3, p. 122]).

THEOREM 2. If K(x, t) C’[0,1] 2 is positive definite Hermitian, then

(1)(13) X,(K)=o p+l’

as n o.
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Proof. If p is even, then (8) gives (13). If p is odd, then set r=(p- 1)/2. Since
Krr(x, t) C1[0,1] 2 is positive definite Hermitian, Reade’s result [4] implies that

lim n2kn(Kr) =0.
n oo

Relation (13) now follows from (12).
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POSITIVE DEFINITE Cp KERNELS*

J. B. READE

Abstract. It was shown in [SIAM J. Math. Anal. 15 (1984), pp. 137-142] that the eigenvalues (Xn) of any
positive definite Cp kernel are o(1/np+ 1) as n. More recently, Ha has proved [SIAM J. Math. Anal.,
17 (1986), pp. 415-419] that, for p even, a stronger result holds, namely, that Y’.nPXn < . It is the purpose
of this note to show by counterexample that Ha’s result is not true for p odd.

1. Introduction. Any p times continuously differentiable kernel K(x, t) on Ixl <-1,
tl <_ 1 gives rise to a compact operator

Tf(x)=f K(x,t)f(t)dt
1

on L2[-1,1]. If K(t,x)=K(x,t), then T is also symmetric and so has an orthonormal
sequence (qn) of eigenfunctions whose eigenvalues (,n) form a real sequence conver-
gent to zero. Also K(x, t) has the expansion

K(x,t)=Y’,,,n(X)n(t)

mean square convergent over Ixl 1, Itl 1. If, further, K(x,t) is positive definite, i.e.,

fx fx K(x,t)f(x)f(t)dxdt>=O
-1 -1

for allfL2[- 1,1], then Xn>__ 0 for all n, and, if we assume

>...> >...’ >=,2=

then we have np+l ---)0 as n---) o if p odd, and Y’.nPn< c if p even. (See [1] (this
issue, pp. 415-419), [2].)

We shall show both these results are best possible in the sense that, given any real
decreasing sequence (kn) such that np+lhn-O as n---) o in casep odd, EnPk,< c in
case p even, there exist positive definite Cp kernels whose eigenvalues are (,,). The
divergence of the series El/nlogn shows that any positive definite Cp kernel with
eigenvalues k,= 1In p+I logn, wherep is odd, cannot satisfy nP,n < o.

2. Trigonometric series.
LEMMA 1. The trigonometric series Y’,n- sin nt has uniformly bounded partial sums

over all real t.

Proof. The maximum value of IEn-isinntl occurs at t=rr/N+l and is
Y’,xUn sin nr/N+ 1 which converges to ft- sin dt as N . Q.E.D.

LEMMA 2. If p is odd, and if (X,,) is any decreasing real sequence such that
n p+ X--) 0 as n--) c, then

f(t)=E,nCOSnt

is Cp.

Received by the editors April 3, 1984.
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Proof. The series obtained by formally differentiating term by term p times is
+EnP’n sin nt which is uniformly convergent over all real by Dirichlet’s test (see [3,
p. 50]) since n p+1 decreases and converges to zero and En-1 sin nt has uniformly
bounded partial sums. Q.E.D.

LEMMA 3. Ifp is even, and if (,n) is any real sequence such that ErlPn< o, then

f(t)=E,ncosnt

is Ce.
Proof. p formal differentiations give +_EnPXncosnt which is uniformly conver-

gent by the Weierstrass M-test (see [3, p. 49]). Q.E.D.

3. The counterexamples. The sequence (cosrnt)nzl is orthonormal in L2[ 1,1]
and so, for any sequence (Xn) such thatE< , the kernel

K(x, t) EXcos ,rnx cos rnt= _,X (cos rn (x + t) + cos ,rn (x t))

is compact symmetric having eigenvalues (An). K(x,t) is Cp if, for p odd, A decreases
and n p + xA 0, or if, for p even, EnpAn < , by Lemmas 2 and 3.
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UNIFORM ASYMPTOTIC SOLUTIONS OF A CLASS OF
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

HAVING A TURNING POINT AND A REGULAR SINGULARITY,
WITH AN APPLICATION TO LEGENDRE FUNCTIONS*

W. G. C. BOYD ,ND T. M. DUNSTER

Abstract. The asymptotic behaviour, as a parameter u o, of solutions of second-order linear differen-
tial equations with a turning point and a regular (double pole) singularity is considered. It is shown that the
solutions can be approximated by expressions involving Bessel functions in a region which includes both the
turning point and the singularity. Explicit error bounds for the difference between the approximations and
the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre
functions.

1. Introduction. In this paper we examine the asymptotic behaviour for large
positive u of solutions of differential equations of the form

(1.1) d2w
dx 2

The equation is assumed to have a regular singularity at x 0 and, except when a 0, a
simple turning point at x xt. The real parameter a, which we define more precisely in
a moment, is a measure of the severity of the singularity at x=0; we assume that it
ranges in the interval 0 =< a < a0, where a0 is a given constant which may be infinite.
The position x of the turning point is assumed to be a continuous real function of a
which tends to zero as a0. It is supposed that g(a,x) is small in absolute value
compared with u2f(a,x) except near the turning point. We find asymptotic expansions
and rigorous error bounds which are uniformly valid as a varies in an interval which
includes a 0. We consider separately the cases when the independent variable x takes
real or complex values.

In the real-variable case, we shall suppose that the equation (1.1) is given in the
x-interval (x,x2) which includes 0, xt" the endpoints x, x 2 may be infinite. Both
x2f(a,x) and x2g(a,x) will be assumed to be infinitely differentiable functions of x
and continuous functions of a and x simultaneously. (If one requires only asymptotic
approximations to solutions of (1.1) instead of asymptotic expansionsi.e, requires
only a finite number of termsthen the restriction to infinite differentiability can be
relaxed.) The limits of xZf(ot, x) and x:g(a,x) as x0 will be assumed to be c/4 and

-14 respectively: if necessary, the parameter u is redefined to ensure that the condition
on g(a,x) is met. We shall assume that for each nonzero value of a, f(a,x) has a
simple zero at x x and elsewhere is nonzero. In the case a 0, we shall assume that
f(0, x)4:0 for x 4:0 and that as x 0 the limit of xf(O,x) is nonzero.

In the complex-variable case, we shall suppose that the equation (1.1) is given in a
domain D of the complex z-plane which contains z=0 and z xt, and may be un-
bounded. Both f(a,z), g(a,z) will be assumed to be holomorphic functions of z and
continuous functions of a and z simultaneously except when z =0. We shall assume
that for each value of a the only singularities of f(a,z) and g(a,z) are at z=0: the

*Received by the editors May 24, 1983 and in final revised form August 9, 1984.
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Laurent series expansions of f and g about z 0 will be assumed to have leading terms
a2/4z - and -1/4z 2 respectively. For each nonzero value of a, we shall assume that
the function f(a, z) has a simple zero at the point on the real axis z x and elsewhere
is nonzero. In the case a =0, we shall assume that the function f(O,z) is nonzero and
has a simple pole at z 0.

In a review of unsolved problems in asymptotics, Olver (1975c, p. 117) suggests
that uniform asymptotic expansions of solutions of (1.1) may be found in terms of
Bessel functions of order ua. We indeed find this to be the case. Expansions of this
kind have been established previously by Olver (1958), (1974, Chap. 12) and Thorne
(1957). Olver treats the case when a is small (O(u-1)). His 1974 results include explicit
bounds for the error terms in the expansions. Thorne treats the case when a is not
small. He does not obtain explicit error bounds. Our treatment differs in two major
ways from those of Olver (1958) and Thorne (1957a). First, the expansions will be
shown to be uniformly valid in an interval including a =0 (so unifying the results of
Olver and Thorne). Secondly, we obtain explicit error bounds, as Olver (1974) did for
the case a small. The advantage of the first of these extensions is that the expansions
can be used with confidence when a is either small or moderate (cf. Olver (1975a, pp.
138, 139)). The advantage of the second, other than the obvious computational consid-
eration, is that the conditions under which the expansions may be regarded as asymp-
totic to exact solutions can readily be established a posteriori (cf. Olver (1975a, p. 139)
and Olver (1980)).

We refer also to the work of Baldwin (1979). At first sight the problem he tackled
may seem to be a special case of ours. This is not so" for example, in our notation the
limit as x---)0 of xf(O,x) is zero for his problem. Nevertheless his work has some
connections with ours.

We tackle the problem using the standard approach in problems of this sort: the
comparison equation method. We transform the original equation into one of the form

(1.2) d-W((a2d.2u2 -f2 ’1 )6(a’)+" 4"21 }W
an equation which has the appropriate singular behaviour near ’=0 and a turning
point at ’= a2. This choice of comparison equation is the same as that of Olver (1974,
Chap. 12), but differs from that of Thorne (1957a). (Thorne’s equation (2.4) may
however be readily transformed to the above form.) With our choice of comparison
equation, the transformation z-, " of the independent variable is analytic throughout
D, whereas Thorne’s is not at z 0.

The plan of the paper is as follows. In {}2, we describe the formal series solutions
for the real variable case and in {}3 develop error bounds for them; {}4 applies the
results to the Legendre functions of real variable. In {}5 we discuss the formal series and
the corresponding error bounds for the complex variable case; {}6 applies the result to
the Legendre functions of complex argument.

2. Formal series solutions: the real-variable case. To transform the original equa-
tion (1.1) to the form (1.2) we define a new independent variable and a new
dependent variable Wby

a 1 d’ (x) W(’)(2.1) f(a,x) -- 42 4"
w
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Without loss of generality we assume that xt> 0 when a 4= 0. We then specifically define

" by
(2.2a) f (- 0/2)1/2 fX2 d (-f(ot,t)}l/2dt (x>x, or ’> aa),

Xt

(2.2b) fa" (- q- :2)1/2 fx21i dti
x {t2f(ot,t)} 1/2

dt (x<x or’<a)

Each of the square roots in (2.2a, b) is taken to be positive or zero. When " < 0 and
x < 0, the integrals in (2.2b) are defined by their Cauchy principal values (for a 4= 0).
This latter convention introduces ambiguities into the transformation (2.2b) which we
must resolve. Consider the left-hand side of (2.2b) when a 4= 0: in any neighbourhood of

" 0 there are pairs of values of " (one positive and the other negative) for which the
integrals are equal; an analogous remark applies to the right-hand side of (2.2b). To
remove the resulting ambiguities from the transformation x " we impose the restric-
tion that the sign of " must be the same as that of the corresponding x.

We remark that the integrals on the left-hand sides (2.2a, b) are expressible in
terms of elementary functions. They are respectively

(2.3) (. 02)1/2 -1 (if-- Or2) 1/2
a tan " > a2

and

( q_ 02)1/2 1
-aln

O q- ( ’ if- 02) 1/2

The function ’(x) defined by (2.2a, b) is monotonically increasing and infinitely
differentiable in the interval x <x <x2. These results can be readily established by
considering separately the intervals (xl,0), (O, xt), (xt, x2) and neighbourhoods of the
points x=0, x= x,. We denote the endpoints ’(x) and ’(x2) by ’, 2 respectively.

The effect of the transformations (2.1) is to yield the new differential equation

d.2
u 2 if--- W,

4’2 4" " 4’2
where, with’ representing differentiation with respect to ’,

(2.5) P (a,’) ,1/2 d2 ,-1/2 ,2 1-----=x -(x )+gx +4---i
A straightforward calculation yields the result

(2.6) (0, ’) 1-- (" 02) 2(" +40t2)+-----1(--Ot2)f-3(5f2--4ff"- 16gf2),
where" represents differentiation with respect to x. Since x(’) and x2g(x) are infinitely
differentiable and x’(’)> 0, it follows from (2.5) that +(a, ’) is an infinitely differentia-
ble function of " for ’x < " < ’2, except possibly at ’=0 where the third and fourth
terms on the right-hand side of (2.5) have singularities of O(’-2). Consideration of the
Maclaurin series of x2g(a,x) about x 0 however, shows that as " 0, the third and
fourth terms together are O("-x) and so the Maclaurin series of q(a,’) about ’=0
exists to all orders; in particular b (a, ’) is infinitely differentiable at " 0.
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There is a further property of @(a,’) that we shall require: continuity as a
function of a, simultaneously. This result is needed to ensure that the asymptotic
expansions we find are uniformly valid near ’= 0, a 0. For convenience we introduce
the notation

f(a,x) xt(a)-x
4x

We may then, following Olver (1975a, p. 142), prove the following result.
LEMMA 1. Assume that
(i) p(a,x), Op(a,x)/Ox, O2p(a,x)/Ox

and x in the region 0 <
(ii) p(a, x) is positive throughout the same region;
(iii) ]O3p(a,x)/Ox is bounded in a neighbourhood of the point a =x=0;
(iv) xt(a) is a continuous function of a when 0<= <a0, which takes positive values

when a > 0 and tends to zero as O.
Then the function (a, ) defined by (2.5) is continuous in the corresponding region of

the ( a, )-plane.
There is a corresponding result for complex x, which is fairly easy to prove. The

real-variable proof is rather more difficult, but largely follows that given by Olver
(1975a, p. 142). It is outlined in Appendix A.

If the term q(a, ’)/’ is neglected in (2.4) the resulting equation has solutions of
the form I/2cg,,(u/) when ’>0, where Cgdenotes the Bessel functions J, Y, or any
combination of them; when " < 0, solutions are 111/2u,(u]11/2), where Sadenotes the
modified Bessel functions I, K, or any combination of them. The solutions correspond-
ing to J, Y and to I, K each constitute linearly independent pairs. For the purposes of
our error analysis we shall need to select solutions which satisfy the more demanding
restriction that they constitute numerically satisfactory pairs (Olver (1974, p. 154)). The
solutions corresponding to J, Y and to I, K do each constitute numerically satisfactory
pairs in " > 0 and " < 0 respectively. When " is complex, neither pair is satisfactory.

When account is taken of the term p(a, ’)/’ in (2.4), the functions we have just
discussed are only the first terms in asymptotic expansions of solutions of (2.4)" we seek
expansions of the form

(2.7) 1/2tu ( U1/2 )

_
A ( --) .-[- -- ca( u /2 Bs(’’) (>0)

s-----0 u2S U
s=0 u2S

where denotes J, Y or any combination of these. Formal substitution of this series
into (2.4) yields

l/2(ua(Ul/2) s=0E ’q- U(a(U1/2) s0: --"-" 0,

where

1
C -tat -[- Atst--IA --- 1B B a2 1B,

Os= - la,s + -lB_ + Bs-l-- Bs-1.



426 W. G. C. BOYD AND T. M. DUNSTER

In these and subsequent expressions, quantities with negative indices are to be under-
stood to be identically zero. The differential equation can then be formally satisfied
provided C 0, Ds 0 for s 0,1, 2, . Thus we require

These relations can be satisfied by

(2.9a) Bs(a,’)

(2.9b) A(ot ’)=-" s_x(ot,’)+ 4,(a )B (a j)dj+.

In (2.9b), X is an arbitrary constant of integration; the corresponding constant in
(2.9a) has been set equal to zero to ensure that B(’) is differentiable at " a2. Without
loss of generality, we take 0 1, so that A0(a,’) 1. Relations (2.9a, b) then succes-
sively determine Bo,A1,B1,A2,.... The remaining arbitrary constants 1,h2,... may
be assigned values by reference to the specific properties of that solution whose
asymptotic expansion is being found. It follows immediately from (2.9a, b) that A(a, ’),
Bs(a,") are infinitely differentiable functions of " in the interval 0 =< " < ’2 for each
value of a (cf. Olver (1974, p. 410)).

When " < 0, we seek formal series solutions of the form

(2.10)
s=0 /22s 0 u2S

where .oa denotes I, K or any combination of these. One finds that the coefficients
As(’), B(’) in (2.10) satisfy the same differential equations (2.8a, b) as do the coeffi-
cients in the formal series solution (2.7): we define As(), B() for " <0 by analytic
continuation from " <0, so that (2.9a, b) are valid in " < 0 too. (Thus As(" ), B(’) are
infinitely differentiable in ’ < " < ’2-)

3. Error bounds (real variables). To verify that the series (2.7), (2.10) are uniformly
valid asymptotic expansions of an exact solution W(u, a, ) of (2.4) we terminate the
series after a finite number of terms and then find an upper bound for the error. Thus
when ’ > 0, we write

(3.1)
n

2s
s=0 U

+ ." =0 u2 e2"+

where denotes J, Y or a combination of them. The standard method of obtaining a
bound for 2,+ is first to find a differential equation for e2n+l; then this differential
equation is re-expressed as a Volterra integral equation, a bound for the solution of
which may be found by the method of successive approximations (Olver (1974, p. 141)).
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The differential equation for e2n + is readily found to be

(3.2) E2n+ -}" u2 - 242 4" n+l

1A2n -Ol -Ol 1Jn(Ol") -l/2Cua(Ul/2)q-

where the primes denote ’-derivatives. Given some arbitrary value g (0 =< g =< ’2), con-
sider that solution of (3.2) for which e2n+l(U, Ot, g)= e’2n+ X( U, Ot, g)=O" except possibly
when g 0 or , it satisfies the integral equation

(3.3) Bn(ol,)}tl/2(uot(U1/2 )

+ I-a21-1/2 (a,)e2,+l(u,ct,)] d
where

g(, ) l ,-I /2 { /2Yua ( 1/2 )- /2Juot (u /2 )

--1/%ot(ul/2) 1/2Yuot(u1/2) }.
Bounds for e_,+ and e,+l can now be found by using a standard theorem given by
Olver (1974, p. 219).

To use this theorem, we introduce a modulus function M,,(x), a phase function
0,(x), and a weight function E(x) which are related by

E.(x)Z(x)=M.(x)cosO.(x), E- i(x) Y,,(x) M,,(x)sinO,,(x).

Following Olver (1974, p. 437) we define E,,(x) as follows. Let x= X, be the smallest
positive root of the equation

(3.4) J(x)=-Y.(x).

Then define

(- Yv(x)/Jv(x)) 1/2,E.(x)
1,

O<x<=X.,
x>=X..

As Olver shows, E,,(x) is a monotonically nonincreasing function of x. One finds

(-2Jv(x)Y,,(x)) /2,
My(x)--

(J?(x)-’[- Yv2(x)) 1/2,

-rr/4,
0(x) tan_l(y(x)/J(x))

O<x<=X.,

x>__X.,

O<x<__x.,

x>=X..
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The branch of the inverse tangent is chosen so that O,(x) is continuous. We also
introduce modulus and phase functions for J’(x), Y’(x) as follows. Define

E-l(x) Y’(x)=N,(x)sin%(x),

where E(x) is unchanged. Thus

t2 1/2(J?(x)+ (x))

O<x<=X.,

x>=X.,

tan-(_ J(x)Y’(x) )r.(x)J’(x)

tan-l(Y’(x) )J;(x)

O<x<=X.,

The branches of the inverse tangents are chosen so that %(x) is continuous, and
%(x) -rr/4 as x0 (v>0) or %(x) -r/2 as x0 (v 0).

Before stating the theorem on error bounds, we introduce the following constants"

(3.5)

each supremum being evaluated over x > 0 and v > 0. In Appendix B we show that x +

exists and is finite. The proofs for /- and /- are similar. Numerical calculations
indicate that x+= 2.08-.. with the supremum being achieved as x,v such that
x--v-(1.33-.. )1/31)1/3 (see part (d) of Lemma 2, Appendix B), and that/-=g-= 2
with the supremum being achieved as x m for fixed v.

THEOREM 1. With the conditions described in 1 and 2, equation (2.4) has, for each
pair of values of u and a and each nonnegative integer n, solutions W2n+l,l(U, Ot,),
W2,,+ 1,2(u, a, ) which are infinitely differentiable in 0 < < 2 and satisfy

(3.6) W2n+l,l(U,Ot,)=l/2Jua(ul/2 ) 2 As(l’---b-Jtau1/2] B,(,;)
s=0 t/2s U

s=0 u2S

(3.7)

"q-E2n+l,l(U,O, ),

W2 +1,2(U Ot )-’l/2Yua(Ul/2 ) As(l’)
2s

s=0 U

" E2n+ 1,2(U 0 ’),

n--1--+Vu;(U EU s=0 u2S

where
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(3.8)

g/2M(ugl/2) (a/2)uN(ugl/,)+(1/Z)g-1/ZMu(ugl/-)
1 Bn())exp(__ (1_a2] Bo())fEff(ua/2)o {l a2l 1/2 + 1/2

U 2n+l U

(3.9)

IE2n+ 1,2 (U, , )l Ig2n+l,2(U, ,
a/2Mua(ua/2 ) (1/2)Nua(ul/2)+(l/2)-l/2Mua(ul/2)

1 ,1/2 (+ 1/2,Eu,(U/), {l-a1 B,()}exp Vf f{-a B0()}u2n+l

Here and subsequently, we use the symbol to denote the variational operator, a
formal definition of which may be found in Olver (1974, p. 27).

These results are proved following the standard method referenced below equation
(3.3). An essential feature of the proofs is the observation that

for0< < .

In the notation of (3.3), choose g=0, J to arrive at (3.6), (3.8) and g= a, Y to
arrive at (3.7), (3.9). When fa= m, (3.9) is meaningful provided the variations of
(-- a2)l/2Bs() converge at infinity. A sufficient condition for this is that as f o , the
f-derivatives ()(a,f) are O(f-1/--") where o is some positive constant (cf. Olver
(1974, p. 445, exercise 4.2)). If the variations fail to converge, f has to be chosen to be
finite, g0 say, and the results of the theorem then apply to the interval 0 < < 0.

The bounds (3.8), (3.9) can be used to deduce the asymptotic nature of the
expansions (2.7). Consider (3.8). In the first place, we see at once that

(3.11) e,+,x(u,a,ff)=fl/%(ufl/)O(f) as f0

from which we deduce that the exact solution W2n+l,l(U,a,) is recessive as f0. To
within a multiplicative constant, therefore, 2n+l,l(U,a,) is uniquely defined. Now
consider the asymptotic nature of the approximation as u m. Since the variations,
o, , that occur in (3.8) are bounded for each a, we deduce

e+x,(u,a,f)=fl/E2(uff/)Mu(U/a)O(u--1) as uo

uniformly in the -interval (0,f), provided f < m, and the a-interval [0,a], where
is any constant satisfying 0 < a < a0. (The uniformity is a consequence of Lemma 1.)
This result can be used to show that (2.7), with =J, is a uniformly valid compound
asymptotic expansion of W,+1,1(u, a, ). To do so, express

where

0 < x N X,
1

x>
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by(x)=
-rrYv(x)M,(x), x> X,.

It then suffices to observe that a(x) and b(x) are uniformly bounded for v >__ 0, x > 0.
(This can be demonstrated from considerations analogous to those discussed in the
proof of Lemma 2 in Appendix B.)

The other solution, W2,+l,2(u,a, ), is dominant as ’--+0" it must be identified by
reference to its properties elsewhere (e.g. as " ’2). Proceeding as above, one can show
that (2.7), with (g= Y, is a compound asymptotic expansion of W2n+l,2(U, Ol,), uni-
formly valid as u o in the ’-interval (0, ’2) and the a-interval [0,

There are two further remarks to be made about (3.6), (3.7). The first is that there
are solutions W(u,a,) and W2(u,a,") which are independent of n and have the
infinite series (2.7), with (g= J, Y respectively, as their compound asymptotic expan-
sions. (This can be shown by the method of Olver (1974, Chap. 10, {}6).) The second is
that when ’2= o, the expansions will be uniformly valid in the ’-interval (0,
provided the variations of (’-Ol2)l/2Bs() converge at infinity; sufficient conditions for
this to be true have been already noted.

When ’<0 the observation that Iu(ull1/2) and Ku(U]]/2) are respectively
monotonically increasing and decreasing functions of 1’1 for fixed u, a leads to the
following result.

TI-ItORtM 2. With the conditions described in 1 and 2, equation (2.4) has, for each
pair of values of u and a and each nonnegative integer n, solutions W2n+l,3(u, ol,),
W2,,+ 1,4(u, a,) which are infinitely differentiable in 1 < < 0 and satisfy

1/2 1/2) (a, nl(3.12) W2n +13, (U, ,a if) ]ffl Iu,( Ulffl h____7 Iffl I’ (ulff[ 1/2)
g ( ol,2s )

s=0 u I s=0 U

q- $2n+1,3(U)
(3.13)

1/2 (1/2)
s=0 U
--+ [’[K’ utl/2)1 B(a,)

U u\ 2s
s=0 U

where

(3.14)
1[1/2Iu ( ulll/2 )

IE2n+l,3(U,

(3.15)

(1/2)(1 + ua)l "u ull -[- u gua+ l(Ulll/2)lu( ull
1 (u2n+l (- )B,, ()}exp T’’0, { I 0/211/2 Bo())

(1/2)(1 -[-UOl)l1-1/2gua(U[ll/2 -[-ugua+l Ull 1/2)
1

u2n+l
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Here,

(3.16) r-= sup(2(x 2 + ,2)1/2Iv(x)Kv( x)},
the supremum being evaluated over x > 0 and v >= 0. The existence of the supremum is
discussed in Appendix B. Numerical calculations indicate r--1.0667..., the supre-
mum being achieved when x- 1.07501 ..., v 0.

The bounds (3.14), (3.15) can be used to deduce the asymptotic nature of the
expansions (2.10); the discussion is similar to that which follows Theorem 1. Thus the
solutions W2,+ 1,3 ( U, 0/, ) and W2, + 1,4(U, a, if) are respectively recessive and dominant
at ’= 0. With L’= I, K, (2.10) is a uniformly valid compound asymptotic expansion as
u--*: of W2n+I,3(U, Ot,) and W2n+l,4(u, ot, ) respectively. There are solutions
W3(u,a,’), Wa(U,a,f) independent of n for which (2.10), with= I, K, respectively, is
a compound asymptotic expansion. When ’1 -c, the theorem will be meaningful
and the expansions will be uniformly valid in the ’-interval (- m, 0) if as " , the
’-derivatives q(s)(a, ’) are O([’1-1/2-s-) for some positive constant o.

4. Legendre functions of large order and degree: real variables. We shall illustrate
the results of the previous two sections by constructing asymptotic expansions for
v---, m of solutions for the associated Legendre equation which are uniformly valid for
x>=0, 0 =<//(v+ 1/2)=<1-8 for arbitrarily small 8>0. (See Olver 1975c, p. 125).) Corre-
sponding results for negative values of v, #, or x may be obtained by using the
appropriate connection formulae. Our choice of solutions is P/"(x), Q(x) in x > 1
and the Ferrers functions P/(x), Q(x) in x < 1; our notation is that of Olver (1974,
Chap. 5, definitions (12.04), (13.14), (15.01), (15.02)) respectively.

The functions (x 1)l/P-(x), (x 1)l/Q(x), (1 x2)l/2p-Z(x),
(1- x2)/2Q(x) each satisfy

(4.1) dw { #-1 v(v+)}dx 2 (l-x2)2 1-x

To within multiplicative constants, these solutions may be identified by their properties
that P-"(x), P2"(x) are recessive at x 1 for/ >= 0 and Q(x), Q(x) are recessive at
x for v > 1/2. In terms of our previous notation, we define

1 /, ot2 1 1 1u=v+-, c=(v+l/2), f(x)=(l_x2)2 l_x2, g(x)=(l_x2)2+4(l_x2 )
The singular point is at x 1 and the turning point at x t--- (1 -0/2)1/2. In order that the
turning point be real, it is necessary for us to demand a < 1" this is the reason for our
requiring/, < v + 1/2.

The x-’ transformations (2.2a, b) are, for this problem,

2
dj

,2)/2 2
dt

1- 1-t

(4.2b) ({12- )1/2 f(x (t2-1 +a2)1/2

21i d ,_ )1/2 2
dt

1- 1-t

( > 02 or x < (1-- 02)1/2),

(’<a2 or X > (1-- t2)1/2),
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the latter integrals being understood to be the Cauchy principal values in " < 0 or x > 1
(for a4:0). The integrals on the right-hand side of (4.2a, b) may be evaluated. For
example (4.2b) is

(4.3) In x+(x-I +0/2)1/2

(1 0/2 ) 1/2
a II-xl x+l-a-a(x--1 --02)1/2

+ln 1 +x x-1 +aa+a(x-I +0/2)1/2

(see, for example, Gradshteyn and Ryzhik (1980, p. 81)). With the new dependent
variable W defined by

1--ot2--X 2 2"
W

one finds that the differential equation (4.1) transforms to

d’2
u2 a 1 1 +(a,’_) W,
42 4’--+ "

where

(4.5)

(o:, ’) 1- (’-- c2) -2[’ + 40c2 + ’ 1_0:2_X2 {( -402+1)x2+(t4-1)}

Before proceeding to establish the asymptotic nature of the solutions of (4.4), it is
convenient at this stage to describe the nature of the x-" transformation near x 1 and
x . As x 1, one finds that " 0 such that

e 2

(4.6) l-x=2(1 .jr)l+l/a(l_ol)l_l/a-1-O(2).
We remark that this result is uniformly valid for all values of a (see proof of Lemma 1
in Appendix A); when a=0 the limiting form of (4.6), 1- x--1/2’, applies. As x ,
one finds " - such that

(4.7) 1 (1 + ot)/+"/2(x - 1- ot)l/2-"/2expl’l/2{1 + 0(1’1-1/2)}
These results follow readily from (2.3) and (4.3).

We shall now find uniform asymptotic expansions for P-"(x) in 0 =< x < 1 and for
P-"(x) in x > 1. Both solutions are recessive as x 1. In particular

(1-x)’/2 (1+o(1)) asxl(4.8) P’(x)
2./2r(t, + 1)

(Olver (1974, p. 186)). It follows from (3.11) that for each nonnegative integer n,

(4.9)

_
a2 )

1/4

PT’(x) c2,,+ t, l_aZ_x2 -l/2w2.+l,l(U’l’)"
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for some constant 2n+ 1,1" The coefficient C2n + 1,1 can be evaluated by comparing (4.8)
with the behaviour of Wz,+l,l(U,a,) as ’0. The behaviour of Ju,(u1/2) near ’=0
implies that

U ut

(4.10) W2,,+l,l(U,a,f)= 2.r(l+ua)l/2+ua/2

( n-x ns(Ot’O)__ n as(t’O) )l+a ]77s+1 + as’0,
s=0 (1) s=l (v+ 1/2)2s

where A,(a,’), B,(a,’) are defined by (2.9a, b). We shall not attempt to define the
arbitrary constants , which appear in (2.9b) at this stage but, following Thorne
(1957b), determine them recursively (see (6.8)). It follows from (4.6), (4.8)-(4.10) that

_e.(1)-v/2-1/4-t*/2(l ) v/2+l/4-t/2(4.11) c2+1,1 v+

( n-1 0) As(o/ 0) )
-1

a+a B(a,
s=0 (v+ 1/2)2.+1

+
s=l (Pq- 1/2)2s

We subsequently derive another expression for c2, + 1,1 (equation (6.10)).
A powerful check on the validity of (4.9) is provided by evaluating left- and

right-hand sides at x 0. The left-hand side yidds (Olver (1974, p. 187))

(1 1 ) (1 11)(1 1 )(4.12) P-(0)=2-t*rr-1/2cos -rrv- -rr/x F -v+ - --/x /F -v+ 1 + -/
By using the Liouville-Green expansion of J,((v+ 1/2).1/2) for large argument and
order, one can show that to leading order the right-hand side of (4.9) yields, for n 0,

(4.13) C1,1(1 a2)-1/4 2 cs/1 1

rr(v + 1/2) rv rr/

When Stirling’s formula is used in (4.12), it is found that to leading order, (4.12) and
(4.13) are indeed the same. This provides independent verification of the correctness of
the asymptotic theory.

In the interval x > 1, one can show in a similar manner that, at least pointwise,

( --0/2 ) 1/4(4.14) Pt*(x)--C2n+X,3

where e2,+ 1,3 =c2,+ 1,1. Actually, it can be shown that (4.14) is uniformly valid in x > 1:
it follows from (4.5)-(4.7) that (s)(a,’)= O(1’1 -*-1) as " -m, and as we remarked
in {}3, this guarantees uniform validity.

Next, we find a uniform asymptotic expansion for the function Q(x) in x > 1. Its
distinguishing property is that it is recessive as x--, m. In applying Theorem 2 to the
function Q(x) we first observe that since p(s)(a,’)--O(l’l -*-1) as ’-m, the
theorem is meaningful for 1 --(X), and the expansions are uniformly valid in " < 0.
Since I,(ull/2), K(ull1/2) are respectively dominant and recessive as " -m, we
deduce that

__a2 )1/4 1/2W.(4.15) Qv(x)---c2.+l,4 l_a2_X2 Il 2n+1,4(U a ’) x>l
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for some constant c2, +1,4 We evaluate 2n+1,4 by considering the behaviour of left-
and right-hand sides of (4.15) as x 1. For the left-hand side we have (Olver (1974,
Chap. 5, (12.21) and (13.14)))

(4.16) O(x)=e""2"/:-:F(t)(x 1)-/(1 + o(1)) as x--, 1.

The behaviour of gu,(u[[1/2) near ’=0 implies that on the right-hand side,

(4.17)

W2 +x,4(u,ot,) --2ua-x’(uOt)
uUa

( n--1 Bs(a’O) As(a O) )1-a +
s=0 (P+1/2)28+1

s=1 (1t+1/2)
28+2n+1’4+0(1) --,0,as

for a > 0, where 82n+ 1,4 is a constant bounded by

1 2,1/2 ( Bo(,)}).1(2+l,n 41 < u2n’+’l - /’0-,{I- a B,()}exp x___u f0,-{I
_

0/211/2
It follows from (4.6), (4.15)-(4.17) that

(1)/2+1/4+t/2(1) -v/2-x/4+t/2

(4.18) C2n+l,4---e -t+lri P+ -’ + 1t- - --( n-1 O) A (or O) )
-1

=0 (v+ 1/2):+1
+

s=, (v+ 1/2):
-[-2n+1,4

A continuity argument shows that (4.18) is appropriate for a 0 also. We subsequently
derive another expression for c2,+ 1,4 (equation (6.11)).

It remains to find a uniform asymptotic expansion for Q;-(x) in 0_<x < 1. (The
result is simpler than that for Q(x).) One could arrive at a result following the method
described by Olver (1974, Chap. 12) in dealing with the corresponding problem when t
is not large: effectively this means taking ’=’(0) in (3.9). As Olver remarks, this
method has disadvantages, and we shall leave the derivation of the result to the
complex variable theory of 6 (see (6.12)).

Our results for the Legendre functions, here and in 6, are more general than those
given by Olver (1974, Chap. 12) or Thorne (1957b). They may be regarded as comple-
mentary to the results of Olver (1975b), which are uniformly valid in the interval
-l<x<l.

5. Expansions for complex argument. The definition of the x-" transformation
given in (2.2a, b) is no longer appropriate when x is supposed to be a complex variable.
Now we replace x by z and define

(5.1) L (- a:)/: z

21 dl= L, (tzf(t))/dtt
where account has to be taken of the branches resulting both from the square roots and
the logarithmic singularities. It is easy to see that the branches can be chosen so that
’(z) is analytic at both z 0 and z xt; subject to this requirement, the actual choice of
branches is unimportant. The dependent variable is transformed as in the real case:
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With the transformations (5.1), (5.2) we arrive at (2.4) again, i.e.

d" 2 4" 2 4 + " 4"2

We continue to assume the parameters satisfy a >= 0, u> 0, but now suppose " is a
complex variable and that (5.3) holds in some complex domain A which includes ’= 0
and " a2 and in which q (a, ’) is holomorphic.

If the term q(a,’)/" is neglected in (5.3) the resulting equation has solutions of
the form 1/c(u/2) where c denotes one of the Bessel functions J, H0, H(, or
any combination of them. We shall seek formal series solutions of (5.3) of the form

(5.4) l/2Cua(ul/2 ) as(l’) + if- c2a(ul/2 ) E ns(l’)
s-- 0 u2S u s=O u2S

where the coefficients As(a,), Bs(a,) are the analytic continuations of those defined
by (2.9a, b). The square root 1/2 which occurs in (5.4) will be defined by

(5.5) X0 < arg’1/2 < Xo + r

for some X0 (-r=<x0-<0). The choice of X0 is determined by the particular problem
under consideration: a common choice is X0 =0. Let A denote the intersection of A and
the ’-plane cut along arg’=2X0: we shall seek solutions of the form (5.4) in the
domain A.

It is convenient for our purposes to introduce the notation (), where c()
denotes 2J, H(1), H(2) for j=0,1,2 respectively. Subsequently, we shall suppose j is
enumerated modulo 3. See also Baldwin (1979).

In order that we may construct auxiliary functions with the appropriate asymp-
totic properties we have to take account of the asymptotic behaviour of the functions
c()(z) in the complex z-plane. It might therefore seem natural to define weight
functions E(J)(z) by

(5.6) exp( fz(t2-g2)x/2 )
However this choice proves inappropriate when , and z are both small and would not
give us the uniformly valid result we seek. Instead we define weight functions which are
close to (5.6) when , or [z[ is large but otherwise differ significantly.

To this end, we first note that (Olver (1974, p. 438))

(1)1/3
X=,-c - +O(,-1/3) as,o,

where c denotes the negative root of the equation Ai(x)= Bi(x) of smallest absolute
value. Let us define to be real (nonnegative) solution of

(1)1/3
g=-c -Then ’, the smallest zero of J(x)+ Y(x) (cf. (3.4)), is such that

,-’Pq-O(P-1/3 ) as,o
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and ’ >_ Xo > 0 (Olver (1974, p. 438, footnote)). Now define a function (J)(z) by

(5.7) d(J)( z ) fa.. dt.

The function (J)(z) has branch points at z 0, + Yr,. In respect of the branch point at
z =0, we can either introduce a branch cut or allow argz to take a range of values
greater than 2r: we shall do both as appropriate. In respect of the branch points at
z= + ’,, we introduce cuts along Im(J)(z)=0. There are thus three possible cuts
emanating from each of + ’,, distinguishable by the angles they make with the real
axis at + ’,. We define ()(z) to have that cut which makes the angle -2rj/3 with
the positive real axis at X,, and to have the corresponding cut emanating from z -’which is obtained by reflection about the imaginary z-axis.

The branch cuts we have introduced divide the z-plane into three regions which we
denote by 5a(J), j=0,1,2 (see figure 1); j=0 corresponds to the eye-shaped region
around the origin, while j= 1,2 respectively correspond to those regions outside the
eye-shaped region for which Imz>0 and Imz <0. The function c)(z) is recessive in
5,(J) and dominant in 5J-)SaJ+); with this in mind the branch of (t-))/2 in
(5.6) is defined to be that for which Im bJ)(z)> 0 in 5aJ) (see (5.8)).

FIG. 1. The complex z-plane. The regions o,GOg(j) are defined to be the domains indicated, together with their
boundaries.

We define weight functions E)(z) separately in each of the three regions 5a),
5a(), 5(2). In 5’O) and 5a(2) we define EJ)(z) by

(5.8) E(J’) ( z)= lexp(- i(J) (z))1,
where the branch of (t- )1/2 is chosen so that g,,()(z)>_ 1 in S,() and E,,(J)(z)<__ 1 in
S,a(J-)tOSa(J+) (cf. Olver (1974, p. 415)). In Sa(), we first define subdomains (J)(z)
as follows. Given any point z Sa(), we define (O)(z) to be the set of points satisfying
the two conditions

(5.9a) Im (o) (t) < Im (o) ( z ),
(5.9b) -or < argt < rr,
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and .@(,,1)(z)=(,,2)(z)=Sf()-,,()(z). We remark that (I)()= -(I)O)= -(I)(2) in 5f().
Then we define

(5.10) eJ)gJ)(z) -1= sup {Iz-v[1/4lcgO)(z)[} (j=O,l,2),
&()(z)

where the constants ej) are normalizing factors which are chosen to ensure the continu-
ity of Ej(z). Thus

ea’= sup (]z2-1t211/41cv(J’(z)[)
&(>(,t)

(j=0,1,2).

(Note that since H1)(2)= H2)(z), where denotes complex conjugate, el)= e2).) We
observe that EJ)(z) are continuous functions of both v and z.

Consider further the definitions of EJ)(z) in 6a(0). By virtue of the maximum
modulus theorem we deduce that IL(z)l achieves its maximum either on that part of
the boundary corresponding to (5.9a) or to (5.9b). Since IJ(t)l is a monotonically
increasing function of Itl near the origin, it follows that for sufficiently small z, the
maximum occurs on that part of the boundary corresponding to (5.9a). It is thus easy
to deduce that (o) (o) 21z2 v2e,, E,, (z) [1/4[Jv(z)] as z 0. Likewise one can show that
as z 0, (1 2) (1 Iz IHX)(z)l or Iz In)(z)le’ E ’2)(z) -1 - 211/4 2 2 1/4

Next we define modulus and phase functions

(5.11)
E(j+ 1)( z )l cg(j+ 1)( z )[ M(J’) ( z )sin 0(J) ( z ),
E(rj-1)( z )1 (r(j- 1)( Z )1 Mr(J)( z )cos Or(J)( z ),

where M(J)(z) is real and positive, and O(J)(z) is real. Thus

Mv(J)()Z-" { Ev(J+ 1)( z )21 (-v(J+ 1’ ( z )[2 -.[- E(vJ_ 1)(z) 21 (v(j_ 1, (z)l 2} 1/2

O,,(J)(z)--tan- 1( E,,(j+ 1)(z)[ =(J+ l’(z)[/(E(J-l’(z)l%(J-1)(z)[)},
where tan -1 takes its principal value. We remark that as IJ)(z)l c, OJ)(z)r/4
except near the boundary of 5a(j- 1)u6a(J+ 1).

Likewise, we define modulus and phase functions for cgj),(z) by
(5.12)

E,,(J + l) ( z ) Cd,,(J)’( z ) N(J) ( z )sin toJ) ( z ), E,,(J-1) ( z ) ,,(J)’( z ) N(J) ( z )coso) ( z )

where N,,()(z) is real and positive, and 0J)is real.
It is convenient, at this stage, to introduce the constant x which we shall require in

Theorem 3. We define x= xOXl where

(5.13)

:
),. (;) :}o=SUp 1/2rlz2-211/2 E g(J)( z (z)l

j=0

sup { E() ( z ) 1Ev(1) ( z )

the suprema being taken over all v >= 0 and all Izl> 0. The existence of x 0 is a conse-
quence of Lemma 3 given in Appendix B and the existence of x may be shown in a
similar manner.
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Now consider the functions cg(ul/2) where the branch of 1/2 is defined in
(5.5). Then under the transformation z=u/, we define regions Sj> in the ’-plane
corresponding to the regions 6au in the z-plane. These are illustrated in Fig. 2a for the
case 1/2rr < X 0 < 0.

FIG. 2a. The complex [-plane.

FIG. 2b. The curves Im u)(ul/2)=constant.



UNIFORM ASYMPTOTIC SOLUTIONS 439

In order that we may state our theorem on error bounds we introduce reference
points (J), j=0,1,2: ()=0, and (1), 2) are points (perhaps at infinity) in S1), S2)

respectively, which we choose to suit our purposes. Given these o), we define the
domains A),j 0,1, 2, to be the set of points in A which can be linked to o) by a path
() which consists of a finite chain of arcs in R 2 having the property that as passes
along /(J) from (J) to ’,

(5.14) Im u()(U1/2 ) >= Im()(U1/2 ).
This condition is satisfied if Im(bu()(ufX/2) is nonincreasing as f passes along (J) from
g() to ’" this condition is useful in applications of the theory, and any such path is said
to be progressive. The curves Im ()(ufl/2) constant are illustrated in Fig. 2b.

THEOREM 3. With the conditions described in 1 and the present section, equation
(5.3) has, for each pair of values of u and a and each nonnegative integer n, solutions
W2(d)_+ ( u, ol, ), j O, 1, 2, which are holomorphic in A and satisfy

(5.15) W,(j) (u a )=l/2c(J)(ul/2) i As(l’) q- --((J)’(u1/2)1 Bs(ol,)
2n + 2s 2s

0 U U U

where

(5.16)

1/2M(uJ +_ 1) (/g1/2)

-]- E(2J)+ 1( U, 0, ),

(1/2)uN(d + 1)( tt.l/2 ) q_ (1/2) -1/2M(uJ + 1)(/,t.l/2 )

when A(J). In (5.16), the suffix on M and N is j + 1 when S(aJ-1)l,J S(aj) and j-1
when

This theorem is proved in a similar manner to Theorems 1, 2. The bounds (5.16)
can be sharpened somewhat by a more complicated choice of constants than the single
constant defined by (5.13), but we shall not pursue this.

The bounds (5.16) can be used to deduce the asymptotic nature of the expansions
(5.4); the discussion is similar to those which follow Theorems 1, 2. Thus the solution

j) I(U a, ) is recessive at ’= 0 for j= 0 and is dominant there for j= 1 2. One can
rid-

show that (5.4) is a uniformly valid compound asymptotic expansion of W2)+ (u,a,’).
To do so, write

E(J)( z ) -1m(J-1)( z ) aJ’-)( z ) Cg(J)( z ) + b(J’-)( z ) z@(J)’( z ),
E(J)( Z )-1m,,(J+ 1)( z ) aJ’+)( z ) Cg(J)( z ) + b(J’+)( z ) zCg(J)’( z ),

where

(5.18)
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except whenj O: then (5.18) apply except in 50,(0) where

(5.19) a(’+)(z) E()(z)-lM(+l)(z)/2J,(z)- b --(’+) 0.

It then suffices to observe that for each j, la(J"-)(z)[ and [b(J’-)(z)[ are uniformly
bounded for v _>_ 0 ino)uS(J+ 1), and la"+)(z)l and Ib(,-)(z)l are uniformly bounded
for , >__ 0 in 5a(J- 1)uSao). These results can be established by considerations similar to
those motivating the proof of Lemma 3 in Appendix B.

Finally, we remark that when the domain A is unbounded, Theorem 3 will yield
meaningful results for large " whenever the variations of the function (f-a2)l/2Bs(f)
converge at infinity.

6. Legendre functions of large degree and order: complex variables. We use the
results of 5 to construct asymptotic expansions as v- of solutions of Legendre’s
equation which are uniformly valid for 0__<//(+ 1/2)__< 1-8 (8 > 0) in the complex
z-plane. We shall assume Rez >= 0. The connection formulae for Legendre functions can
be used as in 4 to derive corresponding results for other values of r,/, z. The pair of
solutions we consider here is Pf(z) and Q(z).

We proceed in a similar fashion as we did in 4: u, a, k(a, ’) are defined as in 4,
and in place of (4.2a, b) we define

2 d=
(1--a2--t2)l/2

02)1/2 1 2
dt

(cf. (5.1)). The functions P’(z) and Q(z) are each expressible in the form

._a2 )1/4l_ :_z2

where W(’) satisfies (5.3). The domain A associated with (5.3) is illustrated in Fig. 3a.
A knowledge of the general configuration of the curves Im,(J)(u’l/2)= constant

in the ’-plane is essential in applying the theory of {}5. The curves, and those corre-
sponding to them in the z-plane are shown in Figs. 3a, b (under the assumption that u
is sufficiently large). In arriving at these configurations it is helpful to note that
2u,/ua= 1 + O(U-4/3) as u oe.

It is conventional to take the branch cut associated with the Legendre functions to
run along the real z-axis from z 1 to z -z. With this convention, the correspond-
ing cut in the ’-plane is from " =0 along the positive real axis. In the notation of 5,
X o 0 and A is the intersection of A and the ’-plane cut along arg " 0.

The recessive behaviour of P-’(z) as z 1 implies that

._ or2 )1/4(6.2) P-(z)=c(2+l
1 -2z2 -l/2w2(n)+l(U’l’)

for some constant c(2)+ 1. The procedure which led to (4.11) now yields

1(6.3) c() e2n+1 -txri/2C2n+l,1

It may readily be seen that the path .(o) can be chosen to be progressive for all points
in A (so that A()- A). The uniform asymptotic nature of (6.2) is thus established.
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FIG. 3a. The domain A in the complex -plane, with curves Im u(J)( ul/2)= constant.

FIG. 3b. The complex z-plane (Rez>0) with curves corresponding to ImdPuJa)(ul/2)=constant in the
-plane.
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One can likewise show, by taking account of the recessive behaviour of Q(z) as
z oo, that

1_a2_z2 ’ 1/2 l/l/r2(nl)+ 1( u, /, ’ )

O) One finds (cf. (4.18)) thatfor some constant C2n + 1"

1(6.5) c(22+ "7"2ielzri/2C2n+ 1,4"

In arriving at (6.4) the endpoint of integration is taken to be 1 -o. It may readily
be seen that the path (1) can be chosen to be progressive for all points in A (so that
A(1) A). This establishes the uniform asymptotic nature of (6.4).

The results (6.2) and (6.4) can be used to determine a relation between the
coefficients c2,+ 1,1, c2,,+ 1,4, and thence the as yet undefined constants h of (2.9b). If in
the relation

i.r(+t,+lI ,,( (x iO)+e (xF(v-/,+ 1 P x)= -e-*’i/2Q + -3v.,i/2Q -iO), -1<x<1,

(which may be derived from the formulae of Olver (1974, Chap. (15.02), (15.03))), one
substitutes the results (4.9) and (6.4), (6.5), one finds that for each n,

(6.6) r(v+/+l) --c
F(-/.t-+- 1) C2n+l’l-e 2n+1,4"

When the formulae (4.11) for c2,+ 1,1 and (4.19) for C2n + 1,4 are substituted into (6.6),
the result is

(6.7) o)l+aE
0 (v+l/2)2+1

+
,= (v+ 1/2)2.

(l_a’ B,(a,0)
s=O (V+ 1/2)2s+1

n

+ E a,(.,o)
s= (v+ 1/2)2.

=e 2" v+ - +/, v+ --/, F(v-#+l)"

An asymptotic expansion of the right-hand side in descending powers of (v + 1/2) may be
found by application of Stirling’s formula; however one chooses the arbitrary constants
X of (2.9b), the coefficients of the corresponding power of (v + 1/2) on the left-hand side
must agree. To determine the constants 2’5, we note that the expression

"- 0)l+aZ B,(a,
s=o (v+ 1/2)

0)1-a
=o (+ 1/2)+1 )+ ,=lk (v+l/2)a*
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is a polynomial in powers of (v + 1/2)- 2. We may therefore choose Xl, 2," ", in turn
so that the coefficients (v+ 1/2)-2,(v+ 1/2)-4,... (v+ 1/2)-2 vanish: thus

n-1 0) n As(o,0) )(6.8) 1 +a E B(a,
o (v+ 1/2)=*+1

+
s= s=l (V+ 1/2)2*

.-1 0) i (o/ 0)
=0 (V+ 1/2)2s+1

+
s=l (v+ 1/2)2.

where 82,+1 is O(u-2"-1) and may be expressed explicitly in terms of 82n+1,4
A1,...,A,,,B1,...,B,_ 1. Furthermore (6.7), (6.8) together imply

-I- 2n+1,4) =1 q" 2n+l’

(6.9)
n-1 0)
s /2)2s+1=o (v+ 1

+ k _A.,_.(._,0_) )(1 +82 )-1/2
s=l (/td- 1/2)2* n+i

n-1 Bs(Ol,O) i As(Ol’O) )-11-a E "t-
s=0 (V+ 1/2)2s+1

+1,4
s=l (q- 1/2)2. (1 + 82, + 1)1/2

(1)-v/2-1/4-1/2(1)v/2+l/4-/2{F(p-+.lg-t-1)}
1/2

=e’ v+-+/, v+-/, F(v-+ 1)
One immediately deduces from (6.9) that for our choice of X,, (4.11) becomes

{ F(v-/x+l) }
1/2

(6.10) C2"+1’1= I’(v+t+ 1) (1+ 2"+1)-1/2
and (4.19) becomes

(6.11) F(v+/,+ 1) }1/2C2"+1’4= r(.-.+ 1) ei(1 d-2"+1)-1/2

Finally, we return to the problem left unsolved at the end of {}4" finding a uniform
asymptotic expansion for Q-’(x) in 0 =< x < 1. Given the relation

Q-’(x) r(.-.+a)
2I’(v+t,+ 1) ( x + iO) + e- x iO) )

[Olver (1974, Chap. 5, (13.15), (15.02))], one deduces from (6.4) that

(6.12)

1 ( --a2 ) 1/4Q;-.(x)= "-q’/’C2n+l,l 12’)Zx2

yua(ul/2)

_
As(t’)

s-----0 u2S

1/2 nl ns(o )+ Y;(u1/2 )u U 2s
s-----0
+Im{ (’ + i0)- 1/213(21n)+ ( U, 0, -1- i0) } ],

and the constants k are again defined implicitly by (6.8).
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Appendix A. Proof of Lemma 1 (continuity of if). The proof is similar to that given
by Olver (1975a, pp. 142-150) and to avoid undue repetition we shall simply refer to
"Olver" without further specification in this appendix.

First, when the variable x is complex, the use of Cauchy’s formula enables the
result to be proved without difficulty (Olver, p. 142).

In the real-variable case, the proof is again relatively straightforward when a > 0
and also when a =0, ’ g: 0. One may follow closely Olver’s analysis (Olver, p. 144).

The difficult part of the proof is to establish continuity of (a, ’) at the critical
point a ’ 0 in the real-variable case. The difficulty is essentially due to the coales-
cence of two critical points in the (a, ’)-plane. In Olver’s problem, these are turning
points at ’ +__ a. He establishes continuity by considering a deleted neighbourhood of
the origin 0 =< I’l_< 8, 0 _< a =< i, finding Taylor expansions of x(’) and its derivatives
about each turning point, uniformly valid in a, and then appealing to his formula (2.10)
for q. Because of the symmetry of his problem, the two proofs are effectively identical.
In our problem, we proceed in a similar fashion, arriving at uniformly valid Taylor
expansions of x(’) and its derivatives about the turning point " a and about the pole

" 0 in a deleted neighbourhood of the origin, 0 =< I[ _-< , 0 5 a __< i1/2. More precisely
we find Taylor expansions about ’= a2 for ’ >= 1/2a 2 and about ’=0 for ’ =< 1/2a 2. Because
our problem is not symmetric with respect to the two critical points, each of the two
cases has to be considered separately.

Consider first ’>__ 1/2a 2. One finds that the proof of continuity of q proceeds in a
very similar manner to that of Olver (pp. 145-149). This is perhaps as one would
expect since in both his and our problems one is calculating Taylor expansions about a
turning point.

It remains to consider " =< 1/2a 2. Here there are significant differences between our
analysis and Olver’s. Our starting point is (2.2a) which, in terms of the function p (a, x)
introduced in (2.6), may be written

((A.1) 2
dj fa

x ( a2 t)1/2 ?1/2 (t) dt
2t

where for convenience we have written xt--a 2. We shall first find Taylor expansions
about " 0 in 0 =< " =< 1/2a 2 and to this end we rewrite (A.1) in the form

2f; dli-
x (a -t pl/a(t)d
/p(O 2t

a (a2-t)t2

21 dl- pX/2( ) dt
/p(O) 2t

where e is arbitrarily chosen to satisfy 0 < e < ’.
The integrals on the left-hand side of (A.2)may be evaluated to yield 1/2aln(f/e)+

O(’) as ’0 and -1/2aln(p(O)x/e)+O(x) as x0 respectively. Since x0 as "0,we therefore deduce that the left-hand side of (A.2) is 1/2aln(p(O)x/f) together with a
term which tends to zero as e---, 0. As " 0, e 0 and the right-hand side tends to

fo (1- v)1/2 { P/2(aav)}dv.a
20

1-
pl/9_ (0)
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We thus deduce that the ratio x/ is bounded as " 0. The limit is actually the leading
coefficient in the Taylor expansion of x(’). It is relatively straightforward to calculate
the higher terms in the series: one finds

(A.3) x= XI + X22 q- X33-[-n,

where

1
p(0) eXPfol(1--o)l/:Z{Pl/:(a2v)O pl/2(0)

x2 2a--SXl + 2a 2 2p(0)

1 (1 1 1 p(O) )Xx2,X3= i6a XI+ 2 aga2 2 ap(O)

7 1 5 p(0) q 7 p2(0) 1 b(0))X3.+ 16 a 4 8 a2p(0) 16 p2(0) 8 p(0)

In our subsequent analysis, it is necessary that these coefficients be continuous func-
tions of a at a 0. To show this, we have to establish the relation between a and a.
Since x 2f(a, x) a2/4 as x 0, it follows from (2.6) that

ap/(o)

One then readily finds that as a 0,

1 1 p(0) 2 ( 1 p2(0)
XI= p(0)

q
3 p2(0-a + 45 p3(0)

1 (0) ) a40(a6

15 (-0--) + )’

(A.4) X2
1 p(O) I-( 4 p2(O’)
3 p3(0) 15 p2(0)

1 ;0 (0) I a 2 + O( a 4 ),30 p3(0)

11 p2(0) 1 (0) _O(a2 )X3= 45 p5(0) 10 p4(0)

whence continuity follows.
We show next that O(4) in (A.3) uniformly in a. By arranging the integrals in

(A.2) and taking the limit e--, 0, one finds

(A.5) I= lim
(ag_ )1/2 )1/2 pl/2(a2v )

eo 2 d-J -a
20 pl/2 (0)

where

I fXI+X22+X33+(a2-t)l/2 pl/2(t)dt
dSl q_ S22 q_ X33 2t
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and

fxx+ x2 + x3 (a2- t)t/2J
/pCO) 2

pl/2(t)dt.

We shall show that the right-hand side of (A.5) is bounded above by aO(3) and that
the left-hand side is bounded below by aAlrl/ for some constant A: we thus deduce
rl O(’4) uniformly.

To arrive at the first of these results, we closely follow the corresponding steps in
Olver’s calculation (pp. 146-147). In the integral J we take a new integration variable y
defined by

t= Xty +Xy+ X3y 3.

The factors in the integrand of J have now to be expressed in terms of y; in particular,
we find

a2- t= ( a2 -y ) { Yo + YlY + Y2Y - + Y3Y } + Y3Y4,

where

ot2Yo=a2,0t2Ys=Ys_l-S for s= 1,2,3.

It may readily be verified that as a 0,

1
Y= e(0)’

1 p(0) +[. 1 p2(0)
Yx 3 P3(0) 1 45 p4(0)

1

e (0)

y2
11 p2(0) 1 (0) +O(a2)45 pS(0) 10 p4(0)

Y3 O(1).

This last result enables us to claim that

a2- t= (a2 -y) { Yo + YlY + Y2Y 2 + O(y3) }

uniformly for 0 <y =< 1/2a 2. When all the other factors in the integrand of J are expressed
in powers ofy we find

(1+ O(y3)} dY,

where the order term is uniformly valid in a, and el is the appropriate solution of the
equation

(O) + +
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We thus deduce that the right-hand side of (A.5) is

(1-v p/2(a )(a2-)l/20(2)dq- lim dld-a 1- do
--,0 2f 2v pl/2(0)

and since it is easily seen that the last two terms cancel, we find that the right-hand side
of (A.5) is uniformly bounded by etO("3) in 0 < " __< 1/2et

Consider now the left-hand side of (A.5). By using the mean value theorem for
integrals one can readily show that

II{ > aA Iln(1 + X )1
for some constant A, uniformly in a, where

x= n/( + x _f + ).
We showed in the previous paragraph that I=aO(") in O< ’__< 1/2a2, and so it follows
that in this domain

Iln(l+x)l=o(f3) uniformly in a.

In particular we deduce that in any given neighbourhood of the origin in the (t, ’)-plane,
for 0 < " =< 1/2ct, the function Iln(1 + X)I is uniformly bounded. By considering the graph
of Iln(1 + X)I, we may therefore claim the existence of a constant B such that

Iln(1 + X)] > BIXI
throughout the region in question. We thus deduce that ,/= O(’4) uniformly in et for
0<:__< -,

Similar arguments obtain in " < 0" one thus deduces that ,/= O("4) uniformly for

’ _< 1/2a 2. The uniform validity of differential forms of (A.3), namely

x’=X + 2 X2’ + 3X3’2 + 0(’3),
x"=2X2+6X3+O(2),
x" =6X3+ O(’ ),

may be demonstrated, with calculations similar to those of Olver (pp. 148-149).
The continuity of q at the origin follows from (2.5) and the above results.

Appendix B. Existence of suprema. We shall discuss a number of results left
unproved earlier. The first group of such results concern the existence of the suprema
(3.5), (3.16). It suffices to consider only one of these, x+, in detail: the other proofs are
similar. The existence of x + is a consequence of the following lemma.

LEMMA 2. Let f(x,v)=rlx2- ull/2M(x). Then fix, v) is uniformly bounded in the
first quadrant of the xu-plane.

Proof. Sincef(x, v) is continuous for x > 0, v>__0, it suffices to show
(a) f(x, v) is uniformly bounded for x > 0 when v 0.
(b) lim__.0f(x, v) exists and is uniformly bounded for v > 0.
(c) f(x, u) is uniformly bounded as x - + , 0 for 0 < q < 1/2r.
(d) fix, v) is uniformly bounded as x2+ I2"-* (X? for 0<< 1/2"/r.

Here q tan-u/x.
In the following, we use several properties of J,(x), Y,(x) which can be estab-

lished, for example, by perusing Olver (1974).
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Condition (a).

x<_Xo,
f(x,0)

It follows from the asymptotic behaviour of Jo(x) and Yo(x) that f(x,O)O as x0
and 2 as x . Therefore, since Jo(x) and Yo(x) are continuous for x > 0, it follows
that f(x, 0) is uniformly bounded for x > 0.

Condition (b). This follows immediately from the result

lim f(x, v) 2, v>0.
x--- 0

Condition (c). Define 8=(x 2 + u2)1/. Then for 8 < X0,

f(x,v) -2rlx- uzl/zJ.(x)Y(x).
We consider separately the cases x =< u, x >_ v.

First, when x __< v we may write

f(x,v)= -2r 1- 7 sinv----
Now

J,(x)J_,(x)=l+O(8 2 ) asS0,

these results being uniformly valid in x and v, and so since x 2" is uniformly bounded
for v > 0 and x < 1, we deduce thatf(x,v) is uniformly bounded as 80 for x =< v.

Next consider x >= v. Then we may write

v2 ) 1/2f(x,v)= -2r 1- 7 { xl/%(X)} { X1/2Yv(x)}"

It is easy to see that xl/2j,(x) and xl/2yv(x ) are uniformly bounded for sufficiently
small x, v. Hencef(x,v) is uniformly bounded as 80 for x >__ v.

Actually, one can show that f(x,v)O as 80 for 0=<q< -r, though the limit is
not uniform; as 4 1/2r for fixed 8, f(x, v) 2.

Condition (d). Let us write

G ( R, g}) f(x, v) when x Rcos q, v Rsin

Then

(B.1)
1/2

G( R )= -2rRlcs2@-sin2l Jgsinq’( RCOSdp) Ytcsin’l’( Rcosd?)’
2 2 1/2 2 2rrR[cos q-sin ql (J*{sin,(Rcsq)) + Yt{si-,(Rcsq)),

where +R is the value of q for which JRsin,l,(RcosO)---YRsin,l,(Rcos). We wish to
bound G(R, q) as R m. We have the results, uniformly valid in

JRsin g, ( Rcos d? ) R_l/3 ( 4’
COS2b sin2b

1/4

Ai(R2/’’),

YRsin,t, ( RCOS b) _R_1/3( 4
cos2q sin=q l/4Bi(R/3)
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where

2 fo, (sin2+ 2)/2_. 3/2

"sin,
( 1 )dt q>= r or ’>0

2 3/2=fcos,(t2-sin2q) 1/2

( 1 )-(--)
"sin,

dt ,__< -r or ’<0

Let c be the negative root of the equation Ai(x)= Bi(x) of smallest absolute value
(Olver (1974, p. 395); c= -0.366... ). Effectively then, from (B.1), (B.2), G(R,q) will
be uniformly bounded as R m in 0 < q < 1/2-r provided one can bound the following
function of y:

4rly t/2Ai( y )Bi( y ),
2lyll/2[Ai-( y) + Bi-(y)],

y>c,

This is considered by Olver (1974, p. 397): the maximum occurs when y 1.33 and
the value of the maximum is 2.08 -...

Each of conditions (a)-(d) is thus satisfied.
Next we prove the existence of x0, the supremum defined in (5.13). We first define,

for each ofj 0,1, 2,

1 2 1/2fJ)(z) -rlz- v

1
rej)2

The existence of x0 is a consequence of the following lemma.
LEMMA 3. Each off)(z),f)(z),f)(z) is uniformly boundedfor all v>O and all z.

Proof. One readily sees that fJ)(z) is a continuous function of v and z for all v >__ 0
and all z. The result will follow provided we can show that fJ)(z), as a function of z, is
bounded throughout the z-plane including the point at infinity, and that the bound is
uniform in .v.

To establish this, consider separately z Sa() and 5ao)USa(2). When z Sa(), the
(j)2definitions of E)(z) at once imply that f)(z)<=e and consideration of the

asymptotic behaviour of cgJ)(z) for large order and argument shows that ej) remains
bounded as v--+ . When z 6a() or 5a(2) we appeal to the inequality

(B.3) IZ 2- 1* 211/41 (J) ( Z )l Za exp ( fz ( ’ ) / dt

where A is some constant independent of v and z. Here the branch of (t2--p2)1/2
is defined in a similar manner as that in (5.8). The inequality (B.3) can readily
be demonstrated to hold for largzl=< 1/2r by using results analogous to (B.2); for
1/2r < largz r we appeal to the continuation formulae for ff)(z) and the result

Im f (t2- p2)l/2dt=O.
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Then f(J)(z) will be uniformly bounded in 6a() and 6a(2) provided we can show that

(B.4) fz(t2-p2)l/2 dr- dt

is uniformly bounded for all , >= 0 and all z (1)td6a(2). One can show, by considering
separately the cases Iz/l bounded and Iz/l large, that (B.4) is uniformly bounded
throughout (1)(2) and furthermore that the bound is O(P -1/3) as P . (Recall
that ,= r(1 + 0(p-4/3)).)

The lemma follows.

Acknowledgments. We are grateful to Professor F. W. J. Olver for a number of
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S.E.R.C. research studentship.

REFERENCES

[1] P. BALDWIN (1979), Uniform approximations to solutions of a finear second order differential equation
outside a vanishingly small region containing two asymptotically coincident transition points, Quart. J.
Mech. Appl. Math., 32, pp. 187-204.

[2] I. S. GRADSHTEYN AND I. M. RYZHIK (1980), Tables of Integrals, Series and Products, 4th edition,
Academic Press, London.

[3] F. W. J. OLVER (1958), Uniform asymptotic expansions of solutions of linear second-order equations for
large values of the parameter, Philos. Trans. Roy. Soc. London Ser. A, 250, pp. 479-517.

[4] (1974), Asymptotics and Special Functions, Academic Press, New York.
[5] (1975a), Second-order linear differential equations with two turning points, Phil. Trans. Roy. Soc.

London Ser. A, 278, pp. 137-174.
[6] (1975b), Legendre functions with both parameters large, Phil. Trans. Roy. Soc. London Ser. A,

278, pp. 175-185.
[7] (1975c), Unsolved problems in the asymptotic estimation of special functions, in Theory and

Application of Special Functions, R. Askey, ed., Academic Press, New York, pp. 99-141.
[8] (1980), Asymptotic expansions and error bounds, SIAM Rev., 22, pp. 188-203.
[9] R. C. THORNE (1957a), The asymptotic solution of linear second order differential equations in a domain

containing a turning point and a regular singularity, Phil. Trans. Roy. Soc. London Ser. A, 249, pp.
585-596.

[10] (1957b), The asymptotic expansion of Legendre functions of large degree and order, Phil. Trans.
Roy. Soc. London Ser. A, 249, pp. 597-620.



SlAM J. MATH. ANAL.
Vol. 17, No. 2, March 1986

(C) 1986 Society for Industrial and Applied Mathematics
012

ASYMPTOTIC BEHAVIOR OF THE INVARIANT DENSITY
OF A DIFFUSION MARKOV PROCESS WITH SMALL DIFFUSION*

SHUENN-JYI SHEU

Abstract. Let X(t) be the n-dimensional diffusion process governed by the following equation: dx (t)=
b(x(t)) dt+ fdw(t). Assume b(x)= Vl(x)+l(x), vl.l=0. Then under some growth conditions on I and
l, we show x(.) has unique invariant measure with density p(x). And we establish the following asymptotic
behavior for pe. p(x)=e-n/2exp(_2t(x)/e)(Ro(x)+O(e))"

Introduction. Let x(.) be an n-dimensional diffusion satisfying the following
equation:

(1) dx( ) b(x( )) dt + Vc dw( ).

We will write x(.) to indicate the dependence of x(. ) on e. Suppose for each e > O, the
diffusion process x(.) has invariant measure with density p(x). We will be interested
in establishing the following limiting behavior of p(x)"

(2) lim elogp(x) -v(x),
e--*O

(3) p(x)=e-"/ae-(x)/(To(x)+ Tl(X)+

A formal argument indicates that the function v(.) is given by the following
expression"

(4) o(x)= inf
1 f0q,(O)=x

Ip(t)+b(ck(t)) [dk,
()=o

where (t) is the derivative of (t) at t. And To, T1, can be obtained by solving a
family of first order partial differential equations.

This paper shows that if the function v(x) given by (4) is smooth and satisfies
some rowth conditions, then it is possible to establish the results like (2) and a weaker
result of (3), i.e.

(5) Pe( X ) e-n/2e-V(X)/eRe( x ),
limR(x)=Ro(x).

A recent result of M. Day shows that there is a nice relation between the limiting
behavior of p and of the exit distribution of x(.) from a domain (cf. [3]). A result like
(5) will be useful in this respect.
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and by the Air Force Office of Scientific Research under contract AFOSR-81-0116.
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The plan of this paper is as follows. The assumptions are stated in 1. Under these
assumptions, we give an estimation for p*(.). Section 2 shows a Ventsel-Friedlin type
result (2). The basic idea is to use the relation between p* and the transition density.
Section 3 proves the result (5). This result depends on the smoothness of the function
v(-). However, this is a local property in the sense that if we know that (2) and the
smoothness of v(-) on a certain region containing 0 and x, then it is possible that (5)
holds.

Notation. x,y,z denote vectors in R n. x.y is the usual inner product and Ixl--
(X’X)1/2. For a smooth real valued function f on R" Df(x)=(3l"lf/Oal... 0-)(x)
for a (al,..-, a,), where ai> 0 are integers.

1. Assumptions and initial results. We make the following assumptions through
this paper.

Assumption (A). Assume b(x)= VI(x)+ l(x) where VI(x) is the gradient of the
real valued function l(x). Moreover,

(a) VI(x).l(x)=O, VxeR".
(b) I(-), b(-)e C and

sup lD’7(x) [<= G
x

sup Dab (x ) <= C
x

Vial>_ 1, b(x)=(bl(X),..., bn(x)).

(c) inf(lvI(x)l; IxI>=R}=8(R)>=K1R if R is small, and I(x) as Ixlo,
I(0)= 0,

(d) b(0)---0, [3bi(O)/3xj] has eigenvalues with only negative real part.
LEMMA 1.1.

(1.1) 2I(x) lfo inf - Ith(t)+b(ck(t)) [-dt.
4,(0)=x
()=o

Proof. Since v(x)= 2I(x) satisfies 1/2lvv(x)12+ b(x). vv(x)=0, we realize that
this is the Hamilton-Jacobi equation satisfied by the value function defined by the
right-hand side of (1.1). We expect (1.1) to hold by some "verification theorem" (cf.
[7]). However, it can be proved as follows.

Let q0(t) be the solution of

(1.2) dq
dt (t)=-(b+2vI)((t)), (0)=x.

Then

dI(d?( t))
dt VI" (b+ 2VI)(q(t))

2

1 o 2

41
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This implies

1 for +o 2

I(’b(T))-I(x) - (t)+b(q(t)) dt,

q(T)-o0 as T-o o.

Therefore

I(x) - +(t)+b (,/,(t))1
On the other hand, for any curve q,(t),

I+(t)+b(va(t)) 12= I+(t)- vI((t))+l((t))I2

I,(t)[2_ 2,(t)" VI(q(t))

+ 2+ (t)" l(q(t))+lVI(q(t))l + i/(q, (t))
2

>= -4+(t)’VI((t))
d

4-/(,(t)).
Therefore

lfoI(x)<__- 14,(t)+b(q,(t))ldt if q,(o) 0.

Thus we complete the proof.
Remark. For general b(-), without assuming (A), if the function v(.) defined by

the right-hand side of (1.1) is smooth, then o(.) satisfies

(1.3) l Vv(x) +b(x).V(x)=O.

From this we have b(x)= XTI(x)+l(x), where (x)=2I(x), and VI(x).l(x)=O.
LEMMA 1.2. Under assumption (A), there is a unique inoariant density p(.) for

x(’). Moreover, we have

(2mi() ((1.4) f exp _y) p y)dy<=C,,, 0<m<l

for some C > 0 which is independent of e.

Proof. Let f(x)=exp((2m/e)I(x)) and

dx ( b (x ( ) dt + v/ dw(

Lf=Af+b. vf= mAI 2m(1-m)e [vlI2
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It is easy to see by our assumption that I(x)<= clxl 2 for some c > 0. Then,

C m) if y l<=KmVr,
Lf(y)<=

-af(y) if lyl>Kmv/-{.

et can be chosen as large as we want by choosing K such that

msup K
x

Thus f(. ) can serve as a Lyapunov function. Then x( ) has a unique invariant density
p(.). (See [10].)

Let rR inf{ t" Ix(t)l----- R ). By a simple calculation

d( f(x (t))exp(at)) Lf( x( t) + af( x( t)))exp(at) dt + dM( ),

where M(t) is a martingale. Then

E. f( x( A "rR))exp( at A q’R)]-f(x)

=Ex[f"^t (Lf(x(s))+af(x(s)))exp(as)ds]
0__<c exp(s)ds

__< Cmexp(t).

Letting R , we get

e [f(x(t)) <__c,,+f(x)exp(-at).

We prove (1.4) by letting

2. Ventsel-Friedlin type result. The main result of this section is the following
theorem.

THEOREM 2.1.

lim elogp’(x) -2I(x).
e--*0

We will prove the following results:

(2.1) lim elogp(x) Z 21(x),
(2.2) lime logp(x) >= 21(x).

For (2.1), we have the following estimation.
LEMMA 2.2. There is a c > 0 such that

(2m I, ) ( -n/2exp ---e-- tY) P y)<=c,e 0<m<l.

Proof. We write p(t,x,y) and q(t,x,y) for the transition density of diffusion
processes x(t) and y(t) respectively, where

dx(t)=b(x(t))dt + v/dw(t),
dy(t)=(27I(y(t))+b(y(t)))dt+ V/dw(t).
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Also, let r(t,x,y)=exp((-2/e)I(y))p(t,x,y)exp(I(y)). We will obtain the follow-
ing estimate:

(2.3) p(t,x,y)<=cte-"/2,
(2.4) q(t,x,y)<=cte-n/2,
(2.5) "tre( t, x,y ) <_ cte-n/2.

Assuming these, then

P(Y) f P(x)p(t,x,Y) dx

p(x)exp 2mi(x exp I(x p(t x,y)dx.

Together with the following inequality,

exp 2me I(x) p(t,x,y)exp e
rte( t,x,y)mpe( t,x,y)l-m<= Ct-n/2

we get, by using Lemma 1.2,

p(y)expl -- tY) <ctI?,-n/2 p(x)exp 2m I(x) dx <Cml?, -n/2

It remains to show (2.3), (2.4), (2.5). The proof of (2.3) and (2.4) are the same, it
depends only on the estimation of the drift of the diffusion. We only consider p(t,x,y).
It is easy to see that p(t,x,y)=e-"/2[(t,x/e,y/e) where (t,x,y) is the transition
density of the diffusion z(-),

dz( ) ( z( )) dt + dw( ),

1---b(vz )(z)=
V7

By a theorem [11, Cor. 3.37] (t,x,y)<=ct. Therefore we get (2.3).
Now consider r(t,x,y). By a simple calculation, we get

dr _e Ax"* + (2VI+ b ) Vxw + AI. ’rr
dt 2
dr eAyr-(2vI+b). Vyr-(AI+divb)rdt 2

where XTx, Ax (resp. Vy, Ay) mean gradient and Laplacian with respect to the variable
x (resp. y). From this

r(t,x,y)=Ex exp AI(y(s))ds y(t)=y q(t,x,y)

where dy(t)=(2XTI(y(t))+b(y(t)))dt+v/-{dw(t). Hence, by using (2.4), we obtain
(2.5).

We now prove (2.2). We need a lemma from [12].
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LEMMA 2.3. Let

I(T,x,y)= foinf - Ib((t))+(t) dr.
,t,(O)=x
q(T)=y

Then lim,_oelogp*(T,y,x)>= -I(T,x,y) uniformly for x, y on compact sets.

Proof. See [12], or we can prove this by mimicing the arguments in [4].
LEMMA 2.4.

lim elogp(x) >__ sup I(T,x,y)
eO [y[__<l

Proof. By Lemma 1.2,

X/T>0.

On the other hand,

fly p(y) dyO as e0.
I>__1

p(x) fp(y)p(T,y,x)dy

p(y)p(T,y,x)dy

>=c(e) inf p(T,y,x)
lyl=<l

where c(e)=flylzlp(y)dyl as e0. We obtain Lemma 2.4 easily by the above
inequality and Lemma 2.3.

LEMMA 2.5.

lim I(T,x,y)=v(x)=2I(x),
T--- o

lfo v(x)= inf I;l,(t)+b(q,(t)) 12dt.
4,(O)=x
,t,()=o

Proof. v(x)=2I(x) was proved in Lemma 1.1. We prove the first equality as
follows.

We fix x, y. Let q(.) be a curve such that q(0)= x, q,(T)=y. For any 0 < < T,
following the proof of Lemma 1.1, we have

1 foT 2- I;b(s)+b(q,(s)) ds>=2(I(q(t))-I(y)),

1 r 2- I,(s)+b(,(s)) ds> 2(I(x)-I(q,(t))).

From these we show that if there is 0<t<T such that Iq(t)] is large, then
1/2flib(s)+b(q,(s))lds is large since I(z)--.c as Iz]. And if there is 0<t<T
such that Iq,(t)l is small, then

1 for 12- I+(s)+b(q,(s)) ds>2(I(x)-I(q(t)))=2I(x).
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On the other hand, following an argument in [5, Lemma 3.1, p. 334], we can establish
the following property:

1 for 12 as T-

if 8__<l(s)l__<R, V0__<s__< T, where 8, R are fixed positive numbers.
By combining above results, it is easy to show

lim I(T, x,y) >= 2I(x) uniformly on compact sets.
T

By using if0(. ) defined in (1.2), we can also show

lim I(T,x,y) <= 21(x) uniformly on compact sets.
T--

This completes the proof of Lemma 2.5.

3. Further results. Now consider the function R defined by

(3.1) p(x ) e-"/2e- 2t(x)/R ( x ).
We have the following refined result of Theorem 2.1.

THEOREM 3.1.

R(x) o Ro(x ) as

where R o is the solution of the following equation"

(3.2) -(b+ 2X7I). VRo- (divb + AI)R0= 0,

with

c exp( x*Ax) dx 1, A
ax,axj (0)

We compare the functions R and R 0 before we give the proof of this theorem. It
is not difficult to see that R satisfies the following equation

I eAR_(b+ 2VI)-vR- (divb + AI)R 0.(3.3) -Formally, by letting e0 in (3.3), we get the equation (3.2) satisfied by R 0. On the
other hand we have the following result which will give the condition R0(0)= c.

LEMMA 3.2.

R(v/-x)c as e--*O uniformly for x in compact sets.

Proof. Let k(x ) R(x). Then

(3.4) p(x ) exp( 2/eI(v/-x )) i((x )

/ is the invariant density for the diffusion process y(.)

dy( t) (y( t)) dt + dw( t),
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where b*(y) (1/v/-{)b(vy). Also/* satisfies the following equation

2

First/*(x) =< c with c independent of e and x by using

(x)= f (y)(t,y,x)dy
and the fact that e(t,y,x)<_ct with ct independent of e, x, y. Since with all their
derivatives are bounded, independent of e, on bounded set, we can show (see [9,
Theorem 6.2]) (/} is a compact subset of C(R n) the family of all continuous real
valued functions on R". Also, the limit points of (/} are solutions of the following
equation

1Ap B. Ap- divBp=O,2

where B(y)=By with B=[19bi/Oxi](O). On the other hand, the family of probability
measures { P} with densities (/) is tight by appealing to Lemma 1.2. From these
facts,/ is the only limit point of {/ }, where/3 is the invariant density of

dy( ) B( y( t)) dt + dw( )

and is given by

D is the only positive definite matrix satisfying 1/2]Dyl + By.Dy=O for all yRn.
It is not difficult to see that D= 2A by using the property b(y). Vl(y)+]vl(y)l 2

=0. Then we can get k(x)c by (3.4) and (y)p(y) as e0. This completes the
proof.

Proof of Theorem 3.1. Let z(. ) be the diffusion satisfying

dz( ) ( b + 2VI)( z( )) dt + V/-dwt
and = inf( t; I(z(t))= eR or R ), where R is a fixed positive number. Then, by (3.3),
we have

R(x) E [R(z( ’))exp for (divb+ AI)(z(s))ds)].
Since (divb + AI)(0)= 0, I(divb + AI)(z)l<clzl for all z. We need the following proper-
ties"

(i) Fix R1, 1 >0; then there is c>0 such that R(z)<=ce-1/ if Izl<__R1.
(ii) There is a i>0 such that P{I(z(r))=R)<e-/.
(iii) ’p > 1, :tCp > 0 with Cp independent of e > 0 such that

exp p [z(s) lds <= Cp.
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Since

R(x)=Ex R(z(r))exp (divb+Al)(z(s))ds I(z(r))=R

]+Ex R((r))expl- (divb+Al)(z(s))ds I(z(r))=eR

The first term on the right tends to zero because of the properties (i), (ii), (iii). On the
other hand, when z is small I(z)=coz for some c0>0. Therefore R(z())c as
e 0 if I(()) eR (see Lemma 3.2). Property (iii) implies

exp (divb+I)(z(s))ds exp (divb+l)(z0(s))ds

in Lp for any p > 1, where zo(s ) is the solution of

Hence

R(x)cexp fo (divb+ AI)(zo(s))ds ) =R0(x ).

It remains to show (i), (ii), (ii). (i) follows from Lemma 2.2. (ii) is a weaker result in
[2]. As for (iii), we have the following lemma.

LIMMh 3.3. Ex[exp(pf) [z(s)lds)]<_ exp(cpI(x)1/2) for some c > O.
Proof. Since g(x)= Ex[exp(pflz(s)[ds)] satisfies

Ag(x)= -Ag(x)-(b+ 2VI)" vg(x)/plxlg(x)=O,

g(x)-a on I(x)-eR orR.

We will choose a function f(x) such that

(3.5)
Af(x)<=O on (x;eR<=I(x)<=R),
/(x)>=l on I(x)=eR or R.

Assuming such function f(x), then, by Ito’s formula

d(f(z(r))exp(PfotlZ(s)lds))
(3.6)

=Af(z(r))exp, p Iz(s)lds dt+dM(t),

M(t) is a martingale. Equation (3.5) gives

E f(z(r))exp, p Iz(s)lds <=f(x)

by taking expectation in (3.6). Therefore

E exp p Iz(s)lds <=f(x),

which gives a bound for Ex[exp(pglz(s)lds)].
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We will try f(x)=exp(cpI(x)l/2). A calculation gives

e ( AI- 1 ’A/’
13/2 P’XTII2 ) ’xTl’

I 11/2 ]af(x)-- cP l--(x)-cp- (x)+c (x) -cp (x)+plxl f(x).

By assumption, on { x; eR =< I(x) =< R }, the first term on the right is O(x/’e-) and

lit 1/2
(x)+plxl<=(-cpa+p)lxl<=(-cpa+p)k

for some a>0, k>0, where we use I(x)>0 if Ix[#0 and I(x)=co]x[ 2 if Ix[ is small.
If we choose c to be large enough, we have (3.5), then the result of the lemma.
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ELECTROSTATICS AND THE ZEROS OF THE CLASSICAL
POLYNOMIALS*

P. J. FORRESTER" AND J. B. ROGERS:

Abstract. New interpretations of the zeros of the classical polynomials as the equilibrium positions of
two-dimensional electrostatic problems are given. The electrostatic problems solved include determining the
equilibrium position on the circle of n2M particles of unit charge and 2M particles of charge + q, given that
between every two + q charges there are n unit charges.
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Key words, orthogonal polynomials, crystal lattices, Coulomb system

1. Introduction. Almost one hundred years ago Stieltjes gave a two-dimensional
electrostatics interpretation to the zeros of the classical polynomials ([4], [5], [6]; see
Szeg/3 [7, Chap. 6]). Motivated by the desire to obtain exact information about the
ground state of two-component systems interacting via the logarithmic potential, we
extend Stieltjes’ results. These new results supplement exact results recently obtained
for the nonzero temperature statistical mechanics of such a system [1], [2].

As an illustration of our extensions, consider the unit circle in the complex plane.
At the point z 1 fix a particle of charge / q and at z 1 fix a particle of charge
/p. We show that the equilibrium position of 2N unit charges on the circle, symmetri-
cally distributed about the real axis, can be written in terms of the zeros of the Jacobi
polynomials. By utilizing an elementary partial fractions identity ((4.9) below), we find
that the solution to more general equilibrium problems can be written down from the
knowledge of the above problem. The more general problem is the determination of the
equilibrium position on the circle of n2M particles of unit charge and 2M particles of
charge + q, given that between every two + q charges there are n unit charges. We thus
provide the exact structure of a local minimum of the Hamiltonian for a two-
component system.

Properties of the ground states can be described in detail, as the zeros of the Jacobi
polynomials have been extensively studied [7]. Conversely, many intuitively obvious
properties of the electrostatic problem can be formulated as theorems regarding the
zeros of the Jacobi polynomials, thus providing electrostatic interpretations to those
theorems.

2. Two impurities on the circle. Consider a system of 2N particles of charge + 1,
labelled 01, 02,.-., 02N, confined to a circle of radius R interacting via the potential

(2.1) V(0 0, ) qk logR e’ e iOk ].

At 0=0 fix a particle of charge + q and at O=r fix a particle of charge +p. The
uniform neutralizing background necessary to obtain thermodynamic stability is not
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relevant when calculating the ground state equilibrium positions, since it only contrib-
utes a constant to the Hamiltonian. Thus ignoring constant terms, we may take for the
Hamiltonian

2N 2N

(2.2) Ho q logll e iok I-P lgll + eik l- Y’ logl e iO eijl.
k=l k=l l<__k<j<=N

Note that the radius has been scaled out of the Hamiltonian. We seek the minimum of
Ho subject to the requirement

(2.3) 0<0)<rr, j=I,2,...,N and rr<0j<2rr, j=N+I,...,2N.

Such a minimum exists and is unique [7, p. 140]. By symmetry Oj=--02N+I_j, j=
1, 2,. ., N. The location of the minimum is given by the following result.

THEOREM 2.1. The minimum of the function Ho subject to the constraint (2.3) occurs
at the zeros of the Jaobi polynomial P(Nq-1/2"p-1/2)(COSO), 0 < 0 < 2rr.

Proof. Using the identity

(2.4) eij ei’ i- l(eiO eiO )expl )
we see that the condition for a minimum is the set of nonlinear equations

0=
H -i(qei/(eik- 1) +pei/( e ion" q- 1)

(2N- 1 +p + q)/2 + _,’ ei’/(ei’- e iOJ)
j=l

l<=k<=2N,

where the prime on the sum indicates that the j k term is to be omitted. Following
Stieltjes, consider the polynomial

2N

(2.6) f(x) t__II (x-e’’),
which has its zeros at the minimum of H0. A short calculation then shows

f-
f

( eik) 2 Et iO iOj(2.7)
(ei’) j=l (e -e )

Thus we can write the ground state condition (2.5) as

(2.8)
0 ei ( e2i 1)f"(ei )

+ (2qeik(ei + 1)+ 2pei(ei- 1)-(2N- 1 +p + q)(e2i- 1))f’(eik),
l<k<2N.

The (2N+ 1)th order polynomial

(2.9) x(xE-1)f"(x)+(2qx(x+l)+2px(x-1)-(2N-l+p+q)(xE-1))f’(x)
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therefore has zeros at x=eik, k-1,2,...,2N, and so is proportional to (x-A)f(x)
where A is a constant. By equating like powers of x2s+ we find the proportionality
constant to be 2N(p + q), so

(2.10) x(x2-1)f"(x)+(2qx(x+l)+2px(x-1)-(2N-l+p+q)(x2-1))f’(x)
-2U(p+q)(x-A)f(x)=0.

It follows from the uniqueness of a minimum of H0 that there is one and only one
value of A such that (2.6) satisfies (2.10) with the 0h constrained by (2.3). When N= 1
it is a simple exercise to derive

(2.1a) A=(p-q)/(p+q).

We now verify that the choice (2.11) gives the required polynomial solution of
(2.10) for general N. By making standard transformations applicable to second-order
differential equations [7, p. 16] and then changing variables x ei, we write (2.10) with
A given by (2.11) in the form

(2.12) u" +(q(1-q)/(4sinZO/2)+p(1-p)/(4cosZO/Z)+(2N+p+q)2/4)u=O,
where

(2.13) u(0)= (sinq 0/2) (cosp 012) e-iNOf(ei).

However (2.12) is also a transformed version of the differential equation of the Jacobi
polynomials [7, p. 67] and is satisfied by

(2.14) u(O) (sinq O/2)(cosp 0/2) PNq- 1/2,p-1/2)(COSO ).
Hence we have

(2.15) f( ei) eiNOpq-1/2,p-1/2)(cosO ),

which is the desired polynomial solution of (2.10) satisfying the constraint (2.3).
Theorem 2.1 is to be compared to Stieltjes’ interpretation [7, p. 140].
THEOREM 2.2 (Stieltjes). The minimum of the function

N

(2.16) T=-E(lg(l+x,)e+lg(1-x,)) E lg Ix-xl,
k=l lk<.j<=N

P, Q> 0, 1 < xk < 1, occurs at the zeros of the Jacobi polynomial P(N2Q-I’2P-1)(X).
The expression T is the Hamiltonian for N unit charges confined to the interval

[-1,1] by a particle of charge P fixed at x= 1, and a particle of charge Q fixed at
x=- 1, interacting via the logarithmic potential. Thus comparing Theorems 2.1 and
2.2, we see that the equilibrium positions are closely related. Consider the unit circle in
the complex plane. At z 1 fix a particle of charge q 2Q- 1/2, and at z 1 a particle
of charge p 2P- 1/2 (p, q >= 0). If the equilibrium positions of the 2N charges as given
by Theorem 2.1 are projected orthogonally onto the real axis, then we locate the
equilibrium positions of Stieltjes’ problem, Theorem 2.2.

As an example of a theorem regarding the zeros of the Jacobi polynomials which is
intuitively obvious when viewed from the electrostatic interpretation, consider the
following result [7, p. 121].
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THEOREM 2.3 (Markoff, Stieltjes). Let ( x, x,(a, fl) } denote the zeros of the Jacobi
polynomial P")(x). Then

(i) <0, (ii) ->0.
From Stieltjes’ interpretation of the zeros of PN’3), this is equivalent to saying

that (i) when the charge at x 1 is increased, the N unit charges are repelled towards
the fixed charge at x=- 1; (ii) when the charge at x 1 is increased, the N unit
charges are repelled towards the fixed charge at x 1. Thus Theorem 2.3 is intuitively
obvious.

Reconsider Theorem 2.1. The positions of the unit charges around an impurity (the
+ q charge at 0 0, say) in the large N limit are of particular interest. We have the
following theorem [7, p. 193].

THEOREM 2.4. Let X1N>X2N> be the zeros of P’l)(x) in [-1, +1] in
decreasing order (ix, real but otherwise arbitrary). If we write XN= COS 0N, 0 < ON< r,
then forfixed v,

lim NO.N=L,,
N--- oo

wherej, denotes the vth positive zero ofJ(z), J,, denoting the Besselfunction of order ix.

Regarding the N---, oo limit as the thermodynamic limit, with particle density r/N,
we have from Theorems 2.1 and 2.4 the following result.

THEOREM 2.5. Consider the real line with a particle of charge + q fixed at the origin,
and particles of unit charge at unit density immersed in a uniform neutralizing back-
ground. In the thermodynamic limit the ground state positions of the unit charges are given
by

+---L, q- 1/2/q’l" It 1,2,’’’.

3. A single impurity on the line. In {}2 it was shown how an equilibrium problem
on the circle gave rise to the Jacobi polynomials. In this section we consider an
analogous physical problem, in which the equilibrium position of the charges are given
in terms of the Laguerre polynomials.

Consider 2N particles of unit charge free to move on the real line with a particle of
charge + q fixed at the origin. The system is made electrically neutral by imposing a
background charge density of profile

(3.1) o(y)= { -(c/r)(1-y2/L2)l/- lYi<L
O, lyl>=L,

c=2(2N+q)/L.
To compute the Hamiltonian for the system we require the integral [3, p. 44]

a__ dy(l_y/L)l/log[x_yl=x2/2L+K,
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where K is independent of x. This gives us the contribution to the Hamiltonian of the
particle-background interaction. Thus if we ignore constant terms, the Hamiltonian is
given by

C )
2N 2N

(3.3) Hi= E xf-q E loglxkl- E lgtxj-xkl,
j=l k=l _<_/’< k__< 2N

where we have labelled the 2N unit charges Xl, x2,-.. X2N.
We seek the minimum of H subject to the condition that N particles are on either

side of the impurity at the origin; that is,

(3.4) Xk<O k=l,2,--.,N and x>0, k=N+I,...,2N.

It is a simple exercise to prove that such a minimum exists and isunique [7, p. 140]. By
symmetry we must have

(3.5) --Xk=XN/, k=l,2,.-.,N.

The location of the minimum is given by the following result.
THEOREM 3.1. The minimum of the function H subject to the constraint (3.5) occurs

when the xk are the zeros of the Laguerre polynomial

(3.6) L-1/2) cx2/L )

Proof. The condition for a minimum is the set of nonlinear equations

(3.7)
2N

0 OH1 (c/L)x,
1 qt k=l ..-2N.

OXk j=l Xk-- Xj Xk

Consider the polynomial

2N

(3.8) g(x ) t= ( X X,)

which has its zeros at the minimum of H1. Then we can write (3.7) as

(3.9) 0 xk xk)+( (2c/L)x+2q)g’(xk), k 1, ,2N.

Thus we have a (2N+ 1)th order polynomial which has the 2N zeros of g(x). Hence

(3.10) xg"(x) + (-(2c/L)x2 + 2q)g’(x)+a(x-b)g(x) O.

By equating like coefficients of x 2s, we find a=4Nc/L. Furthermore the symmetry
condition (3.5) requires g to be even. Using this condition in (3.10) gives b= 0.

Replacing x by (Lx/c)1/2 the differential equation assumes the form

(3.11)

(3.12)

xu" + (-x + (q+ 1/2)) u’ + Nu=O,
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We recognize (3.11) as the differential equation satisfied by the Laguerre polynomial [7,
p. 100] so that

If we substitute (3.13) in (3.12), Theorem 3.1 follows immediately.
As L o and y remains finite, o(y)-c&r. Therefore in the thermodynamic

limit if we choose c=r (and thus L=2(2N+q)/r2), the background around the
origin tends to a constant unit density. From Theorem 2.4 we know the equilibrium
position of unit charges immersed in a neutralizing background at unit density around
a + q impurity on the line. Hence from the equivalence of the two physical problems in
the thermodynamic limit, we can deduce the well-known theorem relating the zeros of
the Laguerre polynomials to the zeros of the Bessel functions [7, p. 193].

THEOREM 3.2. Let yN<Y2u< be the zeros of L(Nq-1/2)(y) in increasing order.
Then

1
lim Nym=- ( Jr, q- 1/2N--’ oc

4. Crystal lattices on the circle. In this section crystal lattice structures are given
for the equilibrium positions on the circle of two-component systems. By a crystal
lattice we mean a lattice which has a cell repeated periodically. We have the following
result.

THEOREM 4.1. Suppose there are n2m particles of unit charge and 2m particles of
charge + q on the circle with one of the + q charges fixed at 0 O. Require that between
every two + q charges there are n unit charges. Then the equilibrium position of the n2M

particles of unit charge are given by the zeros of

(4.1) Pn/q-l)/2’-l/2)(COS2tO), 0<0<2r

if n is even, and the zeros of

(4.2) P{{q-X)/2’l/2)(cs2mO)-1)/2 0 < 0 < 2rr

if n is odd. The equilibrium position of the (2M- 1) particles of charge + q occurs at

2rk(4.3) 0= 2----, k=1,2,.-., (2t- 1).

Proof. Label the coordinates of the particles of charge +q q0=0, 1,’", 2M--1
and the particles of unit charge 01, 02,’’-, 0n2,. Then the Hamiltonian for the system is

(4.4) H2 q2 E log e’*- e ’q’

0<k<2m-1

q E Z lgl ei’I’s e i’l’* l- E ]log e los e iO, I.
0_j<_2m-1 l<k<n2m =<j<k__<2M

Again it is easy to show the existence and uniqueness of the required minimum [7,
p. 140]. To prove the theorem we must show that the equations for a minimum,
obtained by taking partial derivatives of H, are satisfied when the angles are given by
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(4.1), (4.2) and (4.3). Explicitly we must show

2M--1
(4.5) 0=q E (ei(O"+2rl’)/2/ei(ot’’+2rl’l/2e2vrij/2t)

]=0

n 2M--1
+ .’ ei(O.+9-rt’)/9-"/(ei(O.+-rt’)/9-"_ei(O+2ri’)/9-"

k=l /=0

-[(n+q)2a’t-1]/2, l<=k’<=n, 0=< l’=<2M-- 1,

and

(4.6) 0 q ., e e e i(’

k=l /=0

2M--1
+ q2 e2ctik’/2M/(e2rik’/2M_ e

k=O
kq=k’

2vrik/2M)

(q2(2t- 1)+ qn2M)/2, 0=< k’=<2M--1,

where here the 0k are the zeros of

(4.7) P((q-1)/2’-I/2)(COSO) 0<0<2rn/2

if n is even, and the zeros of

(4.8) P((q-1)/2’I/2)(COSO) O<O<2r,(n- 1)/2

if n is odd.
We will reduce (4.5) to the solution of the impurity problem, Theorem 2.1.
Consider the identity

ei l ( e i0/2 e i0/2 )"1"
i0/2 i(q+2,n’)/2

(4.9)
eiO- eiq 2 e i0/2- e iq’/2 e e

Applying (4.9) iteratively M times we have the identity

(4.10)
2M

eiO/(e ‘0 eiq,) -- .= (ei0/2"- el(q,+ 2rj)/2t)

Substitution of (4.10) in the first sum of (4.5) with O=0k,+ 2ril’ and q,=0, and the
second sum of (4.5) with O=Ok, + 2’il’ and q,=Ok + 2ri! (k:/: k’) reduces (4.5) to

(4.11) 0
qei,, ((n + q)2M-- 1)

(eiO,,_l) 2M+I

n

-k- E ei"
k=l ( eiO’’ eiO’

2M-

q-2 -M y’
1=0 (e

2ri1’/2Me

2ril’/2M e 2il/2M)
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However, it is a simple exercise in summing series to prove that the last sum equals
(2M--1)/2, SO we reclaim (2.5) (with p=0 and n=2N if n is even, p=l and
n- 1 2N if n is odd), which we know from Theorem 2.1 is satisfied by the choices
(4.7) and (4.8).

To prove (2.6), note that the second sum is equal to (2M- 1)/2 and that the first
sum can be reduced using the identity (4.10) with/9= 2rk’ and =0k + 2rl. Thus we
are required to show

(4.12) 0 n/2 + 1/(1 e ion’).
k=l

This follows immediately from the fact that the 0k are situated symmetrically about the
real axis, and from the identity

(4.13) 1/(1 e ie* ) + 1/(1 e -iOn’ ) 1.

If we regard the N H limit as the thermodynamic limit with particle density of
the + q species r/2M-1, we have from Theorem 4.1 the following result.

THEOREM 4.2. Consider the real line with n particles of unit charge arranged between
every pair of particles of charge + q. Suppose the particles of charge + q are at unit
density and all the charges are immersed in a neutralizing uniform background. Then in
the thermodynamic limit the ground state for the system is a crystal lattice with cells of unit
length. When n is even, a cell is specified by a + q charge at x O, with the n unit charges
at the zeros of P((q-1)/2’-l/2)(cos2qrx), O<x <1, while when n is odd a cell is specifiedn/2
by a +q charge at x=O, with the n unit charges at the zeros of Pcc(q_-lZ’/Z)(cos2,rx),
O<x<l.
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ON THE ORDER OF MAGNITUDE OF FOURIER COEFFICIENTS*

J. B. READE

Abstract. The main result is that the Fourier coefficients of any continuous function are o(1/n) if a
monotonicity condition is assumed. The proof is achieved by showing the coefficients are always o(1/n) in a
certain weaker sense, and then proving a Tauberian theorem giving o(1/n) in the ordinary sense under the
extra assumption of monotonicity.

1. Let f(t) LI[ 1,1] have Fourier cosine coefficients

iXan= f( )cos n rt dt.
-1

The Riemann-Lebesgue lemma says that an0 as n . The convergence can be
arbitrarily slow, since, for any sequence (kn) such that Iknl c as n , we have

khan (t)kncosnrtdt= Tnf

where T is a linear functional on LI[- 1, l] having norm

z ll-- max Ikncosnrt]= Iknl,
Itl__<l

so knanO for every fLl[-1,1] would contradict the uniform boundedness princi-
ple. The same is true forf(t) C[- 1,1] for similar reasons.

It turns out, however, that one ctn make positive assertions about the order of
magnitude of Fourier cosine coefficients if one interprets, e.g., nan--.O in a weaker
sense. Specifically, we shall show firstly that, if f(t) L2[ 1,1], then nl/2anO in the
sense of Cesaro, i.e.,

a + 21/2a 2 + + nl/2an

and secondly that, iff(t) C[- 1,1], then nanO in the double Cesaro sense, i.e., if

a q- 2a 2 + + na
Un---

U1-]-u2"" -4rU
0

then vn0. It is possible to deduce, e.g., that, if a,>_ an+ 1>=0 for all n>=0, then
convergence is in the ordinary sense in both cases.

We also prove similar results for Fourier sine coefficients

b.=f f(t)sinnrtdt,
-1

though in some cases the proofs are different.

*Received by the editors December 12, 1983, and in revised form June 15, 1984.
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2. The result concerning f(t) L2[-1,1] depends on the Riesz-Fischer theorem
and two lemmas about Cesaro convergence.

LEMMA 1. For any convergent series an, we have na - 0 in the sense of Cesaro.
Proof. Let sn a + a 2 + + a - s. Then

ax+2a2+ +nan

--Sn

n

Slq-S2"}" q-Sn_l

s-s=O. Q.E.D.

LEMMA 2. If a >= 0 and a -* 0 in the sense of Cesaro, then also -/2 _. 0 in the sensetl

of Cesaro.
Proof. We have

a/2+ +al/2 (n(al+ +an))1/2

by Cauchy’s inequality,

]t/2a+ +a
0. Q.E.D.

THEOREM 1. Iff(t) L2[ 1,1] has Fourier cosine coefficients

an= ( )cos n rt dt,

then nX/2a 0 in the sense of Cesaro.
2< o Therefore, by Lemma 1,Proof. By the Riesz-Fischer theorem, we have E a

na20 in the sense of Cesaro, and therefore, by Lemma 2, nX/2an-O in the sense of
Cesaro. Q.E.D.

3. The result concerningf(t) C[-1,1] depends on Fejer’s theorem and a further
lemma about Cesaro convergence.

LEMMA 3. IfE a is convergent in the sense of Cesaro, then na 0 in the double
Cesaro sense.

Proof. Let

Sn=a +a2+ +a

s +s2+ +s

and suppose o o.
If

+2a2+ +naal
Un-- n

Ulq-u2q- q-U

n
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then

S1-1" 2(S2--S)+ + n(Sn--Sn_l)

nSn $1 $2 Sn-

Sn
n-1

=Sn--tn,

where

tn= On_ "-’)0,
n

and hence

+ 2 + +

o-o=0. Q.E.D.

The counterexample (-1) shows that we cannot deduce na 0 in the single
Cesaro sense under the same hypotheses.

THEOREM 2. Iff( C[ 1,1 has Fourier cosine coefficients

f_/an= ( )cos nrt dt,

then na 0 in the double Cesaro sense.

Proof. By Fejer’s theorem, E an is convergent in the Cesaro sense (to f(0)). Hence
the result follows from Lemma 3. Q.E.D.

Observe that we have only assumed f(t) is continuous at 0.
A uniform boundedness principle argument shows there exist f(t) C[ 1,1] for

which na does not - 0 in the single Cesaro sense. We need the following lemma.
LEMMA 4. The variation of

sinrt + sin2rt + + sinnrt 1
cot 1/2rt- cos(n + 1/2) rt

sin(rt/2)

over It I=< 1 tends to infinity as n .
Proof. The graph of

cot 1/2rt- cos(n + 1/2) rt
sin(rt/2)

lies between the graphs of cot 1/4rt and -tan 1/4rt over 0 =< < 1, touching each alter-
nately at

1 2 n

n+1/2’ n+1/2’ n+1,/2"
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Therefore

var
0_<t<l

cot 1/2rt- cos(_n + 1/2)rt ]sln(’t/2)

>2 (cot 1/4n+l/2 +tan 1/42)n+1/2
+’’" +cot

no t]n+l/2

if n odd,

>2(n+1/2)(l++... +

using the inequality tan 1/4rx < x for 0 < x < 1,

log n

as n o. Similarly for n even.
Co.ottawa. If

Q.E.D.

d sin rt + sin 2rt + + sin n rt.(t)= 2

then

f_ I,(t)ldt

as n o.

Proof. Clearly,

sin rt + sin 2rt + + sin n eft[k(t)ldt= var Q.E.D.
-1 Itl<l n

Now suppose (for contradiction) that na,,O in the single Cesaro sense for every
f(t) C[- 1,1]. Then

al+2a2+ +nan [ (t cosrt+2cos2rt+ +ncosnrt
Jrl -1

l-- fx f(t)g,n(t)dt
"ff -1

=f,

where Tn is a linear functional on C[- 1,1] having

Znll
l fx [n(t)ldt
q’l" -1

which tends to infinity as n , so TnfO as n o for everyf C[- 1,1] contradicts
the uniform boundedness principle.

4. We now show how ordinary convergence can be proved under the extra as-
sumption that an>_ an+ >= 0 for all n.
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LEMMA 5. If an>=an+ >_0 and nl/2a’,O in the sense of Cesaro, then nl/2an--O in
the ordinary sense.

Proof. Given any e > 0, we have, for all large enough n,

a + 21/2a 2 + + n/2an

1+21/2+ +nl/2
>_ a

n

> --an fntl/2 dt
n o

nl/2a
n" Q.E.D.

0 inLEMMA 6. /f a’, >= a’,+ > 0 and na’, 0 in the double Cesaro sense, then na’,
the ordinary sense.

Proof. We have

a + 2a 2 + + na
>= 1/2(n + 1)a’,>__ 1/2na’,,

ut+u2+... +un> a+2a2+... +
)

n 2n 1/2u’,>__

which gives the result. Q.E.D.

5. We now turn our attention to Fourier sine coefficients

b’, f ( )sin nr dt
-1

Theorem 1 goes through verbatim for sine coefficients. Theorem 2 also goes
through, but a different proof is required since Fejer’s theorem does not hold for sine
coefficients. (Consider, e.g.,

f(t)= E sinnrt
.)

2 nlogn

LEMMA 7. If B is a Banach space and (Tn) is a sequence of linear functionals on B
such that [IT,,l[ is bounded over n and Tnf--, 0 as n for every f in some fundamental set
in B, then T,f 0 as n for every f in B.

(We say a subset of B is fundamental if linear combinations of elements of the
subset are dense in B.)

Proof. LetfB and e > 0 be given. Then we can choose a linear combination g of
elements in the fundamental set such that [If- gl[ < e. Now T’, g---, 0 as n , so we can
choose N such that ITngl < e for all n > N. Therefore

Iz.fl IIz.[I IIf-gll + IZgl < (m+ 1)e

for all n > N, where M= sup.llT.II. Q.E.D.



474 J.B. READE

LEMMA 8. The variation of

sin2 ( n rt/2)
sin2 (rt/2)

over Itl
Proof. The graph of q,(t) over 0 =< =< 1 lies between the graph of cosec2 1/2rt and

the horizontal axis, touching each alternately at

1 2
,1.

n n

Hence, clearly,

O_<t<l n n

< n2 + 2n2( 1

if n is even,

1 1}
using the inequality sin 1/2rx > x for 0 < x < 1,

Similarly if n is odd. Q.E.D.
THEOREM 2’. Iff(t) C[- 1,1] has Fourier sine coefficients

b,= fl f(t)sinnrtdt,
-1

then nb 0 in the double Cesaro sense.

Proof. If we write

b1+2b2+ +nb
U

n

ux+u2+ +un

and T,f=v,, then T,fO as n for every fin the fundamental set

1/2, cos rt, cos 2 rrt,. ., sin rt, sin 2 rt,

in the Banach space C[- 1,1], and

IIT II-- var
2n2 Itl=<l

is bounded over n. Q.E.D.
If instead we take T,f= u,, we have

1

Itl=<l

sin(n + 1/2) rt

sin(rt/2)
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which tends to infinity as n since

sin(n + 1/2) rt
n log n 0 var

Itlz sin(rt/2)

by a similar argument to that used in the proof of Lemma 4. So it follows by the
uniform boundedness principle that there existf C[-1,1] for which nb does not 0
in the single Cesaro sense.

6. If f(t)AC[-1,1] is absolutely continuous over the interval [-1,1], then f(t)
has a derivative f’(t) LI[ 1,1] and the fundamental theorem of calculus holds. If
also f(1)=f(-1), then we have

a’n f ( )cos n rt dt
-1

11 flff(t)cosnrt +nr (t)sinnrtdt

rt,lrbn,

b, f t)sin nr dt
-1

f(t)sinnrt -nqr (t)cosnrtdt

nqra n.

Hence, always assumingf(1)=f(- 1), we have nanO and nb,0 in general (see [1, p.
24]), n3/2a,,O and n3/2b,0 in the sense of Cesaro iff’(t) L2[ 1, l], and n2a,O,
nb,O in the double Cesaro sense if f(t)C[-1,1]. It follows, as in [}4, that the
second two pairs of results hold for convergence in the ordinary sense if the Fourier
coefficients are real, positive and decreasing. Observe that the condition f(1)=f(-1) is
not needed for the results concerning cosine coefficients since the proof of b’= -nra,
does not require this condition.

The second two results for monotonic cosine coefficients can be obtained as
corollaries of theorems about the order of magnitude of the eigenvalues of certain
integral equations. In fact, if real, even f(t)Ll[ -1,1] is extended to [-2,2] by
requiring it to be periodic with period 2, then

T(x)=f f(x-t)(t)dt
-1

defines a compact symmetric operator T on the Hilbert space LI[ 1,1] whose eigen-
values are (a,),>__ 0 (multiplicity one for n=0, two for n> 1). H. Weyl has shown (see
[4]) that for an operator

T(x) fbK(x, t)(t) dt

with a general symmetric C kernel K(x,t) defined on the square [a,b] 2, the eigen-
values (),) satisfy n3/Z)kn--’O when arranged in descending order of modulus. It can be
shown that this result still holds when K(x, t) is assumed to be absolutely continuous in
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each variable for each fixed value of the other variable and the partial derivatives are in
L2[a,b] 2 (see [3]). It can also be shown that, if the eigenvalues are positive and
K(x,t) Cl[a,b] -, then n2hnO (see [2]).

Similar results hold with correspondingly higher powers of n for functions f(t)
with higher order derivatives.
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GENERALIZATION OF ZEMANIAN SPACES
OF GENERALIZED FUNCTIONS WHICH HAVE ORTHONORMAL

SERIES EXPANSIONS*

STEVAN PILIPOVI

Abstract. We define the space of generalized functions expp", pc N. If fexppZ", then f can be
uniquely expanded into a series of the form

(*) f’-a.n,
nO

where k,, },,o is an orthonormal base of the corresponding space L2(I), I is an interval in R, b, }.o is a
sequence of complex numbers, such that for some k N,

o exp’,, t ) n=0,1,-.

P

h. },, o is a sequence of eigenvalues of a corresponding operator 9(.k. h. k.), and X. =lX.I if X. :g 0 and

X. 1 if h. 0.
The series in (.) converges in the sense of weak topology in expp". Conversely, if a sequence b,, )=0

satisfies (**) for some k N, a unique element in expp.a’ is defined by the series in (.).
We give representation theorems for elements from expp", p 1, 2,. ., which show that spaces exp.’;

exp2..e’, are natural generalizations of the space’ from [8].

1. Introduction and notation. In his book [8], Zemanian presented remarkable
methods for constructing spaces of generalized functions which correspond to integral
transformations and differential operators.

In this paper we shall generalize results from [8, Chap. 9], so we shall use notations
from this monograph.

Let I be an open interval of the real line R, and let L2(I) be the space of square
integrable functions with the usual norm. We denote by 9 a linear differential self-
adjoint operator of the form

..- OoDnlOID": D’O,,

such that

..=v(-D)n"... (-D)n:(-D)n’o,

where D d/dx, ( "Ok) are nonnegative integers, { 0h )--0 are smooth functions on 1
without zeros, and 0h are complex conjugates of 0h, k=0,1,.--,v. We suppose that
there exist a sequence of real numbers (X,)--0 and a sequence of smooth functions
(, },--0 such that 9tkn=X,k,. Furthermore we suppose that the sequence (IX.I}.=0
monotonically tends to infinity and that (k,} forms an orthonormal base of L2(I).
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If (a, },--0 is a sequence of complex numbers different from zero, we denote by
S(an) and SX(an) the sequence spaces defined in the following way (see [2]):

( an )n--0 S(an) iff for every k No, E la,,llanl 2k<,

(bn}n__oSX(an) iff for somekN0, Ib l=l  l
n-----O

(No=NU (O}).
Zemanian proved in [8, Chap. 9] that there exists a bijection between the space of

eneralized functions’ whose elements may be uniquely expanded into a series and
the space Sx(n) where, h if h, :/: 0 and ,, 1 if h, 0, n 0, 1, .

In this paper we shall investigate the space of eneralized functions exp--" which
contains " as a proper subspace. The elements of the space exp" have unique
orthonormal expansions of the form

exp’ f= bn+n, bn (f,n), n e NO,
n=0

where this series converges weakly in exp,". We shall show that there exists a bijection
between the spaces exp’ and SX(exPn)"

exps"f= E bnn -’> ( bn } S(expXn)
n=0

We shall give the representation theorem for the element of the space exp"
Moreover, we shall investigate further generalizations of the spaces exps", spaces
exp expse’, exp exp exp",. ., for which we shall give representation theorems.

We shall briefly show in 5, Remark 2 that, similar to [8, 9.7], our theory can be
applied in solving a class of differential equations of infinite order.

If we use the approach from the paper [6], we can construct the most general space
of generalized functions whose elements have orthonormal expansion of the form
f= En=0bn without any condition on the coefficients bn, n No.

In this paper our intention is to more precisely characterize generalized functions
which have unique orthonormal expansions; for that purpose the spaces eXpp" are
more convenient.

We notice that the generalizations of the spaces" given in this paper can be done
for the spaces .e" from [7] without difficulty.

2. Spaces exp,a’ and exp,". We denote by expz’ the subspace of L2(I) defined
in the following way:

q= E anq,expa’ iff (an}S(exPn)
n=0

means equality in the L2 sense. If there is no possibility for misinterpretation, we

shall put instead of ).
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In the space expCwe introduce the sequence of norms

V, ():= la,lZ(exp X,)-* k NO

This sequence of norms defines the usual topology in S(exPn) [2]. Thus the spaces
expea’and S(exp,n) are isomorphic.

If we denote by (exp’)k the subspace of L:Z(I) such that

q, (exp’)k iff 7k(q) <

it is easy to show that (expseC)k, kN0, are Banach spaces. The sequence of norms
(Tk}=o is pairwise, compatible [1, p. 13] and monotone (Tp(q,)=<Tp+l(0), PNo).
Since expCis a dense subspace of (exp’)k according to the norm 7k, from [1, p. 36]
we have

(1) exp--"= [,.J (exp)’k.
k=O

PROPOSItiON 1. (i) The space exp,’is a dense subspace off,’and (I). Moreover,
the inclusion mappings of expg’into ’or (I) are continuous. ((I) is the space C(I)
with the usual topology.)

(ii) The space expCis nuclear iffor some k No, Z,n__o (expn)-2k < o.
(iii) If q exp--’, =2n=oanbn then for any k No, %=E=oXanqn exp,

where the series converges in the sense of convergence in exp’.
Proof. (i) If =E=oa,q,, then (Z,=oanqn} is a sequence from exp’which

in the sense of convergence in ’converges to ft. If

p=

_
an,pn, pN,

n=0

is a sequence from ’and q=En0anqne’, then qp0 in e’iff for every kNo,

E la -a I,0. So it is clear that the inclusion mapping (i)" expected’ isn--O n,p
continuous. Sinceis a dense subspace of (I) and the inclusion mapping i: e’g(I)
is continuous ([8, Lem. 9.3.4]), it follows that expis a dense subspace of (I) and the
inclusion mapping i: exp’(I) is continuous.

(ii) This follows from [3] because the space S(expkn) is equal to the space
,(exp,n)={(xn}=0; E=01xnl(exp,)k< for every kNo} iff for some kNo,
E (exp , )- k < o holds ([5])n----O

(iii) Since this assertion holds for elements from ’, it is easy to prove that this
holds for elements from expz’.

THEOREM 2. (i) If expz’, then for every k No,

k

(ii) The sequences of norms (Ok } and (7k } in expel’are equivalent.
Proof. (i) Let 4 En=oa,q, expel’. Since

I1   11= E [apl2V-p,
p=0
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we have (with m > k and some C> O)

p=O p=O

< C E E -.[ap[np =C E lapl mX.
i P

n=Op=O p=O n=O

<= C E lapl mO’
p-O n=O

-’’p --C p=oE la l (expXm)

(ii) In (i) we proved that 0,()__< Ctm(), SO we have to prove that for a given
there exist C> 0 and m NO such that

Since finitely many A n may be equal to zero, we have (with m> r> k and suitable
CCxC)

,(’)= E lanl2(exp,nk)2
<-C1 E lanl

2 (i)knlk) p
2

n=0 n=0 p=0

<C2 lanlg- [)n[ 2prgp

,o p--O P! p=0 P!2

(raP V/n0 ) mP nO 12 2P
=<C sup la.121A.12e =<C -. a, [h,I

p p----0
=COm(*).

So the proof is complete.._....
If we denote by (exp), kN0, a subspace of s such that +(exp’) iff

0,(+)< c, by the standard argument.....s one can prove:
PROPOSITION 3. The space (expd), k No, is a Banach space.
The sequence of norms { 0h ) monotonically increases and any two norms from this

sequence are consistent.

If 2 E,__oa,n is an arbitrary element from (expt’), then the sequence

(E,=oa,6,)=o from expconverges to + in the sense of convergence in (exp’).

So (exp’) is a completion of exccording to the norm 8, and we have:
PROPOSITION 4. exp"--k__0 (exp2).

3. Representation theorems. [8, Thms. 9.5.1 and 9.6.1] directly imply:
THEOREM 5. (i) If fexp,’, then there exists a sequence of complex numbers

( bn } --o such that

(2) f= E bnn, bn=(f, tPn), nNo,
n=O

where the series converges weakly in expz".
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(ii) The series on the right side of (2) converges in exp’ iff there exists r No such
that 2=01b.12exp(- 2r,.)< oo (that is, { b.} SX(exp.)).

We shall prove:
TrIEOREM 6. If fexpCZ’, there exists a sequence (f}=ofrom L2(I) and kNo

such that

(3) f= E
n----0

and

(4) sup IILII= <
nN

Conversely, if a sequence {f, } from L(I) satisfies (4), with the series on the right
side of (3) a unique elementfrom exps" is defined.

Proof. For the proof we shall use an idea from [91 (see also [41). Ifxp", then
from Proposition 4 it follows that f may be extended from exps’onto (expsg)

__
for some

k eN0, to become an element of (exp. We denote tNs element from (exp again
by f. So we shall give a representation of any element from (exp, k eN0.

We denote by the subspace of the Tikhonov product = 2H=0L (I) defined in the
following way:

(f)n0F iff II{L}llr := E Ilfnll=<
n=O

The mapping a from (expk to F is defined by

is an isometry of (ex, and of ((expk)cF. We define a continuous linear
functional on a((exp,) by

From the Hahn-Banach theorem it follows that f may be extended onto F
continuously and linearly. We denote this extension by F. It is known that if F F’,
then there exists a sequence of functions (f. } from L(I) such that

ana sup
01 N

This means that if exp., then in the sense of weak convergence in exp.’, we
have

(5)
(f’*)= Yo= f(x)-. %(x)dx=

n=O n=0
n]

It follows thatf is of the form (3) such that (4) holds.
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4. Spaces expose and exp,,’ (p> 2). If q exps’ then the series
E,,=o(kn/n!)% converges in L)-(I). This follows from Theorem 2 (i). Let us denote
by

E (exp) expk, k N0,

the linear differential operator from expto La(I) defined by

k(expk):= Nn, ffexp.
n=0

We have
PROOSXO 7. The operator E, kNo, is the continuous operator of the space

expinto the same space.
Proof. If ,0a expandE 0c L(I), we have

,p X;(,,p)=apexp(kXp), pNo.
n =0 n =0

From (6) it easily follows that E expand that the mapping E: expexpis
continuous.

We denote by exp expthe subspace of expdefined in the following way

q a.qn exp exp’
n--0

iff for every k N0,

n] (expexp}tn)
n=0

< m (that is, ( a } S(exp exp X n)).

If 4 .__0anqn exps, then (E,=oanqn }=0 is a sequence from exp expsCwhich
converges to in exps. This implies that exp exps’ may be continuously embedded
into expsCand d(I) as a dense subspace.

The sequence of norms (2’k }=0 is equivalent with the following sequence of
norms on exp exps:

k -, n

This may be proved similarly as in Theorem 2.
We may construct in the same way the spaces exp exp exp exps, exp exp exps, .,

defined respectively by the norms {3,/ }, {4"Yk )," ", where

P’():= ]anl2(expexp expXn)2 kNo, p=3,4,...,

P

is a norm on

,exp... exps’).
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Let us denote the latter space exppz’. The operator

( )kE: exp exp.., exp k No, p >= 2,

on expp’, p >= 2, defined by

E;fl) E kml m?2 mp fl q, expp’
ml=0 ml! m2!"" mp!m =0 mp =0

continuously maps eXpp’into expp.
Similarly as for the space expCone can prove"
THEOREM 8. (i) The space exppo’, p >= 2, may be continuously embedded into the

spaces expp 1’5’ ",exp’, (I).
(ii) The sequence of norms (p3h,)o_-o on exp, p >_ 2, is equivalent to the sequence of

norms

pOk(fl) "= 2 kin1

m 0 ’ m2=0 m2-----T"" E mp____p__ IIem"q’[12, kNO p> 2
mp=O mp]

This means that ’(I),.’,..., expp_ r.q’ are subspaces of expp.’ ’.
Now, we shall give the generalizations of Theorems 5 and 6.
THEOREM 9. (i) Iff eXppa", then there exists a sequence of complex numbers (b }

such that

(7) f= E bnff/n, b,= (f ,), n No,
n=0

where the series converges weakly in eXppS’.
(ii) The series on the right side of (7) converges in expp..g" iff there exists an r No

such that

Ib12exp( 2r(exp.-- expkn)) < o (( b.) SX(._exp expn)).
p-1 p

THEOREM 10. If feexpps’, there exist a sequence (f(,,1,..-,m,)}, (ml,’",mp)eNop
from L2(i) and a k NO such that

(8) f= E k" m, o m’ ,pf(
ml=0 ml mz=0 m2

E mx,...,mp)
mp=O mp.

and

(9) sup ml"’"mP) 2
(ml’m2’ .,mp)N < o.

Conversely, if a sequence (f,,,. } from L2(I) satisfies (9), a unique element from,..., p)
eXppSe" is defined by the series on the right of (8).
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5. Remarks.
Remark 1. It is clear that if {/, },0 is a sequence of complex numbers such that

/, O((exp .--exp_n) k) for some k N,

P

then by

n=0 n=0

a linear continuous operator of multiplier type from" into expp" or from eXpm"
into exp,,+p" is defined. (We suppose in (10) that the series converges in the weak
sense of the corresponding spaces of generalized functions.)

Remark 2. In the preceding section we defined differential operators of infinite
orders E, p N, k N. As in [8, 9.7], one can easily show that the differential equation
of the form

(po()+Pl(E1)+ +Pe(Ee))f=g,
where g expe," and P0, Px,’",Pp are arbitrary polynomials, has a solution in the
space expp".
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ANALYTICITY SPACES OF SELF-ADJOINT OPERATORS
SUBJECTED TO PERTURBATIONS

WITH APPLICATIONS TO
HANKEL INVARIANT DISTRIBUTION SPACES*

S. J. L. VAN EIJNDHOVENt AND J. DE GRAAF"1"

Abstract. A new theory of generalized functions has been developed by one of the authors (de Graaf). In
this theory the analyticity domain of each positive self-adjoint unbounded operator in a Hilbert space X is
regarded as a test space denoted by 6"x, ,. In the first part of this paper, we consider perturbations on
for which there exists a Hilbert space Y such that + is a positive self-adjoint operator in Y. In particular,
we investigate for which perturbations and for which v>0, 5ax,epcAr,(,+). The second part is
devoted to applications. We construct Hankel invariant distribution spaces. The corresponding test spaces are
described in terms of the 5"f-spaces introduced by Gel’fand and Shilov. It turns out that the modified
Laguerre polynomials establish an uncountable number of bases for the space of even entire functions in 5af
( __</__< 1). For an even entire function q0 we give necessary and sufficient conditions on the coefficients in
the Fourier expansion with respect to each basis such that q0 5’.

AMS(MOS)subject classifications. Primary 46F12, 46F05, 33A65

Introduction. Let X be a separable infinitely dimensional Hilbert space and let .La
be a linear operator in X. Then ’(.o’), the analyticity domain of .e, consists of all
vectors v CI n__ (L’ n) satisfying

3a>O"b>O[n.N lloz" ,ll <- n !anb.

For a positive self-adjoint operator in X, Nelson [13] proved that () can
also be described as

’() IJe-t(X)={e-tw]wX,t>O}.
t>0

Instead of ’(’) we use the notation6ax,, introduced by de Graaf. The spaces
of type 6"x, ,are called analyticity spaces. They are nonstrict inductive limits of Hilbert
spaces. Together with their strong duals q’x,, they establish the functional analytic
description of the distribution theory in [7].

For each positive constant u the operator e’ is well defined, positive and self-
adjoint in X. So it makes sense to write 6ax,,,. The question arises for which perturba-
tions on there can be found a Hilbert space Y such that s’+ is a positive
self-adjoint operator in Y and ,X,.C,,C,.,ay,(.s,+),,. In the paper [1] the case ,= 1 has
been considered. Also some results concerning analytic dominancy can be found there.

In the second part of this paper we study a class of Hankel invariant test and
distribution spaces, and also their relations to the f-spaces of Gel’fand and Shilov
[9]. With our papers [2] and [4] we have started this study. There we have shown that
the space of even functions in 6af remains invariant under the modified Hankel
transforms H,, a > 1, defined by

(Hf)(x) (xy) J,(xy)f(y)y2"+Idy.

Moreover, for each a > -1 the space of even functions inS’// equals the analyticity
space6ax ,, where X,= aO x2’+l dx) and= -d/dx2 + x2-(2a + 1)xd/dx.2kX. 1
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The operator ’, has an orthonormal basis of eigenvectors (L)).=0 with eigenvalues
4n + 2a + 2 So for each evenfc1/2 oz

1/2 there exists an 12-sequence (%),=0 and > 0 such
that f= E,__oexp(-(4n + 2a + 2)t)%L(,). Here we prove similar results for the spaces
5axo,(,o). with v>= 1/2 and a> -1. It will follow that for all a, fl> -1 and all v>= -5x. ,(,.) 5ax,().

For v[1/2,1] the analyticity space ttgS_l/2,(d_l/2)u contains just the even functions in
1/2u
/2v"

1. General theory. Let ’be a positive self-adjoint operator in a Hilbert space X
and let v > 0. It makes sense to write" and the operator" is positive and self-adjoint
in X. So the space 6x,g, is well defined. Its elements are characterized by

LEMMA 1.1. For each f (!)cX the following statements are equivalent:
(i) :!> 0:qb> 0Vkr IIze’kjql__< (k!)/"akb.
(ii)f5ax, ,,.
Proof. (i) (ii). Let N N and let r > 0. Consider the following estimation

N Tk
k=O

N Tk
k=0

N

a<bl E -.(([vk]+l)l) vk k

k=0

where bx b supkN {0} (liszt- + -tlll). The following inequalities are valid:

([vk]+l)! =< ([vk]+l)([vkl+l)t"k]=<e([vkl+l)(vk
So ([vk]+l)! <=(e([vk]+l))/"(ve)kk!, and for <(vea)- the series (,) converges. It
implies thatfexp(-’")(X).

(ii)=(i). Suppose gx,,. Then there exists s>0 and wX such that g=
exp(-sg")w. Let k N. Then we estimate as follows

e-k/v
ItS

With a=(vs)-/ and b--llwll the implication (ii) (i) has been proved, t
Let La be an unbounded linear operator in X. Then the operators ’2,a3,... are

well defined. As a corollary of the previous theorem we get the following.
COROLLAR 1.2. Let n N and let f (Lzo). The following statements are equioa-

lent.
(i) :l>o]>oVky l[.,q’k)ql <= (k!)l/"ab.
(ii)f (’").
As mentioned in the introduction we investigate perturbations on ’ such that

’((l+))36t’x,g,. For v=l the following result has been proved in [1]. Here we
consider general v > 0.
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THEOREM 1.3. Let be a linear operator in X with ()DSx,,. Suppose the
following conditions are satisfied.

(i) There exists a Hilbert space Y such that exp(-t’) maps X into Yfor all > O.
(ii) In addition, ’+ defined on 5’x, is positive and essentially self-adjoint in Y.
(iii) There exists an everywhere defined, monotone nonincreasing function q on (0,1)

such that

.0<< IIxp(r) exp( rs ) ( r ).

Then 6’x, c6’r,,+),.

Proof. We note first that x,e,=Uo<t<lexp(-tsC")(X). So let O<t < 1, and let
O<<t. Put s= t-z. We want to estimate the norm of the operator exp(se’")
(sO+)exp(- ts") for each k N. Therefore we factor as follows

exp( ’r,.q’" )( z’+. ) *exp( tz )

12[ (exp((’+ %S)dr)(oC’nt-3: 1) exp
j 0

This factoring yields the estimate

Since q( +js/k)<=q)() for allj= O, 1,...,k- 1, we get

l+q + s __<(l+p()) .
j--O

Thus we have proved that

Vt>OV,.,O<,r<t:ta>OV,Nu(OI’llexp( S’)( SO’+ )*exp(- ts") =< (k!)/"a.
Let t>0 and let wX. Setf=exp(-tsC)w. Then for 0<r<t fixed there exists a>0
such that

_< Ilexp( -,s) x_. llwlla(k!)/’.

From Lemma 1.1 it follows that f5"v,(,+),. []

Remark. Suppose there exists k N such that the operator s-k maps X continu-
ously into Y. Then Condition (iii) of Theorem 1.3 is fulfilled because
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COROLLARY 1.4. Let be an operator in X and let n N with ()D9x, ,,,.
Suppose there exists an everywhere defined monotone nonincreasing function q on (0,1)
such that

V0<r< 1" [[exp( r,j’n exp(- r,,qcn ) l[Z q( r ).

Then S’x, ,,, c 3 ((d’+ ) ).
Proof. As in the proof of the previous theorem:

Ilexp( kexp(- t!’")ll< ( k!)l/na k.

So forf- exp(- ts’n)w, > O, W X, we get

Remark. If satisfies the conditions in Corollary 1.4, then n analytically
dominates (’+)n. (For the terminology, see [6].)

In order to prove the converse statement of Theorem 1.3, i.e.,

t,y,(.-+ ..0)" C’X, ..,at

we have to interchange the roles of and o’+#. Put differently, if we write =’+
and hence =-, then we have to check whether the pair , # satisfies the
conditions required in Theorem 1.3.

2. Hankel invariant distribution spaces. In our papers [2], [4] on Hankel invariant
distribution spaces the following results have been proved.

Let r denote the differential operator -d2/dx2+ x--(23, + 1)/xd/dx and let
Xr denote the Hilbert space 2((0, oo), x 2r+1 dx) where we take 3’ > 1. Then for every
a,/3 > 1 we have shown that

Moreover, f5’x if and only if f is extendible to an even function in 5a1//2. Also,
it has been prove]’that the space 5Q,,, remains invariant under the modified Hankel
transform H r defined by

(Hrf)(x) fof(y)(xy)-rJr(xy)y zr+a dy.

Here Jr denotes the Bessel function of the first kind and of order 3’. The Hankel
transform Hr extends to a unitary operator on Xr and Hr’r=C’rHr. It follows that
for all a, fl>- 1, H, maps the space 6ax, , onto itself. By duality, each H leaves
invariant each space of generalized functions Y’xa,ca corresponding to 5xa,wa. The
functions Lr) defined by

2r(n+ 1) )1/2LT)(x)= F(n+7+ 1) e-X:/2"(r)(x)’ nNt3(O}, x>0

establish an orthonormal basis in Xv and they are the eigenfunctions of the self-adjoint
operator ’v with respective eigenvalues 4n + 23, + 2. Here Zt’v) denotes the nth gener-
alized Laguerre polynomial of order 3’. We note that HrLV)= (- 1)nL). We recall that
for each a, fl>-1 the functions f.S,xo,,, can be written as f=E,__o%L(,,) where
to, O(e-"t) for some > O.
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With the aid of the theory presented in the first part of this paper we extend the
mentioned results and prove that

for all v >- and all a, fl>- 1. In addition, we show that for each re[1/2,1] and all
a >- 1 the space 5xo,,.). contains just the even functions of the Gel’fand-Shilov

C4:,1/2vspace 5a11/2/ So each even function fe. 1/2 admits Fourier expansions f=-.,, 0 v.")-(")--,. ,,;*,.. O)= O(exp( nt)).
Let a,/3 > -1. Thenai can be written as

where we put =(1/x)d/dx. Obviously,a can be obtained from ai/ by means of the
"perturbation" 2(a-fl), and ai/ from ai by means of 2(fl-a). In order to show
that and hence c, c e C, is a perturbation in the sense of Theorem 1.3 we compute
the matrix of with respect to the orthonormal basis (L{nV))n=0 To this end, we
mention that

L{,,v)= LV+ 1)- 2L{,,v_+x)

where the relation d’,,(3"l/dx _..,,(v__- 1)is used.
Now&o(3,+ 1)=. ca(3,) and hence

r(n+,+l) r(n+l) m=0 2r(m+l)

Thus we obtain the matrix of with respect to the basis (L(n3’)),, o
-1
0

(’L{k3’)’ L3’)) 3’=

( F(k + 1)-2
F(k+3’-t 1)

r(l+,+ 1) )1/2r(l+l)

ifl=k, keN,
ifl>k, keNto{0},

if 0_<l<k, keN.

The inequality (cf. 11])

F(n+l)
nl-<__F(n+s) =< (n+l)1-, 05s=< 1, neN

yields

2
I(L3’), L53’))1 =< 2k-3,/2

if3,>0, O<_l<k, keNu {0},
if -1 <3,<0, O<=l<k, keNu {0}.

For each v >__ .1/2, the operator exp(r(a/3,))(ai3,)- exp( r(ai3,)) has to satisfy Condi-
tion (iii) of Theorem (1.3). We define the weighted shift operators g<’_ ()(r), n e N to {0}3’,v

0 ifkl+n,

(d’_(")(r)L(3’) L3’))3’ t( ) exp(-r(4(l+n)+2+2))-(41+2"{+2)3,, LV+)n’ LI3’) 4(l+n)+Zv+2
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with norms

sup
/NW(0}

exp(- r(4(/+ n)+23’+ 2))- (4/+ 23,+ 2)
4(/+n)+2y+2

So Ilz7()(r)ll < 1/(23’ + 2). Now let n N. The inequality

)1/2 1/2(4(/+ n) +23’+ 2) -(41+2y+2)’>=(l+n

is valid for all N to (0} and all v >= 1/2. In addition, the matrix elements I( -o’(v)z+ ,, Lv))I
are smaller than 2(l + n)-V/2 for -1 < 3’ < 0 and smaller than 2 for 3’ > 0. If -1 < 3’ =< 0
we therefore get

2(lq-n) -/2 )1/2 /1/2))sup
4(/+n)+23’+2

exp -r((l+n
INu(0}

1
__< sup -(l
INU(0}

+ n)-l/2V-lexp -rn(l+ n)

=<- 1 +-3’ r
exp(2-1- T)=:dl

1 2+ 1
n r n

2+

Since

exp(r (’v) ) (elv) lexp( r (3’) )
n=O

we can use the following straightforward estimate for all r > 0

exp( r (0’3’))(’v)- lexp(-r( s’3’ ) < E 3’,v

n=O

-<2+2 +dl -r
n=l

n

2+3,

<d3’(1) 2+3’
+

1
r 2+2

where d3’ dlZn= (l/n) 2 + 3’. Summarized we have
LEMMA 2.1. Let 3’ > -1. Then there exist constants d3"> 0 andp3"> 0 such that

>0 "llexp(r(G))slexp(-r(,))ll<G(= 1) 1

23’+2"

Proof. For -1 < 3’ =< 0 the assertion has already been proved. For 3’ > 0 it follows
from the matrix expressions for that

Ilexpr(’v)’vlexp(-r(’v) )ll=<d V
1

23’+2"
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In addition, we show that given r>0, 7,8> -1, the operator exp(-r(agv)") maps Xv
into X8. In [2, p. 17], the following result has been proved

Here denotes the multiplication operator in Xv given by

(f)(x)=xf(x).
Now let t$> 1 and letf Xv. Put s := [max(0, (i- y)/2}]+ 1. Then there exists 0 N
such that 112a11 < o for all l> 0. So we derive

flX4sl((dy)-lf )(x)[2X2y+ldx
2 2

Following [12, p. 248], there exists l: N and d> 0 such that

max IL(F(x)l<=d(k+
x[O,1]

For > 1: it yields

(__< max I((r)-’f)(x)
x[O,1]

28+x dx

( I1 Z (f,L(V))v 4k+27+2=< 2+2

1
d

_
(k + 1)

2)2’ Ilfll =.<28+2 (4k+2y+

From (,) and (**) we get

28 + dx c11/[12 

i.e. (r)-z is a continuous linear operator from Xv into X8.

LEMMA 2.2. Let y>-1. Then for every r>0, v>0 and >-1 the operator
exp(- r(a’v)) is a continuous linear operatorfrom Xv into X8.

Proof. Let r > 0, v > 0 and let 8 > 1. Then there exists N such that (ae’v)-
is a continuous linear mapping from Xv into Xs. Hence exp(-r(Av)")
(ag)-z{(ad’)Zexp(-r(a))} is also a continuous linear mapping from X into X8.
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Lemmas 2.1 and 2.2 yield the following important result.
THEOREM 2.3. Let a, fl > 1. Then for every v >= 1/2

Proof. Let v >= 1/2. We have shown that:
-exp( t()), > 0, maps X continuously into Xt.-()DSaso,(,r, and t=.+ 2(a-fl) is positive and self-adjoint in Xt.
-There exist constants d,p > 0 such that for all r > 0

p- 1Ilexp(r(se))(se")-Xexp(-r(se’))ll,,<=d" T + 2+-----5"

So by Theorem 1.3, Sxo,(,.rcSxo,(.,,).. Interchanging a and fl we get the wanted
result. []

Let a > -1. Since HC=CH, also H()" (’)"H. So the Hankel trans-
form H is a continuous bijection on the space 5x,,,),, v _> 1/2, and hence on the spaces

>15ax,,a),, v= 3, /3> -1. By duality each transform H leaves invariant the spaces of
generalized functions -x, , For et=- 1/2 we get X 2 2((0, oz)) and ’ 2,( )- / /
-(dZ/dx2)+x 2. The functions L-1/2) are the even Hermite functions. With the aid of
the papers [8] and [10] the following characterization of the spaces x_l/,(,_x/:).,
v 1/2,1], can be obtained,

v. c4pl/2fSaX_l/,(.xe /2) f is extendible to an even function in the space x/,.

The spaces pq, p + q >= 1, p, q >__ 0, are introduced by Gel’fand and Shilov in [9]. In this
connection we note that in our paper [5] we have proved that the spaces 5/+- are
analyticity spaces; explicitly

(4ok/k+l with, ( d2 )(k+)/2k_._l..x2k1/k+l -"’-2(R),
dx 2

Relevant for the present paper are the spaces 6a, 1/2 =</ =< 1. We have

Sa’, 1/2 =</=<1 if and only if is an entire function satisfying
:1., s, c>0 lq ( x + iy ) =< C exp( -Alxl/+ Blyl1/1 -)

and

tp6a if and only if is analytic on a strip about the real axis say of
width r>0 and satisfying 3.c> o. sup I(x+ iy)l <=Cexp(-Alxl).

lyl<r

Now Theorem 2.3 leads to the following important results.
COROLLARY 2.4. Let a> -1 and let v[1/2,1]. Then fSex,,(.), if and only iff is

C.,’ 1/2extendible to an even function in the space /2.
COROLLARY 2.5. Let f5’11f2 be even, with v [3,1]. Then for each ), > -1, there

exists an l-sequence (wv))=0 and t>0 such that f=2,__oexp(-n"t)oV)L where the
series converges pointwise.
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Appendix. The set of so-called entire vectors for a positive self-adjoint operator’in a Hilbert space X is equal to

t>o

In [3], van Eijndhoven has used the Fr6chet space (e) as the test space in a theory
of generalized functions which is a kind of reverse of the theory in [7]. The space
(e’) is denoted by (X,) and it may be called the entireness space. To our
opinion the well-known theory of tempered distributions is considerably generalized in
[3]. (Put s’=log(-d2/dx2+x2+l). Then ’r(2(R), ) is the space 6a(R) of func-
tions of rapid decrease.)

Similar to Theorem 1.3 we prove
THEOREM A.1. Let be a linear operator in X with ()3exp(-o/)(X) for

some o > 0 sufficiently large. Suppose the following conditions are satisfied.
(i) There exists a Hilbert space Y such that exp(-t’) maps X into Yfor all > O.
(ii) Also, + defined on exp(-oC)(X) is a positive essentially self-adjoint

operator in Y.
(iii) There exist positioe constants r0 >__ 1, d> 0 and 0 <= q < 1/v such that for all r > ro

IIexp(r)f-exp( r)II x< dr q.

Then "r(X,,") c ’r(Y, (’+)").
Proof. Since (X,g’)=t>oexp(- t’)(X), we consider > ro only. Let 0 < < 1

with s t- - > 1. The factoring used in Theorem 1.3 yields the following estimate

v--- (1 + d ( +js/k) q).

Put b,= 1 + d,r q. Then

k-l " f--l ( k+js ) q
-[ (l+d(+js/k)q)<b11(l+d)
j=o "= k

Set a=(1 + d)2q(-)1/’ Then

=< b(1 + d) k2qksqk.

I[exp(’)(+)exp(t)llx<(k,)l/(1) a kb

Forf exp( t)(X) it yields

< (k!)/ a. b,llexp(-’)l[x_.vllexp(t)fllx.
S

Thus we find that fexp(-r(z’+)")(Y) for all r<(1/vae)s -q+l/". Now put r(t)=
(1/(vae + 1))s -q+ 1/u with s= + l/t- 1 for instance. Then we get

’(X,ze) N (exp(-tzg)(X)) C N (exp(-r(t)(zg’+P))(Y)
> >

N (exp(-r(/+))(Y)))=( Y, (’+))"
r>0
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It is not hard to see that the spaces (X, (’)"), a > -1, are Hankel invariant, and
hence their strong duals o(X, (’)"). The previous theorem and the Lemmas 2.1 and
2.2 lead to the following classification.

THEOREM A.2. Let a, > 1 and let , >= 1/2. Then

By [2] and [8] we obtain the following characterizations

and

f "r( X_ 1/2, d_ 1/2) ifff is extendible to an even entire function for which

V0 < < 1::]C OVx+ y C "[ f( X "b iy ) C exp( 1/2ax 2 -[-- 2A-dy 2 )

f’r(X_l/2, (J_l/2)1/2) ifff is extendible to an even entire function for
which qCr 0" sup e rlx[ f ( x + iy )1 < .

[yl< r, o < x < o

Finally, Theorem A.2 gives the characterization in classical analytic terms of the
elements in each r(X,s’), respectively (X, ()1/2), a> -1.
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LIMIT CYCLES IN THE JOSEPHSON EQUATION*

JAN A. SANDERS AND RICHARD CUSHMAN:

Abstract. Using techniques from bifurcation theory, we find the bifurcation diagram and corresponding
phase portraits on TS of the Josephson equation: ,=y, p= sin ff + e(a- (1 + , cosk) y).
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Key words. Josephson equation, averaging method, Picard-Fuchs equation, limit cycle, saddle connec-
tion, homoclinic loop

1. Introduction. Mathematically, a single point contact Josephson junction is de-
scribed by the nonlinear second order differential equation

d(1.1) Bd2q+ (1 +’l, cos,) -d- + sinq=a, )S o,] "d,r2

which we call the Josephson equation. In many applications [14], [19] point contact
Josephson junctions are used as precision voltage sources. Here the voltage of a
solution of (1.1) is the time average of d/dr. Unfortunately the output voltage of a
Josephson junction is very small. In order to physically detect it one first drives the
Josephson junction with a high frequency sine wave of low amplitude and then one
measures the voltage of a phased locked solution. Mathematically, one is looking at the
time average of d/dr on a periodic solution which lies on an invariant torus of the
driven equation. Because the amplitude of the driving is small, one expects that the
invariant tori come from limit cycles of the Josephson equation. Therefore one needs to
know the entire phase portrait of (1.1).

We shall study (1.1) when fl is large and a is small. More specifically, let e fl- 1/2

be a small positive parameter. Then set a ea and r et. With "= d/dt we write (1.1) as

(1.2) X,,,r" p= -sin+e[a-(l+Tcos)y].

Holding e fixed, Xa, is a two-parameter family of vectorfields on the cylinder TS1,
which we will study by the averaging method.

We now derive the averaged equation. When e 0 (1.2) is the Hamiltonian vector-
field Xn describing the mathematical pendulum where the Hamiltonian function is

(1.3) H( cb,y ) y2 cos b.

Instead of the variables (,y) we will use the variables (, h), where h is defined as

h=y-cosq.
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Netherlands.
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Differentiating (1.3) with respect to and using (1.2) gives

(1.4) dh
d---=e[a-(1 + 3,cosff)y(,h)]

where y(ff, h)= (-(h + cos))1/2. Averaging (1.4) over a compact connected compo-
nent Fh of the level set H-l(h) (which is a periodic solution of Xh except when h 1)
leads to the averaged equation

(1.5) d-- =e a d- d-v cosffd

Nondegenerate zeros of the right-hand side of (1.5) correspond to limit cycles of Xa,.
In earlier publications [3], [17], the averaged equation was studied by expressing

the integrals

(1.6) ,sC(h)=fr,dgl, (h) =SrYd+, C( h ) fryCosd,
in terms of the complete elliptic integrals E and K. Because of the complicated implicit
relationship between the elliptic modulus parameter k and the energy parameter h, this
special function approach led to meager incomplete results. The technique we use to
study the averaged equation is to find the Picard-Fuchs equation satisfied by ’,
and and then to analyze the solutions of the resulting Riccati equations. This is the
approach used in the study of codimension two bifurcations of planar vectorfields
[4]-[9], [11]-[13] and is quite widely applicable. For instance, for all perturbations of
the mathematical pendulum by a vectorfield on TS whose components are polynomi-
cal in y, cos, and sin, there is a systematic way of finding the Picard-Fuchs
equation for the integrals appearing in the averaged equation. However for the analysis
of the resulting Riccati equations there are no known general techniques. Here we must
proceed on a case by case basis, although one can obtain upper estimates on the
number of solutions in terms of the degree of the polynomial [18].

We return to studying the zeros of the averaged equation (1.5). First, we remark
that there are three distinct families of closed cycles Fh on TS (see Fig. 1)"

i. Fh, when 1 < h < 1. The level set H-l(h) is smooth, connected, compact, and
contractible to a point.

ii. Fh+ when h > 1 and y > 0. Fh+ is the component of the level set H-l(h) given
by the graph of the function y= 2i h + cos) Fh+ is not contractible to a
point (it winds around the cylinder).

iii. Fh- when h > 1 and y < 0. Fh- is as in (ii), except that y #(h + cos).
From here on we use the superscripts 0 and + on , and ’ to denote which

Fh-family is being used._ For a fixed value of the parameter a, those values of which
give rise to zeros of dh/d in (1.5) are exactly the values of the function

f(h),(1.7) ’o(h) =a (h’---3-
where

(a.8)
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l +rh

FIG. 1. Level sets ofH on TS

The main result of this paper is the following.
THEOREM. For h (- 1,1), 0 0 is a strictly monotonic decreasing function with

range (- 3, 1); moreover o does not depend on the parameter a.
Let a += + 16/3r. For each a < a +, 1

+ is a strictly monotonic decreasing function of
h on (1, c) with range (-o0,3,ra/4-3); while for each a>a +, when h>l, /+ has a
unique maximum 1 + (a ) and has range ( 1 + ( a )). For each a > a-, is strictly
monotonic decreasing function on (1, ) with range (-,3ra/4-3); while for each
a < a -, when h > 1, /- has a unique maximum l (a) and has range ( ,l (a)).

Figure 2 gives the a-y plane bifurcation diagram for Xa,, while Fig. 3 depicts
the phase portraits of Xa,v, along two curves in the a-, plane. In {}2 we will show that
Figs. 2 and 3 follow from the above theorem. In {}3 and {}4 we give somewhat technical
proofs of the key properties of the functions and /, which culminate in the proof of
the theorem.

V

FIG. 2. Bifurcation setfor Xa,
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II. 1

_
7 =< 1. Formation of II. 3 < 7 < 1. Formation of II. 7 3, a 0 Formation

upper saddle connection with upper saddle connection in the
ofa double saddle connection.

no other limit cycle present, presence ofa stable Hopf limit cycle.

FIG. 3 (cont.) Phase portraits of Xa,v.

2. Phase portraits. Consider Figs. 2 and 3. Following the dotted line in Fig. 2
from the right to the left we go through numbered regions and curves with Roman
numerals corresponding with phase portraits in Fig 2. We shall now see why the phase
portraits follow from our knowledge of r/. Before beginning our discussion we would
like to warn the ambitious reader who tries to fill in the details omitted in our severely
condensed arguments that the Poincar6-Bendixson theorem [10] does not help in
finding the a and to limit sets of orbits of Xa,v because TS is not a compact and hence
the orbits may run off to infinity. Also one should note that the divergence criterion
holds only on simply connected regions.

The sections correspond to the number of the region in Figs. 2 and 3. Note that
Fig. 3 is symmetric about the , axis since (1.1) is the same when (a,) is replaced by
(-a,- ). Also the phase portraits are the same when a is replaced by -a. Thus we
suppose a >= 0.

1. First we show that there is a y0>0 such that =((,y)TSlllYl<_Yo) is an
attracting domain for Xa,v. From the averaging theorem it follows that an integral
curve on Xa,v starting at p lies within an e tube of an integral curve of Xn starting at
p for all [0, Ce-1]. Choose Y0 so large that every integral curve of Xn which starts
outside has a period less than 1/2CI -1. Therefore any vertical line l= ((q,y) TS I

qo ) is a global cross-section for Xa,v outside . Again, using the averaging theorem,
it follows that outside the change__in H along an integral curve of Xa, between
successive crossings of is equal to dh/dck plus terms of order e2. Since (a, 3’) lies in
region 1,

(2.1) /’+ (h) > 3,

for all h> -1. From (4.1), the definition of /(1.7) and the fact that C,+(h)> 0 (3.4 &
3.29), it .follows that dh/d<O. Therefore, on each integral curve of X,v starting
outside , H is strictly decreasing. Consequently, is a compact attracting domain
for X,,.

The original system (1.2) has stationary points given by

sin ca, y O.

Thus is approximately 0 or r. In what follows we shall denote the two equilibrium
points by (0, 0) and (r, 0) to keep the notation simple. The linearization of (1.2) at these
stationary points is approximately

(0 1 )(2.2)
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where the + corresponds with (0, 0) and the with (r, 0). The point (r, 0) is a saddle
point. At (0,0) the trace of (2.2) is -e(l+3,). Thus for ,>-1 the point (0,0) is
attracting.

We now finish the discussion of the phase portrait of X,v. Since (2.1) holds, Xa,v
has no limit cycles or saddle connections in . Therefore by the Poincar6-Bendixson
theorem, the to-limit set of every integral curve of X,v in is an equilibrium point.
Since Xa. has no saddle connections, the to-limit of the unstable manifold of (r, 0) is
(0, 0). Therefore (0, 0) is a global attractor for Xa,. except for the stable manifold of
(r, 0) whose a-limit set runs off to infinity.

2. On I: ,=ri+(a), we witness a saddle node type bifurcation of a stable and
unstable winding limit cycle. In region 2, the unstable winding limit cycle divides the
attraction domains of the stable winding limit cycle and the two stationary points.

3. On II" 3, 3(ra/4-1), ,/> 1, the unstable winding limit cycle forms a noncon-
tractible homoclinic saddle connection. This can also be deduced from the vanishing of
the Melnikov function for those readers who prefer to use techniques other than
averaging. If, after crossing II, the to-limit set of both branches of the unstable
manifold again would be the point (0, 0), then there is no way for the a-limit set of the
stable manifold to exist. Therefore, since the Melnikov function changes sign at the
bifurcation, the to-limit set consists of the point (0, 0) and the attracting winding limit
cycle. The domains of attraction are separated by the stable manifold of the saddle
point. The existence of contractible limit cycles is ruled out by the fact that the range of
ri
o is [- 3, 1] and, for I’l < 1, by the negativity of the divergence of Sa,,r.

4. Crossing III: 7 -1, a Hopf bifurcation takes place. This gives rise to the
existence of a stable contractible limit cycle for 3,[-3,- 1], the range of ri0. The
Hopf limit cycle takes over the role of the point attractor as described in part 3. The
part of the unstable manifold that is approaching the contractible limit cycle is char-
acterized by the fact that it intersects the line segment y 0, r < < 2r, i.e. it intersects
the ,-axis going from the positive (y > 0) half to the negative half of the cylinder. Due
to the growth of the contractible limit cycle, as reflected in the monotonicity of ri0, this
intersection takes place closer and closer to the saddle point, until, at IV" 7 3, a
homoclinic (contractible) saddle connection is formed. The existence of this homoclinic
connection follows from a continuity argument relating the behavior of the unstable
manifold for 7 > 3 to that for 3- 3ra/4 < 3’ < 3 (see the next section).

5. For - < -3, the only attractor is the winding limit cycle. The point (0, 0) stays
unstable. There is one orbit going out of (0, 0) to the saddle point. Both branches of the
unstable manifold of the saddle point are attracted to the winding limit cycle. The only
other possibilities would be:

i. The unstable manifold forms a noncontractible homoclinic saddle connection.
This is ruled out by the Melnikov function.

ii. It forms a contractible homoclinic connection (as for , 3). If we average the
original equation along this connection, we find that dh/drh is strictly positive.
This is a contradiction. A branch of unstable manifold of the saddle point
cannot cross the line segment S: y=0 from (0, 0) to (r, 0), since if it did this
would imply the existence of a stable contractible limit cycle (because the point
(0, 0) is unstable). Therefore this branch has to cross y 0 between (- r, 0) and
(0, 0). Thereafter it approaches the winding limit cycle. Since the branch of the
unstable manifold with initial negative velocity crosses the line segment S when
3’ > -3, it follows by continuity that for 3’ near -3 this branch of the unstable
manifold goes into the saddle point and thus forms a contractible homoclinic
connection.
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6. At V: -=-3-3ra/4, / is in the range of 1- One branch of the unstable
manifold of the saddle point forms a noncontractible homoclinic saddle connection,
which, for smaller ,/, splits off as a stable winding limit cycle. The unstable manifold
now has both winding limit cycles as its 0-1imit set, while the stable manifold has (0, 0)
as its a-limit set. This concludes our discussion of the phase portraits along the dotted
line in Fig. 3.

Along the dashed line in Fig. 3, the main difference is that the stable limit cycle is
not born from a saddle node type bifurcation, but from a noncontractible homoclinic
saddle connection, as in the transition from 5 to 6. Since the techniques needed to
analyze all other phase portraits and their bifurcations are essentially the same as we
have used thus far, we shall not give any more details.

3. Properties of the function/. In this section we show that the function has the
following properties:

i. For h (-1,1), n= _0; for h(1, oe), -=+.
ii. j o,+/- satisfies the Riccati equation

2(1-h2) - =3+2hj.-f

with boundary values

j(-1)=l, ’+(1)=3, lim -+(h)=oe.
ho

fore

iii. For h (- 1,1), o is strictly monotonic increasing.
iv. For h (1, oe), 3h < +/-(h)=< 4h and j -- is strictly monotonic increasing.
In each numbered section below we prove the corresponding property of .
3i. For h (-1,1) observe that Fh is contractible to the point (0, 0) TS1. There-

(3.1) ,o fred O,

which implies that /o= asCO/cgo_o= o, provided that o is finite and nonzero.
But

(3.2) (h) fr2ycosrkdO=2v/+(h+coso)l/:ZcosOddp_
(where h+cos__=0 and y is given in (1.3)), which implies that (h) is finite for
h (- 1,1). Differentiating (1.3) with respect to q gives

(3.3) dy sin
de y

and integrating (3.2) by parts yields

(3.4)
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From (3.4) it follows that ff(h)> 0 for h (-1,1). This proves that /= -0, and also
we have shown that 0 is continuous. To show that -= +, we demonstrate that

(3.5) +=-, =.
This follows from the fact that y is positive on F+ while it is negative on Fh-. Because
F / and F- have opposite orientations, ’ and ’ are invariant under the +-change.
For future reference, we note that the last argument also shows that

(3.6) ’+= -z’-.

3ii. We begin by deriving the Riccati equation satisfied by = 0,_+ In what follows
0,+all integrals are taken over the closed cycle Fh -. Differentiating =,0,_+ and = co,___

with respect to h gives

(3.7)
d dy 1
dh f -d-g a,t,= f -} d

and

(3.8) dC dy 1
dh f-cosq,d= f7cosdq,

(since differentiating (1.3) with respect to h yields dy/dh=l/y). Integrating ff by
parts and using (3.3) gives

(3.9) dy sin2q
df cos  ,= f-sin,/,d,/,= f Y

111_(1 2 2]
[11 

y(h+cos)+hy- d

d 1 1

which implies

(3.10) d 1 3(1 h 2),--- -h+ - c.

Similarly

1d cos,t,
d,t,= f; 1 ) 1

2y- h d, g-h

which implies

(3.11)
dog 1_3(1 h) dh - -hc"
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Therefore the Picard-Fuchs equation for ’ and rg is

-3h

Since =,/rg, the ccati equation satisfied by =o, is

d=2(1 h2 1 d 2(1_h2)1 d(3.13) 2(1-h) )@ dh dh =3+2h-2"

Next we compute the values of 0, at h 1. We begin with the value of o at
h 1. As h 1, the smooth closed path F converges to the nonsmooth, but closed, path

q,
F" y2=l +cosq=2cos2

Therefore .o converges to

(3.14) (1) fr oY 4f_  l cos
while o converges to

(3.15) (1)= fre sin2y sin2
Therefore

(3.16) (1)=3.

dq= 16,

cos
16
T-

(we may write Fx F+ t F1-). Thus

8(3.18) +(1)=8, rg +(1) 5
and consequently

(3.19) +(1)=3.
Then is continuous at h= 1, if we extend 0 with either + or -. Finally to show
that limh+(h) o0, we need estimates for ’+ and cg+. When h> 1 we obtain

(3.20) rg+(h)= fry sin2q
&b=

1 f’ sin2q 1

Y -- ( h + cos)a/2
d, < V-rr

v/h 1

To compute +-- at h 1, we note that the limit of Fh-+ at h 1 is given by

1 , [-r,r], y>0,Fx+ y- 1 + cos q, 2 cos2

Ff’-y2=l+cos,=2cos2--, q [-r,r], y=<0

(3.17) (-1) lim
frgydq limh--lfgdydq

h--i fryCosqdq limh__lfncosqdydq

As h $- 1, Fff shrinks to the point (0, 0). Let Dh be the disk bounded by F. Then
I’ ODh. Hence by Stokes’ theorem
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and

(3.21) + (h) fr’+y ddp= vffr( h +cs)l/2d > 2rrv/ vlh l

Therefore when h > 1

which implies that limh +(h) .
3iii. To show that =0 is strictly monotonic increasing we give an argument

analogous to that used in Cushman and Sanders [9]. First observe that the connected
components of

(3.23) 3+2h-2=0
are strictly monotonic functions of h, because differentiating (3.23) with respect to h
and putting dli/dh 0 gives = 0. But this is ruled out by (3.23).

We now use this observation to show that the range of 0 on [- 1,1] is [1, 3]. From
(3.13) it follows that on (-1,1)

(3.24a) dwhen 0 < < 1 then > 0

while

(3.24b) dwhen > 3 then - < 0.

We now argue by contradiction. Suppose that for some hoe (- 1,1) we have (h0)> 3.
Since (-1)=1, (1)=3 and is continuous, there is an hl(-1,h0) such that
(hl)= 3. Since (3.13) implies that is continuously differentiable on (-1,1), there is
an h2(hl, ho) such that (h2)>0 and (d/dh)(h)>0. But this contradicts (3.24b).
Therefore (h)=<3 for h(-1,1). By an analogous argument one proves that (h)>__ 1
for h ( 1,1). Thus we have 1 =< j(h) =< 3 for all h 1,1].

Next we show that the derivative of on (-1,1) does not vanish. Suppose the
contrary, that is, suppose that for some hoe (- 1,1), (d/dh)(ho)=O. Then differenti-
ating (3.13) with respect to h and evaluating at h 0 gives

(3.25) d2,(1-h) -(ho ) li( ho ).

Since the range of on [-1,1] is [1,3], (d2/dh2)(ho)>O. In other words, we have
shown that any extremum of on (-1,1) is a nondegenerate minimum. Because
(-1)= 1 <(ho), must have a maximum between -1 and h 0. But every extremum
is a minimum on (-1,1); so we have a contradiction. Consequently the derivative of
does not vanish on (-1,1). Since (-1)= 1 and (1)= 3, d/dh > 0 on (-1,1), that is,

is strictly monotonic increasing on (- 1,1).
3iv. Applying the change of variables

1 1(3.26) x --7-, t= -
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to (3.13) gives

dx(3.27) 2t(1 2) - t- 2x- 3tx.
We know that +(1)= 3 and limh_.+(h) oe, so

1x(0)=0 and x(1)=-.
First we prove that x(t)<=t/3 for re[0,1]. Let y=x-t/3, then y(0)=y(1)=0.

From (3.27) it follows that

(3.28) 2t(1-t) -3ty2-2y(l+t2)--(1-t )dt

Suppose that y(r)> 0 for some r e (0,1). Then there is a %e(0,z) with (dy/dr)(Zo)>O
and y(0)>0; but this is in contradiction with the differential equation (3.28). Thus
y(t) =< 0 for all e [0,1], that is,

(3.29) x(t) <= -.
Consequently by (3.24)

(3.30) +(h)>__3h for all he [1, m).
Now suppose that y()=0 for some ze(0,1). Then from (3.28) we conclude that
(dy/dt)() < 0. But this contradicts the fact that y(t) =< 0 for all e [0,1]. Therefore

(3.31) +(h)>3h for all he(1, m).
The following argument shows that + is strictly monotonic increasing on (1,

Since the zero isocline 3+ 2h-2=0 of the Riccati equation (3.13) is strictly mono-
tonic increasing for h e(1, o), + can intersect this isocline at most once. From (3.25)
it follows that + has a nondegenerate (global) maximum at this intersection. This
contradicts (3.31). Therefore d+/dh > 0 on (1, m). Consequently + is strictly mono-
tonic increasing on (1, m).

Next we show that +(h)=<4h on [1, oe). Toward this end, let y=x-t/4; then
y(0)=0, y(1)= and (3.27) becomes

(3.32) 2t(a_t 2) de _3ty (2+ 3t2) 1--d-) y+ t.

Suppose that for some e(0,1), y(z)< 0. Then there is a r0< (0,) with (dy/dt)(o)<O
and y(r0) < 0. But, by (3.29)

which implies

(3.33)

y(t)=x(t)- - 3 4 12’

2t(1-t2)->= 2+-t y.

Therefore (dy/dt)(z0) > 0, which is a contradiction. Thus y(t) >= 0 for all e [0,1] or
equivalently

(3.34) x(t) >= -,
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that is,

(3.35) /j+(h)=<nh forall h[1,oo).
Combining (3.31) and (3.35), we find that

(3.36) 3h<ld+(h)<=nh for all he(l, ).
This completes the proof of the properties of the function .

4. Properties oi the tunction 1. Throughout this section we assume that h > 1. We
will show that the function rl vl -+, where

(4.1)

has the following properties"

i. r/+-(1)= + 3’a/4- 3.
(4.2)

ii. r/=r/+ satisfies the Riccati equation

d/(4.3) 2(h2-1) 3 hj- 3h/+/

where j j +.
iii. Let

(4.4) ’(h)= h- 3.
-3h’

then ’(1)= 1. In addition, the zero isocline -+=f of (4.3), is continuous and strictly
monotonic increasing.

iv. If /-+ (1) > 1, that is, if

16 + 16a>----, rl=rl or a<
3r’ =/

then 1 +- has a unique maximum il-+(a) when h > 1; moreover lima +_ 16/3rj+(a) 1. If
+-(1)< 1, then -+ is strictly monotonic decreasing on (1, ).

As before, in each numbered section we prove the corresponding property of .
4i. Since cg+=cg-, /j+=f- and z+= -z’- with cg+(1)=-83 (3.18), f+(1)=3

(3.19), and ae’+ (h)= 2r we get

3r 3r(4.5) rl+(1) --a-3 and /-(1)= ----a-3.
4ii. Let rl=l -+ Then differentiating (4.1) with respect to h using (3.11), (3.13) and

some regrouping gives

d/(4.6) 2(h2-1) -d--h-- 3 hd- 3h + r/.

Here the fact that a +- is constant on (1, ) has been used.
4iii. The zero isocline of (4.3) is the locus of zeros of the right-hand side of (4.6)

which is given by /= +- " where

h-3(4.7) ’(h)
_

3h"
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Since > 3h when h > 1 (3.31), we see that " is continuous on (1, ). To show that " is
strictly monotonic increasing on (1, o), we differentiate (4.7) with respect to h and
obtain

(4.8) d" 1 2- 2(- 3h)2 (9-6h+).

Put O(h)=9-6hti+ti. Since f(1)=3, 0(1)=0; moreover, since 3h<li(h)<__4h for
h[1, ),

(49) 0(h) __< 9 2h 2 on [1, o).
Therefore 0(h) < 0 for h > -32 v/-. To show that d/dh > 0 it suffices to show that 0 < 0
for all h > 1. Toward this end we differentiate 0 with respect to h. Repeatedly using
2 0 + 6h 9 we obtain

(4.10) (h 2 1) do
-=(h+,)O+6(h2-1)l,

which may be rewritten as

dO
=6+ h+(4.11) - h--_1 0

Suppose that there is an h0>l such that O(ho)>_O. Since 0(h)<0 for all h> v-,
there is an ht >=h 0 such that 0(hx)=0. Take hx to be the largest value of h such that
0(h)= 0. Then 0(h)<0 for all h> h x. It follows from (4.11) and (3.31) that

(4.12)
dO
-(hi) >= 6(hi) > lSh 1.

Thus there is an h2> hi, for which 0(h2)=0; but this contradicts the maximality of h.
Therefore 0(h) < 0 for 1 < h < , which implies that " is strictly monotonic increasing
on (1, ).

To compute limh--, g(h), we first have to show that

(4.13) lim ’(h) o.
hl

The following argument shows that either lim’ < oz or lim’ as h 1 /. Suppose
not, then

(4.14a) liminf’ < lira sup’and

(4.14b)
Since is monotonic increasing on (1, ), we may replace (4.14b) with

(4.15) 0 =< liminf’ <
From (4.14a) there is a sequence { h n }, hn 1 / such that j’ has a local minimum at
h,,, that is, j"(h,)= 0. Differentiating the Riccati equation (3.13) gives

(4.16a) 2(1 h2)" 2(3h-)’+2
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which evaluated at h gives

(4.16b) O=2(3h,,-l(h,,))’(h,,)+2l(h,,).
Taking the lim inf as h, 1 / of both sides of (4.16a) gives

(4.17) 0= liminf’ lim (3hn-(h,))+ lim (h,)
hn h,,l hn

since is continuous, the first term in (4.17) vanishes because (1)= 3 and (4.15), while
the second term equals 3. Thus (4.17) is false. Consequently either lim h __.x/ ’< or
limh__,x+ ’= o. Now suppose that limh__,t/ j’< o0. Then the Riccati equation (3.13)
gives the asymptotic relation

1 3
j" j-’- as hl +

(1 +h)(1-h) 2(l-h)

which integrated shows that j’ o as h 1 /. This contradicts the hypothesis. There-
fore (4.13) holds.

Using l’H6pital’s rule and (4.12), we compute ’(1) as follows:

h-3 (h)+h’(h)(4.18) ’(1)= lim lim
,(

=1.
h-_,l/ -3h h--,l/ h)-3

4iv. Let /=//. From (4.3) it follows that drl/dh > 0 above the graph of ’, while
dl/dh <0 below. Thus when r/(1)< 1, /is strictly monotonic decreasing for h> 1. In
addition the range of r/is (- o, r/(1)), as we shall prove below (see (4.21)).

When r/(1)> 1 and h > 1, r/ is strictly monotonic increasing as long as its graph
does not intersect the graph of ’. But this can happen at most once, because /is strictly
monotonic decreasing after such an intersection and " is strictly monotonic increasing
when h > 1.

To show that the graphs of r/ and " intersect when h> 1, we show that

limb--.o r/(h)=- o, whatever the initial condition l(1). First we find the asymptotic
behavior of cg/:

(4.19) cg+ (h)=fr; sin2y d 2- -rsin2q(1 + h-lcs)-t/2d
1

From the definition of r/=,15 (1.7) we obtain

(4.20)
2ra 2ra+_

cg+/-(h) (r/ 2 +O(1/h3/))
-+/-(h).

Since 3h < (h) _< 4h it follows that

lim l-+(h) -o.(4.21)

This implies that the range of r/ is (-o,/(1)) if r/(1)< 1 and (-,/(a)) if r/(1)> 1,
where /(a) is the maximum value of /.
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Because the range of r/+/- is (-o, 1] when a=

__
16/3r, by continuity it follows

that the maximum value of r/+, respectively r/-, for a> 16/3r, respectively, a<
16/3r, lies in the range (1, o0). Thus

lim /+ (a) lim /- (a) 1.
a (16/3r) a (16/3r)-

This completes the proof of the properties of r/. Thus we have proved the main theorem
stated in 1.

5. Appendix: Asymptotic expansions for and I when h is slightly greater than I.
The maximum value of r/ as a function of a has to be computed numerically. This
proved difficult to do for a near 16,r/3. In this appendix we give asymptotic approxi-
mations for r/to explain this difficulty and to provide an alternative proof that

lim / (a) 1.
a---, (16rr/3)

Consider the Riccati equation (3ii)

d :(5.1) 2(1-h2) -=3+2h-
Since (1)= 3, taking the limit as h 1 / of both sides of (5.1) gives

d(5.2) lim (l-h) =0.
hl

Now we deduce an asymptotic relation for as h 1 /. Differentiating (5.1) with
respect to h gives

d2 d,(5.3) (l-h)(1 +h) =+ (3h-) -.
Because (1)= 3 and (5.2), from (5.3) we obtain the asymptotic relation

(5.4)
dEj -3

as hl +

dh 2 2(h- 1)
Integrating (5.4) twice gives

3(5.5) (h)-3--(h-1)log(h-l), hl+

as desired.
Next we deduce an asymptotic relation for r/--* 1/. Substituting (5.5) into the

Riccati equation (4.3),

dr/(5.6) 2(h2-1) 3- hf- 3hrl + r/,

gives

2(h- 1)(h + 1) dh

that is,

3-3(h- 1)-3r/(1)(h- 1)+ (h-r/(1))(h- 1) log(h-l).

33(1 +,/(1))+ -(1 r/(1))log(h- 1) as h --, 1 +.
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Integrating (5.7) gives the asymptotic relation

3(3+*/(1))(h_1)+ 3 (1 (1))(h 1)log(h 1) as h 1 +(5.8) */(h)---*/(1)- - -*/

as desired. To compute an asymptotic relation for the critical point h h* of */, we
equate the right-hand side of (5.7) to zero. Thus

(5.9) h*- 1 =exp[ 2(1 +*/(1)) ]1 -,/(1)
Now */(1)=3ra/4-3. Putting a=(16/3rr)(l+e/4) gives */(1)=1+e, which sub-
stituted into (5.9) yields

(5.10) h*-l=e-2e-4/.

Substituting (5.10) into (5.8) gives the asymptotic relation

3
(4+e)e 2e- 4/e 3 (4 +2)e-2e-4/(5.11) */max=*/(h*)’*/(1) + - -3 2-=*/(1)+ -ee- e 4/, as e0+.

Therefore the difference between the maximum value of */ for a slightly greater than
16/3r and the boundary value */(1) is exponentially small. This explains the difficulty
in computing the maximum of */near the critical value a 16/3r.
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BREAKDOWN OF STABILITY IN SINGULARLY PERTURBED
AUTONOMOUS SYSTEMS I.

ORBIT EQUATIONS*

K. NIPP

Abstract. In singular perturbation analysis two stages can generally be distinguished: First, by some
method a sequence of formal approximations is constructed which are supposed to form together an
asymptotic approximation to the solution of the singular perturbation problem. Second, it should be proved
that the sequence provides a correct approximation in a rigorous mathematical sense.

For this second stage analytical results providing error estimates are needed. A classical one is due to A.
N. Tikhonov (see e.g. [10]). We quote this theorem, and state and prove results for the trajectories of a
singularly perturbed autonomous system that are extensions of the Tikhonov Theorem in the neighborhood
of a point where a certain stability assumption ceases to be valid.

1. Introduction. Consider the autonomous system

(1)
:t =f(x,y) + eft(x,y, e),
ej= g(x,y) + egl( x,y, e),

together with the initial conditions

(2) x(O,e)=x(e), y(O,e)=y(e)
where x and y are m- and n-vectors, respectively, and e is a small nonnegative
parameter. We assume that f, ft and g, gl are sufficiently smooth with respect to all
variables in the domain considered as are x, y0 for e [0, e0], with e0 < 1.

The corresponding reduced problem is obtained by putting e 0 and by dropping
the initial data on y"

(3) 5c=f(x,y),
0=g(x,y).

We make the following assumption"

(4)

There is a continuously differentiable vector function (x) defined in
some domain D c containing x(e) for e [0, e0] and a positive
constant b such that g(x, (x)) 0 for x D and all the eigenvalues of
the Jacobian matrix gy(X,(x)) have real parts smaller than -b for
xD.

The set (x, ff(x)) is called a reduced manifold of the system (1). The property (4)
implies stability of this reduced manifold in the sense of Theorem 1 below.

Moreover, we suppose that the problem (3) has a continuously differentiable
solution (X(t), Y(t)) for [0, t], lying in the stable reduced manifold (i.e. ((t)
f(X(t), k(X(t))), X(0)=x(0); Y(t)=ck(X(t))). Then the following theorem due to A.
N. Tikhonov holds.

*Received by editors May 31, 1983, and in revised form August 6, 1984.
*Applied Mathematics, ETH-Zentrum, CH-8092 Ziarich, Switzerland. This work was carried out while

the author was at the Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New
York, 12181. This work was supported by a grant from the Schweizerischer Nationalfonds.
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THEOREM 1. If ly(e) Y(0)I is sufficiently small, then for e small enough the
solution (x(t,e), y(t,e)) of (1), (2) exists and is unique for t[0,tl] and satisfies

Ix(t,e)-s(t) l=o(e) uniformlyfor t[O, tl]
and

ly(t,e)-Y(t)[=O(e) uniformlyfort[,tl], any z(O, tl).

The above formulation is analogous to the one given in [2] or [5] with sharper
estimates than in [10]. Of course, a similar result holds in the nonautonomous case.

In this paper we are interested in situations where the stability property (4) ceases
to be valid. One of the implications of this condition is that the reduced manifold
y (x) is locally unique. This excludes bifurcation of the reduced manifold. In [3] and
[4] Lebovitz and Schaar considered the two kinds of bifurcations sketched in Fig. 1,
with the components of the reduced manifold being locally linear or quadratic, respec-
tively, in the essential variables and having the indicated stability properties. At the
origin, which is the point of bifurcation, exactly one single eigenvalue of the Jacobian is
supposed to vanish.

Y Y

FIG. 1

Another bifurcation case is the so-called jump point situation sketched in Fig. 2,
arising frequently in the context of relaxation oscillations. In both figures, the dashed
lines represent a possible trajectory of the system (1). In the case of Fig. 2, typically, the
trajectory follows the stable branch of the reduced manifold until it reaches a vicinity
of the bifurcation point where it drops off.

There are several papers in the Russian literature dealing with this situation (see
e.g. [8], [9]). It is also treated in the book by Mishchenko and Rozov [5] in the context
of relaxation oscillations. These authors, however, consider only reduced manifolds
which are locally quadratic in the essential variables. Moreover, they are primarily
interested in working out the forms of the approximations to the IVP (1), (2) to the
highest possible order rather than in giving a rigorous proof of their validity. There are
error estimates provided in [9], [5] for the higher dimensional case which do seem not to
be optimal, however.
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In this paper our goal is to obtain sharp estimates for the domain of validity as
well as for the error of an approximation given by the solution of the reduced system
(3) in the neighborhood of a point where the stability property (4) is weakened.
Therefore, the results stated below are extensions of Theorem 1.

FIG. 2

It may be worthwhile to discuss some conceptual points. Rather than treat some
specific problem we propose to derive certain general local results that permit to
establish local estimates which, if taken together with Tikhonov’s Theorem as well as
some trivial estimates from regular perturbation theory, allow to provide global esti-
mates for various bifurcation situations. In particular, the two kinds of bifurcations
sketched in Figs. 1 and 2 turn out to be special cases with the reduced manifold being
locally linear or quadratic.

We will first give a precise formulation of the problem. There are two cases which
are treated separately. In the first one the reduced trajectory encounters a point where
stability breaks down (as e.g. in Fig. 1 or Fig. 2 for x <0). The second case is
characterized by the fact that the reduced trajectory departs from this point, a situation
which arises in bifurcations of the type sketched in Fig. 1 (x > 0). In this first paper we
state and prove the results for the orbits. The transfer of the estimates to the solutions is
postponed to Part II also to appear in this journal. There we will as well give an
application of our results and of the concept mentioned above.

A two-dimensional version of the first of our results was given in [7]. As far as the
construction of suitable local approximations is concerned the reader is referred to [6].

2. Formulation of the problem for the case "s<0". In this section we give a
detailed formulation of the problem for the first case mentioned at the end of the
previous section. This is in a sense the easier and more natural situation since the initial
conditions for the local problem are provided by Theorem 1. We take the point, where
the stability assumption (4) ceases to hold, to be the origin in R "+n. And we suppose
that f(0,0)4:0 so that the origin is not a critical point of the full system (1). Without
loss of generality we may assume that

H1. fx(0,0) > 0, fk(0,0) =0 (k=2,3,.. -, m).
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Hence, there exist a domain U containing the origin and a positive constant p such that
fl(x,y)> p for (x,y) U. And we may introduce s= Xl as the independent variable. By
dividing the rest of the equations of (1) by the first one we obtain, for e small enough,
the following orbit equations

d=F(s ,y)+eF(s Y,,y,e)
S

dy EaX(s, ,ee-sss=G(s,,Y)+ Y.,y ),

where represents the last m-1 components of x; F’= f/f1, G’= g/f, F and G
are defined for (x,y) U, and F(0, 0, 0)=0, G(0,0,0)= 0. The initial conditions are

(6) (s,e)=(e), y(s,e)=y(e)
where we suppose that s(E) sO+ O(e) with So <0 independent of e.

We assume that the Jacobian matrix gy(O, 0) has zero as a simple eigenvalue and
all the other eigenvalues have negative real parts. Hence the same is true for Gy. By
appropriate choice of basis in R n, we may suppose that

H2. Gz(0,0,0)

where all the eigenvalues of the (n- 1)(n- 1) matrix A have negative real parts.
Moreover, let .P’= (Y2,"" ", Yn). Then

(7) (x,y,y)=+Bx + ?.y2 + (x,yl,fi)
where the remainder term ( is quadratic in (x,y) and cubic in Yl. Without loss of
generality we may assume that ?=0. (This can always be achieved by a simple
transformation of variables (el. [4])).

H2 implies that there exists a unique solution (s,Y.,y) of G(s,Y.,y,y)=O in a
neighborhood of the origin, having continuous partial derivatives there and satisfying
(0, 0, 0)= 0. For the remaining equation

(8) Gi(s,,yl, (s, if,y1)) =0
we require"

H3. There exists a function q(s, ff), which is defined and continuous for s J’=
[s, 0], in some neighborhood of if=0, has continuous partial derivatives with
respect to ff there, and is C in [s 0, 0), satisfying

(9) GI(S,,,dI(S,, ), (S,-,I(S,-)))=O, (s,)JO,

and

(10) (s,Y.)=al(-S)’+p(s,Y.), (s,.)J,
(11) l,s(S,,)=all(_S) -1 +Px(S,) (S,ff) [S o O)x,
where a>0 and at, art4:0, p(0,0)=0, p(s, O)= o((- s)") and pl(s,O)=o((-s)a-l)
as s0-
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H3’. If a>= 1 we suppose that q(s,)Ct(J).
Remark 1. In the case a >= 1 (H3’) (11) follows from (10), but not in the case a < 1

since in general order relations may not be differentiated. An assumption implying
(10), (11) and easy to verify would be: There exists a function q(,) CX(f)
fl an appropriate interval_ containing 0) with (0,0)=0, (0,0)0 and (s,2)=
((- s),ff), (s,)Jx. Ts is a natural condition for jump points.

Let now (s, 2)" (s, 2, (s, if)) and (s, if)" (,), and consider the initial
value problem

(12) --d=F(s ff (s if)) if(0)=0.
S

We suppose the following.
H4. The solution X(s) of (12) exists for sJ and there is c0>0 such that

(,)-(s) l< c0e, y(e) Y(s ) I<Coe,
where Y(s)"= (s,X(s)).

Remark 2. H4 is naturally satisfied (by means of Theorem 1) if we assume having
a global problem (i.e. system (1) together with some initial conditions) which is of
Tikhonov type away from the origin, or more precisely whose reduced trajecto is
stable as long as it is in a finite distance from the origin and, moreover, is zero there.
Thus, without loss of generality, we may assume that the initial conditions (6) are
"small enough", i.e. such that they lie in the appropriate neighborhood of the origin
considered here. In the following this will also be referred to by the expression "for ]sl
small enough". In particular we assume Isl < 1.

We now state the essential stability condition which, together with H2, replaces
assumption (4) for the Tikhonov case and which is much more general than the
corresponding ones given in [3], [4], [5].

H5. There are positive constants k and q such that

Remark 3. In order to verify this assumption the asymptotic relations for
(X(s), Y(s)) given in the next section may be used. The estimates (27)-(29) might,
however, be shaer in a given application. We will also derive relations between q and
a stated in two lemmas in the next section.

3. eliminaries. In this section we provide all estimates needed for proving the
subsequent results.

Let the functions u(s,e) and v(s,e) be defined by means of

They satisfy the differential equations

du=F(s)u+ Fy(s)v+ R(s,u,v,e),

dv(14) + +
do

where Fx(s)" F(s,X(s), Y(s)) and similarly for the other coefficient functions.
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For some choice of the positive constants K> 1, 0lsl and /9 the remainder
terms R, $1 and S in (14) satisfy the following estimate

(15) R (s u re) IS K(e + u + Iv (and similarly for S and )
if 0 _< s __< 0, lul + Ivl < 0, and e (0, e0). The common constant K is supposed to be so
large that these and later estimates hold simultaneously. We will see below that it is
possible to slightly improve the estimates of S and S.

As initial conditions to the system (14) we have

(16) u(s,e)=(e)-(s), o(s,e)=y(e) Y(s).
Let U(s, o), V(s, , e), V(s, , e) be the fundamental matrix solutions of

dV dV
ds ds ’ ds

reducing to the unit matrices of dimensions m- 1, 1, n- 1, respectively, when s o.
The initial value problem (14), (16) is equivalent to the following system of integral

equations (for convenience we are dropping the e in u(s, ) etc.)"

UX(S)=VI(s,sO,E)UX(SO)

We have to provide estimates for all the terms appearing on the right-hand side of
(a.

Since all eigenvalues of the matrix @(0)=A have negative real parts there exists

(0,1) for Isl small enough such that (s) has eigenvalues with real parts smaller
than -2 for sJ. Hence, by a lemma due to Flatto and Levinson [1] we have

Using H5 and integrating (17) yields an estimate for V:
(20)
where t)’= q + 1, ’= k/l.

The fundamental matrix solution U(s, ) satisfies

(21) IU(,o)I_-<K for s<=o<=s<=O.
Moreover, we have

(22) IFy(s)lZK, ICx(s)I<__K, IGl,x(s)I__<K

Vl(S,O,e)<=et(-)o-(-)l/ for s=<o=<s_<0,

for s J.
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Remark 4. For a _>_ 1, when O(x) has continuous partial derivatives, G(x, O(x))= 0
for xJX implies G,(x,,l,(x))+Gl,y(X,O(x))q,(x)=O, and this together with

G1,.v(0,0)= 0 yields G,(0,0)= 0. G,(0,0)= 0 is also true for a< 1 if G,(s,,y)has no
linear terms in . Hence, in these two cases we will be able to derive a better estimate
for G,(s) than the one given in (22).

Since Gl,y(x,y) and @,(x,y) vanish at the origin (see H2) we will also have better
estimates for Gl,y() and @(s). In order to find these estimates we need the asymp-
totic behavior of X(s) and Y(s) as s 0-

In the domain corresponding to the one introduced in (15) F satisfies the estimate

(23) IF(s,y,Yx,Y) IK((-s) + lYl+ lYI+ lYl)-
From H2 we know that

m

(24)
G(x,y,y)= i=IE CiXi+ ay? + l(X,y,y),

(x,Yx,fi) + Bx + (X,Yx,y),

where the Taylor formulae of 1 and begin with quadratic terms in (x,y) and with a
cubic term in y. Hence

where the remainder term again is at least quadratic in (s, ff,x) and cubic in . Ts
together with (10) provides the following estimate

(26) I(s, if) I 1) where "= min(3a,1).

Using (23) and (26) in (12) we find for X(s) that for some K> 0

K &+a 01(OIN(s) Iz ((-)+ IN()I)d= &4l (-s) + )ldo

where &’= min(a, 1).
Applying the generalized Gronwall lemma we obtain

(27) {(s )l__</( s) a+ ,
for some/> 0. From (27) and (10) we ged

(28) IYl(S) l<=Kl(-S)"’,

al"= min(a, 2), and from (26) and (27)2

(29) I (s) I__<t(-s)

sJ,

sJ,

There is a more precise assertion for a < 1"

Y,(,)=l(-S +o((-) 0-.

2Using (25) directly and footnote we find for a < that

(,) =a,+ O((-,)), ,-0-,

where " rain(1 + a, 3 a).
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Finally, using (24) this allows us to state

IGl.(s)l<=c(-s) ,
(30)

where 3’ {0, t }, , &, = min(2a, 1) and C some positive constant depending on K.
Remark 5. Usually 3’ 0 as we have seen in (22); however, 3’ & for the two cases

indicated in Remark 4.
From (24) we conclude that

(31)

An analogous estimate holds for Sx if Gx(x,y) has no quadratic term in Yl- (Of
course, all these estimates can be improved if the vector functions F and G are of
special form.) Here, we take into account only one such special case corresponding to
bifurcation situations similar to the one considered in [4], where a < 1 and Gx(x,y ) has
no linear term in x. Since then, substituting in the first expression of (24) the above
estimates for X, Yx, Y, we obtain

2a 2a),O=aal(--s +o((--S)
and this implies a 0. Thus

Isx( u o  )lzcx( /lu /101 /311

where we define

(32) /3"=
0

if a < 1 and G1 has no linear term in x,
otherwise.

In order to save writing we will drop the term IOll of (31) and (32) in what follows,
since it can easily be verified that it is always less or equal than the preceding IVxl2-term
in the case of Theorem 2 (cf. (52) and (57)) and also in the case of Theorem 3 (cf. (76)).

The estimates for IY’(s)l and IY’(s)l are still missing. In the case a >= 1 (HY) both
quantities are bounded. In the case a < 1 the first estimate follows from (11) and (27):

(33) Yl’(S)I_< C(-s) a‘, se [s,O),
where fix .= min(a- 1, 0). From

d d -(s (s), Yx(s)) (s)+(s)F(s)+y(S)Y((s)Y’( s ) -s ( s, ( s ) ) s w

together with (25) and (33), we conclude

(34)

where fl’= min(3a 1, 0).
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Now, applying all these estimates to (18) we obtain

(35)

/ /

tOa( S ) IZC0e+ e-[eit’-’)-(-o)]/*[C(-o)r}u(o)l+
+ Cl(E+ lu(o) 12 2 fl[+!()1 +(-o) o1(o)1=

[O(s )Is Kcoe + e-1K e-"(’-)/ K[ u(o )l+ C(- o ) 1 v(o)1

+l(o) +(-o) Io1(o)1 +c(-o) do.

In the subsequent proofs we will also need the following two auxiliary results
which are obtained by simple integration"

(36) Se-v’(-"/*de <-

(37) fie’t(-s)-(-)l/*k ( o) qdo < e,

Moreover, we are now able to state two lemmas which provide relations between q
and a that will prove useful in formulating our results.

LEMMA 1. q satisfies

(38) q>=&

and if fl a ( cf (32))

(39) q>=2a.

Proof. Gl(x,yl,y) is a smooth function with respect to all variables and satisfies
GI(0,0,0)=0 Gl,y(0,0,0)--0 and Gx,y(0,0,0)=0 (cf. H2). Hence, G1 has the follow-
ing expansion in the neighborhood of the origin

(40) Gl(X,yl,Y)=Lo(x)+ay?+Ll(X,y)yl +Qo(x,y)+by?+r(x,yl,Y)

where L indicates linear terms, Q quadratic terms and the terms in the remainder are
at least cubic. This implies

(41) Gl,y(X,yl,)=2ayl +LI(x,y)+3by+O,y(X,yl,Y)
where the terms in the remainder are at least quadratic. The functions X(s), Yl(S) and
Y(s ) satisfy

(42) GI(S,(S), YI(S), (S))=0 for sJ.

Moreover, H5 implies that there are positive constants k and q such that

(43) ]G,y(S,(s), Yl(S), (s))I>=k(-s)q for sJ.
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Hence, inserting the functions X(s), Y(s) in (41) and making use of their asymptotic
behavior given in (27), (28) and (29), respectively, we derive that

(44) k( s) q <__kl( s) + k2(-s) a, sJ

for some positive constants k1, k 2. And this implies that q_>_min(al,6) which proves
(38).

In the case/3 a we have a < 1 and L0 0, a 0 in (40). Hence

(45) Gl(X,Yl,y)=Ll(x,y)y +Qo(x,y)+by? + t(x,y,y)

and

(46) Gl,yl(x,yl,. ) t (x,y) q- 3by? + Jl,y
And by the same argument as before we obtain that q >= min(2a, &). This implies q >=
and proves (39) for a =< 1/2.

Assume now that a > 1/2 and q < 28. Thus, we have 1 =< q < 28 < 1 + a < 38. Insert-
ing X(s), Yl(s) and Y(s) in (46) we find that all terms not in L and all terms in t
with /(s) are O((-s)2"). The remaining terms in L are the terms CoS and cii(s ),
i= 1,-.., n- 1, with the asymptotic behavior (s)=gis+ O((-s)2") as s0- Thus,
(43) can only be satisfied if

n-1

Co "" E C =l O
i=1

Consider now (45)s, i.e. X(s), Yl(s), Y(s) inserted in (45). Here, we have the
terms cosYl(s) and ciYi(s)Yl(s); and all the other terms are O((-s)), 0=min(2,3a).
Hence, (42) admits the representation

n-1

)1 +a )l+a )l+aO=alCo(-S +a ., c,,(-s +o((-s ),
i--1

implying co + Y’. Cii--0 and leading to a contradiction, t3
LEMMA 2. If a q, then a >_ 1/2.3
Proof. We use the same arguments as in the proof of Lemma 1. If q= a < 1/2, the

term 2aYl(S), a#:O, is the only one in (41)s that can satisfy (43); all other terms are
O(( s)2). And, (42) admits

2a 2aO=ala(--s +o((--s) ), s---)O

This, however, implies a 0 and, hence, leads to a contradiction. []

4. The main results in the ease % < 0". In this section we state the results for the
trajectories in the phase-space for the case "s < 0". The proofs are given in {}5.

Theorem 2 below provides an existence result for the solution ((s,e), y(s,e)) of
the initial value problem (5), (6) as well as an estimate for the domain of validity and
the error of the approximation (X(s), Y(s)) which is the solution of the reduced initial
value problem (12).

3There is strong evidence that a+ q_ 1 also holds in general, under the hypotheses H1-H5.
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TnnonM 2. Suppose the hypotheses H1-H5 hold, and let t "= min(a,1), ’=
min(2a, 1), ql "= 1 + q. If q satisfies
(47) q < min(1 + V, + ,)
where / >= 0 ( >= 1, if a >= 1) and v >= are defined by (30); then, if Isl is taken sufficiently
small, the following result holds:

There exist positive constants c and e <= eo such that the solution (.(s, e), y(s, e)) of
q* q,the initial value problem (5), (6) exists at least for s J*" [s, ce ], where

1/(q + q fl ), fl {0, } defined in (32), and

celog( S) -1 q 1,[:(s,e)--.(s)[<
ce(--s ql >1,

qx

[Yx(S,e)-- Yl(S)[<CE(-S) -ql

(S) [< ! celog(-s)-x ql 1

CE( S ) -ql, qx > 1

for sJ*, e(O,e).
Remark 6. Since q >= (cf. Lemma 1), we always have ql >= 1. There are exactly two

cases where ql 1" (i) q ct < 1 and (ii)a >= 1, q 1. Note, that we have q q for a >= 1,
and that always q* < 1/q =< 1 (cf. Lemma 1). The restriction (47) on q depends on the
lowest order terms of Gx,x(s ) and Gx,y(S), or in other words is due to the coupling of
the yl-equation to the rest of the system (5). With the assumptions made in this paper
we have seen that 3,=0 or ,=t and ,=& (see (30) and Remark 5). However, if
Gl(X,y) is of special form such that the coupling is weaker, both quantities may be
greater than & (compare formulas (27)-(30)).

For applications it is often useful to have the estimates of Theorem 2 in a more
transparent form with respect to the dependence on e. We state this slightly weaker
result as Theorem 2’. It is obtained from Theorem 2 essentially by considering the right
end-point of J* as being variable, i.e. by varying q* below its maximum.

THEOREM 2’. Suppose the same assumptions are satisfied as in Theorem 2, and let
&’= min(a, 1), ’= min(2a,1), q’= 1-t+q and Isl be sufficiently small. Then there
exist positive constants c and e <=eo such that the solution ((s,e), y(s,e)) of (5), (6)
exists at least for sJ*’= [s v, -ce/q], where o "= qx/(ql+q-fl), fl (O,a} de-
fined by (32). Moreover, for every 8 (0, 8o] we have

celoge- q= 1,

cel-8+/qx q > 1,

[yl(s,e)- Yl(S)I<ce--,

( -1, ql 1,

cel-8+8/q, ql > 1

for s[s, -ceS/q], e (0,e).
Remark 7. Note that, the smaller the s-interval in which the approximation

(X(s), Y(s)) is considered the better the error estimates. Only in the case q 1 the
estimates for the - and y-components are independent of .
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5. Proofs. In this section we give the proofs of the theorems stated in {}4.
Proofof Theorem 2. (a) We first consider the case a < 1. Define

s*(e)’= -k*eq*,

I kelg(-s)-’ qt= 1,
r(s,)"

-qlkoe(-s ql > 1,
(48)

rl(s,e)’= kle(-s) -q’,

:oelOg(-- s) -1 ql=l
(S’ e)

OE(__ S ) -ql, ql > 1,

where all the constants involved are supposed to be positive, q >= 1, q*q < 1, and will
be specified more precisely later. These functions are defined and continuous for

[0, e0] and s [s, 0). Moreover, the positive functions r, r, P increase as s in-
creases.

Now, consider the set bcl m+n defined by

(49) b’= {lul<r}x{Iv l<r }x(Iol<e}x{s J*}
where J *’= [s,s* ]. For e small enough, b lies in the domain considered.

With respect to b the solution (u(s,e), v(s,e)) of the initial value problem (14),
(16) is assumed to exist on [s,m+), where m/ may depend on e.

For e and Isl sufficiently small we can always achieve that

(50) r(s) <=P(s)<r(s) < 1 for sJ*.

Thus, from the estimates given in (35) and also using (36), (37) we derive the
following estimates for the solution of (14), (16)"

lu(s)l<M ,+ rl(o)do

(51)

I(s)l_<M e+r(s)+(-’)"rl(’)+P2(s)+(-s) r (s)+(-’)
for s s 0, rn /), where M is a positive constant depending on all constants appearing in
(35) and on 0 introduced in (15), and stands for s or s, respectively, depending on
whether the exponent of the corresponding expression is negative or nonnegative (e.g.
(-,r)rx(,r)=kle(-’r)-qkle(-s)-q if q>). Since a<l, we have &=a and

1 O/-- 1 < 0, /3 min(3a 1, 0) and -/>_ 0, v >= a. We may write (51) more explicitly
(for simplicity we write down only the case q > 1)"

(-o)-’do
0

)1-ql +’Y-q t-ql+v-IVl(S)l<=m e(-s)-qWkoe(-’r +0e(-,r) q

(52) + 7(]12( s + k12E2(-s) e(-s) q])2fi-2q-q fl-2q-q+ a-l-

I(s) IZM[e/ koE(--S)1-ql+ klE(- s ) -ql

)2-2,h e(- ], fors[s,m+).+ k12e2(-s) --2ql-
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We now choose ql "= 1-a + q. (By Lemma 1 we know that ql >= 1.) We want to
show that

lu( )lz 
/’1

(53) [Vl(S ) I=< for se [s,m+).

We only have to consider the case z= s since for = so the right-hand sides of (52)
are always smaller (for the same choice of constants) than in the case s.

Let us consider the case ql > 1 first. It can easily be seen, by taking into account
the assertions of Lemma 1 and Lemma 2, that if q satisfies

(54) q<l+, and q<+v

then, for Isl and e sufficiently small, (53) holds under the following conditions
concerning the constants involved"

kl ) k(55) M 1+ < M(6)<q-I =T’
and

(56) k*’= k2, q*’=
ql +q-fl

M(4 + ko + kl) <=--
It is obvious that (55) can be satisfied by choosing kl( > 1) first (so that the second

inequality holds), k0 second and then k0 large enough.
In the case ql 1, where a =q and = 1 (by means of Lemma 2), and/3= 0 (cf.

(39), Lemma 1), the situation is exactly the same only with kl having a factor 1 instead
of l/(ql-1) in the first inequality of (55). (54) is automatically satisfied. Having
shown (53), the proof of Theorem 2, as far as the case a < 1 is concerned, is completed
by applying the Global Existence Theorem for ode’s; and by choosing c as the
maximum of k0, k1, ko and k*, and e sufficiently small.

(b) The case ct >_ 1 is formally completely analogous and we therefore only point
out the differences in the formulas. We have t 1, fl 0,/3 0,/3 0 and 7 >- 1, , __> 1,

1. Thus, for q > 1, we obtain instead of (52)

(57)

lu(s) [<_M e-{-kle -o)-q’do

)1-ql+)’-q[Ua(S ) [<M e(--S) -q-l- koe(-’r
q.. fSoe ( _,r)l-ql +v-q_[.. ke2(_s)-2ql-q],

)1-ql kxe(-s +k?e2(-s - 02e2( s)2- 2q1IO(s)l<-M[e+koe(-s + )x-ql )1-2q1

for s e [s, m/), where M again is a common constant.
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We choose ql "= q (>= 1, by Lemma 1); and we find, first for ql > 1, that if

(58) q<l+3, and q<l+v

then, for Isl and e sufficiently small, the estimate (53) holds under the following
conditions:

k k M(3 + k + kx) <(59) M 1 + < M( 4 )<-- 0
ql- 1 =--

and

(60) k*’= k, q*’= q+q

The inequalities (59) can again be satisfied by choosing kl (>= 1) first such that the
second inequality holds and then taking k0, k0 large enough.

In the case q 1, where (58) holds anyway, again the only difference lies in the
factor 1 of k in the first inequality of (59).

The proof is completed in the same way as in part (a). D
Proof of Theorem 2’. Since the functions r(s,e), r(s,e) and (s,e), defined in (48),

are increasing functions of s, Theorem 2 implies that

koq*eloge 1,
kok * -qt 1)el -(ql 1)q*,

(61) y(s,e)-- YI(S)I<klk*-qle1-qq*,

coq*eloge -1,
ly(S,E)-- (S)I(

ok,_(ql_&)El_(ql_Ft)q,,

ql=l,

ql>l,

for s[s, -k*eq*], e(0,el) where we have replaced the common constant c by the
original constants. Now, let 8(0,0], where 80 := ql/(q + q-fl). Then, (61) also
holds for q*=8/q. Thus,
means considering a smaller s-interval on which we have better estimates, however, due
to Theorem 2. If we take only q* variable (by varying 8) but k* fixed in s*(e)= k*eq*,
then we can take the same constants c and e as in Theorem 2, since q* < 1, k* >= 1,
and they are independent of

6. The case "s > 0". In this section we will deal with the case where the flow along
a stable branch of the reduced manifold of (1) leads away from the point at which the
stability assumption (4) is violated. This situation is encountered in bifurcation dia-
grams of the type sketched in Fig. 1. Another possible situation is given in Fig. 3.

In our formulation of the problem with H1 supposed to hold this second case will
occur for s > 0 in the orbit equations (5). We again want to provide a maximal domain
of validity (with sharpest possible error estimates) of an approximation given by a
reduced trajectory. And again we have to consider only a small neighborhood of that
unstable point where Theorem 1 is not yet applicable (" not yet" instead of "no more"
as in the case "s < 0").
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st

FIG. 3

The reason why this case is different from the one considered in the previous
sections and in fact more involved is that the initial conditions to the orbit equations
(5) can no longer be assumed, by means of Theorem 1, to satisfy a condition H4 with
an estimate e. And since we want to give a general result for this case we do not know
the estimates in the transition interval4 which depend on the global problem at hand.
Hence, we know neither the starting point s=s*(e)>O for the approximation nor the
approximate size of possible initial conditions. The following questions, however, seem
to be appropriate: What is the smallest possible s*(e), and what estimates for the initial
conditions are required in order that the reduced trajectory considered approximates
the corresponding trajectory of the full system on the interval [s*(e),s1] for some
sl (0,1), independent of e? And what is the sharpest possible estimate that can be
achieved in a given situation? Theorem 3 below will give an answer to these questions.

Let us become more precise now. Besides assumption H1 we again suppose that
H2.is satisfied. Let us denote the yet unknown initial conditions to the system (5) by

(62) 2(s*,e) =2(e), y(s*,e)=y(e)

where s*(e)> 0 for e(0,e0) and s*0 as e--, 0.
The appropriate s-interval in H3 is now a’= [0,s] for some 0 < s < 1, indepen-

dent of e; and in the formulas (10), (11) (-s) has to be replaced by s. Let us denote the
so adjusted hypothesis by 1313, and let us assume that the hypotheses 1313 and 1215 which
have to be altered in the analogous way hold, too. The assumption H4 has to be
changed into the following.

H4. The solution ((s), Y(s)) of (12), where Y(s)" q,(s,(s)), exists for sa.
Under these hypotheses H1, H2, 1313-1215 estimates for the solution corresponding

to (62) of the system (14) can be derived completely analogous to those given in 3. We

4That is, the e-dependent interval containing the unstable point (and overlapping with the interval J* of
Theorem 2) where the solution of the IVP (5), (6) cannot be approximated by a solution of the reduced
system (5)= 0 (cf. [6] and Part II of this paper).
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only state the final assertion which corresponds to (35)"

I() I<-Ke-""-’Vl(*)

+e-’K .e-’(s-)/ Klu(.)!+

+( +lu( )1 o 1 o )
for s[s*,si], with and , k defined in (19) and (20), respectively. And again
estimates analogous to (36) and (37) hold:

(64) f e-"(s-)ldo <-
’s* /

(65)
s[s*,sl].

The estimate (65) can also be replaced by one which is sometimes better for our
purposes"

(66) fse-(s -"*)ldo<= e-(s)(s-)/do<
Vs*

where 6 (s)" ks q.
We will also need the following estimate

e2
(67) se-f(s-o)l*d <’s+ b2

s*-I Is* s

where p R, + (s) or bt, respectively, and

b={0, p>=0,
-O, p<0.

The two lemmas of 3 hold true, of course, also in the case "s > 0". In order to be
able to prove Theorem 3 we need one more estimate which we state as

LEMMA 3. For every p >= 0 we have

e-’k(so-o*)/,, <

if (pe/k)X/<=o<__s.
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Proof. The function h(,)" e-’**/**p is decreasing for > (pe/k)1 lq

Remark 8. Lemma 3 holds, of course, also for the special choice k =/ and = 1
with k =/.

We now state the main result for the case "s > 0". It again provides an existence
statement for a solution ((s, e), y(s, e)) of the orbit equations (5) but now to the initial
conditions (62), as well as a maximal domain of validity with sharpest possible error
estimates for the approximation (X(s), Y(s)) which is the solution of the reduced
initial value problem (12). Theorem 3, in contrast to Theorem 2, contains two free
parameters due to the fact that the size of the initial values is unknown.

THEOREM 3. Suppose the hypotheses H1, H2, I213-I215 hoM, and/et &’= min(a, 1),
’= min(2a, 1) and let fl (O,a) be defined by (32). Moreover, assume that ql and
are in [0,1) and such that

fl <-<=ql <_min(,2q)

and let

(68) q* "=
l+2q-fi-fl’

8"= (ql +q-fl)q *.

If q satisfies

(69) q<=qi +/ and q<__+v

(for the equality sign does not apply in the second inequality) where y >= 0 (>= 1, if
a >= 1) and v >= are defined by (30), then the following result holds:

There exist positive constants c, 1 _<_s and e <=e0 such that the solution (Y.(s,e),
y(s,e)) of the initial value problem (5), (62) exists for sJ*’= [s*(e),l], where

q*s*( e) ce provided the initial values at s= s* satisfy

I(,)-(,) I= o(,’),
(70) lye’(,)- Yl(S*)I=o(e*), 8x "= (q-)q*,

[fi(e)- (s*)I=o(eS), 3 "= (+q-fl)q*,

where the little o can be replaced by capital 0 in the yl-component if q =0 and in the
y-component if qx.

Moreover, ((s, e), y(s, e)) possesses the following estimates

(71)
I(,,)-(s) I< c,*

lyl(s,e)- Yl(S)I<ce*s -’,
y(s,e)- (s)[<ce*s-q,

for s* and E(0, El) ((S), Y(s)) being the solution of the reduced initial value
problem (12).

Remark 9. Note that 0 < i < 1, and that 8 =< 8 __< , and in particular 81 < , except
if qx 0 (which is usually excluded by (69)). This allows to have less rigid requirements
for the initial value yl(e) (or also for y(e) if is chosen in an appropriate way),
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which is an important fact since these initial values are, in general, provided by weaker
estimates in the transition interval. Applying Theorem 3, one has to choose the two
parameters ql and such that the given initial values satisfy (70) and the q, v, "t at
hand satisfy (69). ql is, of course, taken as large as possible since this increases 8 and
yields optimal estimates (71) (or the other way around: taking the optimal 8 by means
of (70) gives a possible ql defined by (68), if (69) as well as ql < 1 and =< min(,2q)s is
satisfied). Note also that q*, and hence the interval of validity J* of the approximation
(X(s), Y(s)), is independent of q, and/J. Moreover, q*= 1/2q and 8=(ql + q)/2q
for a > 1.

There again exists the slightly weaker version of Theorem 3 with the estimates (71)
not depending on s but only on e. We are not going to state this Theorem 3’ here, since
it can be derived from Theorem 3 in a way completely analogous to how Theorem 2’
has been obtained from Theorem 2.

7. Proof of Theorem 3. The proof is analogous to the one for Theorem 2. We
define

S*(,)’= k*13q*,
(7:)

r()’= k0d, r(s, )’= (S, 13) (,0138S -ql

where k*(>=l), k0, k, k0 are positive constants, and 0=<q1<1, 0=<=<ql, 0<8<1
and qlq*< . All these quantities will be specified more precisely later. The positive
functions r, rl, ? are defined and continuous for e (0, e0) and s (0, s] and decrease
as s increases (if they are not constant).

Furthermore, we suppose that the initial values (62) to the system (5) obey the
estimates

(73)
Izco 

[y(s*,e)- Y(s*)

where c0, c, 0 are positive quantities and ,, 1, are positive constants =< 1.
Now, consider the set b c R ’+" defined by

(74) b’= {lul<r} x {Iv, l<r,} x x

where * "= [s*(e),l], independent of e and 0< ____<S 1. For e and small enough,
b lies in the domain considered.

With respect to b the solution (u(s,e), v(s,e)) of the initial value problem (14),
(73) is assumed to exist on s*,m /).

For e and x small enough we can always achieve that

(75) r<=?(s)<=r,(s)<l for sd*.

5Since 2q_>_ + q (cf. Lemma 1), there is strong evidence that always 2q> 1 (cf. footnote 3) and therefore
qt -< 2q is automatically satisfied.
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(a) We consider first the case a < 1. Thus, from (63) and also using (64)-(67) we
derive the following estimates for the solution (u(s, e), v(s, e)):

lu(s)l<=M CoeX+k,e ,o q’do,

v,(s)l<= M[e-k(-*)/*c,eX’ + es-q+ koeSS v-q

+OeS(S+-q’-q+ eh(P + -- ql)S*+-q’-lS -2q)

(76) + k?e28(so-2q,-q+ eh(- 2ql)s*O-2q’-ls-2q)

-dr. e( s a-l-q+ es*a- 2s- 2q)

O( s ) I<_ M e-t’(s-s*)/*g.oeX + e + koe+ kleS n-q,

+ k?e2(sa-2q + eh( or- 2ql)s *a-2qa-1)

+e2(S2-2qx +. (-- ql)S *2-2qx-1 ) + t(Sfi+ eh(/) S’B- 1)]
for s[s*,m+), where M is a positive constant depending on all constants appearing
in (63), and on s (but not on 1),

h(z).= (o, z>_O,
--z, z<O.

We want to show that

r

r
(77) [vl(s) [__< for s [s*,m+).

For that, we have to get rid of the two exponential terms in (76). This can be done
by applying Lemma 3 for o=s*, P=ql and p=q-, respectively, and yields the
following two estimates

(78) e-’k(se-s*e)/eCleh < Clk*qxeh + qiq*s-ql

e-t’(s-s*)/*g.oeX <= .ok*(qx-)eX+(qx-)q*s-ql

provided

1
and k*>=max - ,(79) q* --< 1 + q

holds.
It can easily be seen, by taking into account the assertions of Lemma 1, that if

(80) q__<min(,2q), q<_qx+ and q<=+v
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then, for ,1 and e sufficiently small, (77) holds under the following conditions concern-
ing the constants involved

k0M(co+l)<-T
(81) M(1 -[" C -[- k0 -[- k0 -[-- 6) =< --,

k0M(1 + ’o + ko+ 8) =< -,
and

(82)

as well as

(83)

1
l +2q-a-fl

__<<,
)>=, )l>_(q-fl)q *,

k* "= max 1,k21/(q’+q-#), k, C, -C <=k *-ql, .o<=k *-ql (only if q >0 or <q, respectively).

It is obvious that (81) can be satisfied by choosing k0 first (such that the first
inequality holds), k0 second and finally k large enough.

We have excluded in (82). In this case everything holds true, too, if q < + ,.
We only get slightly different inequalities (81), namely k0 in the second inequality has
to be replaced by 1 and k has to be added to the expression in parentheses of the third
inequality. And the only effect is that k, instead of k0, has to be chosen second after
ko, in order to satisfy the three inequalities.

Having shown (77) the proof of Theorem 3, as far as the case a < 1 is.concerned, is
completed by applying the Global Existence Theorem for ode’s; and by taking e

sufficiently small and choosing c as the maximum of k0, k, k0 and k*.
(b) The case a>_ 1 is formally completely analogous to the case a < 1. Since

1 0 the last term in the fight-hand side of the o-component of (76) as well as
the last term in the right-hand side of the -component can be dropped. Moreover, a
and have to be replaced by 1 (hence is not possible), and we know that 3’ >= 1
and , >= 1 in this case. The rest is identical to part (a).
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SAUTS DES SOLUTIONSDES ÉQUATIONS Ex =f(t, x, x)*

FRANCINE DIENERt

Abstract . One of the main difficulties in the study of the equations E.z =f (t, x,z) for small e is created
by the existence of parts of solutions, called "jumps" for which the velocity is large . We give here precise
definitions of such jumps, their extremities, and their thickness, and we show that, for most equations of the
type considered, it is easy to compute, up to an infinitesimal, the position of jumps, extremities and thickness
for each solution . Our methods use both nonstandard analysis and a geometrical approach consisting of,
among other things, observing solutions in some convenient planes, (plans d'observabilité) of the phase space.

Nous proposons ci-dessous l'étude des sauts des solutions des équations différen-
tielles du type

(1)

	

E.z=f(t, x, .z ),

	

e infinitesimal, l positif,

c'est-à-dire l'étude des portions de solutions parcourues à vitesse grande (* ). On
appelle souvent ces sauts des "couches" limites, libres, ou intérieures . On sait que la
présence de sauts est liée à la petitesse de e et qu'elle constitue l'une des principales
difficultés dans l'étude du comportement des solutions de ces équations .

Nous montrons que, pour une classe étendue d'équations de ce type, on peut,
moyennant un choix convenable d'échelle de vitesse, décrire simultanément les sauts de
toutes les solutions d'une équation donnée, calculer leur équation à un infinitésimal
près, et déterminer pour chacun d'eux son extrémité en fonction de son origine, ainsi
que le temps nécessaire pour le parcourir.

Les équations du type envisagé ont intéressé, au cours des trente dernières années,
de nombreux auteurs qui se sont principalement attachés à prouver l'existence d'une
solution d'un problème aux limites (et plus rarement d"un problème de conditions
initiales) qui présente certains types de sauts à des instants prescrits . Des techniques
plus ou moins élaborées de développements asymptotiques, faisant intervenir un
changement d'échelle du temps t (là où nous utilisons un changement d'échelle de
vitesse), permettent de traiter un tel problème aux limites dans les cas semi-linéaires (f
ne dépend pas de .pic) et quasi-linéaires (f est linéaire en z) [24], [19], [9] . Dans les cas
où f n'est pas linéaire en z, les études sont beaucoup plus rares [23] . Les résultats les
plus importants obtenus à ce jour sont dus à Howes [12], [11], qui à l'aide de méthodes
d'inéquations différentielles, retrouve facilement et étend les résultats de ses prédéces-
seurs dans le cas où f est un polynôme en ic de degré 0, 1, ou 2. Quelques articles
proposent également d'astucieuses généralisarions à certains cas où f est "superquadra-
tique" en .z [14] .

Au premier chapitre nous donnons des définitions précises des objets étudiés
(sauts, leur origine, leur extrémité, leur épaisseur), définitions absentes des études
précédentes et qui apparaissent très naturellement ici grâce au point de vue non

* Received by the editors October 25 � 1983, and in revised form December 15, 1984 .
Institut de Mathématiques de l'Université d'Oran, B.P. 1524, Es-Senia, ORAN, Algérie .

1 Nous adoptons dans cet article le point de vue non standard qui, comme cela a été souvent développé
[20], [16], présente bien des avantages dans ce contexte . Pour guider un lecteur qui ignorerait ces nouvelles
"règles du jeu", nous proposons en annexe un index terminologique (auquel renvoie le symbole (*) placé
après le mot concerné) comprenant les principaux résultats non standard dont nous avons besoin et, entre
crochets, les équivalents anglosaxons [Robinson/Nelson] lorsque ceux-ci existent.
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standard adopté. Nous précisons également la classe d'équations étudiée. On verra
qu'elle est très générale et contient, en particulier, les cas usuels, serai-linéaires, quasi-
linéaires, et quadratiques . Nous présentons au second chapitre la méthode employée sur
un exemple simple. Enfin, nous indiquons au troisième chapitre les principaux résultats
obtenus et donnons leur démonstration .

1. Quelques définitions.
Sauts d 'une fonction . Soit x : I --~ R une fonction interne (*) de classe C 1 . On dit

que x (t) présente un saut sur l'intervalle [t 1 , t 2 ] c I si, sur cet intervalle, la vitesse t(t)
est grande et si x (t 1 ) x(t 2 ) (* ), avec x (t 1 ) et x(t 2 ) limités (* ). On notera que
l'intervalle [t 1 , t 2 ] est nécessairement petit (* ), et que, comme la variation de x sur cet
intervalle est supposée appréciable (* ), les sauts apparaissent sur le graphe (t, x (t )) de
la fonction comme des portions de ce graphe d'ombre (*) verticale, d'où leur nom . Une
fonction qui présente un saut sur l'intervalle [t1, t 2 ] n'est pas S-continue (*) sur cet
intervalle .

Comme, par continuité, ±(t) ne peut changer de signe sans devenir limitée, tout
saut est soit croissant, soit décroissant . Sauf mention contraire, on se bornera désormais
au cas des sauts croissants, celui des sauts décroissants s'en déduisant immédiatement .

Pour to réel standard (* ), on dit que la fonction x présente un saut à l'instant t o
s'il existe un intervalle [t1, t 2 ] c I contenu dans le halo de t 0 ( *) sur lequel x présente un
saut. On notera que .z n'est pas nécessairement grand, ni même défini au point t o .

Origine et extrémité d 'un saut . Si x (t) est une fonction présentant un saut sur
l'intervalle [t 1 , t 2 ], on peut, dans certains cas, définir l'origine de ce saut ; on peut,
biensûr, procéder de manière analogue pour définir l'extrémité d'un saut . Trois cas sont
à envisager (Fig. 1) :

E
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Saut sans origine

	

Saut d 'origine - 00

FIG . 1
Saut d 'origine x _

1) Ou bien, pour tout t E I, si t _< t 1, alors ±(t) est grand. On dit que le saut sur
[t 1 , t 2 ] est sans origine sur I .

2) Ou bien il existe TE I, T < t1, tel que t (T) est limité, mais pour tout t E [T, t 1 ],
si x (t) est limité alors ±(t) est grand. On dit que le saut sur [t 1 , t 2 ] a son origine en
x = - oo (ou + oo dans le cas d'une fonction décroissante) . On notera que ceci ne
signifie pas que x tend vers - oo, mais seulement que x "n'arrête pas de sauter" avant
d'atteindre (à reculons) des réels grands négatifs .

3) Ou bien il existe TE I, T < t 1 , tel que x (T) et t (T) sont limités, et t(t) est
positif pour tout t E [T, t 2 ] ; x est donc croissante sur cet intervalle. Dans ce cas on
souhaite définir l'origine du saut sur [t1, t 2 ] comme le standard (x _) tel que, pour tout
t E [T, t 1 ], si x (t) » x _ (* ), alors t (t) est grand, et au contraire, si x (t) « x_, alors il
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existe T E [t, t 1 ] tel que t(T) est limité. Notons que, comme les notions de "grand" et
"limité" sont externes, il serait illusoire d'espérer pouvoir remplacer les "doubles
chevrons" » ou « par de simples inégalités (internes) > ou < .

Pour établir l'existence de x_, on procède de la manière suivante : considérons tout
d'abord la coupure externe (C_, C +) de R définie par C _ _ { E R, tels qu'il existe
T E [T, t 1 ], avec .t(T) limité et x(T)>- } et C+ = R\C_ .

Remarquons que x (T) E C_, x (t 1 )E C +, et x (T) ainsi que x(t1 ) sont limités. On
pose alors S _ = sC_ = standardisé (*) de C_, c'est à dire l'unique sous-ensemble stan-
dard de R ayant les mêmes éléments standards que C_ ; de façon analogue, on pose
S + = SC + . A présent, comme tout élément de C + domine tout élément de C_, c'est en
particulier vrai pour tout élément standard : ceci montre que tout élément standard de
S + domine tout élément standard de S_, d'où, par transfert, S + domine S_ . On
démontre de même que (S, S_) est une partition de R . Comme °x (T) -1 E S_,
S _ 0 ; et comme °x (t 1 ) + 1 E S +, S + 0 ; (S_, S +) constitute donc une coupure
standard de R : elle détermine un unique standard x _ .

Vérifions que le standard x _ a bien la propriété souhaitée. Soit t E [T, t 1 ] tel que
x (t) « x_ . Comme x est croissante, on a par ailleurs que x(T)_< x(t)_< x (t 1 ) ; x (t) est
donc limité; soit x ° _ °x (t ) . Par hypothèse x 0 < x _; donc (x0 + x _)/2 E S_, et comme
il est standard, (x0 + x_)/2 E C_ . Il existe donc T E [T, t 1 ] tel que t(T) est limité et
(x ° + x_)/2 < x(T) . A présent x(t)- x° «(x0 + x_)/2 < x(T) . D'où x(t) < x(T) ;
comme x est croissante, ceci montre que T E [t, t 1 ] . On montre tout aussi facilement que
pour t E [T, t1 ], so x (t) » x _ alors .z (t) est grand. CQFD

Notons que d'après le principe de Fehrele (* ), non seulement les x (t) » x _ sont
tels que t (t) est grand, mais il existe t_ E [T, t1 ] tel que x (t _) x _, et que ±(t) est
grand pour tout t >_ t _ ( inférieur à t 2 ) . On ne peut espérer un résultat analogue pour les
x (t) « x _, comme le montre l'exemple de la Fig . 2 .

1x

4)++
E

. x

Fi o. 2 . La solution périodique de l'équation de Van der Pol e5 + (x 2 -1)x + x = 0 présente un saut
d 'origine --1 et d'extrémité 2 . La vitesse est limitée tant que x (t) « -1 et grande dès que x (t) = -1 .

Si l'on considère cette fois le problème de l'extrémité d'un saut, on sera amené à
distinguer comme ci-dessus, parmi les sauts (croissants), ceux qui n'ont pas d'extrémité,
ceux qui ont + oc pour extrémité, et ceux qui ont une extrémité x + ayant la propriété
analogue de celle déterminant l'origine x _ du saut . Lorsqu'un saut de x possède à la
fois une origine et une extrémité non infinie, on dira qu'il est borné. A l'inverse, si l'une
ou l'autre est infinie, ou n'existe pas, on dira qu'il est non borné .
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Epaisseur d 'un saut . Outre l'origine et l'extrémité, une autre notion est utile pour
la caractérisation d'un saut : c'est son "épaisseur", qui indique, grosso modo, le temps
nécessaire pour accomplir le saut . Voici la définition que nous adopterons [3], générali-
sant celle de [16] .

Nous supposerons systématiquement que la fonction x : I -~ R considérée est
monotone et qu'elle présente un saut à l'instant t ° ayant au moins une extrémité finie .
Nous supposerons en outre que ce saut est croissant : on déduit facilement la définition
correspondante dans le cas d'un saut décroissant .

Considérons tout d'abord le cas d'un saut borné, d'origine x _ et d'extrémité x + .
On appelle épaisseur du saut l'ensemble

é= {tE7, tels que x_«x(t) «x + } .

On vérifie facilement qu'il s'agit d'un ensemble strictement externe (* ), et plus précise-
ment d'une galaxie (*) contenue dans le halo de t ° (voir exemples ci-dessous). Il
apparaît donc qu'une bonne connaissance des galaxies de R (voir l'annexe à ce sujet)
sera utile pour étudier les épaisseurs de sauts .

Considérons à présent le cas d'un saut non borné, et supposons qu'il n'a pas
d'origine ou qu'il a - oo pour origine. Soit x + son extrémité . L'épaisseur du saut sera
alors l'ensemble

~={tEl,tels quex(t)«x+} .

C'est également une galaxie, mais elle n'est pas nécessairement petite ; elle contient tout
un segment initial de I.

Cas des solutions des équations (I) . Soit f une fonction interne, définie sur R 3 et
suffisamment régulière pour que l'équation différentielle

e.z=f(t,x, .z)(I)

possède la propriété d'existence locale et d'unicité des solutions pour e> 0 . De n'im-
poser à f que le fait d'être interne permet de considérer non seulement les cas où f est
standard, mais aussi les cas où f = F(t, x, x, e), et plus généralement les cas où f (t, x, x )
= F(t, x, z, a), où F est standard et a est un paramètre pouvant prendre des valeurs
non standard .

Considérons le champ lent-rapide (*) associé à l'équation (I) dans l'espace des
phases (t, x, i = v )

i=1,
i=v,
ci) =1(t, x, v) .

La trajectoire (t, x (t ), v (t )) de (II) correspondant à une solution x (t) de l'équation (I)
qui présente un saut sur l'intervalle [t 1 , t 2 ] reste entièrement contenue, pendant ce laps
de temps, dans l'une des parties H+ ou H- de 3 où v est grand (H+ si le saut est
croissant, H - s'il est décroissant) . Elle reste également proche, durant ce laps de temps,
du plan vertical d'équation t = t ° , où t° _ ° t 1 . Notons que les parties H+, H-, et le
complémentaire de H+ U H- noté G, sont strictement externes . Lorsqu'une trajectoire
de (II), correspondant à une solution présentant un saut est de coordonnées limitées en
un instant T antérieur au saut, il découle de ce qui précède que le saut possède une
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origine x _ . Nous dirons que "la trajectoire sort de la région G (des vitesses limitées)
avec une abscisse x _" . De même, si le saut a une extrémité x +, nous dirons que "la
trajectoire rentre dans G avec une abscisse x +"

FIG . 3 . Trajectoire du champ (II) associé ù une solution de (I) présentant un saut croissant u l'instant t 0 .

Voici quelques exemples de sauts de solutions et leur épaisseur :
1 °) La solution x (t) = th (t/E) de l'équation ex = - 2x± présente en t o= 0 un saut

d'origine x _ _ -1 et d'extrémité x + =1 . Son épaisseur est l'ensemble des réels pouvant
s'écrire t = Es, où s est limité, ensemble qu'on appelle la e - galaxie de 0( * ) .

2°) La solution x (t) _ //(t + ), t > - yÇ, de l'équation e5 = 2x 3 présente un
saut non borné pour t o = 0, d'extrémité x + = 0. Son épaisseur est la réunion de ] - ~, 0]
et de la moitié positive de la galaxie des réels pouvant s'écrire t = Vis, où s est limité,
encore appelée - galaxie de 0 .

Dans ces deux exemples, comme dans bon nombre d'exemples classiques, les
épaisseurs sont réunion d'une partié interne (éventuellement vide) et d'une galaxie très
simple (la e on - galaxie par example) dite galaxie linéaire (* ) . Cela se traduit en
pratique par le fait qu'il est possible "d'étaler" ces sauts au moyen d'une homothétie .
Ainsi les changements de temps s = t/E et s = t/V transforment respectivement les
examples précédents en th(s) et 1/(s + 1), fonctions qui ne présentent plus de saut .
Cette propriété, que possèdent beaucoup de sauts, de pouvoir s'étaler au moyen d'un
changement de temps linéaire s = (t - t 1)/ p ( E), est en fait, à la base de plusieurs
méthodes d'étude des sauts, en particulier la méthode des "développements asympto-
tiques recollés" . Cependant, il existe également de nombreuses équations (I) dont les
solutions présentent des sauts n'ayant pas cette propriété . En termes d'épaisseur, cela se
traduit par le fait que s'exprime à l'aide de galaxies non linéaires (* ) . C'est l'ex-
istence de sauts d'épaisseur non linéaire qui conduit à dépasser l'idée un peu trop naïve
de caractériser l'épaisseur par un nombre ou "ordre de grandeur" (E ou par
exemple), et de lui substituer un ensemble strictement externe . Voici un exemple de
saut d'épaisseur non linéaire .

3 0 ) La solution x (t) _ - E log(t + e -1/E ), t > - e-1/£, de l'équation E .x = .z 2 présente
un saut non borné en t = 0, d'extrémité x + = 0. Un calcul simple montre que son
épaisseur est la réunion de ] - e-1/e, 0] et de la galaxie des réels pouvant s'ecrire
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t = eavec s > O limité, qu'on appelle la (moitié positive de la) E-micro-galaxie (* ).
On notera que cette galaxie contient par exemples les deux nombres e-1/E et e-1/2 E qui
ne sont pas du "même ordre de grandeur" puisque leur rapport n'est pas appréciable .

Type de croissance de f en t Voici à présent quelques définitions concernant le
comportement de la fonction f lorsque ± est grand, qui vont nous permettre de
préciser quelle classe d'équations (I) nous nous proposons d'étudier . Nous nous
bornerons au cas des vitesses positives, celui des vitesses négatives s'en déduisant
aisément.

Soit F(v) une fonction interne de classe S °( * ), continûment dérivable, définie
pour tout v positif grand, non décroissante, positive et non petite. Comme F est
interne, il existe nécessairement v ° standard tel que F soit définie et possède encore les
propriétés ci-dessus pour tout v E [y0 , + oo [ . On dira que F est le type de croissance de f
par rapport à v pour les v positifs, s'il existe deux fonctions internes a (t, x) et r (t, x, v )
continues et de classe S ° telles que, pour tout t et x limités, on ait

f(t,x,v)=a(t,x)F(v)+r(t,x,u)

et

r(t,x,v)/F(v)=0

pour tout v positif grand . On appellera la fonction a (t, x) la mantisse de f (pour les v
positifs) . On remarquera que si F et F sont deux types de croissance de f, il existe un
réel positif R tel que pour tout v grand, F(v)/F(v) = R . En particulier, si F et F sont
standard, elles diffèrent par une constante multiplicative pour tout v grand, donc, par
le principe de Cauchy (* ), pour tout v >_ v° , avec v° standard. Par contre le choix de F
est parfaitement arbitraire sur [O, v°[, v° standard .

On notera également que si l'on se restreint aux fonctions f et F standard, il est
équivalent de supposer que f possède la fonction F comme type de croissance par
rapport à v ou que, pour tout t et x limités, f(t, x, .) est un "O" de F et que la limite,
quand v tend vers + oo, de f/F existe.

Voici quelques exemples de fonctions avec ou sans type de croissance :
1°) Les cas classiques où f est quasi-linéaire (f= a (t, x)), serai-linéaire (f=

a (t, x) y + b (t, x )), et quadratique (f= a (t, x) v 2 + b (t, x) v + c (t, x )) ont pour type de
croissance respectivement F(v) =1, F(v) = v, et F(v) = v 2 , et pour mantisse les fonc-
tions a (t, x ) .

2°) Plus généralement, si f est un polynôme de degré n en v, ou une somme de
"monômes" du type a (t, x) v' où v est réel positif, le type de croissance de f par
rapport à v est vn, ou vv', où v° est l'exposant le plus grand de v, et la mantisse est le
"coefficient" de vY" .

3°) Dans l'exemple suivant (étudié par Howes [13])

EJiC- (x-- t2 )2q+1 (1 +JC 2 ) 3/2 ,

le type de croissance est F(v) = v 3 et la mantisse (x - t 2 ) 2 q+1 .

4°) Dans l'exemple suivant (étudié par Levinson [15])

le type de croissance est F(v) =1 (-1 dans le cas des vitesses négatives) et la mantisse
est -- x (on trouvera une étude nonstandard de cet exemple dans [22]) .



SAUTS DES SOLUTIONS 539

50) Dans les exemples précédents, les types de croissance sont toujours des puis-
sances de v. On peut cependant fort bien envisager d'autres types de croissance . Ainsi,
par exemple :

E.z=a(t,x).zlogz ou ez=a(t,x)thz • • • .

6°) On construit facilement des exemples d'équations (I) pour lesquelles f n'a pas
de type de croissance par rapport à ± (indépendent de t et x), comme par exemple
ex = sin t± ou ex = exx . Cependant, il ne semble pas que de telles équations aient fait
l'objet d'études jusqu'ici (l'auteur serait intéressée de connaître une telle étude, pour
autant qu'elle existe, ou à défaut une application qui la motiverait) .

Les résultats principaux de cet article concernent les équations (I) pour lesquelles f
a un type de croissance par rapport à ± . Il convient en outre de supposer que ce type de
croissance ne croit pas "trop" vite, et plus précisément, que

j

+O0 vdv
v0 F(v)

= +00 .

Cette condition est équivalente, dans le cas des fonctions puissance, au fait que le type
de croissance F est au plus quadratique (v o _< 2) . On notera cependant qu'il existe des
fonctions "sur-quadratiques", par exemple F(v) = v 2log v, qui la vérifient également .
Nous posons cette hypothèse car lorsque le type de croissance de f est plus grand (par
exemple F( v) = u3 ), aucune solution de l'équation ne présente plus de saut, à l'excep-
tion éventuellement de ce qu'il est convenu d'appeler des sauts singuliers, c'est à dire
des sauts tels que la trajectoire de (II) associée, soit contenue dans le halo de la surface
d'équation f(t, x, v) = 0 (la démonstration de ce fait, ainsi que l'étude des sauts singu-
liers fait l'objet d'une étude séparée [7]) .

2. Un exemple. Dans ce chapitre nous présentons sur un exemple simple la plupart
des résultats qui seront démontrés dans le cas général au chapitre suivant . Nous avons
choisi pour cela la famille d'équations

(IV)

	

Ex= x 1,

	

O<s_<2

où .xest défini par
Outre sa grande simplicité, cette famille présente l'avantage suivant : les portions

de solutions ne contenant pas de saut étant toutes presque-constantes (* ), les seules
portions non triviales des solutions sont des sauts, qui précisément nous intéressent ici .

L'équation correspondant à s =1 (qui est intégrable explicitement) est souvent
utilisée pour illustrer des sauts de solutions, en particulier dans le cadre des problèmes
aux limites [19], [12], [16] . Comme le point de vue adopté ici permet de traiter sans plus
de difficulté les cas où 0 < s _< 2, nous nous plaçons d'emblée dans ce cadre un peu plus
général; ceci nous permet en outre de mettre en évidence, dans un cas particulier, le lien
qui existe entre le type de croissance de l'équation, ici F(v) = v[s], et les propriétés des
sauts .

Comportement ales solutions à vitesse limitée . Ce n'est pas notre propos ici d'étudier
les propriétés des solutions lorsque leur vitesse est limitée; cependant, il sera plus facile
de comprendre le rôle joué par les sauts si l'on connaît le comportement global des
solutions et donc, en particulier, leur comportement à vitesse limitée .
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Considérons le champ lent-rapide associé à (IV) .

1=1,
(V)

	

x-v,
~v = xv ,

	

0<s < 2 .

Bien que ce champ de vecteurs ne vérifie pas, aux points v =0, la condition de Lipschitz
envlorsque s < 1, on notera cependant que, par un tel point (distinct de (t, 0,0)), il passe
une unique trajectoire, qui est le graphe d'une solution de l'équation

dx

	

Ev

dv xv [s]

qui vérifie, elle, la condition de Lipschitz en x . On a donc unicité des solutions de ce
champ .

Du fait que E est supposé petit, il est facile de décrire, à un infinitésimal près, le
comportement des trajectoires du champ dans la région G de l'espace où v est limité
(Fig. 4). Par les raisonnements usuels de champs lents-rapides (voir par exemple [16]),
on montre que, le long d'une trajectoire, aucune variation appréciable de x n'est
possible tant que v (et x) sont limités .

Notons également que le comportement des trajectoires du champ (V) est le même
quelque soit s E ]0, 2] .

1"

FIG . 4 . Les trajectoires du champ associé à l 'équation c .z = x±E s I dans l'espace des phases sont presque
verticales tant qu'elles restent hors des halos des plans d 'équation v = 0 et x = 0 . Dans le halo du premier, elles
sont proches de droites "horizontales ", x constant, et dans le halo du second, elles sont proches de "demi-droites
verticales ", t constant, ou de "U " .

Comportement des solutions à vitesse grande . En dehors de la région G, c'est à dire
dans l'une des régions H+ ou H- des points d'ordonnée v grande, positive ou négatives
respectivement, la troisième composante du champ (V) cesse d'être grande par rapport
aux autres; les trajectoires n'ont plus le comportement caricatural, typique des champs



lents-rapides, évoqué ci-dessus. Une étude particulière est nécessaire . Il n'est pas facile
de la mener dans l'espace des phase : les portions de trajectoires sont "trop éloignée" .
Afin de les "rapprocher", on utilise un macroscope (* ), qui est, ici, un changement
d'échelle (*) de vitesse. Ce macroscope devra évidement être d'autant plus puissant que
la vitesse sur les trajectoires considérées est grande . Cette vitesse dépend, comme on
l'imagine, du type de croissance de l'équation et donc, ici, de s . On verra au paragraphe
suivant qu'il convient de choisir, lorsque F(v) = V'1 ,~ le macroscope suivant :

où Q vaut + 1 ou -1 selon que V est positif ou négatif . A la nouvelle échelle, le champ
(V) s'écrit

i =1,
.z=v,
V=xv où v est donné par (VI) .

Nous nous proposons de décrire, à un infinitésimal près, les portions de trajectoires de
ce champ, contenues dans le région image de H+ par le macroscope, et celles
contenues dans la région H~ , image de H Notons que H~ et H~ contiennent, en
particulier, tous les points qui, à cette échelle, ont une ordonnée V non petite, positive
ou négative, respectivement .

On ne change pas les trajectoires, pour V 0, en multipliant le champ précédent
par la fonction nulle part nulle 1/v (où v = v (V) est défini par (VI)) . cette constatation
élémentaire révèle le point de vue "trajectorien" (voir par example [10]) adopté ici, qui
fait l'originalité de notre méthode . Il consiste à envisager les trajectoires plutôt comme
des objets géométriques de R 3 que comme des graphes de fonctions solutions . De ce
fait, le paramétrage étant indifferent, on peut le changer de façon que les sauts,
initialement parcourus à vitesse grande, le soit alors à vitesse limitee . La quantité 1/v
est petite sur H + et H- . Le champ ' ainsi obtenu est donc équivalent, sur H~ U H~ , à
un champ ~o standard et intégrable
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x =1,
V'=x

(t'=1/v,

	

t'=0,
x'= 1,
V' - x.

Les trajectoires de ~o (Fig. 5) sont des paraboles d'équation

t=to , V=x2/2+Vo , to ,V0ER .

On notera que ~o est indépendant de s . En d'autres termes, si le macroscope dépend,
lui, de s, ce que l'on "voit" sous le macroscope, au contraire, est identique, à un petit
près, pour toutes les valeurs de s considérées .

Sauts des solutions des équations (IV) . Ceci va permettre d'étudier les sauts des
solutions des équations (IV) . Soit x (t) une solution de (IV) présentant un saut sur
[t 1 , t 2 ] . La trajectoire correspondante dans l'espace des phase reste contenue dans H (si
le saut est croissant) ou H- (sinon) ; sous le macroscope, cette trajectoire est le graphe

(((2- s)/e) V)~ 1
"~

2 si s#2,(VI)

	

U=
1 a exp(aV/e) si s=2,
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FIG. 5 . Vues sous le macroscope (VI), les trajectoires du champ associé à l 'équation i Ï = x± 1 restent
proches des paraboles d 'équation V= x 2/2 + Co dans les deux halos H~ et HÇ . Leur ombre est indépendante
de s E ]0, 2].
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d'une fonction (t(x ), V(x)), car x' =1, qui, si V(x(t1)) est limité, vérifie pour tout s, les
presque-équations (* )

t(x)=t ° et V(x)=x 2/2+ V°

où t °_ ° t1 et la constante Vo est telle que la parabole V = x2/2 + Vo passe par le point
de coordonnées ° (x(t 1 ), V(x (t1 ))) .

En revenant à l'échelle initiale, tout saut croissant d'une équation (IV) vérifie donc,
pour t E [t 1 , t2 ], la presque-équation

ou
(e/(2_s))î(t)E2lx2(t)/2+

-S=

	

Vo , si 5+2,
Elog .z(t)=x 2(t)/2+Yo ,

appelée équation des sauts, où V° est une constante qui dépend du saut considéré .
On peut également préciser les origines et extrémités des sauts. Pour cela, il

convient de s'assurer que les courbes qui sont les ombres des trajectoires dans G (Fig.
4) et celles qui sont les ombres des trajectoires hors de G vues sous le macroscope (Fig .
5), se recollent bien les unes aux autres de la manière qu'on imagine . Plus précisement,
il s'agit de vérifier qu'une trajectoire qui atteint des vitesses grandes en longeant (* )
une verticale t = t ° et x = x _ vérifiera l'équation des sauts ci-dessus avec Vo = -- x
c'est à dire tel que V(x _ ) = 0; et de même, que celle qui reprend des vitesses limitées en
longeant une verticale t = t ° , x = x +, la vérifiera pour V° _ -- x +/2, c'est à dire que
V(x + ) = o . Ces propriétés de recollement sont, comme nous le verrons au chapitre 3,
des conséquences du lemme de l'ombre courte (* ) .

On en déduit facilement les deux résultats suivants
1 0 ) Tout saut décroissant d'origine ou d'extrémité finie est également d'extrémité

ou d'origine finie respectivement, et ces abscisses x _ et x + sont reliées par le relation
sortie-entrée x ? /2 = x/2, c'est à dire

si s=2,



2°) Aucun saut croissant n'est borné . Il est soit d'origine - X et d'extrémité
x _ -< 0, soit d'origine x + >- 0 et d'extrémité + oo .

On peut également déduire de l'étude précédente l'épaisseur des sauts . Contraire-
ment à l'équation des sauts ou à la relation sortie-entrée, l'épaisseur, elle, dépend de s .
Calculons à titre d'exemple cette épaisseur dans le cas s =1, pour un saut borné
(donc décroissant) d'origine x _ et d'extrémité x + . Par définition, lorsque t est élément
de g, t (t) est grande et donc x (t) vérifie l'équation des sauts

e±(t) = (x 2(t)-x? )/2

On en déduit, en vertu de la définition de g, que t est un élément de g si et seulement
si e c (t) 0 (c'est à dire qu'au cours du saut, la vitesse est d'ordre 1/e) . Comme

x (t) dx
t E x(t) dx

t=t1+
x(t1 ) x(t)

-1+

x(t1 ) Ex(t)
'

t appartient à si et seulement si t = tl + T avec T/E limité. En d'autres termes, est la
e -galaxie de t 1 .

Dans le cas d'un saut non borné dont l'une des extrémités est finie, un raisonne-
ment semblable conduit, toujours pour s=1, à la conclusion que est la réunion de la
galaxie précédente et de la demi-droite ]- œ, t 1 ], ou [t 1 , + oo[. Notons que l'épaisseur
d'un saut borné (respectivement non borné) d'extrémité finie est identique pour tous les
sauts d'une même équation. On verra au chapitre suivant que cette propriété est
générale et que seul le type de croissance de l'équation détermine l'épaisseur des sauts .

Problèmes aux limites . Lutz et Sari ont indiqué [17] comment tirer profit des
méthodes non standard pour l'étude de problèmes aux limites concernant certaines
équations (I) . Nous nous proposons d'examiner, à propos de l'exemple des équations
(IV), ce que peut apporter une bonne connaissance des sauts des solutions pour la
résolution d'un problème aux limites .

Considérons le problème aux limites suivant associé à (IV) :

(VII)
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1<S<2.,
x(-1)=a, x(+1)=b .

Traduit en termes de trajectoires de l'espace des phases, ce problème consiste à
trouver une trajectoire du champ associé qui joint un point de la verticale d'équation
t = -1, x = a, à un point de la verticale d'équation t = + 1, x = b . La détermination du
comportement selon les valeurs de a et b d'une solution de (VII), si elle existe, découle
facilement des quelques observations suivantes .

1°) Les solutions de (IV) sont toutes, à l'exception des solutions constantes x = x 0 ,
soit croissantes, soit décroissantes (i.e . les deux demi-espaces v > 0 et V < 0 sont in-
variants pour le champ (V) associé à (IV)).

2°) Aucune variation appréciable de x n'est possible à vitesse limitée, pour x
limité.

3°) A l'exception des solutions dont les trajectoires associées ont pour ombre, sous
le macroscope, une parabole d'équation V= x 2/2 (Vo = 0), aucune solution de (IV) ne
peut présenter plus d'un saut, les premières présentant, quant à elles, au plus deux
sauts .

La Fig. 6 indique, selon les valeurs de a et de b ces comportements nécessaires . En
procèdant comme dans [16], on établit l'existence de solutions du problème aux limites
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FIG . 6 . Solutions du problème aux limites ï=x 1 , x(-1)=a, s(+1)=b, selon les valeurs de a et b . Au
centre, les graphes (t, x( t)) de ces solutions ; à l'extérieur, les trajectoires associées (x, V(x)), vues sous le
macroscope (VI) . Du point de vu des sauts, on peut grouper ces solutions en cinq régions :

Région 1 : a h . Pas de saut .
Région 2 : ° h < O, h < - a, h ± a . Un saut à l'instant -1, d 'origine a et d 'extrémité b, et d 'équation

V(t)x 2 (t)/2-h 2/2 .
Région 3 : 0a >_ O, h> - a, b ± a . Un saut à l'instant +1, d 'origine a et d 'extrémité b, et d 'équation

V(t) 'x2(t)/2-a2/2.
Région 4 : a h, a>O . Un saut à un instant t0 [- 1, +1] d'origine a et d'extrémité b, et d'équation

V(t)x2(t)/2-a 2/2. Si a=b, t° =0 .
Région 5 : °a>O, °h<O. Un saut à l'instant t= -1 d'origine a et d'extrémité O et un saut à l'instant

t= +1 d'origine O et d'extrémité h, tout deux d'équation V(t)'x2(t)/2 .

(VII) présentant chacun de ces comportements, comme un conséquence du théorème de
la valeur intermédiaire (shooting) et du lemme de l'ombre courte . Les résultats obtenus
ainsi sont connus lorsque s =1 . Ce qui est remarquable est qu'ils restent valables pour
les autres valeurs de s E ]0, 2} .
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Ajoutons un commentaire concernant les solutions du problème (VII) présentant
une "couche libre" (région 4 de la Fig . 6) . On ne trouve pas dans les études antérieures
de solutions de (VII) présentant un saut "intérieur" à l'instant to 0. Toutefois, pour
des raisons de continuité, on peut trouver de telles solutions en choisissant des condi-
tions limités a et b, non toutes deux standard, mais telles que a = - b . En termes
classiques, l'équivalent de telles conditions aux limites serait obtenu en considérant a et
b comme des fonctions a(8) et b (c) de E. Il serait d'ailleurs intéressant de calculer une
estimation de l'instant de saut to en fonctions de a et de b (et de e) .

3. Equation des sauts. Les solutions d'une équation de type (I) se composent, en
général, à la fois de portions parcourues à vitesse limitée, et de portions parcourues à
vitesse grande. Leur étude comporte donc deux parties distinctes : l'une concernant les
portions lentes, l'autre concernant les sauts . La première est généralement bien connue,
car on dispose dans ce cas de l'équation réduite :

f (t,x,x) =0 .

En effet, si la vitesse est limitée, les solutions sont "bien approchées" (à des sauts de
vitesse près) par les solutions de cette équation du premier ordre, comme on peut le voir
en examinant les trajectoires associées dans l'espace des phases . En d'autres termes, si
la vitesse est limitée, "on peut négliger e" .

Par contre, il n'en est plus ainsi lorsque la vitesse est grande, et le problème se pose
de trouver l'analogue, dans ce cas, de l'équation réduite, c'est à dire de trouver une
équation, si possible facile à calculer à partir de (I), dont les solutions seraient de
"bonnes approximations" des sauts . L'existence d'une telle équation fait l'objet du
premier théorème, que nous nous bornons à énoncer dans le cas des sauts croissants .

THEOREME 1 (équation des sauts) . Soit f (t, x, v) une fonction ayant pour type de
croissance en v la fonction F : [ y 0 , + Oo [ --- (I~ + vérifiant la condition (III), et pour mantisse
la fonction a (t, x) . Soit x (t) une solution croissante limitée de l'équation Ez = f (t, x, t )
présentant un saut sur l'intervalle [t 1 , t 2 ] . Il existe un changement d 'échelle de vitesse

v=h(V/E)

tel que, pour tout t E [t 1 , t 2 ], x (t) satisfait à
(1)

(V(x(t)) )eh 1(x(t))-V1+fx ~ ` ~a(tl ,s)ds
x(t)

où V1 = eh -1(t (t 1 )) .
La fonction h est le difféomorphisme de classe S o de [0, + oo [ sur [y0 , + oc[ défini

par
(ii) h' = F( h )/h et h (0) = v o .
Preuve. Il convient tout d'abord de s'assurer que la fonction h définie par (ii)

satisfait bien aux propriétés indiquées : h est de classe S0 , car F est de classe So et que
h(0)= vo est limité; par hypothèse F est strictement positive, donc h est strictement
croissante, et h est non bornée, car l'ordonnée d'une asymptote horizontale serait un
zéro de F. Elle est prolongeable sur tout [0, + oo[ en vertu du lemme suivant :

LEMME . Soit F : [ y0 , + oo[ -~ R * une fonction de classe C 1 et soit h la solution de
l'équation différentielle h' = F(h)/h telle que h(0)= v o . Alors h est prolongeable jusqu' à
+ oc si et seulement si F vérifie la condition (III) .
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Preuve du lemme . Notons [O,yo [ l'intervalle maximal d'existence de la solution h
considérée . De l'égalité 1- hh'/F(h ), on déduit que

y=

y =

rvh(s)h'(s)
ds

JO F(h(s))

pour tout y E [O'y[,[, ou encore, en posant u = h (s ),

h(y) u
J
F(u)du

Or yo est fini si et seulement si h (y) tend vers l'infini quant y tend vers yo , d'où le
lemme .

La fonction h a donc bien les propriétés annoncées . Il reste à montrer que les sauts
vérifient la presque-équation(i) . Pour cela, on considère le champ (II) associé à l'équa-
tion dans l'espace des phases . Le macroscope h = v(V/E) transforme ce champ en

t= 1,

V = f ( t, x, h (V/e))/h'(V/e) .

Soit x (t) un saut sur l'intervalle [t 1 , t 2 ] et (t, x(t ), V(t )) la trajectoire correspondante,
vue sous le macroscope. Au cours du saut, t reste équivalent à t1 et, comme t = v =
h (V/e) ne peut s'annuler, la trajectoire est le graphe d'une fonction x y (t(x ), V(x ))
vérifiant t(x) t 1 et

x	 f (tl,s,h)(V(s)/~)V(x) = V(x(t l)) +	 ds .x(t) h(V(s)/e)h (V(s)/e)
Comme, au cours du saut, la vitesse v = h (V/8)

est grande, comme h vérifie l'équation
(ii), et comme, par hypothèse sur f on a

f(t,x,v)/F(v) -a(t,x)
pour tout v grand, on en déduit que

V(x)=V(x(tl))+f ( tl)a(tl ,s)ds

d'où (i) .

	

CQFD.
Commentaires . 1) Ce théorème assure l'existence d'une fonction h qui ne dépend

que du type de croissance de f par rapport à î : elle porte le nom d 'ajustement . La
connaissance de h permet, en effet, de "régler" le macroscope afin de "ramener dans
son champ de vision" les sauts qui initialement, dans l'espace des phases, sont trop
éloignés pour pouvoir être observés . On a, par exemple, si F(v) =1 (cas quasi linéaire)
et si on choisit v4 =1, h (y) _ (2y + 1)1/2 . Si F(v) = v (cas serai linéaire) et si on choisit
vo =1, h(y)=y +1 . Si F(v) = v 2 (cas quadratique) et si on choisit vo =1, on a h (y) _
expy. Enfin, si F(v) = v 2 log v et si on choisit vo = e, on a h (y) = exp(expy ) . On voit sur
ces exemples que le choix de vo est largement arbitraire, et donc aussi celui de h. De
plus, pour les deux premiers examples, il semblerait à priori plus naturel de choisir le
macroscope v = h(V/E) tel que h soit la solution de "l'équation d'ajustment" h' _
F(h)/h vérifiant h(0)= 0, c'est à dire les macoscope v = (V/e)'/ 2 et v = V/e respective-
ment. Cependant, un tel choix de h (O) conduirait à un "ajustement" identiquement nul



pour le troisième exemple, de la même façon que le choix h(0)=1 conduirait à un
ajustement constant et égal à 1 pour le dernier exemple, ce qui ne peut évidemment pas
convenir .

2) Géométriquement, ce théorème indique l'existence d'un changement d'échelle
permettant de "voir" simultanément dans le plan (t = t ° , x, V) les ombres de tous les
sauts à l'instant t° de l'équation considérée. On désigne ces plans du nom de plans
d 'observabilité des sauts [3]. On notera que dans un tel plan d'observabilité les sauts
croissants (V> 0) et les sauts décroissants (V< 0) n'obéissent pas nécessairement aux
même règles . Cependant, si pour tous t et x (limités), la fonction f (t, x, v) est impaire
par rapport à v (pour l v i >= v °, v ° standard), comme dans l'exemple de chapitre 2, les
ombres des sauts dans leur plan d"observabilité sont des courbes qui se déduisent l'une
de l'autre par translation verticale . Si pour tout t et x la fonction f (t, x, v) est paire par
rapport à v (pour l v i >- v °, v° standard), les ombres des sauts dans leur plan d'ob-
servabilité pour V > 0 se déduisent de celles pour V < 0 par symétrie par rapport à l'axe
V= 0 (Fig . 7). On notera également que, lorsque, l'équation considérée est autonôme,
les ombres des sauts dans le plan d'observabilité t = t ° sont indépendantes de t° . Enfin,
les ombres des sauts sont des graphes de fonctions V de x croissantes ou décroissantes
selon que a(t° , x) est positive ou négative, et les extréma de ces fonctions sont situés
sur les droites x = x0 , où x ° est un zéro de a (t °, x). Il en résulte que, si pour une
solution x (t ), 3(t) est extrémal au cours d'un saut, alors x (t) est à cet instant tl dans
le halo d'un zéro de a(° tl , x) : on a °(a(t l , x(t l)))= 0 .

~r'i
(a)
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(b)
Fia. 7 . a) Trajectoires de l'équation ~x = * 21 dans le plan d 'observabilité t = t 0 . b) Trajectoires de

l 'équation ex = x t 2 dans le plan d 'observabilité t = t 0 .

3) On connaît depuis fort longtemps un analogue du plan d'observabilité pour
l'étude globale des solutions (et donc en particulier celle des sauts) dans le cas par-
ticulier des équations quasi linéaires et autonômes, qu'on appelle encore équations de
Lienard :

ex =a(x) .z+b(x) .

On étudie en effet d'ordinaire les solutions de ces équations non dans leur plan de
phases (x, v = .z) mais dans leur "plan de Liénard" (x, u) obtenu en posant u = ci - A(x)
où A (x) = fôa (s) ds . A cette échelle, le champ associé est le champ lent-rapide

E.z=u+A(x),

	

it=b(x)

dont les trajectoires ont des ombres constituées de segments de demi-droites horizon-
tales et de portions de la courbe u = - °A(x). On vérifie facilement que les sauts de
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l'équation initiale correspondent précisément aux portions presque-horizontales des
trajectories de ce champ. En fait le plan de Liénard (x, u), et le plan d'observabilité
(x, V -= Ev) jouent des rôles tout à fait semblables dans l'étude des sauts (ils se corres-
pondent par le difféomorphisme presque-standard u = V-- A(x) ) . Cependant, le pre-
mier n'existe que pour des équations quasi linéaires, alors que le second peut être utilisé
pour toute équation (I) qui vérifie les hypothèses du Théorème 1 .

4) L'équation des sauts (i) renseigne également sur "l'ordre de grandeur de la
vitesse" au cours des sauts : on constate qu'il existe deux types de sauts : ceux qui, dans
leur plan d'observabilité sont d'ordonnée limitée en un point et qui le restent alors en
tout point (cas où V1 est limité), et ceux qui sont d'ordonnée V grande quelque soit x
(cas où V1 est grand) . On a donc le résultat suivant :

COROLLAIRE . Soit f vérifiant les hypothèses du théorème 1 . Si x (t) est une solution
de l 'équation ex = f (t, x, z) ayant, à un instant t au moins, à la fois une position et une
vitesse limitées, alors la vitesse au cours du saut de x reste nécessairement contenue dans
la galaxie des réels pouvant s'écrire h(B/E), avec 8 limité .

On notera que cette galaxie, qui indique l'ordre de grandeur des vitesses au cours
des sauts, ne dépend que du type de croissance de f, et non de la solution ou du saut
particulier considéré .

Le théorème 1 indique le comportement des solutions pendant les sauts. Nous
allons préciser maintenant leur comportement aux "extrémités des sauts" . Pour cela,
nous supposerons que les sauts considérés ont au moins une extrémité finie et donc, en
vertu du corollaire précédent, l'ordonnée V = h (.ac (t)/E) reste limitée sur la trajectoire
correspondante. Nous désignerons par A (x) la quantité

(VIII)

	

A(x)= ° Vl +fx°a( ° t l ,s)ds, où x 1 =x(tl ) et Vi=h-1(.z(tl)) .
X.

Pour chaque couple (x1, V1 ), A est une fonction standard, continue, définie pour tout
x. Le théorème 1 affirme qu'au cours des sauts, les ombres des solutions, dans leur plan
d'observabilité, sont contenues dans l'une des courbes d'équation V = A(x ) . Dans le
théorème 2 ci-dessous, nous nous proposons de montrer à présent que si un saut a pour
origine x _ (ou pour extrémité x + ), son ombre est contenue dans celle de ces courbes
qui passe par le point (x, V) = (x _, 0) (ou (x, V) = (x +, 0)) . Réciproquement, nous
établissons que, si son ombre passe par un tel point, sous de bonnes hypothèses, le saut
a x _ pour origine (ou x + pour extrémité) .

Pour simplifier, le théorème 2 est énoncé dans le cas d'un saut croissant . L'énoncé
pour un saut décroissant s'en déduit facilement .

THEOREME 2 . Soit f (t, x, v) une fonction ayant pour type de croissance par rapport à
v une fonction F vérifiant la condition (III), et a (t, x) pour mantisse . Soit x (t) une
solution maximale de l'équation Ex =f (t, x, z) présentant un saut croissant sur l'inter-
valle [t 1 , t 2 ] .

1) Si ce saut a x _ pour origine, alors A (x _) = 0 ; s 'il a x + pour extrémité, alors
A(x)=O.

2) Réciproquement, s'il existe x _ < 0x1 tel que A(x _ ) = 0, si de plus A(x) * 0 pour
tout x E ]x _, °x 1 } et si a (t 1 , x _) 0, alors x _ est l'origine du saut .

De même, s'il existe x + > 0x1 tel que A (x + ) = 0, si de plus A (x) * 0 pour tout
x E [°x 1 , x + [ et si a (t1 , x + ) 0, alors x + est l'extrémité du saut .

Preuve . Voici la démonstration du théorème relative à l'origine du saut ; on en
déduit facilement la démonstration correspondante pour l'extrémité .



On utilise le macroscope v = h (V/E) introduit au théorème 1 . Sous ce macroscope,
le champ associé à l'équation ex = f (t, x, x) dans l'espace des phases devient

t=1

V = f ( t, x, h (V/E))/h'( V/E) .
Désignons par H~ et H~ les images par le macroscope des halos H+ et H-, des points
de l'espace des phases d'ordonnée v grande, positive et négative, respectivement .

Dans H,~ et H~ , du fait que h(V/E) (= v) est non nul, le champ a les mêmes
trajectoires que le champ 10 , obtenu en multipliant ses composantes par 1/h(V/E), ce
qui revient à effectuer un changement (non standard) de paramétrage de ses trajectoires .
Or, en vertu de la définition de h et des hypothèses sur f, ce champ ' est proche, en
tout point de H~ UHE , d'un champ standard 4 :

(t'=l/h(V/e),

	

t'=0,
`'

	

x'=1,

	

x '= l
V'=°a(°t1,x) .V'=f (t,x,h(V/e))/h(V/E)h'(V/e),

Soit x : I -* R une solution (maximale) qui présente un saut croissant sur [t1, t 2] C I, à
l'instant t° _ °t1, d'origine x_ . Par définition de l'origine, .t(t) est grand dés que
x (t) » x _ (et que x(t)_< x (t 2 )) . Dans l'espace des phases, la portion de trajectoire
correspondant à cette solution est donc contenue dans H+, pourvu que x _ z x ( t ) _<
x (t2) . Vu sous le macroscope, cette portion de trajectoire est une trajectoire de S' ;
puisque x' =1, elle s'écrit donc y (x) _ (t (x ), x, V(x )) avec y (x) E H~ pour x _ « x <
x (t 2 ) . Soit y0(x) la trajectoire de ~° issue du point ° y (x 1 ). En intégrant 0, on constate
que y0(x) _ (t 0 , x, A (x )) . Et comme 9 et ~O 0 sont proches sur H~ , on a évidement
-y(x) y0(x), et en particulier V(x) = A (x ), pour tout x tel que x _ « x < x (t 2 ), l'inter-
valle [x _, x (t 2 )] étant limité. Comme pour ces valeurs de x, V(x) >_ 0, il en sera de
même de A (x) et donc, par continuité de A, on aura a (x _) >_ 0 . Nous allons montrer
que A (x _) ne peut être strictement positif . En effet, comme A est une fonction
standard et continue, il existerait sinon un voisinage standard de x _ sur lequel A (x) > 0 .
Soit [b, c ] un tel voisinage de x _ avec c _< x(t 2 ) (Fig. 8a). Comme x _ « c _< x (t 2 ), on a,
d'après ce qui précède, -y(c) y 0(c ) . Par ailleurs, comme A (x) > 0 pour tout x E [b, c],
y0(x) (_ (t0 , x, A (x ))) reste contenue dans la galaxie G + des points d'ordonnée V non
petite et positive, tant que x E [b, c] . Comme G+ est une galaxie contenue dans H+ (où
~= ( 0) et contenant le halo de tous ses points, on en déduit, en vertu du lemme de
l'ombre courte (* ), que y(x) est défini pour tout x E [b, c] et qu'elle reste proche de
y0( x ) sur tout cet intervalle ; en particulier V(x) » 0 pour xE [b, c] . On en déduit que
pour tout t tel que x (t)E [b, c], t (t) est grand, ce qui contredit le fait que x _ est
l'origine du saut .

b x_ c
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(a)

	

(b)

Fig . 8
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Montrons la réciproque: Soit x : I --~ O une solution maximale ayant un saut sur
l'intervalle [t 1 , t 2 }. Soit y (x) _ ( t,x, V(x )) la trajectoire correspondante du champ f0 , et
y0 = (t0 , x, A (x )) son ombre, trajectoire du champ ° . Supposons que A s'annule en
x _ <x 1 (= x (t 1 )) et qu'elle soit strictement positive pour tout x E ]x _, °x 1 1. Comme A
est standard et continue, A (x) » 0 pour x _ « x _< 0x 1 et donc aussi V(x) . Il en résulte
que, pour ces valeurs de x, y (et y0 ) restent dans H~ et donc t (t) est grande .

D'autre part, comme par hypothèse °(a(t 1 , x _ )) 0, la fonction standard A a une
dérivée non nulle au point standard x _ . Il existe donc un standard b < x _ tel que
A (x) « 0 pour b _< x « x _ . Si, par l'absurde, il existait un voisinage standard Y0 de x _
sur lequel ±(t) est grande et positive, on aurait, en vertu du théorème 1, V(x) = A(x)
pour tout x E 0 et donc V(x) < 0 pour x E ]b, x _ [ n 0 tel que x x _, ce qui est
absurde.

	

CQFD
COROLLAIRE (fonction sortie-entrée) . Soit f vérifiant les hypothèses du théorème 2 .

Si x (t) est une solution de l'équation c .z = f (t, x, z) qui présente à l'instant t 0 un saut
borné, alors l'origine x _ et l'extrémité x + du saut sont liées par la relation :

JX+Oa(to,s)ds=0 .

Commentaires. 1) La seconde partie du théorème 2 a été établie sous l'hypothèse
que le zéro de A (x) considéré n'est pas également un zéro de sa dérivée °a(t 0 , x). En
termes géométriques, cela signifie que dans le plan d'observabilité le courbe d'équation
V = A (x) qui contient l'ombre du saut entre x(t1 ) et x(t 2 ) et qui rencontre l'axe V = 0
au point d'abscisse x _ (ou x + ) n'est pas tangente à cet axe en ce point . Ce n'est
évidemment pas une condition nécessaire pour que x _ soit l'origine du saut, comme le
montre l'exemple du chapitre 2 qui présente un saut d'origine x =0, bien que 0 soit un
zéro de a (t 0 , x) _: x (Fig. 5). Généralement, lorsqu'une courbe V=A(x) dans un plan
d'observabilité est tangente à l'axe V = 0 en un point d'abscisse x _, elle contient à la
fois l'ombre de sauts d'origine x _ et l'ombre de sauts pour lesquels x _ n'est pas
l'origine, soit que cette origine soit strictement inférieure, soit qu'ils soient sans origine
(Fig. 9) .

FIG . 9 . Sauts avec "rebond" ou sans "rebond" en x_ .

2) Lorsque la mantisse a (t, x) est identiquement nulle pour t = t 0 , ou plus
généralement lorsque la fonction xH a (t 0 , x) a des zéros non isolés, les renseignements
sur les sauts de l'équation à l'instant t 0 fournis par le théorème 1 sont inutilisables, et le
théorème 2 ne s'applique plus . En effet, l'équation possède alors des sauts dont l'ombre,
dans leur plan d'observabilité, a pour équation V= 0 . Il est impossible de déterminer, à
cette échelle, l'origine ou l'extrémité de tels sauts ; la fonction sortie-entrée n'existe pas



en général (x + dépend à la fois de x _ et de la solution considérée), (Fig . 10) . Il apparaît
que le plan d'observabilité n'est pas la "bonne échelle" pour l'étude de ces sauts (voir à
ce sujet [7]) .

t<o

o

SAUTS DES SOLUTIONS

t0 <0

(b)

FIG. 10. Trajectoires du champ associé à l'équation ex = - tk, (a) dans l'espace des phases (b) dans des
plans d'ohservahilité (l'équation des sauts est V(x)= -t0 x) . On observe qu'il ne peut y avoir de saut borné
qu'à l'instant t0 = 0 . L'équation d'un saut borné est alors V(x) = 0 . On ne peut donc pas calculer de fonction
sortie-entrée . De fait, en intégrant l'équation, on a x(t)= f f » ( Cl exp(- t 2/2)+C2 ) dt ; on constate que pour
tout couple (x_, x + ) de réels standard, il existe une solution présentant un saut à l'instant t 0= 0 d 'origine x_
et d'extrémité x + .

4. Epaisseur des sauts. Nous allons voir à présent que les résultats des théorèmes 1
et 2 permettent généralement de calculer l'épaisseur des sauts en fonction de l'ajuste-
ment h. Une nouvelle fois, nous nous bornerons au cas des sauts croissants .

Soit h un ajustement (défini au théorème 1) associé à une équation (I), c'est à dire
un dif féomorphisme de classe S ° de [0, + oo [ sur [y 0 , + oo[ vérifiant l'équation hh' _
F(h ) . Soit h e : R -~ R l'homéomorphisme croissant défini par

1/h (1/ey)

	

pour y>0,
h E(y) - 0

	

pour y = 0,
--1 /h (--1/Ey) pour y < 0 .

Soit enfin Gh l'image par h de la galaxie principale G(*) . L'ensemble Gh a les
propriétés suivantes :

C'est une galaxie : en effet, Gh est par définition une prégalaxie (* ) ; elle est
strictement externe car h E est continue et prend à la fois des valeurs limitées et des
valeurs grandes .
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Cette galaxie est convexe (h est continue et non bornée), et est symétrique par
rapport à 0 (h est impaire) .

Elle est contenue dans le halo de zéro: ceci découle du fait que l'ajustement h(y)
est grand pour toute valeur grande de y . En effet, h est de classe S ° et °h est solution
de l'équation standard h' _ °F(h)/h . Comme h et °h sont proches pour tout y limité,
ils sont encore proches pour tout y _< Y pour un Y grand (principe de Fehrele) . Donc
h (y) est grand pour tout y grand inférieur à Y; par monotonie de h, cela reste donc
vrai pour les y supérieurs à Y également .

C'est un sous-groupe (externe) de R : En effet, comme Gh est convexe et symétri-
que par rapport à 0, il suffit de vérifier que pour tout t > 0, si t E Gh alors 2tEGh.
Notons tout d'abord que h2 est une fonction convexe, puisque

(h 2 )"= (2hh')'= (2F(h))'=2F'(h)h'

et donc (h2)" est positive car F et h sont croissantes . Comme t > 0, il existe y limité tel
que t =1/h(1/ey) . Comme Gh est convexe et contient 0, pour montrer que 2t E Gh, il
suffit de montre que 2t est majoré par un élément de G h , c'est à dire qu'il existe Y
limité tel que

(2t=) a/h(i/Ey)_<1/h(1/eY)

ou encore, tel que

4h 2(1/eY) <_h2(1/ey) .

Mais comme h2 est convexe, on a, pour tout z,

h 2 (z) <_ (h2(2z)+h2(0))/2

ou encore, en réappliquant deux fois cette inëgalité,

h 2 (z) <_ (h2(8z)+7hZ(0))/8 .

Comme h2(0)=vô est limité et que h2 (8z) est grand des que z est grand, on en déduit
que pour tout z grand,

8h2(z) _< 2h 2 (8z) .

Il suffit donc de poser Y= 8y .
Voici quelques exemples de galaxies G h :
Si h(y)=y, G h est la e-galaxie de 0 . Plus généralement, si h (y) = yr, G h est la

er-galaxie de 0 ; c'est donc une galaxie linéaire . Par contre, si h (y) = exp(y), Gh est la
e-micro-galaxie; c'est donc une galaxie non linéaire .

Comme les deux précédents, le théorème 3 sera énoncé dans le cas d'un saut
croissant :

THEOREME 3 (épaisseur des sauts) . Soit f(t, x, v) une fonction ayant un type de
croissance F par rapport à v vérifiant la condition (III) . Soient h un ajustement correspon-
dant, et Gh la galaxie associée . Soient x(t) un saut borné de l'équation ex = f (t, x, ±)
d 'épaisseur noté ~, et t, un élément de ~ . Supposons que

(i) la fonction A(x) définie par (VIII) ne s'annule en ancun point strictement
compris entre les extrémités du saut,

(ii) la fonction H(V)_ : h(V/E)/h(1/e) soit de classe S 1 en V=O .



Alors °= t1 + G h (= image de G h par la translation t H t + t 1 ) .
Preuve . Comme .z (t) = v, et qu'au cours d'un saut, v (t) peut s'exprimer comme

fonction de x (t ), on a

f
x(t) ds

	

x(t)

	

ds
t=t1+

	

=tl+

	

car v=h(V/E) .
x(t~) v( s)

	

x(t1) h(V(s)/E)

Posons
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[ds	
/e)

Soient x _ et x + les extrémités du saut, et notons

où x1 =x(t l ) .

E_{ x lx_«x«x+ } et ~o =e(E) .

On a ~= t 1 + ~o , et le théorème affirme que ~o = G,, .
Notons tout d'abord que ~o et Gh sont des convexes contenant 0, et donc, pour

que t soit un élément d'un tel ensemble, il suffit qu'il existe t' dans cet ensemble tel que
t'/t > 1 .

1) Montrons tout d'abord que ~o C G,, : Par définition des extrémités x + et x _,
v (x) est grand pour tout x EE donc, en vertu du théorème 1, V(x) = A (x) pour xEE.
Du fait de l'hypothèse (i), A (x) # 0 pour tout x EE et, en fait, A (x) » 0 puisque le
saut est supposé croissant et que A est standard et continue . Donc V(x) » 0 pour tout
x E E. On en déduit que, pour tout x E E, 1 /h (V(x)/E) est un élément de G,, . A
présent, pour tout x o E E, on a par le théorème de la moyenne, que e (x o ) _ (x0 -
x 1 )/h (V(x)/E) pour un x EE. Comme 1 /h (V(x)/E) E G,,, que Gh est un groupe, et
que (x 0 - x 1 ) est limité, on a e (x o ) E G,,. D'où l'inclusion recherchée .

2) Montrons que réciproquement Gh C Pour cela, nous allons montrer que pour
tout T E G,,, T > 0, il existe t E~o tel que t > T, c'est à dire qu'il existe xEE tel que
e(x)> T. On procèderait de manière analogue pour T < 0 .

Envisageons d'abord le cas où Gh est une galaxie linéaire, c'est à dire qu'il existe a
tel que Gh = aG, où G est la galaxie principale . De par la définition de -Gh , on peut
choisir a = 1/h(1/8) . Il convient donc de prouver, sous cette hypothèse, que pour tout
y limité, il existe xEE tel que h(1/e) .e(x)>y, ou encore, tel que

x

	

ds >y .fx1 H((s))V

Or la fonction H(V) est limitée pour V limité, et non petite pour V » 0 . Comme par
hypothèse cette fonction dérivable est de classe S 1 en V= 0, il existe un intervalle
standard [0, Vo ] sur lequel H reste proche d'une fonction standard Ho , dérivable en
V = 0, et nulle en ce point car H(0) = 0. Son inverse 1/IIo est donc d'intégrale diver-
gente en V = 0 . Ceci va nous permettre de conclure. En effet, comme H (et donc Ho) est
non petite pour V » 0, 1 /H(V(x )) =1 /Ho(V(x)), pour tout x EE. Or l'ensemble des x
pour lesquels l'équivalence ci-dessus est vérifiée est un halo qui contient la galaxie E .
Par le principe de Fehrele, il contient également des x E. Il existe donc x o = x + tel
que cette équivalence soit satisfaite pour tout xE [x 1 , x 0 ] . Mais comme x + est l'extrémité
du saut, on a V(x) = 0 (théorème 2) . Donc, pour tout x -< x 0 , l'intégrale
f X (ds/H(V(s ))) est équivalente à l'intégrale fx (ds/Ho(V(s))) qui est grande dès que
x = x + . En effet, si x x +, V(x) = 0 (théorème 2). Par continuité, pour tout y limité, il
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existe donc x « x + tel que

J
xô	ds		xô	ds		x~

e(xô)=

	

>

	

>

	

T'ds> T .
xl h (V( s )/E) XO h (V( s )/E)

	

xo

Remarque . On notera que dans le cas où Gh est non linéaire, l'hypothèse (ii) du
théorème n'intervient pas dans la démonstration . Il semble qu'elle soit toujours satisfaite
dans ce cas .

Commentaires . 1) Ce théorème montre en particulier que, sous les hypothèses (i) et
(ii), tout saut borné d'une équation (I) peut être "étalé" sur la galaxie principale par le
changement de temps T H t = t1 + 1/h (1/eT ) . Dans le cas quasi linéaire (h(y)=y), par
exemple, on retrouve le changement de variable adopté habituellement : t -- t 1 = eT . Du
théorème, il découle également que les épaisseurs de sauts bornés sont les images par
des translations, de sous groupes convexes de R (si t E , 2(t -- t1) + t1 E ) et qu'il s'agit
de galaxies linéaires si et seulement si G h est linéaire . On comprend à présent pourquoi
il n'est pas toujours possible "d'étaler" les sauts par des changements de temps du type
t - t1 =1(e) l(e)T: ce n'est possible que lorsque Gh est linéaire . En particulier pour les
équations dont le type de croissance F(v) est une fonction puissance xH XS , la linéarité
de Gh équivaut à la condition s<2 (h croit "nettement moins vite" que la fonction
exponentielle). Dans le cas général, il serait utile de diposer d'un critère simple sur le
type de croissance F de l'équation qui équivaille à la linéarité de G h (et donc à la
linéarité de l'épaisseur des sauts) . Il semble que le critère suivant devrait convenir :

a f
+00 F( v )

dv < ,G h est linéaire

	

3

	

oo
vo

	

v

ce qui est, par définition de h, équivalent à

G h est linéaire a

Xds
f 1 H(V(S)) > Y

ce qui achève la démonstration dans le cas où G h est linéaire .
Considérons à présent le cas où G h est une galaxie non linéaire . La non linéarité de

G h peut s'exprimer par la propriété suivante [1] :
"Pour tout TEG h , il existe T' E G h tel que T'/T est grand" . Comme la quantité

1 /h (V(x)/e) est une fonction croissante de x pour x assez proche de x +, et comme
elle appartient à G h tant que x « x + et qu'elle quitte G h dès que x = x + (car V(x) = 0,
d'après le théorème 2), pour tout T'EGh il existe une valeur x o ' x+ telle que
1 /h (V(x)/E)> T' pour tout x E [X 0 , x + ] . Soit xô tel que xo « x ô z x + . On a

+°°~/ h'(Y) 2

'o
h(y)1<°°

CQFD

2) Précisons le sens des hypothèses (i) et (ii) du théorème : La première porte sur les
sauts. Elle signifie géométriquement que, dans le plan d'observabilité, l'ombre du saut
ne rencontre pas l'axe V= 0 en des points d'abscisse strictement comprise entre les
extrémités' x _ et x +, et donc, en quelque sorte, qu'il s'agit d'un saut sans "rebond"
Lorsqu'un saut ne vérifie pas cette hypothèse, on déduira facilement du théorème que
son épaisseur test alors la réunion d'un intervalle petit I = [ t 1 , t 2 ] et des deux galaxies
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t1 + Gh et t 2 + Gh , avec Gh = G h n R ±, le saut parcourant les divers rebonds pont
tE[t1,t2] .

La seconde hypothèse porte sur l'équation. Elle signifie que la fonction H (que
l'on peut calculer dès que l'on connaît F, et donc h) est équivalente sur un voisinage
standard de 0 à une fonction standard Ho dérivable au point V= 0 . Elle est vérifiée, par
exemple, lorsque h est l'identité (cas quasi linéaire), car H(V) = H = Vo (V) . Elle est
aussi vérifiée lorsque h est une exponentielle (cas quadratique) car H(V) = e"_ iV E est
infinitésimale pour tout V « 1, donc Ho(V) = 0, pour V « 1 . Par contre elle est en
défaut lorsque h (v) _ (cas serai-linéaire) car H(V) _ /v = 110(V) n'est pas dérivable
en 0. Plus généralement, si le type de croissance est une fonction puissance F(v) = vs,
l'hypothèse (ii) est équivalente à la condition s >__ 1 . Il est probable qu'une condition
équivalente à (ii) serait :

+°oF( v )
2 dv = + o0

vi

	

v

ou encore, en fonction de h

+ (h'( y ))

h(y)

On peut, cependant, se poser la question de savoir quelle est l'épaisseur des sauts
lorsque la condition (ii) n'est pas remplie, par exemple pour des équations ayant un
type de croissance F(v) = V S avec s<1. L'inclusion ~c t1 + Gh reste valable dans tous
les cas, mais il arrive que cette inclusion soit stricte . Plus précisément, on peut montrer
par un affinement de la preuve précédente, que les conclusions du théorème subsistent
pourvu que l'ombre du saut dans son plan d'observabilité soit tangente à l'axe V= 0 en
ses extrémités (voir [3]) . Dans le cas contraire, l'épaisseur n'est plus la translaté d'une
galaxie sous-groupe, mais c'est une galaxie obtenue à partir d'un intervalle auquel on
retire un halo de l'extrémité concernée . Ce halo est le translaté d'un halo sous-groupe ; il
peut également être exprimé en fonction de h ([3]).

3) Pour simplifier, le théorème précédent a été énoncé dans le cas des sauts ayant à
la fois une origine et une extrémité finies . En fait, par une adaptation évidente de la
preuve qui a été donnée, on établirait un résultat englobant le cas des sauts non bornés,
ayant une origine ou une extrémité finie. En effet, s'il s'agit par exemple d'un saut
d'extrémité finie, alors, sous les hypothèses du théorème, on a montré que

{tE,t >_ t 2 }=t2+G~

	

h où Gh =GhnRt

De même que, s'il s'agit d'un saut d'origine finie, alors

{tE,t < t 1 }=t1+G~

	

h où G h =Gh nR

Les épaisseurs de sauts non bornés sont donc la réunion d'un segment (interne) et de
l'image par une translation de la partie positive ou de la partie négative de Gh .

Annexe non standard. Des adjectifs tels que petit, grand, appréciable, n'étaient pas
d'usage courant en mathématiques jusqu'à l'apparition récente des mathématiques non
standard. Pourtant le non mathématicien, physicien ou chimiste par exemple, qui
propose à notre sagacité des équations du type (I) n'hésite pas à parler de "petit"
paramètre pour désigner e . Pour lui, en effet, cette petitesse ne fait pas mystère : il s'agit
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par exemple d'un paramètre de l'ordre de 10 -1 ou 10-2 alors que les autres paramètres
intervenant dans l'équation sont de l'ordre de 10 ou 100 . A défaut d'un formalisme
adapté, on traduisait généralement la "petitesse" de e par l'introduction d'une variable
e tendant vers 0 ce qui, en rendant variable une quantité qui ne l'était pas à priori, ne
contribuait pas à simplifier le problème . C'est à Reeb [20] que l'on doit l'idée d'intro-
duire l'Analyse Non Standard dans ces questions de perturbations singulières . Ce fut le
point de départ de nombre d'études d'équations de type (I), ou plus généralement, de
champs lents-rapides. Aux principes originaux de l'analyse non standard, tels qu'on
pourra les trouver exposés dans [21] ou [18], se sont ainsi ajoutés petit à petit divers
objets ou qualificatifs liés au contexte particulier des équations différentielles, et cer-
tains raisonnements omniprésents qui portent aujourd'hui des noms particuliers . C'est
l'abondance de ce vocabulaire inhabituel qui me pousse à proposer l'index ci-dessous .
Le lecteur n'aura pas manqué de remarquer qu'une part importante des termes utilisés
peuvent être interprétés dans un premier temps dans un sens intuitif (celui du physicien,
par exemple). C'est un des mérites de l'analyse non standard que de rendre possible cet
usage rigoureux de notions jusqu'ici heuristiques . Pour une véritable initiation aux
méthodes non standard, nous renvoyons le lecteur à [16] ou [6] .

Nous utilisons couramment les symboles suivants :
, », « : voir "équivalent" .

°Q: voir "standard" .
S( ) : voir "standardisé" .
hal(a), r - hal(a) : voir "halo" .
G, r - gal(a) : voir "galaxie" .

ajustement : voir théorème 1 et ses commentaires.

appréciable : Se dit d'un réel qui n'est ni petit ni grand (voir ces mots) . Un vecteur de R" est dit
appréciable si ses coordonnées le sont .

Cauchy (principe de) : voir "principes de permanence" .

changement d'échelle : Difféomorphisme dont la dérivée est grande ou petite. Les plus simples sont les
loupes, c'est-à-dire les homotéthies (ou affinités) de rapport grand, tels que x H x/E . On distingue
parmi les changements d'échelle les microscopes, qui "grossissent", c'est à dire par lesquels l'image
d'une région petite peut être une région appréciable, et les macroscopes, qui "rappetissent", c'est à dire
par lesquels l'image d'une région grande peut être une région limitée . Ainsi le difféomorphisms
x '- x F~ = x -1x est un macroscope pour 1x1» 1 et un microscope pour lx ( « 1 .

classe S ° , S 1 (fonction de) : Lorsqu'une fonction interne est non standard, elle peut ou non être proche
d'une fonction standard. Si elle est dérivable, la question se pose également pour sa dérivée, etc . . .
Ainsi la fonction x'- Ex est proche de la fonction nulle, mais la fonction x H ex~~ n'est proche
d'aucune fonction standard si x > 0. Une fonction interne est dite S-continue au point x si, pour tout
v,

y =x='f (y) =f(x) .

Une fonction interne est de classe S ° sur une partie E si elle prend des valeurs presque-standard
(voir ce mot) aux points presque-standard de E et si elle est S-continue en ces points . Une fonction
interne est de classe S1 sur une partie E si elle est de classe S ° sur E et si pour tout a presque
standard de E, et pour tout x et y équivalents (voir ce mot) à a, le rapport

1(x)-f(y)
x-y

est presque standard . On montre [6] que toute fonction de classe S ° est proche d'une unique
fonction standard continue, et toute fonction de classe S l est proche d'une unique fonction standard
de classe C1 . On définit de manière analogue les fonctions de classe S" [6] .



épaisseur (d'un saut) : voir chapitre 1 .

équivalent: Deux nombres réels sont dits équivalents s'ils différent l'un de l'autre par un infinitésimal
(voir ce mot) . Ainsi, si e est petit, 1 et 1 + e sont équivalents . On note = pour "équivalent" et pour
"non équivalent" (2 3) . La notation a sz b signifie a < b et a b . On dit que a est nettement
inférieur à b . De même pour a » b . Deux fonctions f et g sont dites équivalentes sur E si pour tout
x E E, f(x) est équivalent à g(x ) . Si f est interne, l'ensemble des x pour lesquels f(x) = g(x) est un
préhalo (voir "halo") . [infinitely close]

externe: Le mathématicien non standard travaille avec deux sortes d'ensembles : les premiers sont les
ensembles usuels de la théorie des ensembles de Zermelo-Fraenkel (par exemple) : on les appelle
internes . Ce sont par exemple N, R, ou [- u, + a]. Les seconds sont ceux qu'on définit en faisant
usage de l'adjectif "standard" (ou de ses dérivés "petit", "grand", "limité", = , s) et qu'on appelle
externes, ou strictement externes quand il est établi que le fait de les supposer internes conduirait à une
contradiction . Ainsi l'ensemble des réels standard, ou l'ensemble des infinitésimaux sont des ensem-
bles strictement externes (ils sont majorés et n'ont pas de borne supérieure) . Une fonction est dite
interne si son graphe est un ensemble interne. Ainsi x H ex est interne, mais la fonction qui à x
associe la valeur 0 si x est petit, et la valeur 1 sinon est externe .

Extrémité (d'un saut) : voir chapitre 1 .

Fehrele (principe de) : voir "principes de permanence" .

galaxie : On appelle galaxie principale, et on note G, l'ensemble (strictement externe) des réels limités
(voir ce mot) . Une prégalaxie est l'image réciproque de G par une fonction f interne . Elle peut être
interne (par exemple si f (x) =1), ou strictement externe (par exemple si f ( x)= x/e) . Dans ce dernier
cas, la prégalaxie est appelée une galaxie [2], [8] . Si a est un réel standard, on appelle e-galaxie de a, et
on note e - gal(a), l'image réciproque de G par f (x) _ (x - a)/e, et e-microgalaxie de a, l'image
réciproque de G par f (x) =1/(e log x - a'). Le complémentaire, dans un interne, d'une galaxie, est un
halo (voir également ce mot) .

grand : Un réel est dit grand s'il est plus grand que tout entier standard . L'existence d'entiers (et donc de
réels) grands est une conséquence du principe d'idéalisation (voir ce mot) . [infinite/unlimited]

halo : On appelle halo de 0, noté hal(0), l'ensemble strictement externe des infinitésimaux (voir ce mot) .
Un préhalo est l'image réciproque de hal(0) par une fonction interne f. Il peut être interne (si par
exemple f est constante), ou strictement externe (si par exemple f (x)= x/e) . Dans ce dernier cas, le
préhalo est appelé un halo [2], [8] . Si a est un réel, on appelle e - halo de a, et on note e - hal(a),
l'image réciproque de hal(0) par f(x)=(x- a)/e, et e-microhalo de a, la préimage de hal(0) par
f (x) =1/(e log x - ai) . Si A est une partie d'un espace métrique, le halo de A, noté hal(A ), est
l'ensemble des points à distance petite de A . [monad]

idéalisation : C'est l'un des trois principes fondamentaux de l'analyse non standard I .S .T. [18], [6] . Il
s'énonce ainsi : Pour toute formule interne B, contenant au moins deux variables libres x et y, on a :

(V z, z standard etfini ~3x,VyEz, B(x,y))a(3x 0 ,`dy, y standard B(x 'y))

On déduit de ce principe l'existence d'entiers grands, et donc de réels petits non nuls .

infinitésimal : Synonyme de "réel petit" (voir ce mot) .

interne : voir "externe" .

lemme de l'ombre courte : Soient X et Xo deux champs de vecteurs localement lipschitziens, définis sur
un ouvert de R' , le premier interne, le second standard . Soit H le (pré)halo où X = X0 . Soit I un
intervalle compact standard, to un point standard de I, et u o une trajectoire de X0 , définie sur I. Soit
u une trajectoire de X telle que u (t 0 ) = u o (to ) . S'il existe une galaxie G limitée, contenant u o(I ),
contenue dans H, et si G contient le halo de tous ses points, alors u(t) est prolongeable à tout I, et on
a, pour tout tEI, u(t)=u0(t) [3] .

lemme de Robinson : voir "principes de permanence" .

limité : Un réel est dit limité s'il n'est pas grand . Tout réel limité x est équivalent à un unique réel
standard, qu'on appelle sa partie standard, et qu'on note °x . [finite/limited]
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linéaire (galaxie ou halo) : Une galaxie (voir ce mot) est dite linéaire si elle est l'image réciproque de G
par une application affine. Ainsi les e-galaxies d'un point sont linéaires, mais les e-microgalaxies ne le
sont pas . On définit de même les halos linéaires [2], [8] .

longer : Une courbe tyx(t) dans R2 ou 68 3 longe une courbe ou une surface si son image reste à
distance petite de cette courbe ou surface .

loupe : voir "changement d'échelle" .

macroscope : voir "changement d'échelle" .

microscope : voir "changement d'échelle" .

ombre courte: voir "lemme de 1" .

ombre: L'ombre d'une partie interne A de R n, notée [A], est le standardisé (voir ce mot) du halo de A . Si
la partie A est limitée, son ombre est l'unique ensemble standard compact proche (voir ce mot) de A .
Si une fonction est de classe S ° , l'ombre de son graphe est le graphe d'une fonction standard continue .
[standard part]

partie standard : voir "limité" et "standard" .

petit : Un réel est dit petit si sa valeur absolue est plus petite que tout réel standard strictement positif .
[infinitesimal]

plan de Liénard : voir [3] et chapitre 3, commentaire du théorème 1 .

plan d'observabilité : voir chapitre 3, commentaire du théorème 1 .

prégalaxie : voir "galaxie" .

préhalo : voir "halo" .

presque- : Dans des expressions telles que "presque-verticale", "presque-horizontale", cet adverbe prend
le sens de "à un infinitésimal près" . Une presque équation est une relation R (x) obtenue en
exprimant que deux termes internes f (x) et g(x) sont équivalents : f (x) = g(x ) .

principes de permanence : Le plus connu est le lemme de Robinson [21] : "Soit (u n ) une suite interne de
réels . Si u n = 0 pour tout n limité, alors il existe un N grand tel que u n = 0 pour tout n <_ N " . Deux
autres principes de permanence sont très utiles : Le principe de Cauchy, "aucun ensemble strictement
externe n'est interne", n'est rien d'autre que la définition des ensembles strictement externes, et le
principe de Fehrele, "aucun halo n'est une galaxie", est une généralisation du lemme de Robinson [8],
[6] •

proche : Deux parties de R n sont dites proches si tout point de l'une est équivalent à au moins un point
de l'autre. [infinitely close (for sets)]

Robinson (lemme de) : voir "principes de permanence" .

S-continue : voir "classe S ° "

saut : voir chapitre 1 .

standard : C'est un prédicat indéfini (comme E en théorie des ensembles), dont l'usage (et le sens) est
gouverné par trois axiomes : idéalisation, standardisation, et transfert . Tout ensemble est soit standard,
soit non standard. Les ensembles R, Q, C, [0, 1], 4 (= 0), (4 } (=1), • • • , 5mn x, ex, • • •, sont standard ;
un infinitésimal r ( 0), la fonction xH Ex, l'intervalle [o, w +11 pour w grand sont non standard . La
partie standard d'un réel x, notée °x, est l'unique standard (s'il existe, voir "limité") qui est équivalent
à x . La partie standard d'une fonction f est l'unique fonction standard, notée °f, si elle existe, telle
que f(x) °f(x)=

	

pour tout x presque standard.

standardisation : C'est l'un des trois principes fondamentaux de l'analyse non standard (voir idéalisation
et transfert) . Il peut s'énoncer ainsi : "Pour tout ensemble E (interne ou non), il existe un unique
ensemble standard, noté SE, ayant précisement les mêmes éléments • standard que E ". Cet ensemble
est appelé le standardisé de E . L'existence de la partie standard d'un réel limité et de l'ombre d'une
partie découle de ce principe .

strictement externe : voir "externe" .

FRANCINE DIENER
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transfert : C'est l'un des trois principes fondamentaux de l'analyse non standard . Il s'énonce ainsi : Pour
toute formule standard F(x, t), on a, pour t standard :

`dx (x standard=F(x,t))«dx(F(x,t)) .
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SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS*
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Abstract. Singularly perturbed systems ordinary differential equations for which the reduced system has

a manifold of solutions are called singular singularly perturbed. Boundary value problems for a general class
of such systems are examined. Conditions are derived which ensure the existence of a locally unique solution,
which can be approximated by an asymptotic expansion. The main tool for our analysis is the theory of
boundary value problems on long intervals.
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1. Introduction. We consider boundary value problems of the form

(1.1)
(1.2)

ey’=f(y,t,e) 0<_t=<l,
b(y(O),y(1)) =0,

where y is an n-vector, e is small and positive, and f and b are nonlinear mappings.
The asymptotic analysis of (1.1), (1.2) starts with an investigation of the reduced

system

(1.3) O=f(y,t,O).

If there is a locally unique solution y= Y(t) to (1.3) and the matrix fy(Y(t),t,O) has
just strictly stable and strictly unstable eigenvalues, then (1.1), (1.2) is called a regular
singular-perturbation problem. Problems of this type are quite well understood. Com-
bining the results of Vasileva and Butuzov (1973) and Esipova (1975) yields a complete
asymptotic analysis, even if equations for "slow" components are added to (1.1).

We want to treat the case of the existence of a solution manifold y=ck(a,t) of
(1.3), with a being an n0-dimensional parameter. We wish to consider problems satisfy-
ing an additional assumption:

The matrix fy((a, ), t, O) has an n0-dimensional null space with the real parts of
the remaining n n 0 eigenvalues being bounded away from zero.

This assumption rules out the existence of turning points, highly oscillatory solu-
tions and boundary layer variables different from z= t/e and o (1- t)/e. Note that
regular singularly perturbed systems of the form

ey’=g(y,z,t,e), z’=h(y,z,t,e)

obviously fit into our theory if the equations for z are multiplied by e.

* Received by the editors February 28, 1984, and in revised form November 18, 1984. This work was

supported by "0sterreichischer Fonds zur Frrderung der wissenschaftlichen Forschung".
Institut fir Angewandte und Numerische Mathematik, Technische Univsersitt Wien, A-1040 Wien,

Austria.
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Singular singularly perturbed problems have received a significant amount of
attention recently. General nonlinear initial value problems satisfying the above as-
sumptions have been treated by O’Malley and Flaherty (1980) and Vasileva and
Butuzov (1978). In the work by Vasileva and Butuzov also boundary value problems of
a special structure are analysed. To the knowledge of the authors no complete classifi-
cation of problems violating the above assumptions on the eigenstructure of fy
((a, t),t, 0) is available. One of the possible effects in this case is the occurrence of
multiple layers. This has been demonstrated on a linear problem by O’Malley (1979).

The asymptotic analysis of (1.1), (1.2) proceeds in two steps: The construction of a
formal approximation of the solution and the proof of validity of this approximation.

The first step is contained in 2, where the method of matched asymptotic expan-
sions is used to construct a sequence of formal approximations. The problem defining
the first term in the sequence, i.e. the leading term in the asymptotic expansion, is
nonlinear in general if (1.1), (1.2) is nonlinear. A key assumption in this paper is the
existence of an isolated solution of this problem. It is then shown that this assumption
implies the existence and uniqueness of terms of arbitrary order in the asymptotic
expansion, since the linear operator in the equations defining these terms is the lineari-
zation of the nonlinear problem defining the leading term.

In the proof of the validity of the asymptotic expansion in 4 the contraction
principle is used. Thus it is necessary to obtain stability estimates for the linearization
of (1.1), (1.2) at the formal approximation, i.e. we have to obtain estimates for the
solutions of linear singular singularly perturbed problems, where the coefficients con-
tain boundary layer terms. For the analysis of these problems the theory of boundary
value problems on infinite and "long" intervals is used extensively. It is one of the key
points of this paper to stress the applicability of this theory to singularly perturbed
problems. Some results of this theory are collected in 3. In the proofs given in the
Appendix the methods of de Hoog and Weiss (1980) and Markowich (1982, 1983) are
used.

The solution of the problem defining the leading term in the expansion is demon-
strated on an example from semiconductor theory in 5. The singular perturbation
approach to semiconductor problems was originated by Vasileva, Kardosysoev and
Stelmakh (1976). Recently the great importance of semiconductor device simulation
caused intensive work on the subject. References to some papers using singular per-
turbation theory are given in [}5.

Another nonlinear example can be found in Schmeiser (1985) where a problem
modelling large deflections of a thin beam, suggested by Flaherty and O’Malley (1981),
is analyzed in the framework of the theory of this paper.

For a class of singular singularly perturbed boundary value problems considered
in Vasileva and Butuzov (1978), contraction mapping techniques are employed to
establish the validity of the formal asymptotic expansion. The structure of this class is
simple enough to a priorily guarantee the existence and uniqueness of an isolated
solution to the problem defining the leading term of the expansion and to allow the
reduction of the analysis of the linearized problem to that of a scalar second order
equation whose coefficients have boundary layers. The stability results employed for
this equation have been previously developed in Vasileva (1972).

2. Asymptotic expansion. We consider problems of the form (1.1), (1.2) which
satisfy

Hypothesis H1. Denoting the n0-dimensional solution manifold of the reduced
equation by (a,t), the matrix (a,t) has constant rank n 0. The Jacobian
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f.v(q(a, t), t, 0) has n strictly stable and n / strictly unstable eigenvalues with n_ + n /
+n0=n, for 0<t<l.

Differentiation of

f(,(a,t),t,O)=O

Using (2.6), (2.7) reads

(2.8)

and

t)L= o,
where I is the r r identity matrix.

For solutions y(t,e) of (1.1),(1.2) we use the ansatz

y(t,e)--- , (i(t)+Liy(r)+Riy(o))ei,
i--0

where z= t/e, o (1 t)/e and

(2.5) lim Liy() O, lim Riy(o)=O, i=0,1,...

2.1. The construction of the leading term. Substituting (2.4) into (1.1) and setting
e 0 yields

(2.6) Yo(t)=(a,t).
Differential equations determing the as yet unknown parameter a as a function of are
obtained from the relations we get by collecting the terms of order e in (1.1), i.e.

Multiplying (2.8) by H(a, t) and using (2.2) and (2.3) yields the relations for a,

(2.9) 0_<t_<a.

Note that in practice (2.9) is usually obtained from (2.8) without the explicit use of H
by eliminating .91 from n 0 equations in (2.8).

with respect to a implies

(2.1) L@,(a, t) 0,

where from now on the bar above partial derivatives of f indicates the argument
(q(a,t),t,O). Thus f has an no-dimensional null space spanned by the columns of
(a, t). By adding n++ n_ columns which span the stable and unstable subspaces of
fy we obtain a transformation matrix E(a,t)=(E+_(a,t),(a,t)) which block-
diagonalizes fy:

A_

E-fE=A A+
0

Denoting the last n 0 rows of E- l(a, t) by H(a, t) it follows that

(2.2) H(a,t)q(a,t)=Ino
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The equations for the layer corrections are

(2.10)
dLy
dr -f(k(et(O)’O)+Ly’O’O)’ 0=<r<, L0Y(C)=0

and

(2.11) dRy -f(ff(a(1) 1)+ROY, 1 0) 0<o < oo RoY(m)=0

Equating coefficients of order zero in (1.2) yidds

(2.12) b(q(a(0), 0) + Loy(O) q( a(1), 1) + RoY(O)) O.

We can now state our second fundamental assumption.
Hypothesis H2. The boundary value problem (2.9)-(2.12) has an isolated solution.
Because of the boundaw conditions at infinity in (2.10), (2.11) stable manifolds

naturally enter our discussion. There is an extensive literature on the subject of in-
variant manifolds. Some basic results, wch can be found in Kelley (1967), imply the
existence of an n_-dimensional stable manifold for (2.10) and an n +-dimensional stable
manifold for (2.11). The boundary conditions at infinity require Loy and Roy to be
trajectories on these manifolds. Then Lemma 3 in Kelley (1967) implies the estimates

(2.13)
I1LoY(Z)IIz coaste-,
R0y(o)IIz const e-O

with a positive constant x. Subsequently I1" will denote a vector norm or the induced
matrix norm.

In general, trying to solve problem (2.9)-(2.12) is quite unpleasant. The differen-
tial equations on finite and infinite intervals have to be solved simultaneously because
there is a coupling by boundary conditions. In applications, however, some knowledge
about the structure of the stable manifolds of (2.10) and (2.11) often enables us to
obtain from (2.12) n 0 "reduced" boundary conditions for (2.9) alone which do not
contain Loy(O) and RoY(O). This is the case in all of the above mentioned applications,
where the problems on the inteal [0,1] and the problems on the infinite interval [0, )
can be solved consecutivdy.

Hypothesis H2 implies that the linearized system

(2.14a)

(2.14b)
du

d -f(,((1), 1)+ Roy, 1,0)( v + ,((1), 1)w(1)),
(2.14d) bo(((O),O)w(O)+u(O))+bl(,((1),l)w(1)+v(O))=O,

=0,

has only the trivial solution. In (2.14d) b0 and b are the partiN derivatives of b with
respect to the first and second argument respectively at (((0),0)+L0y(0), ((1), 1)
+Roy(O)). For bilinear forms B we use the notation B{-,. )... e esefi M ger Ner ers. (2.8) is a linear equation for the
smooth part of the first order term. The coefficient matrix f is singular. By (2.9) we
have chosen the inhomogeneity’+-in a way that a solution to (2.8) exists. The
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general solution of (2.8) can be written in the form

Yx( ) =cka( a,t )flx ( ) +Yxp( ),
where ylp(t) is a particular solution and /31 is an n0-dimensional parameter. To
determine ill(t) we equate coefficients of e2 in (1.1) and obtain

1- 1-
(2.16)

Analogously to the deternation of a, multiplying (2.16) by H yields

(2.17)

Vasileva and Butuzov (1978, p. 68) show that (2.17) is a linear equation for. Since we
require the coefficient matrix explicitly, we will reproduce their argument. In (2.17) we
write

1 1 1-(2.18) Hy(Yl,Yl)=Hfyy(afll,afll) +Hfyy(afll,Ylp ) +fyy(Ylp,Ylp),
which follows from the fact that fyy is a symmetric bilinear form. Differentiating (2.3)
with respect to a yields

(2.19) H.(. ’L" > + HL(+-"’" > =0.
Multiplying (2.19) with . ves

Due to (2.1) (=0) the first term on the right-hand side of (2.18) disappears and
(2.17) can be written in the form

(2.20)
where G depends on a and only. Next we will show that the coefficient matrix S in
(2.20) is equal to that in (2.14a). Obviously

Differentiation of (2.2) with respect to a gives

(2.22) H,(-, ,. ) + H,,(.,. ) 0.

It follows from (2.19), (2.21) and (2.22) that

Using the fact that lp is a particular solution of (2.8) it is now obvious that the
coefficient matrices in (2.14a) and (2.20) are the same.

Suppose we have constructed Y0,"" ", Y,-, n g 2. Then we determine g from an
equation of the form

(2.23) Ly, F, (y0, y_),

where the inhomogeneity satisfies the solvability condition HF,=O. Thus the general
solution of (2.23) can be written as
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Equating coefficients of e’’+1 in (1.1) gives

with G,, depending only on Y0," ", Yn-x. Multiplying by H and repeating the argument
we used for proving the linearity of the equations for/1 we get

(2.24)

which has the same coefficient matrix as (2.20). ’n, like (n, depends only on
Y-o,’", Y-,,-1. Suppose we have constructed Y-o,"’, Y--I; Loy,..., L,_y;
Roy,..., R,_y, where the layer corrections Ly, Riy satisfy exponential estimates of
the type (2.13). Then L,y and R,y satisfy

(2.25a)

(2.25b)

(2.25c)

dL"y=fy(q(a(O) O)+Loy,O,O)(L,,y+q,(a(O) 0)/3,,(0))+L,,Gd’r
dR y
do -fY(O (a(1)’ 1) + RoY, 1,0)( R,y + rk,( a(1), 1)fin (1)) -t- Rna

L,,y(oo) =0, R,,y(o) =0,

where L,G and R,G depend on the terms in the expansion up to order n- 1. Besides,
L,G and R,G satisfy exponential estimates of the type (2.13). (2.25a) and (2.25b) differ
from (2.14b), (2.14c) only in the terms L,G and R,G. Equating coefficients of g in
(1.2) yields the boundary conditions

(2.26) bo(rk,(a(O),O)fln(O)+L,y(O))+bl(rk,,(a(1),l)fln(1)+Rny(O))=c,,

where cn depends on the same terms as L,G and R,G. These boundary conditions
differ from (2.14d) only in the right-hand side c,. The unique solvability of the problem
(2.24) ((2.20) for n= 1), (2.25) and (2.26) follows from the fact that (2.14), (2.15) has
only the trivial solution. L,y and Rny are exponentially decaying functions, which is a
consequence of Lemma 3.2 in the next section. Thus, the terms in the formal asymp-
totic expansion (2.4) can be constructed consecutively up to arbitrary order.

3. BVP’s on infinite and "long" intervals. In this section we investigate linear
problems of the type

(3.1a) y’=A(t)y+g(t), t>=O, yRn,
(3.1b) y()=0, i.e. lim y(t)

(3.1c) By(0) =/3.

Also we shall derive results on the well-posedness of problems obtained from (3.1) by
cutting the infinite interval at a large T and replacing (3.1b) by an appropriate
boundary condition at T.

The proofs of the results we state will be given in the Appendix and follow along
the lines of de Hoog and Weiss (1980) and Markowich (1982, 1983). In these papers
instead of (3.1b) the weaker condition y C[0, m], i.e. limt_oy(t ) exists and is finite,
is used. However, in the singular perturbation context, (3.1b) is relevant (cf. condition
(2.5)). Thus the results are slightly different, but the methods of proof are similar.
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3.1. Problems with constant coefficients. We consider the problem

(3.2a)
(3.2b)

y’=My+g(t),
y(oo) =0,

where the matrix M has a splitting

E-1ME A A/

with the eigenvalues of the n_-dimensional square matrix A_ having negative real
parts, the eigenvalues of the n +-dimensional matrix A+ having positive real parts and
the zero matrix having dimension n o n- n_--n /. We denote the column decomposi-
tion of E corresponding to the diagonal blocks of A by E= (E_, E/, E0) and the row

1)r, (E- x)r).decomposition of E- by E-)T ((E )7, (E+
To satisfy (3.2b), we pose the following restrictions on g(t):

gC[0, oo], g(oo)=0 and IlEff’g(t)ll=o(t-l-), >0.(3.3)

Regarding the unique solvability of (3.2), we have
TH.OR.M 3.1. The boundary value problem (3.2) has a unique solution for all
Rn_ and all g(t) satisfying (3.3), iff the matrix B has n rows and BE_ is regular.
LEMMA 3.1. Let the assumptions of Theorem 3.1 and

(3.4) IIg(t) O(e-t), i > O,

be valid. Then the solution y(t) of (3.2) satisfies

(3.5) ILv(t) II--O(e-t), >0.

(Henceforth in exponential estimates of the type (3.4), (3.5) x will denote a generic
constant.)

Next we consider a problem on the finite interval [0, T]"

(3.6a) x’r= Mxr+ g( ),

(3.6b)
E

XT(T)=’,

(3.6c) BXT(O)=.

O<t<T,

THEOREM 3.2. Let the assumptions of Theorem 3.1 be valid. Then (3.6) has a unique
solution xr(t ) for all T>0 andfor all g C[0, T], fl Rn- and /Rn+ +no. xr satisfies
the estimate

(3.7) IIXT lit0, z const(Tll g lit0, 7"1 + fl +

where the norm II’llt/,,t21 on the space C[tl, t2] is defined by

sup f(s)ll.
s[q,t_]
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3.2. Problems with variable coefficients. We consider problem (3.1) with

(3.8) A(t)=M+F(t), where [IF(t)ll=O(e-t).
In the Appendix we will show that the general solution of the homogeneous problem
(3.1a), (3.1b), with A(t) defined by (3.8), is of the form y(t)=_(t)_ with

_
Rn-,

where the n n _-matrix

_
(t) is defined in the Appendix. We then have

THEOREM 3.3. The boundary value problem (3.1) with A(t) given by (3.8) has a
unique solution for all flRn- and for all g(t) satisfying (3.3), iff B has n_ rows and
Bd_(O) is regular.

The analogue to Lemma 3.1 is
LEMMA 3.2. Let the assumptions of Theorem 3.3 and (3.4) be valid. Then the

solution y( ) of (3.1) satisfies (3.5).
Again we consider the "finite" problem

(3.9a) X(r=A(t)xr+ g(t),

(3.9b) ( E;1 )
(3.9c) Bxr(O)= ft.

O<=t<=T,

THEOREM 3.4. Let the assumptions of Theorem 3.3 be valid. Then (3.9) has a unique
solution xr(t ) for T big enough and for all gC[O,T], Rn- and vRn+ +no. xr
satisfies the estimate [[xrlllo, r15 cnst(Tllglllo, rl+llflll + 11711)-

THEOREM 3.5. There exists a fundamental solution q r( ) of (3.9a) which satisfies
(3.10)
where

Ilqr(t)- gr(t) II-- O(e-t),

Xr(t)=e(
is a fundamental solution of (3.6a).

A+(t- T)

4. Existence and uniqueness result. Let Y,.(t,/3) denote the ith partial sum in (2.1),
i.e.

Yi(t,/3) (j(t)+Ljy(t)+Rjy( 1-t))/3j.
Let the space C1[0,1] be equipped with the norm I1"11, defined by

Ily II,--Ilyllto, ll+el[y’llto, a.
Then (C1[0,1], I1" II,) is a Banach space. Balls in this space will be denoted by

ns(Y0) { yCI[O,1]IIlY-YoII, <-i }.
We now prove the main result of this paper.

THEOREM 4.1. Letfand b in (1.1), (1.2) be infinitely differentiable and let hypotheses
H1, H2 be valid. Then there are constants c, /3o > 0 such that for 0 </3 <__/3o a solution
y(t,/3) to (1.1), (1.2) exists which is unique in the ball B,.(Y1) and satisfies

I[v- Y ll, O ( /3i+ ), >= O.
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Proof. Common methods for proving results like Theorem 4.1 are based on the
fixed point theorem for contraction mappings in Banach spaces (cf., e.g. Eckhaus
(1979) for general results in perturbation theory and Vasileva and Butuzov (1973),
(1978) for applications in singular perturbations). We shall apply a theorem due to Van
Harten (1978) stated by Eckhaus (1979, p. 237 f). Using his notation, (1.1), (1.2) is
written as

(4.1) Ly=O.

In our case L is an operator from the Banach space (C1[0,1],11.11.) to (C[0,1]Rn,
I1"11.,), where we define the norm I1"11.. as the sum of the supremum norm on C[0,1]
and the maximum norm on Rn. Our method of constructing the formal approximation
Y yields

(4.2) LYi= Pi,

where Ilpill**= O(ei+l). Subtracting (4.2) from (4.1) yields the following problem for
the remainder term Ri=y- Y:
(4.3) LR’= L(R,+ Y)-Lff= -p;.

Denoting the linearization of L at Y byA, we obtain that decomposition

L=A+P.
The above mentioned theorem requires us

a) to obtain an estimate

b) to prove a Lipschitz condition for P of the form

for v 1, v2Bn(O), where limno0/(e,8)=0. Then we have to determine 6=8(e), such
that

for all 8 < 8. If

then there is a solution R of (4.3) which is unique in the ball Bs(0) and satisfies

1

We will show that in our case

(4.4) (e, 3) 13

(4.5) X(e) c-22.
Thus, we obtain 3 e(1 "/)/cxc and the following condition for Pi
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This certainly holds for >= 2 and e small enough. We then have a solution R of (4.3),
which is unique in B,.(0) with c=(1- y)/clc2 and satisfies

C2

By the argument

the results of Theorem 4.1 are established. It remains to show (4.4) and (4.5):
Using a formula for Pv -Pv2 (Eckhaus (1979, p. 239)) (4.4) follows immediately.

To establish (4.5), we have to analyze the linearization of (1.1), (1.2), which reads

(4.6)
0(Y(0), Y(1))p(0)+ I(Y(0), Y(1)) p(1) fl

or

(4.7) e’=fy(ck(t)+@l +LoY+RoY,t,e)+co(e+ee-+ee-)+g(t),
boP(O) +b.(1) o(e)(. (0),. (1)) +/3,

where (t) stands for k(a(t),t), bo and b are like in 2 and o is used generically to
denote linear operators satisfying IIo(r(e,t))ll O(r(e,t)). As in Vasileva and Butuzov
(1973) we introduce a partition of the interval [0,1] into three parts [0,t0], [to, t1] and
tl, 1], where

2 2
o -elne, tl 1 +-elne,

and x is taken from the estimate (2.13). We define

With (2.13) we obtain

IILoy( )ll=o(  ), ,>=,o, IlRoy(o)ll=o( 2), o>__ox.

Introducing the independent variables z and o on the short intervals [0,t0] and [tl, 1],
we obtain a problem equivalent to (4.7),

(4.8b)

(4.8c)
(4.8d)
(4.8e)
The transformation
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changes (4.8c) to

(4.9)
From

It follows on using (2.19) and (2.1) that (4.9) can be written as

(4.10a)

(4.10b)

4’+_=a _+_++,()+ e-_+g(t),

;-- ( H/yy<+a" ,ip> q- H/ye+a- Hfl)ta)g0

+ n[fyy<E +. ,Yl> -[-lyeE +-Et+]}_ + + (e)l+ 7Hg(t).l
With the decoupling transformation

0--’0 nt" 8H[Ly<E +" ’1> "Jc’eE +

(4.10b) becomes

(4.11)

Introducing the transformation

(4.12)
y =.+.(0)0(t0),
2 , + q.(1) 0(tl),

up to O(e In e) terms, (4.8) takes the form

(4.13a)

(4.13b)

(4.13c)

d=fy((O)+LoY,O,O)(g+rk(O)o(to))+k2(), 0<-<=o,

d
d-- fy( q(1) +RoY, l, O)( u + (1)o( tl)) +k ( o ),

(4.13d) bo (g (0)+ g,(O)o (t0)) + bx (t, (0)+ q,(1)o(tl)) ill,

(4.14a) ’ A +__j +/-+ k4(t), to<=t<=t

(4.14b) tX(o)+dP.(O)o(to)=E(to)(to)+:z, r (Ol) +b,(1) o(tx)
=E(q)(q)+B3.

where we now employ arbitrary inhomogeneities k and/3j.. The equality of the coeffi-
cient matrices in (4.11) and (4.13a) has been proven in 2. Thus, the homogeneous
equations (4.13) correspond to (2.14), and the solvability of (2.14), (2.15) will now be
employed to conclude unique solvability of (4.13), (4.14). The general solutions of the
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differential equations in (4.13), (4.14) have the form

(4.15)

From Theorem 3.5 we obtain for M(z) and N((I),

(4.16a)

(4.16b)

exp(A + (O)(’r- ’to) )

exp(- A_ (1)((i- (i1))
exp(- A +(1) (i)

and it follows from the proof of Theorem 3.4 that

II/d,p Ilto,,ol < const roll k lit0, ol const In 1 k.

Ilto, o-< const (lxll k Ilto, o- constln
1 I1o,
13

Due to (2.1), fy((O)+Loy, O,O)b,(O) and fy(q(1)+Roy, l,O)q(1) decay exponen-
tially. Lemma 3.2 therefore implies

(4.17) P()I[-- O(e-"), llQ(o) I1-- O(e-).
Standard results yield

(4.18a) G +/- (t)
exp( A- ( to ) t-t)13

exp( A + ( t) t-t1
+o(),

(4.18b) II +_, IIt,o,, z const Ilk4 lit,o, ,xl

and

Op IIt,o,, z constl} kx II[to, tl]-

Substituting the representation (4.15) into the boundary conditions (4.13d) and (4.14b),
we obtain

bo [M(0) /+ P(O)Go(to)’/o+Ck(O)Go(to)/o]
"k- b N(0) 3 + Q(0)Go(tx)),o + qa(a)Go(tl) ’0] --/1,

M(o) r/+ P( o)Go( to)Yo + Ck(O)Go( to)/o- E +/- ( to)G +/- ( to)/ +/--q’( to)Go(to)o= fl,
N((Ix) + a((ix)Go(q)lo+Cb(1)Go(tx)lo- E +/-(tl)G +/-(tx) +/--ch(tx)Go(t)Yo=3,
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where the fl contain the contributions of the flj and the particular solutions. Denoting
the coefficient matrix of this linear system by C(e), the estimates (4.16)-(4.18) imply
that C(e)= C(0) + w(e In e), where

(4.19)
boM(O)

c(o) o E/ (0) Eo(O)
0

bN(O)
0

E_(1) 0 Eo(1)

0

-e_(0) 0

0 -E+(1)

and

S= bo [P(0) + q,(0)] Go(0) + bx [Q(0) + ,(1)] Go(l).

Here the ordering of the unknowns is r/, 8, 3, +_, 3’0, with the partitions
T= (r_, r+, 6ff), 3’= (3’r_, 3’r+). Permutation of the columns in (4.19), corresponding to

the ordering l, +, 3’0, -3’-, +, 10, -, -3’+, 0 yields the matrix

(4.20)
c xx x:
o E(O) o
0 0 E(1)

where C, X1, X2 are square matrices. It follows on employing Theorem 3.3 that the
unique solvability of (2.14), (2.15) is equivalent to C being nonsingular, which implies
that the matrix (4.20) is nonsingular. Thus, C(e) is nonsingular as well and has a
bounded inverse for e small enough. This and the estimates on the particular solutions
imply that (4.13), (4.14) is uniquely solvable for small e and that

(3 )<const E I111+ IIkllt,o,,+ IIk41lt,o tl] +ln (llk=llto,o+ Iik3[1[0, O1])
i=1

e

This allows the application of a contraction mapping argument to obtain unique
solvability of (4.8), which is equivalent to (4.6). We thus have unique solvability of (4.6)
for e small enough, with the estimate

Ilto, 1 z const(ll/3 I1+ -111 g Ilto, a).
The differential equation in (4.6) can be used to obtain an estimate on ell’llto,l which
finally yields

3v II. z const (1[/3 II+ e-11 g lit0,1]) __--< const e-

This establishes (4.5) and completes the proof of the theorem.

5. Example. We consider the fundamental semiconductor device equations for the
case of a symmetric p-n junction with piecewise constant doping. The singular
perturbation approach for this problem was originated by Vasileva, Kardosysoev and
Stelmakh (1976). We assume that recombination-generation effects are negligible and
that the total current is kept at a prescribed value J. For the scaling which leads to the
formulation as a singular perturbation problem, see also Markowich et al. (1982). The
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governing equations are

(5.1)

ek’ E,
eE’=n-p-1,

eJen’= nE+-f
ep’ -pE

eJ

=o,
n(O) =p (0),

1p(1) =-(- 1 + V/1 + 4/}’ )=px,

n(1)=px+l.

The variables q, E, n and p are scaled and proportional to the potential, the electric
field, the electron density and the hole density in the device, e and result from the
scaling, e is equal to the Debye length, and is small when the doping is large. Thus (5.1)
is singularly perturbed in this situation.

In Vasileva and Stelmakh (1977) and Vasileva and Butuzov (1978) (5.1), (5.2) is
considered with 0. Smith (1980) treats the case of a symmetric p-n junction where
the doping and the given electron and hole current densities are not constant. In all
these papers results are proven which are more or less equivalent to the one we will
obtain below by an application of the general result Theorem 4.1.

The reduced equations

(5.3) 0=, O=-p-1, 0=, 0=-p

have the solution

(5.4) =al, E=0, n=ot2+l p=a2.

The Jacobian of the right-hand side of (5.1) at the solution of (5.3) is

0 1 0 0
0 0 1 -1
0 a2+1 0 0
0 -a2 0 0

with the eigenvalues 1,2-’0 and 3,4 "[- 2ct2 + 1. Obviously, the matrix has rank 2.
Thus hypothesis H1 is fulfilled with the assumption a2>__ 0 which is natural because

ff a 2 denotes a density. As in chapter 2 we find differential equations for a and a2"

J
a) al 2a2 + 1

j
b) ai= 2(2a_ + 1)"
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The equations for the left layer terms are

(5.6)

The zeroth order right layer terms disappear. This is due to the fact that the last
condition in (5.2) is consistent with (5.3), and will be proved by showing that there is a
unique solution of (5.5), (5.6) satisfying the boundary conditions

a)
b)
c)
d)

Ln (O) + l Lp (O),
a2(1) =Pl,
L d/ ( ) LE ( ) Lp (o) Ln (o) =0.

Introducing L as a new independent variable in (5.6c), (5.6d) and solving the result-
ing linear equations yields with (5.7d)

Ln= (a2(0) + 1)(eL*- 1),
Lp=ot2(O)(e-Lg’-- l).

Now we substitute (5.8) in (5.6b) and solve this equation again with L as independent
variable. We obtain

(5.9) LE - [( a2 (0) + 1) e L, + a2 (0) e- L, L 2a2 (0) 1] 1/2sgnL
where the sign of LE is determined by the condition that the remaining equation for
L+ has to have decaying solutions. (5.8), (5.9) represent the stable manifold of (5.6).
Using (5.8) in (5.7b-c) gives

(a2 (0) + 1)e ,() a_ (0)e,(),
a=(1) =Pl"

The solution of (5.5), (5.10) is

atl(t) 11 +44 + 2J(1 t) V/1 + 434 + 2J + In
(5.11) 1/434+2J

1 1+434a2(t)=(-l+ +2J(1-t)).

1 + V/1 +434+ 2J

(5.7a) and (5.11) yield an initial value for L:

L(0) -In 1 + V/1 +44+ 2J

1/434+ 2J
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The proof of the isolatedness of this solution, i.e. the invertibility of the linearization of
(5.5)-(5.7), is now outlined. We denote the linearization of the equation (a, b) by (a, b)l
and proceed as follows: The terminal value problem (5.5b)1, (5.7c)1 has a unique
solution. The equations (5.6c, d)l can be integrated similarly to (5.6c, d), and jointly
with (5.7a, b)l lead to an initial condition for (5.5a)1. It remains to determine a
decaying solution of (5.6a, b)l with an initial value defined by (5.7a)1. Writing (5.6a, b)l
as a scalar second order equation, we can use the results of Fife (1974) on such
problems to conclude existence and uniqueness of the desired solution.

Thus Hypothesis H2 has been verified and the validity of the formal approxima-
tion follows from Theorem 4.1.

Appendix: Proofs of the Results in 3.
Proof of Theorem 3.1. The general solution of (3.2a) is

y(t)= Y(t)l+yp(t),
where Y(t) Ee At and

yp(t)=Hag(t)=E

e (’-)E_lg(s)ds

fo A+ -lg(s)dSe (t-S)E+

fEfg(s)ds
LEMMA A.1. Hag(oo)=0 holds for g(t) satisfying (3.3).
Proof.

e (t-S)E lg(s) Z const g(s)ll

b)

with 8 > 0.

f(t ) g(t-s) (S) lids+ e- Ilg
t+8)/2

Z const((e-g(t-)/2- e-(t-))ll g lira, (/+ )/9-1 + g

--> 0 for o

A+(te -S)E_lg(s)ds (t--s)__<constllgllt,l e ds

__< constl[ g [Itt, o1--* 0 for c

c) =< const s ds const " 0 for

In Y(t) the components corresponding to zero eigenvalues and eigenvalues with posi-
tive real parts do not satisfy (3.2b). Therefore, the general solution of (3.2a),(3.2b) is

(A.1) y( ) E_eA-t,l_+ H*g( ).

Substituting (A.1) into (3.2c) shows the validity of Theorem 3.1.
Proof of Lemma 3.1. The proof is similar to that of Lemma A.1 and therefore

omitted.
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Proof of Theorem 3.2. The general solution of (3.6a) reads

(A.2)

where

( ) x( ) +Hg(t),

eA-t )Xr(t)=E eA+(t-r)
I

and

Hg(t)=E

e

A+ -lg(s)dse (t-S)E+

fr Eff lg( s l ds

Similarly to the proof of Lemma A.1 we derive the estimate

(A.3) ngg I1[0,) constll g I1[0, r] for all g C[0, T].

Applying the boundary conditions (3.6b), (3.6c) to (A.2) yields

x(o). + /-/g(o) t,

E xv(r)rt+
Ei

Hvg(r)=’"

The coefficient matrix in these equations for /is

BE_ BE+e-+r BE
0 I,,+ 0

0 0 I,o

Obviously, this matrix is regular since BE_ is regular, and has a bounded inverse for all
T> 0. This fact together with (A.3) yields unique solvability and the estimate (3.7).

Proof of Theorem 3.3. For solutions of (3.1a), (3.1b)

y( ) E_eA-tl_+ HnFy( ) + HSg( )

must hold, which can be written as

(A.4) (I-HF)y( t) E_eA-trl_+ Hg( t),

where I- HF is considered as an operator from the space As= {f C[8, o] f(z)-- 0)
to itself.

Lemma A.2. IlHFf(t)ll<=conste-tllfllt,ol, t>_, holds for all fA (with the
constants independent of ).

Proof. The proof is similar to that of Lemma A.1 and is therefore omitted.
It follows from Lemma A.2 that

HSF Iltn, o1__< conste-.
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Hence

1(A.) nF IIt, Z -for some 81 big enough. Thus, the operator 1-H’IF on Al is invertible and (A.4)
yields

(A.6) y(t)=_(t)rl+g(t), t>=81,

where _(t)=(I-H*F)-IE_eA-t and g(t)=(I-H*F)-H*g(t). As solutions of
(3.1a)

_
and g can be extended to [0, ). Applying the boundary conditions (3.1c)

to (A.6) confirms the results of Theorem 3.3.
Proof of Lemma 3.2. The result immediately follows from Lemma 3.1, if we can

prove
LEMMA A.3. II((I- HF)- I)f(t)II const e-t holds for allfA.
Proof. We use the identity (1- HF) E=0(HF)i. It follow from Lemma

A.2 and from (A.5) that

II(n,F)’f(t) II<=conste-’t2-’llfllt,oo for i>= 1.

Thus

)-1_i )f(t)ll=< conste-<t21-iil f ll,,, =,= const e- t"
i--1

Proof of Theorem 3.4. Solutions of (3.9a) satsify

xr( ) Xr( ) *l + HrFxT( ) + Hrg( ),
which implies

( I- HrF )xr( ) Xr( ) + Hrg( ),

where we consider I-HrF as an operator from C[8, T] to itself. An analogous result
to Lemma A.2 is

LEMMA A.4. Forf C[8, T] the estimate

IlI-SgFf(t) II--< cnst e-’tll f lira, , t>__ 8

holds (with the constants independent of and T).
Proof. Again the proof is similar to that of Lemma A.1 and is therefore omitted.

Lemma A.4 yields

1

for 132 big enough and all T>= 2" Thus, (I-H2F) is invertible and we have

(m.7) XT(t)=lr(t)rl+rg(t), 82<=t<=T,

where /r(t)=(I-Hr2F)-lxr(t ) and rg(t)=(I-Hr2F)-lHr2g(t ). 6r and
are defined on [0, T] by continuation. An argument as in the proof of Lemma A.3
yields the estimate

(A.8) II, ( ) x( ) I1_-< const e xt.
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Let q be defined by +.(t)=(I-Hr2F)-lE_eA+t for t[82, T], and by continua-
tion for [0, iz]. We will now prove that

(A.9) lim q - lit0,= 0.
T--- (:

We define Z q
_

and substitute max{ 81, 82 } for 8 in the definitions of H
and Hr. The definitions of k and

_
imply that Z is defined on [0, ] by continua-

tion as a solution of Z’ A(t)Z. Thus, it suffices to show that

(A.10) lim z Iltn, ]-- 0.
T

The definitions of q and

_
on [8, T] yield

Z=HFr HF_=HrFZ+HFb_- H-Fq_.
Thus

This implies (A.IO), since obviously

Tm

Now we apply the boundary conditions (3.9b), (3.9c) to (A.7) and obtain equations for
1 with the coefficient matrix

+(o)
c(r)= e;(r)

ex+(r)
The relations (A.8) and (A.9) imply that

(A.11) rlim C(T)= 0 I+ +o
where D is some rectangular matrix. The matrix B_(0) is regular wNch implies
regularity of C(T) and boundedness of IIC-I(T)II for T big enough. An argument
similar to the proof of Lemma A.3 and (A.3) yields the estimate

glit0, s const rll g lit0, .
This completes the proof of Theorem 3.4.

Proof of Theorem 3.5. It follows from the proof of Theorem 3.4 that r(t) in (A.7)
is a fundamental solution of (3.9a). The inequality (3.10) has been shown during the
proof of Theorem 3.4.
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SECOND ORDER NONLINEAR SINGULAR PERTURBATION
PROBLEMS WITH BOUNDARY CONDITIONS OF MIXED TYPE*

JENS LORENZt AND RICHARD SANDERS$

Abstract. We study nonlinear turning point problems that admit boundary and/or interior layers at
positions that are not determined a priori. Our study differs from previous investigations in that for positive
"viscosity" first order derivative terms are allowed in the boundary operator. Under certain conditions,
shown in a sense to be sharp, we characterize the viscous limit of such problems and prove that they are
identical to those limit solutions obtained from the pure Dirichlet problem.

AMS(MOS) subject classifications. Primary 34E20, 34B15, 34A40

Key words, singular perturbations, turning points, bifurcation, viscosity method, mixed boundary
conditions

1. Introduction. In this paper we study boundary value problems of the form:

(1.1a) Tu -eu" +f(u)’ + b(x,u)=O, O__<x=<l,

(1.1b) R u= u(1)+fleu’(1)

where e>0 is destined to vanish. For simplicity we assume that f C2(R) and b
Ct([0,1]R) though weaker smoothness assumptions would be sufficient for most of
our results. Throughout we define ’=d/dx and f(u)’=a(u)u’. We also allow a(u) to
vanish at arbitrarily many u values, i.e. turning points. If (1.1b) is of Dirichlet type,
that is a fl 0, and if

(1.2) b,(x,u)>=#>O forall(x,u)[0,1]R

then the following basic problem has been solved: For e > 0, (1.1) has a unique solution

u and for e tending to zero, these functions u tend boundedly a.e. to a limit function
u. The limit function u has bounded variation and is characterized by a variational
inequality. See [12], [13]; also see [1] for time dependent problems in many space
dimensions and see [6], [9] for a treatment of examples.

When a and fl are nonzero, the study of the limit behavior of solutions to (1.1)
becomes more involved. The difficulty is essentially due to the fact that u’ may be of
order 1/e at either boundary; thus the influence of the additional terms in (1.1b)
cannot be neglected as e tends to zero. We shall consider (1.1) under condition (1.2)
and also assume that

(1.3a) a>__O, /3>_0.
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The main results of this paper are now summarized:
(i) Suppose that a and/3 satisfy (1.3a) as well as

(1.3b) 1//3 _<a(u) __< l/a,

for all u in an a priori interval [m,M]. The interval [m,M] is determined by the
maximum principle developed in 2. Then, (1.1) has a unique solution, u, for all e > 0
and u tends boundedly a.e. to a limit solution of bounded variation. Furthermore, this
limit u is independent of a and /3 and is in fact the same function (a.e.) as the one
coming from the Dirichlet problem (i.e. the limit of solutions to (1.1) with a =/3 0).

(ii) If (1.3b) is relaxed, that is if either maxa(u)> 1/a or mina(u)< -1//3, then
(1.1) may have multiple solutions even when e > 0. Two solutions of (1.1) are presented
in {}3 via a bifurcation argument.

The final paragraphs of this section are devoted to a heuristic argument demon-
strating the necessity of (1.3b) for uniqueness. First consider the following specific
example:

(1.4) -eu"+(1/2u2)’+u=O, u(O)-aeu’(O)=2, u(1)=-2.
Note that the functions

u0 (x) x + const.

are outer solutions, i.e. they solve the reduced differential equation. (The singular outer
solutions u 0 does not play a role in our argument.) There are (at least) two candi-
dates of global outer solutions, namely the discontinuous function

(1.5) 0(x) / -x + 2, 0__<x < 1/2,
-x-l, 1/2<x__<l

and the continuous function 0(x)-- x 1, 0 < x _< 1. 0 satisfies the boundary condi-
tions up to order . In the stretched variable s=(x-xo)/e one obtains the inner
differential equation

d(1.6) -U"+(1/2U) =0, =s
when neglecting terms of order e. In order to match the inner solution with an outer
solution uo at an interior discontinuity, say at xo, we require that

(1.7) (- oe) Uo(Xo-0) (+ c) Uo(Xo+0)
and when uo violates the boundary condition at x 0 by 0(1), we require that

U(0) U’(0) o, U( + ) Uo(0).
Integration of (1.6) yields

Hence with co= { the matching condition (1.7) is fulfilled for the specific outer solution

0 given in (1.5) which satisfies the boundary conditions up to order e. Therefore 0 is
a candidate limit solution for all values of a. (It follows from the results proved below
that o is the only limit solution for 0__<a_< 1/2.) When can we fulfill the matching
condition at x=0 with 0(x) -x- 17 The condition U(+ c)= f0(0) yields

U’(s)=1/2(U2(s)-l).
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Therefore, if a is a value for which the equation

has a solution U(0) in (-1,1), the matching condition can be satisfied. Thus for large
values of a other candidates of limit solutions are obtained.

If we generalize the considerations of this specific example slightly, we see that
limit solutions different from the Dirichlet limit can possibly occur if a or/3 are so large
that the functions

U--* U-aT(u ) or U U+ flf(U)

are not monotonically increasing in the range of U-values of interest. But condition
(1.3b) exactly requires monotonicity of the above functions.

As we would like to mention, David Brown, California Institute of Technology,
found multiple solutions numerically of the type presented here while this paper was
written. He used his code described in [10]. We also like to mention that Howes [5] has
considered singularly perturbed problems with non-Dirichlet boundary conditions (1.1b)
using the method of upper and lower solutions. His assumptions do not allow for
turning points, however.

2. Existence and uniqueness for positive . In this section we show the problem
(1.1) has a solution given that (1.2) and (1.3a) are satisfied. In addition, we show that
this solution is unique given (1.3b). We begin with the maximum principle.

LEMMA 2.1. Assume (1.2) and (1.3a), and let u denote a solution of (1.1). Then

(2.1) m<=u(x)<=M,

where

m min(,0,’tl, min{ c(x)" 0=<x=< 1}),
M= max( 3,0 -h max{ c(x)" 0_<x <_ 1}).

Above, c(x) is determined by b(x,c(x))=O. The function c(x) is bounded since b(x,O) is
bounded and b (x, u) >= I > O.

Proof. Let d max{ u(x): 0 =< x =< 1 }, and let y [0,1] be such that u(y) d. If
y=0 we have u’(0)=<0 and (1.1b) implies that u(0)_< ’0- If 0 <y < 1, the differential
equation (1.1a) shows that b(y,u(y))<=O=b(y,c(y)). Thus using (1.2), we have d=
u(y) =< c(y). The other estimates follow in a similar manner.

Existence of a solution of (1.1) follows directly from a generalization of the
classical Nagumo theorem (see [7], [14]) which has been observed in [4]. Obviously we
can apply [4, Thm. 1] using the constant upper and lower functions identically to M
and m, respectively, and obtain"

LEMM, 2.2. Under the conditions (1.2) and (1.3a), the differential equation (1.1a)
with boundary conditions (1.1b) has a solution u(x) for any e>0 satisfying the estimate

(2.1).
As remarked earlier, conditions (1.2) and (1.3a) are not sufficient to guarantee

uniqueness of solutions to (1.1). However, if (1.3b) is also imposed, a solution of (1.1) is
unique. We use L techniques to show this. The L techniques used below motivate the
characterization of the limit solution presented in {}4. Another uniqueness proof is given
in an appendix. The second proof, which uses adjoints and an inverse monotonicity
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argument, yields additional information; in particular, it shows that solutions u con-
stitute a smooth branch w.r.t.e. This justifies continuation techniques with e as a
parameter in numerical computations.

THEOREM 2.3. Suppose conditions (1.2), (1.3a) and (1.3b) are satisfied. Then the
problem (1.1) has a unique solution for any e>0. (When a=0 or fl=0 the corresponding
estimate in condition (1.3b) is considered satisfied.)

Proof. The method of proof is standard. Define the sign function sgn(s) by

-1 s<0,
sgn(s) O, s=O,

1, s>O,

and denote by sgn 8(s), 8 > 0, a smooth nondecreasing function with sgn 8(s) sgn(s)
when Isl>_- and s=0, and (d/ds)sgn(s)<_2/8 when Isl__<& For fixed e>0 suppose u
and v are two solutions of (1.1) and define w u- o. Applying integration by parts to

fo sgn ( w ) ( Tu Ty ) dx O,

one obtains

(2.2)

sgn(w)(-ew’ +f(u)-f(o))llo
f01 sgn(w (f(u)-f(o))dx)’

+

Sending 8 to zero and using Lebesgue’s dominated convergence theorem, we find that
the third term above approaches

fo Ib(x,u)-b(x,v) Idx.

The second term can be shown to approach zero using Lebesgue’s theorem again. With
the boundary conditions (1.1b) and condition (1.3b) we find that the first term above
approaches a nonnegative value. Therefore, we have that any two solutions of (1.1)
must satisfy

fo f01lu-vldxz Ib(x,u)-b(x,v)ldx<=O,

and are necessarily the same.
We later need L continuity with respect to the boundary conditions:
LEMMA 2.4. Suppose u and u2 are two solutions of (1.1a); ul (resp. u2) satisfying

the boundary conditions (1.1b) where a, fl are replaced by Ctl, fll (resp. a2, fl2). Further
suppose that a > O, fll > 0 satisfy (1.3b). We then have for a2 > O, fl > 0

u u2 dx =< const. (
where the constant above does not depend on e > 0, o1, o2, 1, 2"
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Proof. Sending/ to zero in (2.2) and using the boundary conditions, one obtains

-sgn(w(0)) u(O) +f.u:(O).-f.u(O). + lu:-u=ldxO
1 2

with w u u 2. Now use monotonicity of the functions

Uuo+f(u), Uo-f(u)a:
in the a priori domain to obtain the result.

3. Rigorous prooI oI nonuniqueness Ior (l.3b) violated. If (l.3b) is violated, we
show that bifurcation can--and under special assumptions willoccur for problems
where (1.2), (l.3a) holds. We actually construct a problem with a nonsingular u(x) at
which sufficient conditions for bifurcation are satisfied. First note that a necessary
condition for bifurcation at u(x) is the following: The linear problem

(3.:) (r, +bu( 
Ro=0

has a nontrivial solution . The following lemma is crucial:
LA 3.1. Given a>0, flO and po> I/. There is %>0 and a smooth function

p(x) with -I/p(x)po such that the eigenoalueproblem

has a smallest eigenoalue : o:(e) which is less than 0 for 0 < e eo.
Proof. (i) First assume that p(x) in (3.2) is an arbitrary C:-function. As is

well-known, multiplication of the equation Lo o by

exp p(s)ds

transforms the eigenvalue problem (3.2) into a symmetric problem to which the classi-
cal Sturm-Liouville theory applies. Thus all eigenvalues of (3.2) are real, and there is a
smallest eigenvalue o. To decide upon the sign of o, it suffices to study the homoge-
neous equation Lv 0, which has the general solution

with

q,(x)=exp(r(x)/e), r(x)= p(s)ds,

, ( x ) ,: ( x ) exp( r ( y )/) dy.

If we take c 1, c2= (1/e)(1/a-p(O)) we obtain the function- -d-p(O) exp(-r(y)/e)dy



NONLINEAR SINGULAR PERTURBATION PROBLEMS 585

which satisfies Lf=0, R)=0, (0)> 0. Here R) denotes the first component of the
boundary operator R. With R1) we will denote the second component.

(ii) We claim now that the smallest eigenvalue o of (3.2) is negative if (1)< 0. To
show this, assume that (1)<0 and first assume o >0. If ot >0 then the pair (L,R)
must be inverse monotone, i.e. for any w C2[0,1] the implication

(3.4) Lw>=O, R)w>=O, Rl)w>__O=w>=O

holds. (See e.g. [15, Chap. 1, Thm. 17].) But since Lf=0, R)=0 we find that v >= 0 if
RI)o>=0 and __<0 if Ra)v__<0, a contradiction to (0)(1)<0. We also arriveat a
contradiction if (1)<0, o=0. If oa=0, then is an eigenfunction to o, but the
eigenfunction to the smallest eigenvalue is known to be of one sign. (See e.g. [15, Chap.
1, Thm. 16].)

(iii) To conclude the proof of the lemma, note that we allow for 1/a-p(0) < 0 in
(3.3). Thus for appropriate p(x) we obtain (1)<0 for 0<e_<e0 (e.g., take a function
p(x) with p(0)=po, -1/fl <=p(x)<=po,f p(x)dx <0).

Assume now a > 0, fl >__ 0, Po > 1/a are given and p(x) and eo > 0 are determined
according to Lemma 3.1. We fix e(0,eo]; thus the eigenvalue problem (3.2) has a
smallest eigenvalue o < 0. Now take

u 2

f(u)=--, a(u)=u,

and set u(x) := p(x),

B(x)’= -eu:’(x)+f(u(x))’-ou(x),
b(x,u):=
y := Rette.

By construction the problem

T=-eu +f(u +b(x u)=0,
Reu /

has p(x) u(x) as a solution, and the linearization at u(x) is

)!(T u)v= -ev"-(a(u (x))v)’-otv= -eo" + (p(x)v -OlO

Thus by construction the eigenvalue problem

f3. )

has o=0 as smallest eigenvalue. Therefore u is a potential bifurcation point if we
introduce a parameter in the boundary value problem. To make this precise, we use
the following theorem from bifurcation theory (see e.g. [16] and see [2], [8] for earlier
versions).

THEOREM 3.2. Let X, Y be real Banach spaces and let

A’RX--)Y
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denote a twice continuously differentiable operator. Assume (A, Ft) R X is a point
with A () 0 at which the following conditions hold:

(i) ker(A’())= span{rl,} with linear independent 1, X.
(ii) There is a continuous linearfunctional k" Y- with range(A’()) ker(p).
(iii) For the numbers

the hyperbolicity condition <2 holds.
Then the solution set of

in a neighborhood of =(X, fi) consists of exactly two branches which intersect in .
Especially, given any > 0 there is with

for which the equation

A(x,.)=o
has at least two solutions.

We now claim
LnMMA 3.3. The abstract Theorem 3.2 can be applied if we take X=C:[0,1],

Y=C[O, 1]X 2,

A(,, u) (Tu + ,(u- u),Ru-7)
and (, fi)= (0, u), where T, R, u, are constructed as above. Especially, for any
> 0 there is with I,1 < 8 such that the boundary value problem

-eu"+ - +b(x,u)+,(u-u)=O, Ru=T

has at least two solutions.
Proof. To check conditions (i), (ii), (iii) of Theorem 3.2 first note:

A.(X,u)o=((r’u)v+xv,gv),
Axx(,u)=-O,

X, o =Au ( X, u)o ( 0),
A..(X,u)o.w=((r"u)o.w,O),

for h, a, u,v,wC:[O,1]. By r(x) and l(x) we denote right and left eigenfunc-
tions of (3.5) to o =0, i.e.

(T’u)r=O, Rr=O,

(T’u)*l=O, R*I=O.
One can assume

r(x)>0, l(x)>O for0<x<l

since by construction o 0 is the smallest eigenvalue of (3.3).
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Determination of kerA’(O,u)N: Since A’(O,u)(a,v)=((T’u)v,Rv) it follows
that

rl= (0,r), = (1,0)
constitute a basis of N.

Determination of range (A’(0, u)) "= R" Let (c,/3) C R 2. If (c,/3) R there is
v C 2 with

(T’u)v=c, Rv=fl.
Now choose for tieR2 a function w/(x)e C- with

Rwt=fl
such that fl --, w is linear. Then

R(v- w/)=O
and therefore

o
*I

fo ((Tetue)(V--Wfl) } ax--- fol (lc--l(Tetuelwfl) dx :--

With the linear functional k: YR defined by the last equation we have shown
R c kerq. But since dimN= 2 it follows from Fredholm index theory that codimR 1,
and thus R kerq. The hyperbolicity condition: In general holds

A"(),u)(ax,Vx).(a2,v.)=Axx(),u)al’a2 +Ax#(),u)a’v2
+Aux(X,u)v’a +Auu(h,U)Vl’V.

This specializes to

:= A"(O,u)(O,r).(1,0)=Aux(O,u)r.l=(r,O),
C.= a"(0, u,)(1,0). 0) 0.

Therefore

=fo’
and - q() 0, and thus 6" < 2.

Remark. Our construction shows that the condition (1.3b) which guarantees
uniqueness in Theorem 2.3, cannot be relaxed, in general. Note that p0 > 1/a was
arbitrary, and a similar construction can be made if 1/fl <= a(u) is relaxed.

4. The characterization o| lira, u,. The question of convergence of u as e tends to
zero is addressed in this section. We show below, given the conditions (1.2), (1.3a) and
(1.3b), that as e tends to zero the solutions to (1.1) converge in L to a limit function.
This limit function is characterized by a well-known integral inequality, the so-called
entropy inequality as developed by Kruzkov [11], in the study of scalar conservation
laws. As will be seen, the Kruzkov theory plays a key role in our analysis. We begin
with a simple estimate.
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LEMMA 4.1. Given (1.2) and (1.3a), we have that any solution of (1.1) must satisfy

du
dx <= const.,

where the constant above does not depend on > O.
Proof. Differentiating (1.1a) and following the notation of Theorem 2.3, we find

that

y00= sgn(u’). -eu;" +f(u) +b(x,u) dx.

Integrating by parts and using the differential equation (1.1a) in the boundary terms
obtained from the integration by parts, we have

O= -sgn(u:)b(x,u)]o+ sgn(u:) .(eu -f(u )dx

+ sgn(u;).(b(x,u)+bu(x,u)u;)dx.

As in Theorem 2.3, sending 8 to zero gives us that

b.(x,u)lu:ldxslb(1,u(1)) + Ib(O,u(o))1+ Ibx(x,u) Idx,

from which hypothesis (1.2) and the maximum principle, Lemma 2.1, make the final
result obvious.

The importance of the estimate obtained above is the following. As is well-known,
any sequence of functions having uniformly bounded variation is sequentially compact
in the L topology; see e.g. [3, Chap. IV, 8.20]. Lemma 4.1 tells us that { u}> 0 has
variation which is bounded uniformly for e > 0. We therefore have a function, say u,
along with a sequence e tending to zero, such that uu in L1. What remains to be
shown is that u is the unique lit point of u with e tending to zero.

For the moment, we shall assume a strict version of condition (1.3b). We assume
that a and fl in the boundary conditions (1.1b) satisfy

(4.1) 1/ <a(u) < l/a,

for all u in the a priori domain [m,M]. It will be seen by virtue of the continuity
estimate, Lemma 2.4, that (4.1) is an adequate assumption to prove the main result
stated in the introduction. Ts point is discussed further in the proof of Theorem 4.6.

With condition (4.1) in place over (1.3b), we now have a lemma concerning the
behavior of u at x 0 and at x 1.

LMMn 4.2. Given (1.2), (1.3a) and (4.1), and assume that u ten& in L to a

function u of boun&d variation for some sequence e, tending to zero. We then have, for
the same sequence en, that

(i) limu(0) and limu(1) exist, and
(ii)

limeu’{0) limf(u(0))-f(Tu(0)),
lim eu’(1) limf(u(1)) -f(u(1)).

yu(O) and yu(1) &note the boundary traces of the BVfunction u.
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Proof. To prove (i) at x 1 we may assume that/3 > 0 in (1.1b); otherwise there is
nothing to prove. Define p to be a smooth nondecreasing function with p(0)=0 and
p(1)= 1. Multiplying (1.1a) with p and integrating by parts, we find that

(4.2) eu’(1)-f(u(1))=fo (O’(eu’-f(u))+ob(x,u))dx.

(1.1b) gives us that eu’(1)= (Tt- u(1))/fl. Therefore, (4.2) may be written as

u,(1)+flf(u,(1)l=vl-flfo (p’(eu;-f(u))+pb(x,u))dx.

Condition (4.1) implies that the left-hand side of this identity is a strictly increasing
function. The right-hand side has a limit by virtue of the hypotheses of the lemma. So
we have lim u(1) exists and similarly lim u(0) exists.

To prove (ii), we return to (4.2). Sending e to zero, we find that

fOlimeu:(1)=limf(u(1))+ (-O’f(u)+ob(x,u))dx,

where u limu in L1. Since u has bounded variation, a simple exercise would show
that

lira 1/f f{u)dx=f(limu(x))=-f(’u(1)).0 - xT1

Setting

we have

{ 1; (x- 1)/8,p(x)= o

limeu:(1)=limf(u.(1))+%mo [-1/Sfl .:(u)dx+ O(8)]
limf(u(1))-f(3,u (1)),

which completes the proof of the lemma.
Next we obtain an integral inequality that every limit function of u, with e

tending to zero, satisfies. This inequality is frequently referred to as an entropy inequal-
ity in the literature. A significant implication of the entropy inequality derived below is
that only one BV function can satisfy it; see Proposition 4.5. This fact combined with
the result of Lemma 4.1 implies that u converges to a limit u independent of any
particular sequence of e-values tending to zero. The entropy inequality therefore char-
acterizes the limit function of u.

LEMMA 4.3. Given (1.2), (1.3a) and (4.1), we have that any L limit of u, say u,
must satisfy

fo sgn(u-k)((f(u)-f(k))x-b(x,u))dx

_< sgn( u (1) k )( f(k)-f(’u(1)))q,(1)

sgn( u(0)- k )( f( k )-f( "t, u (0))), (0),

where k is any real number and k is any smooth nonnegative function. Above, u(0)=
limu(0), u(1)= limu(1) and they are in general not equal to u(O), ,u(1).
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Proof. Multiply the identity

-eu:’+ { f(u)-f(k)}’ + b(x,u)=O
by sgn(u-k), integrate from zero to one using integration by parts, and send 3 to
zero. Then obtain

fo sgn(u-k)((f(u)-f(k))q-b(x,u))dx

__< sgn(u- k)(f(u)-f(k)) 10 + sgn(u- k)eue Io
e sgn(u- k) uq dx.

The last term on the right-hand side above goes to zero with e. For k different from
u(0) and u(1), the second result of Lemma 4.2 inserted into the eu’-term above would
complete the proof. Taking limits with k approaching u(0) or u(1) from above and
below will establish the entropy inequality also in the exceptional cases; that is, those
cases in which the discontinuity of the sign function must be taken into account.

The limit function u coming from (1.1) with mixed boundary conditions also
satisfies the entropy inequality satisfied by limit solutions of the pure Dirichlet problem
(i.e. u(0)=,0 and u(1)=3q). This fact is fundamental in proving the main result of
this section. With this in mind, we state"

LEMMA 4.4. With the same assumptions ofLemma 4.3, we have that u satisfies
(4.3)

fo sgn(u-k)((f(u)-f(k))ex-b(x,u)e)dx

=< sgn(1- k )( f(k)-f(yu(1)))(1)-sgn(o- k )( f( k)-f(yu(0))) (0),

for all real numbers k and any smooth nonnegative tk.
Proof. The proof of the lemma is immediate once that

(4.4) sgn(u(1)-k)(f(k)-f(u(1)))<=sgn(h-k)(f(k)-f(u(1)))
and a similar inequality at 0 is shown. To prove (4.4), first note that (4.4) is nontrivial
only if fl > 0 and 3’1 =< k =< u(1) or u(1) =< k =< "Y1. For definiteness let

(4 5) 3’1 <k< u(1)

Using (ii) from Lemma 4.2 and the boundary condition (1.1b), we have that

u(1)+flf(u(1))=ll + flf(/u(1)).

Since the function v -o v + fir(v) increases, we find with (4.5) that

k + fir(k) <= u(1) + fly(u(1))

=V + flf(vu(1))<=k+ flf(vu(1));

thus f(k)<=f(yu(1)). This shows (4.4).
We next prove that only one L limit function of u can satisfy the entropy

inequality of Lemma 4.4. This result is not new; see [1], [12] for example; however, for
completeness we shall sketch the proof.
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PROPOSITION 4.5. Suppose u and u2 are two BVfunctions that satisfy the entropy
inequality ofLemma 4.4. Further let b >= O. Then

fO [b(x,u)-b(x,u) [dx=O.

Proof. Take a nonnegative test function with (y)=(-y) for all y. Let
u= Ul(X) and set k=u2(x’) and =(x-x’) in (4.3). Integrate the result with respect
to the variable x’. Reversing the roles of u and u2, x and x’, and adding the two
inequalities together yields

(4.6)

fo fol$gn(ul(x)-u;(x’)){b(x,u(x))-b(x’,u:(x’))}dP(x-x’) dx’dx
<- n (I(u)-Z(,u(i)))sgn(.-._),(i-x’)dx’

i--0,1

+ E n (I(.)-I(u(i)))sgn(’-Ul)q,(x-i)dx.
i--0,1

Here we used the notation =(-1)+. Now, letting (x) approach the delta function,
we have that the above double integral tends to

fo Ib(x,ul)-b(x,u2) Idx.

The right-hand side of (4.6) can be treated as follows. Consider, e.g., the first term for
1 and find

fo f(u2)-f(’tu(1))]sgn(’t- u:)C,(1- x) dx

<= [f(u2)-f(’tl)]sgn(yl-Ug_)dp(1-x)dx

+ fo If(’h)--f(’/U(1))I(1-x)dx.

For ,(x) 8(x) the right-hand side of this inequality approaches

1 1
f( Yu2 (1) ) f( 3/1) sgn(’t "/u2 (1) )+ f(/) f([Ul(1) )

The other terms on the right-hand side of (4.6) can be treated similarly and one finds
the estimate

fo [b(x,ux)-b(x,u)

1<= E rli([f(’/u2(i))-f(i)]sgn(i-u2(i))
i----0,1

+ [f(’yu(i))-f(’yi)]sgn(’Yi-’tul(i))
+rlilf(’ti)-f(Yu(i)) I+rlilf(’Yi)-f(’Yul(i))
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It thus remains to be shown for u= u and u= u2"

lisgn(Ti-’u(i))[ f(Tu(i))-f(,i)] <=0.
But this inequality follows from (4.3) if one takes there k =’i and chooses ff as in the
proof of Lemma 4.4.

We finally are ready to state and prove the main result of this section.
THEOREM 4.6. Suppose u, is a sequence of solutions to (I.1) with e tending to zero.

Further suppose that the differential equation satisfies conditions (1.2), (1.3a) and (1.3b).
Then, u, tends boundedly a.e. to a limit function and this limit function is characterized by
the entropy inequality (4.3). Furthermore, the limit function is independent of a and fl and
is in fact the same a.e. as the limit function comingfrom the Dirichlet problem.

Proof. First, the combined results of this section prove the theorem in the case
when the strict condition (4.1) is in place over (1.3b). That is, we have shown that every
sequence of u,, e tending to zero, has a convergent subsequence to a unique limit
function which is independent of a or ft. What remains to be shown is that the theorem
remains valid when (4.1) is weakened to (1.3b). To show this, we consider a second
family of solutions, u,,, to a modified problem:

T,u,,,=O,
)

u,,,(1) + fl(1 8) eu,,(1) /1,

where we may assume that a > 0 and fl > 0. If the boundary conditions above satisfy
(1.3b) with 8 0, then they satisfy (4.1) with 0 < i < 1. So we have

where u is the limit of solutions to the Dirichlet problem.
Now, let rl be an arbitrary positive number. The continuity estimate of Lemma 2.4

allows us to fix/} > 0 sufficiently small such that

for all e > 0. Since u, satisfies (4.1), we may choose e sufficiently small such that

Ilu,-Ulll < rl/2,

thus completing the proof of the theorem.

5;. Appendix: Alternate proof of uniqueness using inverse-monotonicity. Given the
problem (1.1) with (1.2), (1.3a, b) is satisfied. The linearization of T at any function
U(X) C2 reads

(T’u)v= -ev" + (a(u(x))v)’+ bu(x,u(x))v.
Thus we study linear operators

)’(5.1) Lv -ev"+(p(x)v +q(x)v.
The following lemma is the key of the uniqueness argument:

LEMMA 5.1. Let L, be given by (5.1) and assume q(x)>0 in [0,1] as well as

1 1
/3=<P(X)=<--a in [0,1]
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where a>_0, fl>=O determine R, as in (1.1b). Then (L,R) is inverse-monotone, i.e.

(3.4) holds. Especially, the homogeneous equation Lv=O, Rv=O has only the trivial
solution.

Proof. Let L* u= -eu"-p(x)u’ + q(x)u. Using the notation

( cl(x)c2(x)dx
"o

we have for all u, v Ca.

with B( u, v) { e( v’u vu’) +pvu } Iox. If Rv 0 one has for all u C2.

B(u, o) co’(0) { (1 ap (0)) u(0) aeu’(O) }
-o’(1)((1 +$p(1))u(1)+eu’(1)}.

Thus we define the adjoint boundary operator

( (l-ap(O))u(O)-au’(O) )R*u= (l+flp(1))u(1)+fleu’(1)

Thus Rv R*u 0 implies

Since q(x)> 0, 1- ap(0)>= 0, 1 + tip(l)>__ 0 we have

L*o> 0, *_>0

with (x) 1; thus (x) is a majorizing function for (L*,R*). Then it is known that
(L*,R*) has a nonnegative Green’s function (e.g. [15]) and the assertion follows. The
following theorem is an immediate consequence of Lemma 5.1.

THEOREM 5.2. For the problem (1.1) assume

b.(x,u)>_l>O, a>=O, fl>=O
and let

1 1

where m, M] denotes the a priori domain.
(i) If u(x), v(x) C2 satisfy

m<=u(x),
then

form<_u<_M

v(x)<_M,

Tu <__ Tv, Ru <=Rv
implies u <= v. Especially, (1.1) is uniquely solvable.

(ii) At any u(x) C with m <__u(x)<__M, the linearproblem

(T,’u)o=O, R,v=O

only has the trioial solution. As a consequence, if u(x) denotes the solution of (1.1), the
mapping e u is continuous from (0, o) into C2.
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Proof. We only have to show (i). For 0 __< s __< 1 let

-o(x)].

If we set

p(x) fo
q(x)=fo b(x,z(x))ds

and define L by (5.1) then

r,o=Z,(u-o).

The assertion now follows directly from Lemma 5.1.
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A PRIORI BOUNDS AND EXISTENCE OF POSITIVE SOLUTIONS
FOR SINGULAR NONLINEAR BOUNDARY VALUE PROBLEMS*

D. R. DUNNINGER AND J. C. KURTZ

Abstract. We consider singular nonlinear problems of the form -(1/p)(pu’)’=f(u) on (0,1) with
Dirichlet or mixed boundary conditions. The existence of a positive solution is obtained by first deriving a

priori bounds in an appropriate weighted Sobolev norm, which in turn imply L a priori bounds. We then
apply known results concerning fixed points of mappings of a cone.

1. Introduction. In this paper we seek the existence of solutions to singular prob-
lems of the form

Zu=- -(pu’)
P

on (0,1)

with u(1)=0 and boundary conditions at t=0 which will be determined by the
behaviour of p(t) near t=0. We will always assume at least that pC[O,1]nCl(O,1],
p (0) 0 and p (t) > 0 on (0,1 ].

Linearly independent solutions of Lu 0 are u (t) 1 and u
_
(t) ft (ds/p (s)).

Thus, if p satisfies f(ds/p(s))< o, then u1, u 2 are bounded and we may consider the
Dirichlet problem

Lu=f(u) on(0,1),
(1.1) u(0) u(1) 0.

On the other hand, if fd(ds/p(s))=, then u 2 becomes unbounded near t=0,
and the Dirichlet problem is inappropriate. In this case we take as our model the
Dirichlet problem in Rn(n _> 3)

-Au=f(u), Ixl< 1,

u=0 on Ixl =1.
The equation for radial solutions u u(r), r= Ixl, is then

-rl-n(r’-lu’)’=f(u), r (0,1),
u(1) =0

and one seeks solutions satisfying u’(0)=0 so that the solution u-u(Ixl) is c2 at the
origin. Thus we are led to consider the problem

Lu=f(u) on (0,1),
(1.2) u(1) =0, lim p(t)u’(t)=O.

t0

This weaker form of the boundary condition at 0 seems more natural in the weak
formulation of the problem, and will eventually lead to u’(0)= 0.

*Received by the editors August 25, 1983, and in revised form October 15, 1984.
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.
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In the sequel it will become clear that problem (1.2) is also appropriate in the case

f (dt/p (t))< o. Thus we will consider (1.2) in both cases.
We shall denote the problems (1.1) and (1.2) collectively by

(1.3) Lu=f(u) on (0,1),
u,,

where u means that u satisfies the appropriate boundary conditions depending on
the behaviour of p near 0.

For regular boundary value problems, fairly general conditions on the function f
which ensure the existence of a solution have recently been given in [3], [4]. This
approach is being pursued by the authors in a separate paper [1] for the singular
problem.

In the present paper we consider a much different class of nonlinearities, and
prove the existence of a positive solution by first deriving a priori bounds for any
positive solution. Our approach is generally along the lines of [2] and [11]. Existence
alone can be obtained under weaker hypotheses (see [2, Thm. 2.3]).

Sections 2 and 3 contain definitions and a number of technical results, which will
be needed later, concerning the operator L and the various spaces involved. In 4 we
obtain a priori L-bounds for positive solutions of (1.3). Finally, in 5 we use the a
priori bounds to obtain the existence of a positive solution by a fixed point argument.

2. Definitions and imbedding theorems. For i= 1,2, we define the spaces (X,
I1"11 x) by

gi--(uluC[O,1], pu’C[O,1], LuC[O,1], u,)
where

and

l=(UlU(1) lim p(t)u’(t)=O},
t0

( ulu(Ol=u(1)=o),

where as usual

Ilull [ulo+ pu’[o+ Itu 10,

lulo= max ]u(t)[.
0<t<l

Correspondingly, we define (Y/, I1" II ) by

where

Y1 {ulu AC,oc(O,1l, u(1)=0, Ilull  
(ulu AGoc(O,a], Ilull <

1/2
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We denote by Lpq the space of all measurable functions u for which

Ilull, lu(t)l p(t)dt

2 withand by Wp1’2 the space of functions u A Cloc(0,1] for which u, u’ Lp

(P1)

Remark 2.1. If we assume the condition

1 f0p(s) p(t)dtds<o,

then Ilullv is equivalent to Ilullw3,=. In fact, for u Y/we have

( )1/2( )1/2(2.1) lu(t)l< ftiu’(r)2p(r)dr fti d.z

and thus

u(t)p(t)dt<llullf i

o p(r p(t)dtdr.

We now state and prove a number of imbedding theorems.
LEMMA 2.1. If (P1) holds, the imbedding X C[0,1] is compact.
Proof. For u X1 we have

fot[Lu[p(r)dr<= [[xf0tP (r(2.2) [p(t)u’(t) [<= [[u )dr

from which it follows that

[U(12)__U(tl) i< [1U [[xfti2 1 f0p(t)
p(r)drdt

and

i 1 f0lu(/) 1< Ilull p(r)drdt.p(t)

The result now follows from the Arzela-Ascoli theorem.
LEMMh 2.2. Ifp satisfies

(P2) fo dt
p(t)

the imbedding X2 C[0,1] is compact.
Proof. If u X2 we have

and

[u(t2)-u(t) I_<_ Ilullxt2 dt

tl p(t)

[u(t) I< Ilull at

and the result follows again from the Arzela-Ascoli theorem.
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LEMMA 2.3. /f (P1) ((P2)) holds, then the imbedding i: X YI (i: X2 Y2) is
continuous.

Proof. In the first case we have from (2.2)

f0lu,(t)2 2Xfo1 1 (fo )2p(t)dtzllull
p(t)

p(-)dr dt

<= Cllull2xf 1 foo p(t) p(r)ddt

while in the second case we have

foau,(t)2p(t)dt= fol 1 ,( fo dt
p(t) (P(t)u t))dt<__llul[x p(t)"

LEMMA 2.4. If (P2) holds, the imbedding i: Y. C[0,1] is compact.
Proof. For u Y2 we have from (2.1)

(foldt)1/2lu(t)l<llull p(t)
Since

lu(t_)-U(tl) I<= Ilull
the result follows once more from the Arzela-Ascoli theorem.

In order to prove a corresponding imbedding theorem for Y we must impose
more restrictions on p (t), namely

(P3) lim
tp’(t)

t----O p(t)=a>0,
(P4) Cx(1 + Ilogt I) - < < C2(1+ Ilogtl).=p(t)

Remark 2.2. It follows from (P3) that

lim
1 fott-,o* p(t) p(z)d’= lim p(t)=0

t-,o p’(t)

so that (P1) also holds. In addition, it follows easily from (P4) that (P2) holds for
0 < a < 1, whereas if a >= 1,

ds

We now define

o+l=sup q p(r)

LEMMA 2.5. Let (P3), (P4) hold. Then

o+1= 2(a+l)
a--1

if O<a<=l,

if a>l.
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Proof. For 0 < a < 1, (P2) holds, and therefore
For a 1,

ft p(t)<=c2d"ft (1 log’) d<C(l_logt).=

and therefore,

p(,) p(t)dt<=C (l-log)1+

for every q, which implies o + 1 + o.
For a>l,

d,r

p(,r ) <= c2fl,-(1-1og,)d<__ ctl-(1-1ogt)
and therefore,

f01(ft d’i" )q/2 foltp(t)
p(t)dt<= C ot+(1-a)q/2(l-logt)l+(q/2)dt.

The last integral, however, is finite if a + (1 a)q/2 > 1, i.e., q < 2(a + 1)/(a 1).
Thus o + 1 >= 2(a + 1)/(a- 1). Similarly we can show that o + 1 =< 2(a + 1)/(a- 1) which
completes the proof.

LEMMA 2.6. If (P3), (P4) hold, then the imbedding i’Y ---, L is compact for
2=<q<o+l.

Proof. Using (2.1) we obtain

fo qfo (ftl d’l" )
q/2

y as e(2.3) lu(t)]qp(t)dt<=llullv p(t) p() dt=o(1)llu[I
q

0+.

Assuming Ilu,llyC, it follows f.ro2m Remark 2.1 that Ilu.llwu is also uniformly
bounded. Since for every e>0, Wt- _c wl,V ([ e,1]), the usual Sobolev space, it follows
that there exists a subsequence, which we again call (un }, and a function u Y1 such
that un---, u uniformly on compact subsets of (0,1]. From (2.3) we can easily infer that
Ilu-ullY 0, which completes the proof.

LEMMA 2.7. Let (P3) hoM and, in addition, assume

(P4)’ C1(1 + logt 1)-1=< p(t) <=C2’

(PS) p’(t)>0 on (0,1).

Then, if a > 1, the imbedding i" Yx + is continuous.2ot/(otLP 1)Proof. For u YI, set v=lu Then

(2.4)

a ftaIv(t)lp(t) Io’()lp()d,

Iv(t) II+(1/ot) cfll v(’r)[1/1 v’(,)Id’r,



600 D.R. DUNNINGER AND J. C. KURTZ

and therefore,

follV()[l+(1/a) fO 1 1/ap(t)dt<=C p(t) Io()l Iv’()lddt

-<Csup([v(r)JX/’ 1 fo" )fo>o p(v---ff p(t)dt Iv’(r)lp(r)dr.

Using (2.4) and (P4)’ we obtain

p(t)dt<= C v’(r)

Now

sup(p(r)-X-(/f:p(t)dt)
"r>0

(foX )1 +(1/)=<c Ip( )d 

2a (a+l)/(a- ,({v’(t) {<= a_ 1 lu(t) [u t)[.
Thus

( f01 U (t)
0+1

p(t)dt ) /(+ x)

and finally

+ 1)/(a ,(=<C lu(t) ( -lu t)lp(t)dt

(f01 t( 2 ) 1/2( f01 o+1 )1/2<__C u t) p(t)dt lu(t)[ p(t)dt

p(t)dt) /(’+)

3. Further preliminary results. In this section we examine some properties of the
operator L and the solutions of problem (1.3).

For 1, 2, let L; be the operator given by Li L:Xi C[0,1]. Then we have the
following:

LEMMn 3.1. If (P1) ((P2)) holds, then L (L.) is bounded, one-to-one, onto, and
has an inverse G (G2) which is compact as an operator on C[0,1]. Moreover,

Gih(t)= gi(t,s)h(s)p(s)ds, hC[0,1],

where

dr

gX(t’S)=
drf,

t<=s,

ts,

(fo d’/- )-lfsl d’/" fo d’r

g2(t,s)
p(r) p(r) p(r)

(fo dT )-lftl dT, f0 dT
p(r) p(r) p(r)’

t<=s,



A PRIORI BOUNDS FOR POSITIVE SOLUTIONS 601

Proof. Since ILulollullx, it follows that each L; is bounded and one-to-one. By a
direct computation we find that G;" C[0,1]X and G= L;-1. The compactness of the
G follows from the closed graph theorem and Lemmas 2.1 and 2.2.

LEMMA 3.2. Let fC(R). (i) If uX is a positive solution of (1.2), then u’(t)<0
on (0,1]. (ii) IfuX2 is apositivesolution of (1.1), then u’(t)>0 on [0,t0) and u’(t)<O
on ( o, 1 for some o (0,1).

Proof. The proofs follow along the lines of [7, Lemma 4.1].
LEMMA 3.3. Let (P3), (P4) hold. Suppose fC(R) and f(t)=O(t k) for some

k[1,o). If u Y is a weak solution of (1.2), then in fact u C2[0,1] and u’(0)=0.
Proof. We recall first that u is a weak solution of (1.3) if

holds for all w . In view of Lemma 2.4, Lemma 2.6 and the estimate If(u)l C +
C21ul it follows in standard fashion that the right-hand side of (3.1) is well defined.

Next we note that in fact u C2(0,1] and satisfies (1.2), cf. [9, Lemma 1, p. 209].
We now show that u L. If a < 1, then by Remark 2.2, f (ds/p (s)) < and the

result follows from (2.1).
Now suppose a 1. Integrating (1.2) twice gives

(3.2) p(?)
(u(s))p(s)dsd.

Since If(u)l C + CElu[ k, (3.2) yields

lu( )l p(s)dsdz.

We now iterate (3.3), beginning with the initial estimate

u(t) O(t-)/2(1 -logt)/2)
which follows from (2.1) and (P4). If at the th stage we have

u(t) O( tX’(l -log t) a’),
where X 1 -a/2 and fli > 0, then (3.3) yields (for a > 1)"

lu(t) I C + clz+gx’(1-1ogz)k#i+dz
of ), -1,

O(t+kXi(1--1ogt) ’+ I+kX,< -1,

O(fl- -1.

Thus );>__ (1- a)/2 and 1 + k,;< -1 imply i+l=kti q- 2. Moreover, it is readily seen
that 2 / > ). If 1 + k, < 1 for all i, then )t converges to some )t and k)t + 2.
But this means

2 2 1-a
1-k 1-o 2
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which is impossible. If at some stage 1 + kAi=- 1, then one more iteration gives
uL. Thus after finitely many iterations 1 + kAi>= -1, and we have uL. The case
a 1 is similar.

For the second part of the lemma we observe first that

u(0)=f01 1 f/fp(’) (u(s))p(s)dsd’r.

Hence

u(l)-u(O) C fot 1 fo< p(s)dsd,=T
which by Remark 2.2 implies u’(0)= 0. Next we see that

u’(t) 1 tf---t tp(t)
(u(s))p(s)ds,

which by l’Hrpital’s rule and (P3) gives

u"(0)=- lim f(u(t))p(t)=_f(u(O))
t--,o p(t)+tp’(t) a+l

On the other hand, we have from the equation

lim u"(t)= lira -f(u(t))
tO tO p( )’ 0 "+’1

and therefore u C2[0,1].
Finally, we shall need a result concerning eigenvalues and eigenfucntions of (1.3).
First we recall that if for a complex number h there is a nontrivial o Y such that

folo’(t)w’(t)p(t)dt kfolai(o,w) v(t)w(t)p(t)dt

holds for all w Y, then we call h an eigenvalue of L and we call v a generalized
eigenfunction (corresponding to A).

Under the assumption (P1), it follows from Remark 2.1 that the bilinear from
a(v, w) is positive definite. Moreover, assuming (P2)-(P4), it follows from Lemmas 2.4- is compact. Thus by a standard result [10], thereand 2.6 that the imbedding i" Yi Lp
exists a sequence of eigenvalues and generalized eigenfunctions of L.

In addition, we have the well-known result:
LEMMa 3.4. Assume (P2)-(P4). Let be the first eigenoalue of L with correspond-

ing generalized eigenfunction v Yi. Then > 0 and

hl=min So u’( )2p ( ) dt
u vi fu(t)Zp(t)dt
u@O

Moreover, v may be chosen to be positive in (0,1).
Remark 3.1. It follows from Lemmas 3.2-3.4 that
(i) For problem (1.2) the eigenfunction v is positive and strictly decreasing.
(ii) For problem (1.1) the eigenfunction vl is positive and strictly increasing on

[0, to], strictly decreasing on [t0,1], for some o (0,1).
It follows also from (1.1) (1.2) that 01 X (/)1 S2).
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4. A priori bounds. We consider first problem (1.1).
THEOREM 4.1. Suppose

(P2) fo dt
p(t) <

holds andf satisfies

(F1) fC(n +),

(F2) lim
f(t) >

Then any positive solution u X2 of. (1.1) satisfies [Ulo=< C, where C is independent of u.
Here and in all that follows, C will denote a constant, different on different

appearances, which is independent of u.

Proof. Multiplying (1.1) by pv and integrating by parts gives

(4.1) folu’v’ p dt folf( u ) v p dt.

Similarly, multiplying Lv hlVl by pu and integrating by parts yields

fo1’ foXuv pu vp dt h dt

which, taken together with (4.1) gives

foXuv p dt folf( u ) v p dt.(4.2) ’1

It follows from (F2) that there exist s0>0, ,> such that f(s)>=ks whenever s>=so.
Thus (4.2) yields

kfolUVlpdt <_folf(u)vlpdt+ C=klfolUVlpdt+ C
so that

C
lpdt <= ,_, folf C’1(u)vlpdt<=h_

and finally also

(4.3) follf(u) [vlpdt <= C.

By Remark 3.1 and Lemma 3.2 we have for 0 _< =< e, e sufficiently small,

c>=foluvlpdr>-i2euvlpd’r>= u(t)eVl(e) min p(r)
e<’<2e

so that u(t)<=C for 0_<t_<e. Similarly, u(t)<=C for 1-e<=t<=l. It follows easily from
(4.3) that

fo f( u ) lp dt <= c.
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Next, since u= Glf(u by Lemma 3.1,

p(z) p(z) f(u(s))p(s)ds

p(;),,

which in view of (P2) yields

Ip(t)u’(t)[<= [f(u(s))[p(s)ds<=C.

Thus

lu(t) ’(p(r,) (p(’)u r))d

< (follf(u(,r))[p(,r)d,r)(fol d’r ) =<c
and the theorem is proved.

Next we turn our attention to problem (1.2).
THEOREM 4.2. Suppose

lim tp’(t)=a>O,(P3)
to p(t)

(P4)’ C1(1 + Ilogt l) -1 t

(P5) p’(t) >0 on (0,1),

hold andfsatisfies (F1), (F2) and

(F3)
lim t-f(t)=O (a> 1),
t--- oo

f(t)=O(t r) forsomer(O, oc), asto, (O<a<l),

(F4)
lim

tf(t)-OF(t) <0,
t---,o iV(t)2/(a+l)

forsome O [0,o+ 1) if a> 1, where F(t)= fdf(s)d.

Then any positive solution u X of (1.2) satisfies lul0< c.
Remark 4.1. Consider the typical case p(t)=tn- (n>=3), where a=n-1, o=

(n + 2)/(n- 2). Since (F4) is satisfied in the case where t-F(t) is decreasing for large
t, it follows easily that (F1)-(F4) are satisfied for f(u)=uk, 1 < k < (n + 2)/(n-2).

Proof of Theorem 4.2. The proof is very similar to the proof of [2, Thm. 1.1]. We
include the details for the sake of completeness.

As in the proof of Theorem 4.1 we have

(4.4) fol[ f( u) IP dt <= C.
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Multiplying (1.2) by p and integrating gives

p(t)u’(t)= ftlf(u(r)lp(rldr
and thus

for 1-e<t<l.

1 f01p(1-e) [f(u)]pdr<C

We now consider the case a > 1 and obtain a "Pohozaev" type identity. Multiply-
ing (1.2) by u’ and integrating we get

1 2) ftl p’(r) u,(r)2dr-{u’(1)2-u(t) p(t)+p(t)
p(z)

which implies

fo 1 )2fol lfolU,1F(u(t))p(t)dt=-u’(t p(t)dt- (t)2p(t)dt

fo ftlP"(r) ’( )2drdt+ p(t) p()
u

1 fol{ P(t)p’(t)u’(1)2p(l) + p t)
where

P(t)= p(r)dr.

It follows from (P3) and l’H6pital’s rule that

lim
P(t)p’(t) 1=1__

t.,0 p2(t ) 2 o+ 1"

Thus we may choose l (0, o + 1) so that

P(t)p’(t) 1 1
on (0, e),

pZ(t ) 2
<-

and

(4.5) fo l fo1 ,)2 l foluf(u)pdt"1F(u)pdt<__ C+- (u pdt<= C+-

tf(t)<_OF(t)+8t2lf(t)[2/(a+1) for t>_t.

This together with (4.5) gives

(4.6) fo fo folu21 +1)lf(u)updt<=O 1F(u)pdt+e f(u)[2/( pdt+C

Ofo1f f012 2/(a+ 1)
<_- (ulupdt+e u pat+G.

1}-- u’(t p(t)dt

Using (F4) we have for every e > 0 the existence of a 6> 0 such that
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But, by (4.4) and Lemma 2.7, we have

fo 21 2/(a+ 1) (fO )2/(a+ 1)(fO1 i+1 )(a-1)/(a+l)u f(u) pdt<= If(u) Ipdt [u pdt

f01 ,)2 folf(<=C (u pdt=C u)updt.

Combining this with (4.6) gives

( u ) up dt s - u ) up dt + Ce u ) up dt + C

and thus

(1- O ce) fof( u ) up dt <

Choosing e > 0 sufficiently small gives

Next we observe that for r > 1

f01(u,)2(4.7) r U Ipdt=4rfol(r+l)/2)’:z folf(r+ 1)2
I(u pdt= (u)urpdt.

According to (F3) we have

(4.8) f(u)urzeua+r+Ce

Setting q=(o + 1)((r- 1)/2) we obtain from (4.7), (4.8) and Lemma 2.7

It follows that

(4.9)
l/q

( folu qp dt <= C
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for q=(o+ 1)((r+ 1)/2), for all r> 1; i.e. for all q>o+ 1. Hence (4.9) is valid for all
q >_ 1. Finally, we have from (3.1) and (4.9)

p(’t)

follf(u(s)) l( dt )p(t) p(s)ds

< If(u(s))l‘/‘- p(s)ds foP(S) dt
p(t)

Taking 2 < r < o + 1 gives

2)p ds + C C.
#0

According to Lemma 2.5, o + oo when a 1. Thus in view of (F3) and Lemma
2.6 it follows as above that lul0__< c.

For the case 0 < a < 1, according to (F3), we may choose 3’ (0,1) so that

lim tf(t)=0.
t--,o t2f(t) v

Then for every e > 0 there exists a t > 0 such that

tf(t)<=etf(t) for t>=t.
Thus

f0 f0 f0lu2l(ut)2pdt= lf(u)up dt<= e [f(u)lrpdt+C

E(follf(u)lpdt)f(folu2/(1-7)pdt)l-Y
< (u’) pdt+C,

by (4.4) and Lemma 2.6, and again

Using (3.1) again we have

[u(t)l=< p(t) [f(u)ipdt<=C

(F3)’ lim t-7(t) =0, 1 <1<o,
t--

lim tf(t)-OF(t) 0 [0,1+ 1),(F4)’
,--,oo t2f(t)2/(+1)’

in view of (4.4) and Remark 2.2. Thus the theorem is proved.
Remark 4.2. If in Theorem 4.2 we replace conditions (F3) and (F4) (in the case

a>l)by
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where/3= (l + 3)/(/-1), then condition (P4)’ may be replaced by the weaker (P4). The
proof is essentially unchanged if we replace o by l, ct by/3, and use Lemma 2.6 in place
of Lemma 2.7.

5. Existence of a positive solution. We first observe that, by Lemma 3.1 and the
classical maximum principle, finding a positive solution of (1.3) is equivalent to finding
a nonzero solution u K= { u lu C[0,1], u >__ 0} of the equation

(5.1) u= ti( tl) Gif( tt ).

Our tool in this regard is
PRO’OSITION 5.1 (see [2]). Let K be a cone in a Banach space B and " K--, K a

compact map with (0)=0. Assume that there exist numbers 0 < r < R and a vector
v K- {0} such that (i) x 4= rib(x) for 0 < < 1 and Ilxll- r and (ii) x 4: d(x)+ tv for
> O and Ilxll--R. If U-- ( x g r < llxll < R } and Bo- ( x g llxll < o ), then d has a

fixedpoint in U.
Remark 5.1. (i) is satisfied if there exists a bounded linear map A "B B such that

A(K)G K, A has spectral radius less than 1, and (x)<=A(x) for xK and Ilxll-r. In
addition, (ii) may be replaced by (ii)’ there exists a compact map F" BRX[0, m)K
such that F(x,O)=d(x) for [Ixll=R, F(x,t)4x for Ilxll-- R and 0=<t< , and F(x,t)
x has no solution x BR for >= 0.

THEOREM 5.1. Let f: R / / be locally Lipschitzian and suppose the hypotheses of
either Theorem 4.1 or Theorem 4.2 are satisfied. Assume in addition that

(F5) lim
f(t)

<Xl, f(0)=0.
t_.O

Then there exists at least one positive solution u X of (1.3).
Proof. We seek a fixed point u K of (5.1). By (F5) we may choose r > 0, a < X so

that f(t)<=at for O<t<r. Then i(u)<=aGi(u) for lU[o=<r, and IlaGil[<__a/h <1 so
that (i) is satisfied. Next we set

Fi( u, ) Gi(f( u) + ).

It can be shown using the techniques of the proof of Theorem 4.1 that Fi(u,t)=u has
no positive solutions for t>= 0. It follows then as in [}4 that the a priori bounds for
positive solutions hold uniformly in t. Thus there exists R > r such that F(u, t) u has
no solution for lul0>= R. It follows from Proposition 5.1 that has a fixed point u U.
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Abstract. A multidimensional parabolic free boundary problem of the implicit type arises in models in
the soil sciences. Existence, uniqueness and asymptotic behaviour of weak and classical solutions are
considered.
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1. Introduction. Approximately one-third of the developed agricultural lands in
the arid and semi-arid regions of the world exhibit harmful salinity accumulation. This
leads to considerably reduced crop yields (compare e.g. [4]). Reclamation of saline soils
is done by leaching, the process whereby soil solution of high salt concentration is
displaced by less concentrated solution until the accumulated solid salt is removed. A
comprehensive exposition concerning saline soils may be found in [3]. In this paper we
develop and investigate a model that describes the leaching process with special regard
to the dynamics of the amount of the solid salt. One-dimensional and other simplified
versions of this model appear in [9], [6], [7]: [9] compares numerical computations
against experimental data, while in [6], [7] existence and uniqueness are investigated.
Mathematically our multidimensional model generalizes most of the previous results in
[6], [7]. Especially we have a stronger notion of solution, while we require weaker
assumptions on the smoothness of the data.

2. The problem. Soil is a porous system, consisting of the solid soil matrix, the soil
solution, i.e. water with dissolved substances, and the soil atmosphere, which both fill
the pore space. We start with the macroscopic mass balance law for a solute, which is
derived from the microscopic law by averaging over the water filled part of a "Rep-
resentative Elementary Volume (REV)" (compare [1, pp. 513-520]):

(2.1) )(OC + S) div[J + J2 q- J3] +/,Ot

where: 0 is the volumetric water content, i.e. the ratio of the volume of water to the
total volume of an REV, C is the concentration of the dissolved salt and S is the
concentration of solids absorbed on soil surfaces or located in dead-end pore space.

J1 denotes the convective flux density of the solute, thus

(2.2) Jl= CV,

where V is the flow rate of the soil solution. J2 is the dispersive flux density, due to
variations of the flow velocity at the microscopic scale, and J3 is the flux density as a

*Received by the editors March 6, 1984. This work was supported by CNR, Italy.
*Mathematisches Institut, Universitt Augsburg, 8900 Augsburg, West Germany.
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result of molecular diffusion, and finally/ is the volumetric rate of supply or loss. All
quantities are to be understood as averages, C over the water-filled part of an REV,
while V, S, and/ are over the total volume.

We assume

(2.4)
J2 -0Dlgrad C,

J3 0D2 grad C (Fick’s law),
S= KxC+ K2 (Lapidus/Amundson, compare [2]).

D are symmetric matrices, Dx may depend on V (compare [1, pp. 232-239]), Ki are
functions with K >= 0, both only dependent of x.

Furthermore, assuming the incompressibility of water, we can use the macroscopic
balance equation for the water volume

0
(2.6) ---- -divV

to simplify (2.1) to:

(2.7) a( ac) ac
Act- 

denoting A 0 + Kx, D 0(l) + ])2) and applying Einstein’s summation convention.
Let N denote the average concentration of the solid salt. Then, under assumptions

described in [9], we have, as long as N(x, t)>0:

(2.8) Nt= -’,/(C * C ).

C* is the saturation concentration and , is a known function, e.g. of the form O for a
constant > 0. The dissolution of N serves as a source for C, such that

(2.9) /5= _Nt+F"

For the completion of our description we need initial conditions for C and N and
boundary conditions for C. The boundary conditions are assumed to be

C
(2.10) D j-jxj n fl (C C,)

with given functions fl and C,, while n denotes the outward normal vector. This form
includes the cases (i) fl= Vn and (ii) fl=0. At the portion of the boundary where we
have (i), water with a salt concentration C, flows in or out and (2.10) expresses the
continuity of the mass flux density in the normal direction. In case (ii) we have either
impermeability of that part of the boundary for the water and solute flux or the
situation of (i) but with C= C,, i.e. continuity of the concentration across the boundary.
Neglecting the influence of the solute on the water flow, we can regard /9 and V as
known functions of space and time. Due to the interface between the regions N> 0 and
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N 0 there is a discontinuity, since in general N will not vanish there. Thus a classical
description has to deal with this free boundary:

Let be a domain in R n, n N, S’= , T> 0, Qrlr2 "= _(T1, T2), Qr "= Q0r,
st’=_ s [0, T]. Let A, Dij, V, F, ),, C* be given functions on Qr, Co, No are given
on f and fl, C, are given on Sr respectively, i,j 1,..., n. We will use for the elliptic
part of the differential operator

and, n being the outward normal, for the outward conormal

For function spaces we adopt the notion of [8]; thus we use [[.]]q, QT for the norm in
(2,) for the norm in WqE"’(Qr) and ]-I) for the norm in Ht"/E(-Or). InLq(QT), II’llq, e

accordance with this the maximum norm is denoted by I" I()
DEFINITION 2.1. A triple (C,N,) is called a classical solution in Qr, if:

(2.11) N C(QT) N>=O on QT.
Let f0,r "= {xflthere exists t[O,T]’N(x,t)=O};
then C(fo,r), (x)[0, T] for Xo,r.

(2.12) N(x,t)>Oe(x)>t for XO,T, t[0, T].

(2.13) Let Q+’= ((x,t)QrlN(x,t)>O}, Q_’= Qr\Q+;
then C C2a(Q+)cIC2a(Q_)C(r),
Oc
i
)x’C(QT)’ i--1,’’’, FI, Ntf(a+).

(2.14) AC,-LC+Nt=F in Q+,
AC,- LC F in Q_.

(2.15) C(x,O)= Co(x), xeO,
OC
3v =fl(C-C.) on ST.

(2.16) Nt=-7(C*-C) in Q+.

(2.17) N(x,O)=No(x), xf.

The free boundary (x)= separates the regions N> 0 and N 0. The free boundary
conditions are contained in (2.11), (2.13), assuming the continuity of N, C and OC/Ox
across the interface; in particular we have N(x, (x))=0. To preserve this condition,
we must have the restricted domain of definition for . As we are mainly interested in
the existence of classical solutions, we consider only smooth data. In the whole paper
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we use
Assumption 2.2.

(2.18) A(x,t)>O for all (x, t) Qr.

(2.19) (Dij(x, t))i, j is symmetric and positive definite for
all (x,t) Qr.

(2.20) A, Dij, 3Dq/Oxi, V,., ,[, C*, FH"’/2(-r) for some
a (0,1), i,j=l,...,n.

A (-, 0) is continuously differentiable in a neighborhood of S.

(2.21) G" Wq2- 2/q(,) for some q > (n + 2)/2, q >__ 2, q 4: n + 2.
CO is continuously differentiable in a neighborhood of S.
No H’().

(2.22) C, Wq l/q,(1-1/q)/2(ST).
fl, DijniHl-1/q+e’(1-1/q+e)/2(T) for some e>0, j= 1,-.., n.

(2.23) If q>3"OC0(x)/3v=[3(x,O)(C0(x)-C,(x,O)) for xS.

(2.24) SH2+a.

3. Existence of weak solutions. The differential equation in (2.14) can be written
as

(3.1)
where

ACt-LC+H(N)Nt=F,

1, s>O,(3.2) H(s)’= 0, s=<0, sR.

Motivated by this, we develop the following notion:
DEFINITION 3.1. A pair (C,) is called a weak solution in Qr, if

(3.3) C W2’X(Qr)rqC(Or), C(-r), C(x,O)=Co(x) in

(3.4) Ctdxdt + ij

fsf(C C,)dxdt+f Oc

rdxdt

for all

in
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We first show the existence of a weak solution and later examine the relation between
classical and weak solutions.

We use the following smoothing of H:

0, s=< -e/2,
(3.6) H,(s)’= s/e+ 1/2, Isl<e/2,

1, s => e/2
and consider the following regularized problem:

DEFINITION 3.2. Let e > 0. A pair (C,, N,) is called a solution of (P,), if it classically
fulfills

(3.7) AC,-LC+H(N)N,=F in Qr,

the identity (3.5), and the initial and boundary conditions (2.15).
LEMMA 3.3. (P,) possesses a solution (C,,N,), C, Wq’I(QT). h constant K indepen-

dent of e exists such that

(2)(3.8) IICll,w=<g.

Proof. Define the operator -=
(,(N))(x,t)’= No(x)-fot(y(C*-Cl)(x,’)d’,

C being the classical solution C,u) of

(3.9) ACt-LC-H,(N)v(C*-C)=F in Q

with initial and boundary conditions (2.15).
Let i:= min(a, 2- (n + 2)/q)/2. We will prove the existence of a fixed point N,

of in X:= Hn’n/z(r). Obviously (CU,),N) is the desired solution. The proof will
be accomplished by Schauder’s theorem.

(i) is well defined from X into X.
Let NX. Cu) exists uniquely (e.g. [5, p. 147, Cor. 2]) and is in Wq’a(Qr)

(compare [8, IV, 9], ,-,u)and [10, Thm. 17]); therefore % "s a so in H’a/2(-r), with
:= 2-(n + 2)/q [8, II, Lemma 3.3]. Afortiori we have -(N) X.

In the following K denotes constants independent of N and e:
ii) For some K the closed ball B(0) is mapped by " into itself.
Let N X; then we have (compare [10, Thin. 17], [8, IV, 9])

IIc K(1 + F+ H(N)/(C* CN))l]q, a)

We can conclude from the maximum principle (e.g. [8, Chap. I, Thm. 2.3])

(o)

and thus we get

(3.10)
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and especially ([8, Chap. II, Lemma 3.3])

(3 11) ICe(N) 1(28)
IQr =<K.

This also means that X is mapped into a ball BK(0).
iii) is continuous.
Let N1. 2 X; then w’= CN)- CN2) fulfills

Aw Lw + H(N1)w=(C* C2))(H(NI)-H(N2)) f
w(x,0) =0, x,
3w
) Bw on Sr.

in QT,

Now applying [5, Thm. 4’, p. 213] we get:

using e.g. (3.11). Therefore"

To finish the proof, we have to establish:
iv) -[Br(0)] is precompact, K according to ii).

This is true because of (3.11) and the compactness of the imbedding H2’(-Or) X.
Finally due to (3.10) we also have (3.8). t3
THEOREM 3.4. There exists a weak solution (C,) such that

C Wq2’l(Qr).

Proof. The solutions of (P) satisfy (3.5) and an integral relation (3.4), which
equals (3.4) after substituting H by

(3.12) /-)r(s)" foSH(li)d.
Using (3.8), we see, by passing to a subsequence if necessary, that"

(3.13) CC
(3.14) CC

weakly in Wq2a(Qr)
strongly in Ha’a/2(-T)

for e - 0

with t (0, 2 (n + 2)/q).
From (3.14) we conclude

(3.15) N strongly in C(T),
and r fulfills (3.5). (3.3) is satisfied, too.

To finish the proof, we have to establish the convergence of (3.4) to (3.4), where
due to (3.13) it suffices to show:

(3.16) yfQr( I?t (N) I( ) ) tdx dt 0

for e 0 and all test functions
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We have:

( I2t( N)-I() ))( x,t ) H((x,t))( N(x,t)-( x,t))

for some (x, t) (N(x,t), (x,t)), and therefore from (3.15)
(o)(3.17) I&(N)-&() [r0 for e0.

Furthermore [[/7/_/:/[[ oo 0 for e 0 such that

(o)
(3.18) I//()-/()IQ0 for e-0.

(3.17), (3.18) imply (3.16). ffl
As a first regularity result let us mention"
THEOREM 3.5. Let (C,) be a weak solution such that C Wp2’t(Qr) for some

p>l.
Let Q be a cylinder with smooth boundary, Q Q1 or Q Q2 with

O,’= { (x,t)Qrl(-1)’+(x,t)>O}, i=1,2.

Then C H2+’1+/2() and (C,I) fulfills classically

(3.19) ACt-LC+t=F in Q,
(3.20) QC LC F in Q2.

Proof. For definiteness we regard Q c___Q the other case is strictly similar. Choose
an analogous open cylinder such that Q c Q c Q. Let q be an infinitely differentia-
ble function in with compact support. If we extend q outside of by 0, we obtain
an admissible test function for (3.4) such that after partial integration we get

fo_( A C, LC+, rl ’l, dx dt O

because /:/()= in . Therefore we have a generalized solution of (3.19) in

Wp2’l(), which by means of (3.5), possesses the desired regularity (compare [8, III,
Thm. 12.2]). [3

4. Uniqueness of weak and classical solutions. In this section we will use addition-
ally the following:

Assumption 4.1.

1) At,-xi (Qr), i=l,...,n.

2) ViniHX/2+’(x/2+)/(r) for some e>0.

We start with the investigation of the following auxiliary problem for given f and h:

(4.1) ( Add ) q- -x D j -xj
+ -ix ( VidP ) ( x )

+7(x,t) ftr(hqt)(x,)d’=f(x,t ) in Qr,

(4.2) q(x,T)=0 in f,

(4.3)
q
-=(/- Vn,)q on St.
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LEMMA 4.2. Let fL2(Qr), hE L(Qr); then there exists a generalized solution

of (4.1)-(4.3) in W2’l(Or).
Proof. Let NN and T’= T/N, Qk Qr-k,r-(k-) for k=l,--- N. For

some N N we prove the existence of solutions q,k W’I(Q) of

(4.4)

x, t) ftT-(k- 1)T( h,kt )( x, "i" ) d’r

k-1

=f(x,t)-y(x,t) E r-(t-1)r(htt)(x,’)d
1=1 T-I’

in Qk

with E=I "= 0,

(4.5) rk(x,T-(k-1)f)=_(x,T-(k-1)f) in a

with q_ 1"-- 0, and of (4.3).
Let ,h(x,t)’= qi(x,t) for (x,t)e Q; we then get a function in W2’(Qr) because

of (4.5), which is a solution of (4.1)-(4.3).
Now consider 1 =< k =< n and assume that the existence of a solution q,z for 1 =< < k

is proven. For k= 1 this assumption is void. Define an operator - on W,t(Qk) by
z’= u, u being the solution in W22’1(Ok) of (4.5), (4.3) and a differential equation
similar to (4.4), but with

(4.6) /(x,t)g(Z)(x,t), g(Z)(x,t)’= ftr-(k-1)T(hzt)(x,’r)d’r,
as the integral term on the left-hand side.

In particular the right-hand side and 7g) are in L2(Oi), and

_1(’, T- (k- 1)f) W21( a )
(e.g. [8, Chap. II, Lemma 3.4]); this operator is well defined (compare again [8, Chap.
IV, 9], [10, Thm. 17]) and there exists a constant C independent of T and k such that
for Zl,Z2 W22a(Qk):

(4.7) (2)

An easy calculation shows for z e W22,1(Q,):

(4.8)

Therefore it suffices to take N so large such that e.g.

,(o)(4.9) ClhloTl< 1/2.

Then ff is a contraction on W22’(Qk) and therefore Banach’s fixed point theorem
guarantees the unique existence of a solution q,k in W22,1(Ok) of (4.3)-(4.5). Thus we get
a solution for all Q, which proves the assertion. []



618 PETER KNABNER

Now we can show
LEMMA 4.3. There exists at most a weak solution in Qr.

Proof. Let (C,) be a weak solution and take test functions qb I/Vaa,X(QT) such
that if(., T)= 0 a.e. in f. By partial integration we get:

(4.10) fo_c(/q,)tx,t-fa(q,)(x,O)Co(x)ex
-fo,c a/e,+ CDij nidxd,

rCn,dxdt- (),dxdt- (No(x))(x O)dx

Now we consider two weak solutions (C,), i= 1,2 and set C’= C1-C:, N’= N-
At first we show that

(4.11) ()-(2)=h(x-:) for some h=h(l,:)L(Qr).
In fact, taking Q1 "= {(X,/)e QTI(I--2)(X,t)O} and Qa’= QrNQ, we can define
h in the open set Q as

(a(-a())(x,tlh(x,t):= (-)(x,t)
Thus h is a continuous function with values in [0,1], wNch is easily checked. In Q: the
definition is at our disposal, say h(x, t):= 0. Therefore

(4.:) (a(x)-a())(x,t)=h(x,t)t(rC)(x,,)a,
and by partial integration:

T

for all considered test functions . Let us apply (4.10) to C and C: and subtract the
two relations. By means of (4.12) and (4.13) we get:

(4.14) x,t) (A,)t+ Di2 +(,) (x,t)

+ (x,t) -(- ni), (x,t)ext=o

for all W’I(Qr) such that (., T)=0 a.e. in a.
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Let fL2(Qr) and take as a generalized solution of (4.1)-(4.3) with this f as
right-hand side and h--h(N1, N2). exists according to Lemma 4.2 and is an admissi-
ble test function. (4.14) implies

(4.15) fQrC( x, )f( x, ) dx dt O,

and thus C 0, i.e. C C2.
Because of (3.5) we also have 1 2, which proves our assertion. 3
Remark 4.4. 1) We have actually proven that a solution (C,), say C, C(r),

of (4.10) and (3.5) is unique.
2) The additional assumption 4.1 should be as weak as possible so as not to be in

conflict with the general situation of partially unsaturated soil.
THEOREM 4.5. Let ( Ci, Ni, li) be classical solutions,

Q+’= ( (x,t)QTlN(x,t)>O}, Qi_. QrNQ.’/, i=1,2.

We assume:

(4.16)

(4.17)

(C*-Ci)>__O on Qr, i=1,2.

The divergence theorem is valid in Q and Qi_ i=1,2.

Then we have (C1, N1, (I) 1) (C2, N2, (I)2).
Proof. Let (C, N,) be a classical solution fulfilling (4.16), (4.17). Set

(4.18) (x,/)" No(xl-fot(’t(C*-Cl)(x,r)dr.
Because of (4.16) we have

(4.19) (x,t)<_O forall (x,t)Q_.

In fact, (4.19) is implied by

(4.20) dQ(x,t)>O=N(x,t)>O for (x,t)Qr.

To prove (4.20), suppose that N(x,t)=O for some (x,t)Qr, for which /9(x,t)>0.
Then >= (x) and therefore

(4.21) 0 < (x,t) <=](x, @(x)).
On the other hand we can conclude

(4.22) (,r)=N(,) for all (,r)+,
and thus

(4.23) (x,(x))= N(x, dp(x))=0.

This is a contradiction to (4.21).
Now let q cza(T). We start with

(4.24) fo_ Fqdxdt=fQ (ACt-LC+Nt)qdxdt
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and integrate by parts. Doing the same in Q_, we can add these expressions and see
that all integrals over the boundary tb(x)= cancel because of the continuity of N, C
and OC/Ox in Qr. By means of (4.19) and (4.22) we can substitute for the integrals
involving N

(4.25)

21The relation we now have achieved is also valid for all W2 ’~(Qr), as we see by
passing to the limit. In this way we have verified (4.10) for (C,N). Therefore we see
from Remark 4.4 that

(4.26) CI=C2,

N/being defined as in (4.18). It remains to prove (I)l= (I)2 and its consequence NI=N.
Let ao,; r be the domains of . At first we show:

(4.27) "1 2O, T O, T--’: ’O, T"

Assume there exists x such that x ff f As0, T, 0,T"

(4.28) for all [O,T]

we have by (4.22)

(4.29) 2(x,t)>0 for allt[0, T].

On the other hand by (4.23)/(x, (x)) 0, which contradicts (4.26), (4.29).
Now let xfnfo, r and (x)<2(x). Then N2(X,l(X))>O, again leading to

a contradiction by (4.22), (4.23). This proves 1=2. N=N2 follows along the same
lines. O

Remark 4.6. As in the physical situation ,/> 0 and C* is the saturation concentra-
tion, (4.16) is not restrictive (compare Theorem 5.5).

5. Existence of classical solutions. To obtain a classical solution from the weak
solution constructed in Theorem 3.4, we must study the nature of the set = 0. This
will be accomplished by deriving a lower bound for C*- C. Since we cannot apply the
strong maximum principle directly, we reconsider the solutions of the smoothed prob-
lem (P). Throughout the section we will use

Assumption 5.1.

(5.1) ),(x,t)>0 for all (x,t)-r.

(5.2) C*.O2+a’l+a/2(OT)
P’= F-ACt* + LC* <=0 in Qr.

(5.3) OC*
Ov >-- 0 on St.

(5.4) Co(x)<=C*(x,O) forall x.
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fl =< 0 on ST.
C, _< C* on ST.

(5.7) i)

ii)

iii)

There exists ff such that C0(ff)< C*(ff, 0) or there exists a sequence
(x,,,tn) Sr, tnO, satisfying one of the following conditions:

/3(x,,,/.) < 0, C.(x.,t.)< C*(x.,t.),
OC*
), (x., t,)> 0.

No>=0 in.

Having in mind the discussion of the physical meaning in {}2, we see that this leaching
situation is covered by these assumptions. In particular, (5.7ii) is fulfilled, if at some
portion of the boundary (the soil-atmosphere interphase) water, with a concentration
beneath the saturation concentration, filters through.

As comparison function we regard the classical solution of

(5.9) Awl- Lw + yw P in r,
w(x,O)=C*(x,O)-Co(x),
w C*

(5.11) -3-)--=/3(w [C*-C,])+ 0u on St.

w exists uniquely (e.g. [5, p. 147, Cor. 2]).
LEMMA 5.2. w(x,t)>O for all (x,t)(O,T].
Proof. Let us first show: w>=0 in QT. Suppose not; then w has a negative

minimum in (, i) QT. Because of (5.1), (5.2) the strong minimum principle is applica-
ble (e.g. [5, p. 34, Thm. 1]) and thus (if, [) f x (0, T] contradicts (5.4).

The same is true for i= 0. For ff S we have, by a lemma of Viborny-Friedman
([5, p. 49, Thm. 14]), (w/)(,i)<O and thus using (5.3), (5.5), (5.6)"

(5.12) w(,i)>(C*-C,)(ff, i)>=O.

This is also a contradiction, i.e. w >= 0 in Qr.
If w(ff,/)=0 for some (ff,/)fx(0, T], then w attains its minimum in (,i). In

the case (2, i) f x (0, T we get w 0 in Q by the strong minimum principle and thus
a contradiction to (5.7). Finally, ff S is impossible due to (5.12). rn

LEMMA 5.3. Let (C, N,) be a solution of (P,). Then

C*- Ce>_ w in QT.

Proof. Set u, "= C*- C,. Then u, solves

(5.13) au,,- Lu+ H(N)’/u= in QT

and (5.10), (5.11). Therefore z "= u-w fulfills

(5.14) Az Lz + 7H(N) z 7 (1 He(N))w
(5.15) z(x,O) =0, xa,

Oz
(5.16) -3-u =/3z in St.

We want to show z >_ 0 in Qr.

in QT,
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Since 3H(N)>= 0 and -/(1- H(N))w >= 0 due to Lemma 5.2, again we can apply
the strong minimum principle to show this in the same way as in Lemma 5.2.

We now conclude
THEOREM 5.4. There exists a weak solution (C,), C Wqa(Qr), such that

(5.17) C(x,t)< C*(x,t) for all (x,t)fl (0, T ].

(5.18)

(5.19)

)(x, ) is strictly decreasing in [0, T] for all x .
There is a C( ) 0 <= ( x ) <= Tfor all x such that ap ( x ) > 0

N0(x) >0 andfor all t [O,q(x))" )(x,t)>O, for all t(q(x),T]
(x,t) <0, (x)<T=J(x,q(x))=O.

Proof. We consider the weak solution (C,N) constructed in Theorem 3.4. Let
i > 0. Lemmas 5.2, 5.3 imply for some K()> 0

C*-C>=K(6) in[8, T],

and thus by (3.14) we have the validity of (5.17).
Furthermore, because of (5.1), we have for some 3’ > 0"

N,=<-K() inx[,T]

and therefore again by (3.14):

(5.20) ]tZ -K(i) in [8, T].

In particular, this means (5.18). Now define

(0, (x,t)<O for allt[0, T],
(5.21) (x)’= sup( [0, ] I(x, t) > 0) otherwise.

The properties in (5.19) are verified immediately. In particular, continuity is proved by
checking upper and lower semicontinuity, which follows from the other assertions in
(5.19).

Collecting the results we get:
THEOREM 5.5. Let q > n + 2. There exists a classical solution ( C, N, d# ) such that

C Wq2,(QT) and Cfulfills (5.17).

IfNo C() and " and C* are continuously differentiable with respect to x in [0, T],
then

setting ’= (xfo,rNflO<d#(x)< T}.
Proof. We consider the weak solution (C,r) of Theorem 5.4. Defining N(x,t)"=

((x,t))+ in r, we see

(5.23) a+= { (x,t)arlR(x,t)>o),
a-= ( (x,t)ar[)(x,t)<O}.
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Therefore Theorem 3.5 assures (2.14), while (2.16), (2.17) are clear by the definition of
N. Having in mind (3.14), we notice that (2.13) and (2.15) are satisfied.

We define ’= k le0.T, k according to Theorem 5.4. Then from (5.19) we con-
clude

(5.24) r(x,(x))=0 for all Xo, r,

and thus (2.11) and (2.12).
Finally (5.22) is a consequence of (5.24) and the implicit function theorem, the

continuity of x and t in 1 [0, T] and ]t(x,t(x))<O for xl. [3

6. Asymptotic behavior. It is not yet clear whether N vanishes for large times, i.e.
tI)(x) exists for each x ft. We will give a sufficient condition for this situation. First,
we regard all functions as given for all T> 0 and the assumptions 2.2 and 5.1, which are
also in force, are to be understood in this sense. Furthermore we use the following
assumption in the sense of [5, p. 157] and with Q’= Or> 0 Qr.

Assumption 6.1.

(6.1) A(x,t)>=a for some a>0 and all (x,t)Q,
/(x,t)>= y forsome />O and all (x,t)Q.

2

(6.2) D,A,>__dI for some d>O and all (x,t)-,

(6.3) The following functions converge as --. uniformly in
Q to a function in H(f):

n ODij OC* 02C*
A, DiJ’

ix’ -xi Vi’ y’ F, Ct* Ox xOxs i,j 1,. ., n.

(6.4) S Sx t] $2, S closed, and
fl(x, t)__< b for some b > 0 and all x S1, > 0,
fl( x, ) >= b for all x S2, t>0.
C*(x,t)=C.(x,t) for all xOSt, t>0.

(6.5) fl(x,t) fl(x), C,(x,t) C,(x),
as uniformly in S.

C*(x,t)- C*(x)

(6.6) There is an ff Sx such that C,(
In (5.7ii) the x. are in 81.

Again S has to be understood as part of the soil-atmosphere interface and -/3 as the
flow velocity into the interior. With regard to the comparison function w it is necessary
to change the boundary condition in its definition. To this end we extend fl outside of
S1, such that the resulting function k has the properties

kC(Sr), klslxto, rl=fl for all T>0,

(6.7) k(x,t)<= -b for all (x,t)-,
k(x,t) k(x) as t o uniformly in S.
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Instead of (5.11) we now use as boundary condition for w

(6.8)
Ow OC*
--=kw+ " on S2[0, T].

on $1 [0, T],

The existence of a unique classical solution in Qr for every T> 0 is guaranteed. In the
same manner as in 5 we prove the following lemmas.

LEMMA 6.2. w(X, t) > 0 for all (x, t) (0, T for every T> O.
LEMMA 6.3. Let (C,N) be a solution of (P). Then C*-C>= w in Qr for every

T>0.
The conditions we have imposed are sufficient to insure the lower bound for w

globally:
LEMMA 6.4. For each > 0 there is a constant K(i)> 0 such that w(x, t) >= K(6) for

all x f, , T for every T> i.
Proof. Assumption 6.1 assures that

(6.9) w(x,t)z(y), (x,t)-O asxy, t,

uniformly in Q ([5, p. 167, Thm. 5]), z being the solution of an elliptic problem with
the limits of the coefficients and right-hand side as the corresponding terms. Applying
the minimum principle and the lemma of Hopf (e.g. [5, p. 55, Thm. 21]) we can show
using (6.6) and fl()< 0:

(6.10) z(x)>0 for all x.
From this, (6.9) and Lemma 6.2 the assertion follows. []

Before we can use this result together with Lemma 6.3, we have to assure that we
can speak of (C, N) in Q in a unique way:

LEMMA 6.5. Let T> O. There exists at most a solution (C, N) of (P).
Proof. Let e > 0 be fixed and (Ci,N,.), i= 1,2, be solutions of (P). C’= C1-C2

fulfills

(6.11)

(6.12)

(6.13)

( ACt- LC+ Nx)’ C )( x, )
=(3/(C*-C_)B)(x,t) fo’(’C)(x,’)d"

C(x,O)=O,
ac

tiC on ST,

for(x,t)Qr,

whereby B L(Qr) such that in Qr:

H(NI(x,t))-H(N2(x,t))= B(x,t) fot(C)(x, )dr.
Now it is easy to show, with the aid of the usual L-estimate (e.g. [8, Chap. I, Thm.
2.3]) applied to C and C2 that for some T(0, T] the only possibility is C--0 in Q. In
Q,_ we can repeat the argument and thus finally get C--0 in Qr, i.e. the uniqueness
of the solution, rq

THEOREM 6.6. Let q> n+ 2. There exist (C,N,d) in - and ]b>0 such that (C,N,d)
is a classical solution in Qr for all T> with the property fl0,r , i.e. there is some
> 0 such that N(x, t) 0 for all x , >= .
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Proof. Because of Lemma 6.5 there are (C, N) in Q such that their restrictions to
Qr are the solutions of (P) in Qr for every T> 0. We can find a subsequence, denoted
in the same way, such that

C(x,t)= lim C(x,t), (x,t)= limN(x,t) in
e0 e-0

and in r (C, /’) is the weak solution constructed in Theorem 3.4.
As in the proof of Theorem 5.4, we can derive by using Lemmas 6.3, 6.4:

(6.14) It<__-’K(8 ) in[8,T] for everyT>8.

Therefore there is a J’> 0 such that

(6.15) l(x,t)<O for all x, t>__

Thus the solution constructed by Theorem 5.4 and 5.5 fulfills the assertion.
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A RELATION BETWEEN SEMI-INVERSE AND
SAINT-VENANT SOLUTIONS FOR PRISMS*

DAVID KINDERLEHRER

Abstract. It is shown that in an infinite prism the linearization at a natural state of a family of Ericksen’s
semi-inverse solutions is a combination of elementary St.-Venant solutions, namely, extension bending and
torsion. Moreover, the span of these St. Venant solutions is precisely the linear manifold of solutions having
locally uniformly bounded strain energy. This implies that any solution of a linearized problem in a finite

prism continuable to a solution in the infinite prism in a manner that its energy on any portion of fixed

length remains bounded, is an elementary St.-Venant solution.
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Key words, nonlinear elliptic systems, asymptotic properties, finite elasticity, St.-Venant’s principle

1. Introduction. Consider an infinite prism

P =x[ cll

where f c is a region with boundary F composed of a material with strain energy
density W(F), a real valued function of 3 3 matrices F with detF> 0. The body is in
equilibrium in the configuration

y=y(x): P--)l

provided

(1.1) 8fp W(vy)dx=O,
where this is taken in an appropriate sense. Here we mean that y(x) is a smooth
function satisfying the system of equations

-divS(Vy)=O inP,
(1.2) S(Vy)v=O onOP=FXR

where S(F)= W’(F)=(1)W/I)Fji) is the Piola stress and v is the outward directed
normal of F.

Inasmuch as P is infinite and no boundary conditions prevail as Ix31-) + c, one
scarcely expects this problem to have a unique solution or even a finite dimensional
manifold of them. The distinguished class discussed here are the semi-inverse solutions
introduced by J. Ericksen [1], [2] and our intention is to illustrate their connections with
the St.-Venant solutions familiar in the linear theory of elasticity. The St.-Venant
solutions may be characterized in terms of energy, the subject of 2. They are also
linearizations of semi-inverse solutions, which we show in 3. Existence of semi-inverse
solutions and their properties will be considered elsewhere [5]. The St.-Venant flexure
solutions arise only indirectly in the present context. They are disucssed in 4.
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There are many ways of describing St. Venant solutions, some of which are in
terms of energy (Sternberg and Knowles [11], Maisonneauve [9], Ericksen [3].) The one
given here, although it may properly be interpreted as a technical device rather than a
physical statement, is not a minimum principle but an extensibility property of the
solution. This permits several ways of distinguishing St.-Venant and semi-inverse solu-
tions; we may as well indulge ourselves in one of them whose origin is in the work of
Ericksen [3], [4].

According to our theorem, the only solutions of the linearized problem of (1.2) in
P with locally uniformly bounded strain energy are the St.-Venant solutions of exten-
sion, bending, and torsion. Incidentally they are also the ones with uniformly bounded
strain, owing to the modern theory of elliptic systems. It follows that they are the only
solutions in finite prisms which admit extensions to infinite ones retaining these proper-
ties. This renders them especially appropriate in a formulation of St.-Venant’s principle
and is one version of the set S(oo) defined in [4]. Moreover they are the linearizations
of a family of finite deformations of the infinite prism P.

Another interpretation is related more generally to nonlinear problems. In a
suitable functional framework, the St.-Venant solutions are eigenfunctions with eigen-
value 0 of a linearized problem. The existence of a family of solutions of the system
(1.2) emanating from the eigenspace is strongly indicated under these circumstances.
Semi-inverse solutions are on such family, a particular one, it is possible to show, whose
(nonlinear) strain energy is uniformly bounded.

A different perspective is taken by Muncaster [8], [9] in his interesting work.
I take this opportunity to thank Professor Ericksen for introducing me to this

question and for many stimulating discussions. I also thank Professor Muncaster for his
generous remarks.

We introduce a few notions and state our results. Let W(F) be a smooth function
defined on 33 matrices F=(Fj.i) with detF>0 satisfying the condition of frame
indifference

and set

W(QF) W(F) for QrQ= 1, det Q= 1,

S(F) W’(F) (W/OFi)
its Piola-Kirchoff stress which satisfies, therefore,

(1.3) S(QF)=QS(F) for QTQ=I,
We assume that the material is isotropic,

=o,
and

(1.4)

det Q 1.

S’[Xl lirn 1-S(] +tX)=X+XT"+(a-1)trX
0t

St.-Venant solutions for linear isotropic materials are very familiar, thus our restriction here. Less well
known is that they may be defined for any (homogeneous, let us say) material satisfying

s’[,].,>=01,12, ,--,, ,,0>0,

a fact known to St.-Venant. The conclusions of this work hold also in the anisotropic case. Additional
discussion of this may be found in [5].



628 DAVID KINDERLEHRER

where a > 1/2. Given a function v (v1, v2, v3), we set

e(v)=1/2(XTv+Vvr) and o(v)=S’[vo]=S’[e(v)].
The restriction on a ensures that there is an a > 0 such that

(1.5) o(v).e(v)>=a[e(v) 12 for any v

or simply that

1 a XrS’[X].X=S’[X].-(X+Xr)>=-(X+ ), for any matrix X.

In this note, by a semi-inverse deformation we understand a smooth mapping

y. " --- Rsatisfying the condition of axial indifference

(1.6i) y(x’,x3+t)=Q(t)(y(x)+p(t)), -o<t<,

for some rotation Q(t),detQ(t)=l, and vector valued function p(t), which vary
smoothly with t. We also impose the condition

(1.6ii) det Vy > 0 in P

Alternative formulations of (1.6) are suggested in the work of Ericksen and
Muncaster. The first of these below is the one we shall use most frequently. The
mapping y(x) is a semi-inverse; deformation provided (1.6ii) is satisfied and there are
a A, A + Ar 0, a R 3, and a vector field

u"

such that

y(x)=R(x3)(u(x’)+P(X3)), x-,
(1.7) dpR(x3)=ex3A and-xa+Ap=, 13.

or provided the Cauchy-Green strain

(1.8) C= VyrVy is a function of x’ ft.

Some clarification of this is given in [1], [5], but we point out that it is elementary. A
semi-inverse solution is a semi-inverse deformation satisfying the field equations (1.2).

The four "elementary" St.-Venant solutions, corresponding to extension, bending
with moments parallel to the xl and x axes, and torsion, are denoted by vo, v, v2 and
v and are described in the appendix for the reader’s convenience.

THEOREM 1. Suppose that v, subject to the condition

(1.9)

where I is any interval of the x3-axis of fixed length 2l> O, is a solution of the linear
system

-divo(v) =0 in
(1.10)
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Then

0

where / is an affine rigid motion and Xi R, i= 0,1, 2, 3. Thus v is a linear combination

of "elementary" St.-Venant solutions plus an affine rigid motion.
Consider a family of semi-inverse solutions passing through y=x, which we

abbreviate by writing "a family of semi-inverse solutions" and by which we intend a
curve of semi-inverse solutions

(1.11)

and

y =y(x, t), tl small,
y(x,O)=x,
y(x,t)=R(x,t)(u(x’,t)+p(x3,t)),
R(x3,t)=e x3tA for a fixed A, A+ At=0,

/j(t) (1 + tX0)e + t(llel +
It should be clear that we have chosen R and as the first order terms in of an
arbitrary smooth curve.

THEOREM 2. Assume that y(x, t) is a family of semi-inverse solutions, that is, y(x, t)
satisfies (1.11) and (1.2). Then

3dy "-’EkiOi - y in P
dt t--0 0

where the vi are the "elementary" St.-Venant solutions and , is an affine rigid motion.
The number of parameters available to a family of semi-inverse solutions are six,

three from A and three from ’(0). It is not difficult to check that different values of
/1,/2 correspond to the slightly altered family

y(x,t) R(x3)Q( t)( u(x’) +p( t))
for an appropriate family Q(t),

Q(t)rQ(t)=l, detQ(t)=l, Q(0)=I,

which leads to the conclusion that /1, /2 only determine a rigid motion and not a
St.-Venant solution.

2. An energy characterization of St.-Venant solutions. This section is devoted to
the proof of Theorem 1. We begin with an elementary lemma. For a displacement ’, set

O3(’) o(’)e3
LEMMA 2.1. Suppose that v=(ol, o,v3) satisfies (1.9) and (1.10). Then for any

affine rigid motion

(2.1) fa o3 ( v ) T dx’ const.
x(b}

x(b}
,/dx’ =O,

for all b R.
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Proof. In view of (1.10) and the divergence theorem, for any interval I= (a, b),

o=f divo(v)Tdx= fa o3(v)Tdx’= fa o3(v)Tdx ’,
xt x{b}

verifying (2.1). Writing

o’(o)rax’= f.
it follows that

We want to prove that the second integral in (2.3) vanishes, which will require
(1.9). With y(x)=c+ax, +ar=O,

0X Vi= i3’ 0X V (13, 23’ 0),

SO

choose

x{b} <3 x{b}

T 3X3
Substituting this on (2.1),

x(b} x(b}
0"33E OOl3xldx’

0.3%3 dx’
a

0"33 E OOl3xi, dx’.

Again by (2.1),

X{a}
03%3 dx’ 3dx’

x(,}

so

x(,,) x{,) x(a}

Integrating this expression in x over an interval of length and then applying (1.9), we
have

E0.3%3dx’ fa(b,b+l) 0"33EtO3xldx
(a, a+ 1)

0"33E o33xtdx

z CMI I.
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Above we have also used the algebraic fact that

[0(0)[2 2
<_ const.le(v)

Finally choosing

f dx’,603 sgn ]_
x(}

E cM
x(a)

%3dx’ <= l(b-a) for all a < b.

Letting b oo gives that

fx(a} %3dx’=O’ /x=1,2, -oo <a< oo.

Recalling (2.3), the lemma is established. Q.E.D.
Before completing the proof of the theorem we wish to remark about the use of

Korn’s inequality. If u is a solution of

-divo(u)=O inP,
(2.4) o(u)v=O on

The well-known technique of difference quotients (Nirenberg [10]) yields that for any
1>0 and interval Iz(a)=(la-x3[<l },

where C depends on I.
Let 3’ be an affine rigid motion chosen so that fuz,(a X7(u-v)dx is symmetric,

so u-3’ also satisfies (2.4) and V 2u= X7 2(u-3’). In addition, by Kron’s inequality

f, = f, =lu-.v axzC, I(u-) x
X l2t( a)

cf. I(u)l=x,
X I2t(a)

C,=Korn’s constant for xI=t(a). Combining this with (2.5), we conclude that a
solution u of the system (2.4) satisfies

f. 12 f.(2.6) IV=u ax<=Co I(u) l=x
XIt(a) XI2t(a)
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where Co depends on but not a or u. In particular, if v satisfies (1.9), (1.10) then

(2.7) fu IV2vl2dx<=2CoM, - <a< o.
x6(a)

LEMMA 2.2. If V satisfies (1.9) and (1.10), then

)X X
It is well known that the only solutions of (1.10) whose strain is independent of the

axial coordinate comprise the subspace spanned by (Vo, Vl, v2, v } and the affine rigid
motions. Thus the lemma gives the theorem. For the reader’s convenience, a brief
description of this is given in the appendix.

Proof. Obviously

-divo(vx3)=0 in P,

o(v),=0 onOP.

One standard way to proceed is to multiply the above by r/vx3 and integrate over
where, for a < b and l> 0,

1,n=n(x3)=
0,

a<=x<=b,
x<a-2 or x>b+l,

1’= 1/1 in (a- l,a) and r/’= -1/! in (b,b+ l). Thus

O= f divo(Vx3)rlv3dx

Since o. e >= a e12,

ol f(a,b dx <= o( vx3).rl’e3 (R) vx3dx

x(b,b+l)
(Vx3)’vx3dx--[

X(a--l,a)

Thus for some C > 0,
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According to Lemma 2.1, for any affine rigid motions /,fl the right-hand side is
unaltered if Vx3 is replaced by vx3-y or vx- ft. Consequently, using (2.7),

/flx(a,b) (b,b+l)

(a-l,a)

Choosing y and fl appropriately, by Korn’s inequality we conclude that

(2.8) f2(a,b) _
4CCoM

so that e(Ox3).L2(l). Again, with fixed, choose sequences ak
such that

-o and

From (2.8) we conclude that

so e(v)= 0 in P. Q.E.D.

dx 0

and

S(Vy)=RS(U).
It follows that if y is a semi-inverse solution, then u is a solution of

divS(U)+AS3(U)=O in 2,
(3.2) S(U)g=O on F,

U=vu+Au(R)e+(R)e,

3. Semi-inverse solutions. A brief presentation of the field equations for a semi-in-
verse solution is our starting point. Assume that

(3.1) y(x)=R(xa)(U(X’)+p(x3)), xl

is a semi-inverse deformation. Temporarily writing e e3,

Vy(x)=R(xa) Vu+-x3(R)e +R(x3)A(u+p)(R)e

=R(xa)(vu+ Au(R)e+ li(R)e)

=R(x,)U(x’)
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where S3(F)=S3(F)e3 denotes the third column of S(F). No ambiguity in (3.2)
concerning the symbol "div" is possible since U depends only on x’.

Restricting our attention to deformations y(x,t) satisfying (1.11), which entails
imposition of initial conditions at t 0, we are able to write a full set of field equations
for u and p. So we have for Itl small

(3.3)
U U’(x’,t)= gru+ tAu(R)e+ l(t),
(’,0)=

satisfies

(3.4) divS(U)+tAS3(U)=O in f,
S(U),=0 on r

and

dp + tAp=(t),
dx3
p (9C3,0) =X3e,
p(o,t) =0.

Observe that

(3.6) dy ( du dp ) + x3Ax.7/t=0 -d-;+ ,--0

An incomplete version of Theorem 2 may be easily derived. Since

W(Vy)=W(RU)=W(U)
and U is a function of x’, for small It there is a constant C(t), varying smoothly with
t, such that

Thus

fx6(a) W(vy)dx=C(t)l, -<a<.

6(,-,)
S(vy) V dx=- ,)

also independent of a . By Taylor’s theorem, with

ay
O-d-- t=O

S(Vy)=S(I)+tVo+ O(t2))
s( ) + ts’( )[vo + o( )

=to(o)+o(t)

W(vy)dx=c’(t)l,

since S0)= 0. Consequently v is a solution of (1.10) satisfying

f o(v).e(o)dx=cll -c <a< ,
Xlt(a)
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which implies (1.9). By Theorem 1 we conclude that
3dY =V’-EiVi+" in P,

dt t--o o

which in some qualitative way is the content of Theorem 2. However, it does not
identify the coefficients i with the matrix A and )t 0, so we turn instead to the explicit
linearization of the equations (3.4), (3.5). This will also illustrate that the complete
four-parameter family of St.-Venant solutions may be realized as linearizations of
semi-inverse ones, provided, of course, the latter exist.

The linearization will give a system of equations for

Indeed, since U 1 at 0,

we obtain

dU--=V+ Auo(R)e+’(O)(R)e,

0

divS’ [ dU] +AS3(1)=0 inf,,

s’[ au l--- v=O onF

where S’= S’O). Now SO) 0 gives

-divo(f)=divS’[Auo(R)e+li’(O)(R)e =f in a,
(3.7)

S’a(’)v=- [Auo(R)e+li’(O)(R)e]=g on F.

With denoting the first two components, it may be convenient to note that (3.7) may
be rewritten

A"-aV dive" =f’ in ,
(3"81) a(") v g’ on I"

and

-A3 =f3 in

0v --g3 on F.

In addition

is the solution of

dq ,(0)_x3Ae,(3.9) dx

t=0

q(0) =0.
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The systems (3.7), (3.9) are linear in 0 and the elements of A so it suffices to
consider four separate cases corresponding to one )t 1 with the rest set to zero. This
may seem presumptuous, but we reserve to the end discussion of the bogus parameters
tx,

_
which occur in ’(0).

Set

X 0 --X

and suppose 1 =/x 2 0.
Case O. (extension))t o 1, hi= 0, i= 1, 2, 3. Here the system (3.7) is

-divo(’)=O ina,

o(’)= S’[ e(R) e]= (1 a) on F

and, clearly

q(x3)=x3e.

So " (1 a)/2auo(X’)= CpUo(X’), where

1(3.10) ce=---da (a-1)

denotes the Poisson ratio. Thus

’t----0

We turn now to torsion
Case 3. (torsion) h 1, h 0, 0,1, 2. In terms of (3.8), the system is

A"- aV dive"= 0 in fl,
(") v 0 on F,
h’3 0 in f,

.3
X2/) XlP2 on F.

Hence " 0 and ’ 3 p, the St.-Venant warping function. Moreover, q 0. Hence

dy3
t,o

( x,x , (x’)), X.IP.

Case 1. (e1-bending) X 1, Xi= O, O, 2, 3. In this case

Au0 x2e

for which it is easily checked that

-A’-aV div’ =div(a-1)x21= ( 0

o(") v -(a-1)xz,

in f,

on F
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and

A3=0 in ,
Ofl- =0 onr.

A solution is given by

( 1( X’) CpXlX2, -C, ( X--X), O

For the auxiliary function q we find that

1 xeq(x3)= +

Combining these in (3.6) gives that

--dt t---o -xx"-x’/-,x"’x2x3 on 1

with cv given by (3.10).
Finally, assume that all X= 0, 1, 2, 3, and/ are given. For " this leads to the

equations

divo() O,
o(’)v= -g.ve

so " (0, O, -/. x’) while

dq
=giei, q(0) 0

dx3
implies q(x3)=x31xiei. Thus

=yx

0 0 g
0 0 g2

-gl -g2 0
X

a rigid motion.

4. St.-Venant’s flexure solution. The St.-Venant flexure solutions, which do not
satisfy the energy restriction (1.9), are not easily accomodated in the present frame-
work. In this way our discussion is more restrictive than Muncaster’s [8], [9]. The
flexure solution, however, is not especially satisfactory, even in the linear theory [2], [3].
We show here that they may be interpreted, rather casually, as displacements close to
the linearized solutions of semi-inverse ones. Additional comments follow.

First consider the semi-inverse el-bending solution, corresponding to case 1 of 3,
whose form is

,l(x)=R(x3)(u(x’)+P(X3)) in P

for

0 0 0)R(x3)’--eix3Ma, MI= 0 0 -1,
0 1 0

small,
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and suppose there exists a family of solutions of the field equations (1.2) of the type

y(x,t)=Q(t)rl(x,t), Itl small

with ,l(x,0)= rl(x) as above and

Q(t)=e’x3H, H= 1 0 O.
0 0 0

Calculation of dy/dtlt=o and approximation of the linearized equations at (x,0)
by those at y-x, (1.10), leads to the credible approximation of dy/dtlt=o by the
St.-Venant flexure solution.

Another interpretation is in terms of second derivatives. Suppose now that

y=y(x,lx,X)=R(x3)(u(x’)+P(X3)) in P

is a two parameter family of semi-inverse solutions with

Assuming that

0 - 0 )A= 0 -/
0 / 0

may be written as flexure + error, the error contributes no resultant force on the planes
x3 =const. Actually this is wrong by a numerical coefficient. Moreover, the term
"flexure" here means just that portion of the St.-Venant solution involving the classical
flexure functions.

The suggested conclusion, which in view of the brevity of this discussion, the
reader may be reluctant to embrace, is that St.-Venant flexure is sufficiently close to the
semi-inverse family that it does not determine, by itself, an especially interesting family
of solutions of the finite equations. Geometrically, analogues of large twisting and
bending may be achieved by seeking solutions

y(x)=ex3A(u(x’)--b+p(x3))

subject to the conditions p(0)=0 and

f.
as discussed in Ericksen [2].

5. Some remarks. From Theorem 1, the kernel of a certain linear operator defined
on the unbounded domain P is identified. For example, the Banach space may be
chosen to be

V= functions which are locally in with lie(v)
y= cO’a(P) )< cX’a( )
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with the operator

L" V- Y, Lv= (-divo(v),o(v),).
It would be useful to know the index of L, especially for the study of small deforma-
tions superimposed on large. This is also connected to the notion of stability of
solutions.

Given a family of semi-inverse solutions of the form

y=y(x)=y(x,A,o)=R(xa)(U(X’)+p(x3)),
R(x3)=ex3h

depending on four parameters X0,’" ",3, let us say, the displacements Oy/OX, i=
0,1,2,3, are good candidates for St.-Venant solutions associated to the solution y(x).
From the standpoint of energy, these linearizations do not seem to have any apparent
interpretation, such as that given by Theorem 1. The argument at the beginning of {}3
relies on the vanishing of the stress tensor at . The linearized strain, however, E, given
by

2E= V-/ F+Fr
V-i F=Vy,

=UrU

is independent of x3. Is every solution of the linearized equations at y=y(x) with this
property such a "St.-Venant" solution?

Appendix. St.-Venant solutions. For the reader’s convenience we take up here the
description of displacements v(x) with

e(v)=0 ing*(A.1) Ox

which implies that

v=Ax+c, A+ At=0, R(A.2) Ox

As the expression above is linear in the parameters occurring in A and c, it suffices to
consider separate cases and to then superimpose their solutions. We consider here the
case of torsion, where

0 -1 0)A=H= 1 0 0
0 0 0

Solutions u (ux, U 2) to the two-dimensional system

-divo(u)=0 in

o(u)u=0 on F

are unique to within a affine rigid motion. Our choice of St.-Venant solution will reflect
this property.
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From (A.2),

whence

}v v }v
--X2, -’-Xx x x, x3

v x.x3 +(x
v=xx3+(x’)
v3=3(x’).

Substituting this in the equations (1.10) gives

div o (v) Aqo + aV div q9 0

o(v),,=o
so, with tp’= ( tp1, q2 ),

and

1),
in [P’,

Aq’ + aV div’ 0 in f,
o(tp’)v 0 on F

Ap 0 in f,

}’--q- (--X2P q- X12) -’0 on F.

Thus p’ is a two-dimensional rigid motion we may set equal to zero and

q3
the St.-Venant warping function. Thus

v

The bending and extension solutions may be determined in the same way. We do not
pursue this here since they are described, from a different viewpont, in 3.

Of course, Love [6] is an ideal source of information about St.-Venant solutions.
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ON THE BEHAVIOR OF THE SOLUTIONS TO THE
LAMM EQUATION OF THE ULTRACENTRIFUGE II*

ATSUSHI YOSHIKAWA"
Abstract. In the ultracentrifugal analysis of a two-component solute-solvent system, the concentration

c(r,t) of the solute is described by the Lamm equation Oc/Ot=r-lO(r{ DoOc/)r-rto2SoC/(1 +kc)})/)r,
O<r,,<r<r,, t>0, with the nonlinear boundary conditions DoOcfi)r-rto2SoC/(l+kc)=O at r=r and
r= r,, and the initial data C=co(r when t=0. Here Do, So, k, o are positive constants independent of c. In
the present paper, it is shown that for any smooth nonnegative initial data co(r), compatible with the
boundary conditions, the solution c(r,t) converges to the equilibrium solution as t---> + oo. The rate of
convergence is also given. These improve some of the results obtained in [SIAM J. Math. Anal., 15 (1984), pp.
686-711] under more stringent assumptions on c0(r).

Introduction. Consider the following Lamm equation of the ultracentrifugal analy-
sis:

(0.1) i--[ r -r r Do-r r:sc

0 < r. < r < rb, > O, with the (nonlinear) boundary conditions

(0.2)
Oc

D-r rto2sc 0

at r=r, and r= rb, and the initial data

(0.3) C=co(r ) when t=0.

Here c(r, t) stands for the concentration of the solute in a two-component system (see
Fujita [1]). DO is the diffusion coefficient and to the frequency of the rotor. We assume
that DO and to are positive constants independent of c. s is the sedimentation coeffi-
cient, which is given by

SO(0.4) s=s(c)=l+kc
with positive constants so and k.

From the physical point of view, it is natural to require that the initial concentra-
tion c0(r) satisfy

Co(,)>=o

and

(0.6) f:b co ( r ) r dr > O.
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Some of the basic properties of the solution c(r, t) of the Lamm equation (0.1)-(0.6)
have been established in [2]. In particular, the existence and uniqueness of the solution
to the Lamm equation have been verified [2, Thm. 1]. The property of the equilibrium
solution cE(r) has also been discussed [2, Thm. 2]. Namely, cE(r ) satisfies the equation

(0.7) 0

in r < r < rb with

(0.8) fre cE( r)rdr= mo.

However, the convergence of c(r, t) to cE(r) as ---, o has been shown only under the
requirement that either co(r ) be nondecreasing in r or co(r) satisfy

Oco(r) ro2S(co(r))co(r) <-So6o2rkDo Or

[2, Thm. 3].
In the present paper, we remove these restrictions on co(r) and prove the follow-

ing"
THEOREM 0.1. Let co(r ) be a smooth function, compatible with the boundary condi-

tions (0.2), and satisfying (0.5) and (0.6). Let c(r,t) be the corresponding classical
solution to the problem, and cE(r) be the equilibrium solution with the same mass as
co(r ). Then there is a positioe constant C independent oft, r such that for each t>0,

(0.9) Ic(’,t)-celoo<- Cexp(-XEt).
In the above statement, Iloo stands for the norm of the Banach space L(ra, rb).

h E is the smallest positive eigenvalue of the linearization Le at c= cE. That is, LE is
the self-adjoint extension in the Hilbert space L2(ra,rb; q(r)rdr) of the operator

Leu= -r-X-r r Do-rrrU- rSo602s;( cE(r))u

for u C2(r,rb) with

0
Do-rU- rSoO2s(cE(r)) u 0

at r r and r= rb. Here we have employed Sl(C)= c/(1 + kc) and s(c)= 1/(1 + kc)2.

q(r)=exp -D-ls002 Sl(CE(r’ ’))r’dr’

For the benefit of the readers, we include a few words about how LEu is derived.
Suppose a solution c of (0.1)-(0.2) is written in the form c=cE+ u. Then from (0.1) and
(0.2), we get

0--- -r r r Do-rU-rSotO2s[(cE(r))u =--r Or (r’u cE)

t>O, r < r < rb, and

Do-r u- rsotoEs[(cE(r)) u= R ( r; u, cE)
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at r= r and r= rb. Here

ro2Soku 2

R(r; u,ce)= (1 + kce)(1 + kce+ ku)

and is considered to be of second order in u because of the fact that cE > 0, cE+ u > 0
[2, Thm. 1]. Thus to obtain the part of order 1 in u, we put R 0 and get the operator
LE

The proof of Theorem 0.1 is given in the next section. It depends on a better
choice of the Lyapunov functional. Our technique relies on smoothness of the solution
c(r,t). In the meantime, Professor Barbu has shown me that the above problem
(0.1)-(0.4) falls in the category of problems to which the monotone operator theory (in
LZ(ra, rb;rdr)) is applicable. The initial concentration may then merely be in
LZ(ra, rb; r dr). Since such generalized possibly multivalued solutions are out of the
scope of the techniques employed in the present note, we do not know if Theorem 0.1
still prevails under such a weak requirement on the initial concentration. However, it is
certainly the case once the solution achieves regularity at some instant.

1. Proof of Theorem 0.1. Let c(r,t) be the smooth classical solution of the
problem (0.1)-(0.4) with the initial data satisfying (0.5) and (0.6). The smoothness and
compatibility requirements of the initial concentration Co(r), on the other hand, are to
guarantee the existence of such a smooth solution.

Let

Oc
(1.1) J( c( r, ) ) Do-r rs2s(c)

for c=c(r,t). Recall that Sx(C)=c/(l+kc). To control the behavior of c(r,t) as
+ , we employ the following Lyapunov functional"

(1.2) E(c(., t)) frf J(c(r,t)) Nrdr,
with N a positive even integer large enough.

We can then show:
PROPOSITION 1.1. Given nonnegative smooth compatible initial data co(r ), there are

an even positive integer NO and a positive number q such that for any even integer N >= No,
we have

E(c(.,t))<=e-qtE(co), t>0.

Once this proposition is admitted, it is fairly immediate that the o-limit set 0p(c0)
of co(r ) in Le(ra,rb;rdr ), l=<p< , or in C(ra, r) (i.e., p=), consists of the
unique point ce(r), the equilibrium solution with the mass m0= frCo(r)rdr. In fact,
there is a sequence l<t:< <t,< + such that J(c(r, ti)) converges to 0
almost everywhere in (ra, rb). Then the proof of [2, Thm. 3] is applicable to derive (0.9).

Proof of Proposition 1.1. Because of our regularity assumptions, u(r, t) J(c(r, t))
satisfies the following equation:

(1.3) Ou 02//+A 0
0-- DO Or 2 -ru- Bu,

r < r < rb, > 0, with the boundary condition

(1.4) u=0 at r=r and r=r,
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and the initial data

(1.5) u=J(co(r)) when t=0.

Here

DoA =A(r, c) -7-- sc:s;(c)r’
Do=(,,)=o;()+
r

with s(c)= 1/(1 + kc(r,t))2 (see [2, 3]). Since

Do(1.6) B>=a2 >0,
we have

lu(r,t) [<=supJ(co(r))=Mo

in view of the maximum principle. Since Sl(C)=< l/k, we have

(1.7) 3c(r,t)
7 __< D;- 1M0 + rsoo- M

for all > 0 and r < r < rb. Now using (1.3) and (1.4), we get by a routine computation

(1.8) --e(c(. ,t))= -N(N- 1)Do
rb
uV-2urdr (rA)ruWdr-N BuNrdr.

ra

By (1.7),

(1.9) (rA,)= A + rA,=D-2-3SoCO2rs(t(c)-soo=r=s’(c)c
r

Do> 3soo2r- 2ksoo2rffM1 M2.
rb

Therefore, from (1.6), (1.8) and (1.9) we get

d(1.10) -d-E ( c(. )) <_ qe ( c(. ))

if N >__ No > M2ra/(Dor), and thus

NDo Vq=
rff +>0.rb

Proposition 1.1 is now immediate from (1.10) and (1.5).
Observe that the exponent q in Proposition 1.1 depends on N and also on co(r ).

On the other hand, we know that

lim Iv(r)I’rdr
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for any bounded measurable function o=v(r) on the interval (ra, rb). From this fact,
we immediately get the following:

COROLLARY 1.2. Under the assumptions of Proposition 1.1 we have

IJ(c(. ,t)) Io <= e-OlJ(co(’)) Ioo, t>0,

with Q >= Do/r2.
It is also immediate that IJ(c(.,t))lo is a decreasing function of t. This shows that

IJ(c(.,t))l would be the fight choice as the Lyapunov functional, although the
functional E(c(., t)) of (1.2) and Proposition 1.1 already provide enough information
for our present purpose.
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R-SEPARATION FOR
HEAT AND SCHRODINGER EQUATIONS I *

GREGORY JOHN REID"
Abstract. We classify all R-separable coordinate systems for the equation

(*) Am+2eOt=E1t, Am= E OyUyU,

which for e=5 and e=- 5, E--0 yields standardised versions of the Schrbdinger and Heat equations
respectively. The classification problem is solved by utilising the fact that (,) is a symmetry-reduced version
of the Helmholtz equation on rn + 2 dimensional Minkowski space for which there is a well developed theory
of separation. In all cases the separated solutions are eigenfunctions of a commuting set of operators which
are at most quadratic in the operators which generate the motions of the symmetry group of (,). A detailed
treatment is provided of the physically interesting case m 3.

1. Introduction. In this article a complete treatment of the variable separation
problem is given for the equation

(*) Arn + 2E Otff/ E/ Am-- yUy

in the real variables yU and t. When e= i/2 this equation is a standardised version of
the "constant potential Schrdinger equation" wch will be referred to as the
"SchrOdinger equation". If e - and E 0 then (,) is a standardised version of the
Heat or diffusion equation.

The coordinate system

(1.1)
yU=y(x), u=l,2,-..,m,

t= t(x), x= (xt, .,Xm+),
is R-separab& if there are complex analytic functions , and R, such that (,)
admits a solution of form

m+l

(a.2) H
j=l

where c=(c,..-, Cm+) are the m + 1 separation constants. It is the main task of this
article to classify these systems. At first it ght seem that any solution of (,) is
R-separable but the independence of R from the constants c severely limits the
possible R-separable solutions. Pure separation corresponds to R 0 and trivial R-sep-
aration to

m+l

(a.3) a= E
i=1

In the time independent case (i.e. Ot =0), equation (,) reduces to the Helmholtz
equation if E 0 and to the Laplace equation when E 0 on real Euclidean space m.

* Received by the editors January 30, 1984, and in revised form May 15, 1984.
Mathematics Department, University of Waikato, Hamilton, New Zealand. Present address, Mathe-

matics Department, South Dakota State University, Brookings, South Dakota 57007-1297.
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A classification of the R-separable systems for these equations in three spatial dimen-
sions (m=3) was first provided by B6cher (1894). Eisenhart (1934) gave a rigorous
derivation of the systems obtained by B6cher. Eisenhart (1934) also characterized
variable separation in a geometric manner that could be systematically applied to the
variable separation problem on any Riemannian space.

Separable solutions =Hi(x) of the time independent form of (,) Am(I)=K,
also provide separable solutions 9=eXttb of the time-dependent form of (,) if K+ 2e

E. However there are many R-separable systems for (,) where the time dependence is
not so trivial. Only recently has a systematic investigation of such systems been
undertaken. Kalnins and Miller (1974) classified all R-separable systems for the poten-
tial-free Schr/Sdinger equation in one spatial dimension (i.e. (,) with e i/2 and rn 1).
Subsequently Boyer, Kalnins and Miller (1975a) classified all R-separable systems for
the Schr6dinger equation in two spatial dimensions. These and earlier investigators
showed that the separability of these equations was intimately related to their respective
point symmetry groups. More specifically they showed that the R-separated solutions
were eigenfunctions of a set of mutually commuting sets of linear and/or quadratic
combinations of the partial differential operators that generate the motions of the
group. In Boyer, Kalnins and Miller (1975a, b) these group theoretical characterisations
are used to give efficient and well-motivated derivations of addition theorems both old
and new for the various special functions that appeared as eigensolutions of the
separated problems. In his book Symmetry and Separation of Variables, Miller (1977)
collects the results of the above papers and also characterises group theoretically
variable separation for many of the common partial differential equations of mathe-
matical physics.

The present paper is an extension of Kalnins and Miller’s work to rn dimensions.
Kalnins and Miller (1982a) have already constructed all separable systems for A mXI’
Ext’ (i.e. (,)with e=0). It is out of their construction that we will be able to build all
R-separable systems for the time dependent case.

The symmetry group (Bluman and Cole (1974), Boyer (1974)) of (,) will prove to
be of great use in our study. This is the group of coordinate transformations which
leaves the form of (,) invariant. If two R-separable systems are related by the action of
this group then we will not distinguish between them. We will often work with the Lie
algebra corresponding to this group. The infinitesimal generators

(1.4) L=a’(Y)y,+ b(Y)
for this algebra are found by solving the relation

(1.5) [Q,L] M(Y)Q,

where Q=A,,+ 2eOt-E and y___(yl,..., y’,t). Here [, is the commutator bracket
and we have used the Einstein summation convention which will always be assumed
unless indicated otherwise. These generators can also be interpreted as symmetry
operators in the sense that they map solutions to solutions: if is a solution of (,) then
so too is L.

Another illustration of the importance of the symmetry group is in the case of
ig,norable variables. A variable is ignorable if it is possible to choose (via the freedom
(1.8a) defined below) an R-separable coordinate system such that this variable does not
appear explicitly in (,). Greek indices will be used to denote such variables. Nonignora-
ble coordinates will be referred to as being essential variables, ignorables correspond to
elements of the Lie algebra and systems containing N of them correspond to N
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dimensional abelian subalgebras. The determination of these subalgebras under the
adjoint action of the Lie algebra will be of great use in the solution of our problem.

In all cases the R-separated solutions xI, will be characterised as eigenfunctions of
a commuting set of rn + 1 partial differential operators quadratic in the elements of the
Lie algebra. We will thus be able to extend the group theoretical characterisation found
in lower dimensions by Kalnins and Miller (1974), Shapovalov and Sukhomlin (1974)
to the time dependent Heat and Schr6dinger equations of any spatial dimension.

The partial differential operators corresponding to ignorables are first order so the
eigenfunction condition implies that

(1.6)
in which case the x dependence in xI, is simply

(1.7) qa e t"x’.
The remainder of the operators are second order.

To simplify this study we will say that two R-separable coordinate systems (x}
and {,} are equivalent if

(1.8a) X"=f(xO),
(1.8b) ,a’-’CXfl"-Ega(Xa), det(c) 4: 0.

a
or

(1.8c) they are related by the action of the symmetry group.

Here the c are real constants and the x are essential variables. Benenti (1980) has
given a rigorous definition of equivalence for the Hamilton-Jacobi equation. By his
definition two separable coordinate systems for this equation are equivalent if their
separated complete integrals are the same (see 2 for the definition of separation for the
Hamilton-Jacobi equation). He shows that by using this definition the only possible
types of equivalence transformations are (1.8a) and (1.8b). These two equivalences
extend naturally to our case since both of these transformations preserve the R-separa-
bility of (,). We add (1.8c) because equivalence under the group removes the distinction
between many different coordinate transformations leading to the same functional
form of (,).

In the early stages of this work a program (see Reid (1984)) was written in the
symbolic language MACSYMA capable of producing all the time-consuming details of
separation for flat spaces. Although a general theory was finally set up dispensing with
the need for this program, it proved extremely useful in checking the results.

The structure of this article is as follows. In 2 we transform (,) to the Helmholtz
equation in Minkowski space, and exploit the fact that both this equation and the even
simpler Hamilton-Jacobi equation separate in the same coordinate systems. Section 2
is also introductory in nature as it outlines much of the basic material needed for our
study. In 3 we determine the possible sets of commuting Killing vectors (or abelian
sub algebras) characterising separable systems for the Hamilton-Jacobi equation. Using
these abelian subalgebras a simple form is then found for the metric. As a result the
Riemann curvature conditions are solved in 4 and the metric completely determined.
The technical work of finding the coordinate transformations is also carried out in 4.
This work is summarised in graphical form in 5. In 6 we determine the operators for
(,) and in 7 the R-separable solutions. The results for physically interesting cases
m 1, 2, and 3 are tabulated in Appendix A.
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2. Passage to the Hamilton-Jacobi equation in Minkowski space. The problem of
finding all R-separable systems for (,) is shown to be equivalent to that of finding all
separable systems for the Helmholtz equation (2.1) defined on Minkowski space with
symmetry (2.2). The conditions for separability of (2.1) are best derived from its
classical counterpart, the Hamilton-Jacobi equation (2.15). We show that the symmetry
algebras of (,) and (2.15) are isomorphic to the SchrSdinger algebra when E= 0 and to
the Galilean algebra when E4 0. The central result is the following theorem.

THEOREM 2.1. There is a mapping between R-separable coordinate systems of (,) and
separable coordinate systems for the Helmholtz equation on n(=m+ 2) dimensional
Minkowski space.

(2.1) rq2I’ E,, n=m+2,

whose solutions are eigenfunctions of the symmetry operator

(2.2)

with associated eigenvalue e (i.e. ,q’=oI’). Here the D’Alembertian operator on
Minkowski space with the coordinates i, 1, 2,..., n, is defined by

(2.3)

Proof. We first construct the mapping from (.) to (2.1). Suppose

(2.4)
y=y(xl, x"- ), j= 1,2,..., n 2,

t=t(xl,. ., x"-l),
is an R-separable system for (,); then there are functions xt,, ,t,j. and R such that

n--1

(2.5) eg=e II qj(xJ).
j=l

Consider the coordinate system

2Y=yY(, Y,"- ), j 1,2,... n 2,
(2.6) n-l_yn=zt(5,1,.

This is a system in Minkowski space with ignorable if", corresponding to the symmetry
operator (2.2) whose eigenvalue we shall specify as e. Let

n-1 n-1

(2.7) =e*" II j(ffJ)=e [*{y"-’+y")+"] I-[ 41j(xJ).
j=l j=l

As satisfies (,), is easily shown to satisfy (2.1). In other words (2.6) is a separable
coordinate system for the Helmholtz equation (2.1). We now show that the mapping
from (2.4) to (2.6) is onto by constructing its inverse. If {} is a separable system for
(2.1) with symmetry operator (2.2), then

(2.8)
fj=yj(l, Y,"-) j 1 ,2,... n 2,

f,- +y,= y,,+f(ffx, .n- 1)
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which if we let

(2.9) f= -R/e

is the image of (2.4), and the theorem is proved. Q.E.D.
In fact (2.1) separates in the same coordinate systems for each nonzero value of E.

Care must be taken when E =0. When this occurs, (2.1) is the wave equation which in
general separates in additional coordinate systems as is shown in Kalnins and Miller
(1982b). However if we define

(2.10) =e-E’/:

then by substitution:

Vt" is an R-separable solution for (,) with E= 0 iff is an R-separable solution for (,).
The presence of the symmetry (2.2) has eliminated these additional systems. This means
that a classification for nonzero E will also yield all possible systems when E=0.
Again care must be taken as the symmetry group of the wave equation is larger: it
admits additional conformal symmetries. In essence, some of the systems which are
inequivalent for (,) when E4:0 become equivalent under the action of the extra
symmetries when E 0. We will return to this point later. All that we need to know at
the moment is that everything can be obtained from the nonzero case.

One of the advantages of transforming our problem to the Helmholtz equation
(2.1) is that to such an equation we can naturally associate a Riemannian geometry.
Here (2.1) corresponds to the metric

(2.11)

which is the metric of a general n-dimensional Minkowski space E(n, 1). The classifica-
tion of coordinates can now be framed as the classification of the metrics ds:= gijdx dxJ
arising from the fundamental metric (2.11) using the results of Riemannian geometry.
Since the space is Minkowski, these results imply that all the components of the
Riemann curvature tensor are identically zero, i.e.

(2.12) Rijk/=---O, 1 <=i,j,k,l <=n.
For the definition of this tensor the reader is directed to Eisenhart (1949). Continuing
our discussion in general let V, be a (local) pseudo-Riemannian manifold specified by
its metric

(2.13) ds2=gi2dxidx, g=det(gi2)4O.

The Helmholtz equation for V, is expressed in local coordinates by

(2.14) 1

.1/20i ( g /2g j j/ ) E ffff

where E is a nonzero constant. Closely associated with the Helmholtz equation is the
Hamilton-Jacobi equation

0W(2.15) H(p,) g’ap,pj= E, p,
Ox’
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where W is the Hamilton-Jacobi function or complete integral of (2.15). This equation
is said to be separable if there are functions W such that

n

(2.16) W(x,k)= E W(x’,k),

where

(2.17) k= (hl,..., h,,)

are the n constants of the motion necessary for a complete integral. (N.B. W is a
complete integral if det(OW/0,j.)#:0). One of these constants can always be taken as
E. Both (2.14) and (2.15) are coordinate independent and the passage between them is
analogous to that between Classical and Quantum mechanics. A close relationship also
exists in the case of variable separation. Every separable system for the Helmholtz
equation also separates the Hamilton-Jacobi equation. This was demonstrated for
orthogonal coordinates by Robertson (1927), and can be verified for nonorthogonal
coordinate systems by using the results of Kalnins and Miller (1983). Robertson (1927)
also supplied the extra condition (called the Robertson condition) for the converse of
his result, i.e. for Hamilton-Jacobi separation to imply Helmholtz separation. The
generalisation of the Robertson condition to nonorthogonal coordinates can be ob-
tained from the work of Kalnins and Miller (1983).

The above results imply that every separable coordinate system of (2.1) is a
separable system for the Hamilton-Jacobi equation

(2.18) H=P12+ +P2_I-P,,2=E, Pi

with Minkowski space metric (2.11) and symmetry operator (2.2). The generalised
Robertson condition depends on the metric components and is especially complicated
in metrics with many nonorthogonal terms. In our case this condition can be shown to
be always satisfied after the metric has been reduced to a simple form in 3. That is, the
Hamilton-Jacobi equation and (2.1) separate in exactly the same coordinate systems.
This result can also be proved by making the following observation which avoids
introducing the technical details of the generalised Robertson condition. The separabil-
ity of (2.1) in all separable systems for the Hamilton-Jacobi equation (2.18) is ulti-
mately demonstrated in 7 by obtaining the corresponding separation equations for (,).
In summary our problem has been reduced to the much easier one of finding all
separable systems for the Hamilton-Jacobi equation (2.18).

Working with the Hamilton-Jacobi equation is more convenient since its form
(2.15) is not as complicated as that of the Helrnholtz equation (2.1) and is more closely
related to the metric (2.13) (it is just the inverse). Using his definition of equivalence,
Benenti (1980) was able to give the conditions for separability of the Hamilton-Jacobi
equation (2.18). He showed that each of his classes contained a canonical separable
system ( x", x r, x } with contravariant metric

(2.19) (g’)
abgaa 0 0

0 0 gr,
0 g"’ g’

nl
n2.

n3



652 GREGORY JOHN REID

Here n3 n 2 and the integers a,r,a vary in the ranges 1 __<a, b<=nl; n + 1 <=r<=nl +/72;
n + H 2 + 1

__
O, <_ n + n 2 + n n. The nonzero components of the contravariant met-

ric (2.19) are

al rl(2.20) g=--, g’" 7(x’)---, g"/=,A(x)+

where and ka are the determinant and il cofactors of the (n +n2)X(n1+n2)
Sttckel matrix (kj(xi)). Furthermore, OgJ=0 for each ignorable variable x. The
variables x" and x are referred to as Stftckel and first order variables respectively.
Together these variables form the class of essential variables that was mentioned in the
Introduction. The form of (2.19) implies that the first order variables are of null-type,
and the signature of Minkowski space which is n- 1 thus limits the number of these
variables (n _) to 1. A discussion of null variables is given in Eisenhart (1949).

Since our problem will be solved using the Hamilton-Jacobi equation (2.18), we
first find the Killing vectors corresponding to the first order symmetries of (2.1) and (,)
when E 4: 0. To find these Killing vectors, we solve the analogue of (1.5):

(2.21)

where ( } p is the Poisson bracket and =a(y)P. When ES0 the Hamilton-Jacobi
equation (2.18) admits a Lie algebra of Killing vectors which is the Lie algebra of
Minkowski space e(n, 1). All the coordinate systems we are considering possess the
symmetry (2.2) and so by the abelian subalgebra condition all symmetries of (2.1) must
commute with (2.2). The Killing vector counterpart of this relation is

(2.22) { ,t ) ,,=0, g 1/2(P,,_ +P,,)

where is the Killing vector corresponding to (2.2). This extra condition confines us to
a subalgebra of e(n, 1)rathe Galilean algebra g, of dimension 1/2m(m + 1)+ 2 and basis

(2.23) , Pu, M,o=yPo-yPu, B,=yU.-tPu, K__=Pt.

Here u, v U= (1,..., n- 2}. In general the indices u and v will be taken from the set
U. Since the above Killing vectors form a basis, any Killing vector has the form

(2.24) uo Kh, pPu+ m, Muo+ flBu+ x, -2,

uo are all real constants. The commutation relations for gmwhere the pU, m,, fl and x
may be derived from Table 2.1. The symmetry algebra for the Helmholtz equation (2.1)
(E : 0) is again gm with the identifications

(2.25) 1/2(._+.), PO, MuoyUOo-yOu,
B--*y- tO, K_2--- Ot.

By solving (1.5) for (,) we find that gm is also the symmetry algebra for (,) except that
the operator is replaced by its eigenvalue e.
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If E=0 the symmetries of (2.1) are of the form asp+f where (H, a2P2+f}e
M(Y)H and then there are two extra symmetries. When expressed as conformal
Killing vectors, these are"

u) 2(2.26) K2 -t2Pt-t-’yUPu+ (y D=y Pu+2tPt,
U U U

and as operators for (,)

1 1 )(2.27) K2= -t2Ot-tEyUOu -mt+ -e-’(y
U U

1
D= yUOu+ 2t0t+ m.

U

These satisfy the commutation relations

(2.28)
[D,P,]=-P,, [D,Muo]=O [D,Bul=Bu, [D,K+2]=+_.2k+2
[K:,P,,]=-B,, [K2,M,o]=O, [K:,B,]=O, [K:,K_:]=D.

This enlarged algebra is the Schr6dinger algebra s of dimension 1/2m(m + 3)+4.
Geometrically the Pu and Muo are generators of space translations and rotations

under which (,) is clearly invariant. Less obvious are the transformations correspond-
ing to the B’s. These are the Galilean or velocity boosts and illustrate the fact that (,)
retains its form in uniformly moving frames of reference. When E=0 we have the
additional conformal Killing vectors D and K2. D is the generator of the dilatation
symmetry ff’(y,t) (ay, a2t). The action of K2 is rather complicated and it does not
have a simple geometrical interpretation.

One of the applications of these symmetry algebras will be to determine the
abelian subalgebras corresponding to sets of ignorable variables. Again the action of
the group helps us choose simple representatives for these subalgebras. The group acts
on the algebra gm via its adjoint action. In general, for two members of a Lie algebra
L and L2, the adjoint action of L. on L2 is given by

(2.29) eaLL2e-aL e a Ad LxL2

where AdLI(L2)--[L1,L2]. A proof of this result is given by Hausner and Schwartz
(1968). The adjoint actions for the Galilean algebra are summarised in Table 2.1. In
Table 2.1, each entry represents eaAdLx(L2), e.g. eaAde,(Bw)=Bw+aSuwe/2. If the
adjoint has no effect, i.e. eaAdLI(L2)=L2, then there is no entry. From (2.29) the
commutation relations are simply the coefficients of a in the table. For example
Mo, Pw]= 8owPu i,wPo where jk is the Kronecker delta.

The operators Pu, B,, e generate the (2m + 1)-dimensional Weyl algebra w and
the Muo’s generate the 1/2m(m-1)-dimensional orthogonal algebra o(m). If we define

The referee has commented that if we consider E-dependent operators, then

( E) 1 1 y, (y.)K2=-t Ot--e -tyUOu--mt+
D=2t Ot--e +y",+-m+2eEt,

are conformal symmetries of (,) even when E: 0. This reflects the fact that solutions for E 0 can be
mapped to those for E=0 by the E-dependent relation (2.10).
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the operators

(2.30) AI=D, A2=K2+K_2, A3-K_z-K2,

these satisfy the commutation relations

(2.31) [A,Az]=-ZA, [A3,A1]=2A2, [A2,A3]=2A
and form a basis for the Lie algebra sl(2, R). It follows that the structure of s,, is

(2.32) s,=(sl(2,n)9o(m))wm.
where represents the direct sum and the indirect sum. Similarly the Galilean
algebra has structure

(2.33) gm=(tl o(m))f)w
where is the one-dimensional algebra of time translations. Using standard results
from Lie theory, these operators can be exponentiated to obtain the SchrOdinger and
Galilean groups. These groups act on the space of locally analytic functions of the real
variables yJ, and map solutions of (,) into solutions. Expressions for the actions of
these groups appear in Miller (1977).

TABLE 2.1
Adjoint actions for the Galilean algebra.

Mwz +
a(SuwPz-SuzPw)

Mwz +
a(SvwMuz-SvzMuw
+.zMow-.wmoz)

+a ...t

B

aSuwe

Bw+
a(8owBu-8wBo)

+a ...
a21

K-z +aPu 4

tThe adjoint action of M.,, on the Pw’S is eaAdM’o(puP + PvPv)=PtuPu + OtvPv where 0, and po are determined
by

O; -sin(a) cos(a) Oo

It acts on the B,’s in exactly the same manner. (u, v, w, z U 1,.-., n 2 }).

3. Reducing the Hamilton-Jacobi equation. In this section we find simple forms
for both the metric and the Killing vectors, summarising these results in the following
theorem.

THEOREM 3.1. All Hamilton-Jacobi separable coordinate systems for (2.18) with
Killing vector , are equivalent to a coordinate system associated with the
Hamilton-Jacobian equation

gllp+ +g(n-2)(n-2)o2 +gnnn2W2Pn_lPn=E2



R-SEPARATION FOR HEAT AND SCHRODINGER EQUATIONS 655

Moreover if one variable is first order, and there are r ignorables xO), ..., X a(r) in
addition to x n, the corresponding Killing vectors are

(3.2)

1x.=
k a(1)’-- M12," ", a(p) M2p- ,2p,

(p+l)=e2p+l, a(q)ep+q,
X(q+ ) Be+q+- 0

+q+Pp+q+l Xa(r)= Bp+r- PP+ rpp+r.
If there are no first order variables then all the Killing vectors except for one2 will be
those in (3.2).

Proof. Let x be a Stckel variable while x is first order. From (2.8)

(3.3) t

so that

Ot Ot
(3.4) OX

=0, X =gna(Xr),

since inversion of (2.19) shows that for Stckel variables gai--ai(gaa) -1. The equa-
tions in (3.4) can be integrated to give

(3.5) t=h(xr)+Eg,(xr)x".

Now from (3.5) and (2.8)

(3.6) Xa=YUPu+gn(Pn--Pn)+1/2f a(Pn-1 +Pn), a4:n,

so (2.24) implies

(3.7)
We know from {}2 that n 2 =< 1. If n 2 0 then;

(3.8) lc aXa --) X n-

under a general linear motion amongst the ignorables. Consider n 2 1. If for some fl,
xa 4: 0, we can use a general linear motion and then the freedom (1.8b) to transform
to X 2 i.e.,

(3.9) t--*h(xn-)+x-2-x-2.

Thus from (3.7), the metric gij has form:
nl

(3.10a) ds 2= E gaa(dxa)2+ Egk,dxgdx’+2dx
a=l k,l

n-2dxn (n+l<=k,l<=n-1).

2This Killing vector can only be calculated from the coordinate transformations (4.30). It has form
K_ + fl"B,,, but its knowledge was not needed to produce the reduced form of the contravariant metric (3.1).
It may be regarded as a special subcase when the first order variable has become ignorable.
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The variable x
(3.10a), (gij) has form

(3.10b)

The vectors

"- is first order, thus g("-t)("-)=0 and by taking the inverse of

0 0 0 1
0 0
1

X"-=(0,0, 0 0 1 0)(3.11)
X"-2= (0,0, .,0,1,0,0)

are orthogonal and null with respect to (g), which is impossible in Minkowski space
(see Eisenhart (1949)). Thus

(3.12) 0, for each a.

It is now possible to use the freedom (1.8a) to change variables so that

(3.13) h(xn-a)"-x n-x.
We see that whether x "- is first order or ignorable the coordinate transformations are

y,=y,(x x,,-x)
(3.14) y"--y"=2x"-=2t,

y,-+y, x,+f(x X )o
This is progress as the time coordinate has been identified as just x"-.

From (2.24) and (3.14)
U UO(3.15) X= P,Pu + m,, Muv + fl,,Bu, a :/: n 1.

To solve the orbit problem, i.e., to establish the possible commuting sets of Killing
vectors, we refer the reader to Reid (1984). The essential element of that argument is to
notice that when we set time to be a constant, i.e., x"-= constant c, in the coordinate
transformations (3.14), then we have a separable system for Amq’ E’t’, parameterised
by c. The results for the orbit analysis for this equation are known (see Kalnins and
Miller (1982a)), and are used in Reid (1984) to determine some of the unknown
constants in (3.15). Further simplification of the orbits is achieved through the use of
the adjoint actions given in Table 2.1. After some work the Killing vectors are shown to
have the form given in (3.2). Solving the characteristic equations resulting from (3.2)
shows that the metric can be written as

(3.16) ds z= Eg(dxU)+g(,_)(,_)(dx-)+2dx"-dx".
U

Inversion of (3.16) gives the Hamilton-Jacobi equation in the form (3.1)--all the
conditions of Theorem 3.1 have now been satisfied.
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By finding the symmetries and using the restrictive signature of Minkowski space
we have reduced the nonorthogonal part of the Hamilton-Jacobi equation to one
off-diagonal element.

4. Metric and coordinates. In the previous section we established a simple form
(3.1) for the contravariant metric and this will enable us to use the curvature conditions
(2.12) to determine this form exactly. We will also find the coordinate transformations.

THEOREM 4.1. The Hamilton-Jacobi equation can be written

(4.1)

where

(4.2)

1__ E bbp+2Pn-lP,+ E -p2n=E,
q(Q bBq q.Q ,,q

Q { qi: ql < q2 < < qt }
is some subset of U= (1,..., m ) and the sets

(4.3) Bq={qi,q,+l, ,...,q,+l-1}, 1<i<l,_

form a partition of U. Here Oq is a function ofx"- alone, and if b Bq

(4.4) gbb= g, 6b( xc), Vq= Vq( x c)
where c Bq.

As an illustration of the notation used in Theorem 4.1 see (5.14). There U= Q=
{1,2}, Bx={1 } and B_= {2}. In (5.17) a={1}, B1={1,2} and o1=1(x3)2/111/z. To
prove the Theorem, we will make use of the following equivalent condition for the
Stackel matrix found by Eisenhart (1934).

LEMMA 4.1. The nonsingular Q Q matrix ( +ij) is a St8ckel matrix gand only g

log( -Ojlog( )(4.5) iklog() j )OklOg( )3klog(jl
--Oklog log lsj <kNQ-

We now prove Theorem 4.1.
Proof of Theorem 4.1. For notational convenience we need only assume n 2 1

since the functionN form for n 2 0 is just a speciN case. Consider the matrix

(4.6) (iJ)= A,a I
where

(4.7) AOa -Al,a =n + 1, n 2

is an MXN matrix (N=n + 1,M=n-2-nl) and IMM is the MXM identity matrix.
This matrix has the properties

(I)al ,/31 (I) (n- 1)1

(4.8) gaa= gOO= (n-1)ng =1=
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These will enable us to make extensive use of Lemma 4.1. It follows immediately from
(3.1) and Lemma 4.1 that

(4.9) 0o,,_ l)loggu Oo log gu,),_ logguu- OologguuO_ loggoo.

It is easily shown that

1(4.10) Rvuu(n_l) "g..O(,,_l)log(gu. )

+ - [Oolog(g..)O._logg.u-Olog(gu.))._xlog(goo)] =0.

Substitution of (4.9) into [-] in (4.10) gives

(4.11) Oo(,_l)log(gu,)=O.
This implies

(4.12) guu=%(xn-1)guu

where g,, does not depend on x "-1. From (4.9) and (4.11)

(4.13) Ovlg(guu) On-1 log(ou/Oo) O.

We can define an equivalence relation on U by u- v if % is proportional to %,
and by rescaling coordinates there is no loss in assuming that %=% on each equiva-
lence class. By reordering the indices, the sets of the partition can be taken to be the
Bq’S of Theorem 4.1. Furthermore, (4.13) implies that the gbb’S are only functions of
those x"’s in their class, i.e. they satisfy property (4.4) in Theorem 4.1. Defining

(4.14) Vq= E gbbA,",
tnq

the Hamilton-Jacobi equation takes the form (4.1) given in Theorem 4.1.
THEOREM 4.2. The spaces with metrics

(4.15) d= E ,b(dxO)
bBq

Q.E.D.

are separable, flat andpositive definite. Also we have

(4.16) Ox,.x,Vq=O, c4: d, c, d Bq.

Proof. We first show that the metrics (4.15) are differentially flat, separable and
p_ositive definite. The flatness conditions R;jkl 0 with i,j, k, Bq, are equivalent to
R ij,/=0, i.e., those for the metrics in (4.15). It follows that the spaces associated with
these metrics are flat. Since the metrics in (4.15) are orthogonal, the separability
conditions (4.5) for i,j,kBq can be applied to show that these metrics are also
separable. To show that the metrics in (4.15) are positive definite, we first compute the
eigenvalues of (4.1). These are

(4.17) += 1/2[g""+ (g"0)2+4 ].
Regardless of the value of gnn the eigenvalues (+ and

_
are positive and negative
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respectively. The remaining eigenvalues Ju must be positive since the space is Minkow-
ski with signature n- 1. It now follows from (4.1) that

(4.18) Oq>0 and ,u>0,

redefining Oq and , to be their negatives if necessary. This shows that the metrics
(4.15) are positive definite.

To prove condition (4.16) of the theorem we notice that since Vq is given by (4.14),
the extension of Lemma 4.1 (see (4.8)) can be used to obtain

(4.19) OcdVq+ icVq)dlOg(gc)+)dVq)clog(gdd)=O.

Alternatively this result can be obtained by considering the Hamilton-Jacobi equation
(artificially created for our purpose) -bb 2 2

Y--’b.B_g Pb + -’q qPn-l" As this equation is sep-
arable the results of Lemma 4.1 can be applied: equation (4.19) is derived from (4.5)
with j=c, k=d and i= n-1. Combining this result with the curvature conditions

R,.,_ 1),- t)d 0, which are equivalent to

(4.20) OcdVq+ OcVql)dlOg( gcc)/a + OdVqOlog( gdd)/4=O,

we obtain condition (4.16). Q.E.D.
We now go on to determine the exact form of the unknown functions gbb, Oq, Vq,

and hence obtain the classification we are seeking. First since the spaces defined by the
metrics (4.15) are positive definite, we can use the results of Kalnins and Miller (1982a),
in which they completely classified such spaces; this determines the ,uu’S. By transfor-
ming to standard cartesian coordinates on each R nq, the Oq and Vq are determined. In
transforming back to general separable coordinates, however, the separability is not
necessarily preserved, so we find the compatibility conditions to ensure this preserva-
tion.

Since the spaces defined by the metrics are flat and positive definite we can choose
standard coordinates zb:

(4.21) zb=zb(xc), b, cfF_.nq,

and

(4.22) dg2q= , (dzb)2.
bBq

Working in terms of these coordinates (4.19) implies that

(4.23) zc,,Vq=O, c, d Bq, c4: d.

R (n_ 1)cc(n- 1) 0 is equivalent to

t) 2(4.24) 1 (oq 1 a Ft,c =0"Oq 40q 2 (It

where the prime denotes differentiation with respect to x "-1. Together with (4.23) this
last equation implies that

b)2 b)(4.25) Vq= Y’. -(z +"/bz +
bBq
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and

(4.26) 2%% -(o’)2

Making a transformation of form x" x + g(x"-l), we can take 6 =0 in (4.25). When
’q4:0 it is possible to translate z 6 so that %--,0. To solve (4.26), differentiate it to
obtain o 0 and substitute the resulting quadratic into the original equation (4.26).
Application of the coordinate freedoms (1.8) leads to the five possibilities I IV + in
Table 4.1. The constants q, Yb, IAq and Wq are all real.

TABLE 4.1

Possibilitiesfor o x ).
Type

II
III

IV +

1 0 arbitrary
x"- + Vq)2 0 arbitrary
(x"-1 +Vq) -1 0

w:+_- +_ 4W2q Wq=b O 0

A knowledge of the lower dimensional cases, and a little guesswork leads to the
transformations for n 3(m 1). They are

(4.27)

where

1ff_3/2
1 1/2 f 3/2 3/2yZ+y3=x3-o’(zX)Z/4-vzo jo 8

o

y2--y3=2X2,

(4.28) f,y2 f(y) dy.f f(Y)=
--yo

We now show that this one-dimensional case forms the building block for all others.
Define

(4.29)

and

Fuq(ZU,xn_l)._zutll/2_[_ 1 ff-q "’u O; 3/2

1 uol/2f 3/. .(4.30) auq(zU,xn-1)=o(zu)2/4+ -[.z _q O; -Jr- 0-
then the coordinate transformations are

(4.31)

yU Fuq
yn-lwyn=xn E E Gbq,

qQ bbq

yn-l--yn=2Xn-1"
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These results can be checked by computing the metric using (4.31) and then taking its
inverse to obtain the Hamilton-Jacobi equation (4.1). In the above transformations we
will say that the 7 term is attached to the z u coordinate.

To obtain the coordinate transformations in terms of the x we simply substitute
the expressions given for the z b in (4.21). Not all the systems thus obtained will be
separable. Naturally they will be separable when 7=0 for all u and ’q=0, or for all
values of these parameters when the coordinates are cartesian. Given a certain separa-
ble system (4.21) the problem is to work out the form of Vq (or equivalently the values
of the parameters 7 and ’q) to ensure separation in the variables x.

To tackle this problem it is necessary to know just what the possible systems (4.21)
are. We give a brief summary of the solution provided by Kalnins and Miller (1982a).
They show that it is possible to decompose R into a direct sum of subspaces , in
such a way that the separable coordinates on each of these are of either "elliptic" or
"parabolic" type with graphical representations

(4.32A)

or

s,, s,

(4.32B)
Sp,

respectively. We will say that R n splits into the subspaces R "r. Cartesian coordinates on
", for case A are given by

(4.33A) zi=(NrWj)(pjSqj), l <_i<=n,, I<j<=N,

and for case B

(4.33B)
2<_i<=nr, 2<=j<=N.

Here the p./Sqj 1 <=qj<=pj= 1 are coordinates on the pj-dimensional sphere Spj and
therefore satisty

pj/

2--I.
qj=l

In (4.32) the sphere S. is said to be attached to ej or equivalently to the coordinate

N wj. When pj=O, Sp s the "zero dimensional" or "trivia]" sphere. quiva]enfly there
s no sphere attached to NWj.

For elliptic-type coordinates A

II __’l(X,-)
(4 35A) wE 2

Nr j =Cr I-[,.j(e;-e;)’
j=I,...,N,,

where
r< 1< <e <XrNrel Xr Nr Cr, ef
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For parabolic coordinates B

Cr ( Nr Nr-X )I+EeNrWI " E Xr
/=1 /=1

(4.35B) Nr
w2 2 II’=l(Xr--e)-11

Nr J Cr I S’--’-r--t,j_l(et- e)-l)
wher

j=2,...,Nr,

Xrl<e[< <erNr_ <XrNr, Cr, e;(:

If the case Nr= 1 is treated in the same way as Nr> 1, it is possible to have the
elliptic and parabolic systems

and (
corresponding to the metrics ds 2 (dx1)2/(X e1) and ds 2 (dx ) - respectively. Both
of these systems are equivalent via the scaling transformation (1.8a). This explains why
the parabolic case does not appear when N= 1. This will help clarify some of the
exceptional behaviour that we will later encounter for N 1.

The classification also depends on the possible separable systems on the spheres
Sp. The structure of these systems is independent of the Vq and oq terms. Separable
systems on Sp can be built from irreducible blocks, each having grapcal representa-
tion

(4.36) [-,’el lep+X ’’The coordinate transformations for this block are

(4.37) ps c2 ]=(xy- e)
j,i(ej_ei)

lip+l

where e < xl< < Xp < ep+ 1. A general graph for Se has form

(4.38)

The coordinates for (4.38) can be built in multiplicative-iterative fashion from those of
(4.37). This process is best understood by consulting Kalnins and Miller (1982a) and
the examples provided in Tables 2 and 5 of the Appendix.

Applying these results to our case, decomposing the space corresponding to d,
corresponds to partitioning Bq into subsets E in just the same way that we partitioned
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U into the subsets Bq (i.e. the set E, is labelled by its minimum value r). For example
in (5.17), Ex { 1 }, E2 {2}, and in (5.22) E ( 1, 2 }. Using this partition,

(4.39) dg2q
r,,Cq Bq

where dg2 is the infinitesimal distance

(4.40) dg= _, bb(db)2.
bEEr

Here is the set of all the (minimum) indices r (e.g. in both (5.14) and (5.17)= (1, 2}). For simplicity on each irreducible block E of form (4.32a) or (4.32b) the
x + +,,- ,..., x"’. for each of thesecoordinates x r, ,..., x are relabelled as xx, x 2

blocks is defined as in (4.14) but with b restriced to Er. Confining ourselves to one of
these blocks E we systematically determine 1/r

Suppose that q :: 0 (i.e. Oq is of types III or IV +__ ) on Er. Here

nr ’q i)2(4.41) l/r= E --(z
i----1

and from (4.33) and (4.34).

(4.42) Vr=-- _, w2

j----1

Substituting for the NrWj from (4.35) and expanding in partial fractions in terms of the
e.’s, we find after some time that for the elliptic case A

(4.43A) Vr’-T
i=1 i=1

and for the parabolic case B

(4.43B) [ ()2NrNr-I(N-I)2N1 ]qC2r Nr
i)2 E el-- e 2 etV,=-- 2E(x x +6Ex’

i=1 i--1 i=1 t=l t---1 t=l

However only the V of (4.43A) satisfies (4.16). This means that if ’q 0 only elliptical-
type coordinates are separable.

Now consider ’q=0 and suppose that at least one of the 7i’s (Tk say) is nonzero.
In this case % is of type I or II and

n Nr pj+l

(4.44) =ET’z‘’-- E NrWj E "qj ,jSqj.
j--1 qj----1

Let x be any of the separable coordinates on the sphere Sp. From (4.16)

(4.45)
+1 )( )xlxiVr xl’x2--e2"’’’xNr=eNr --O=xl(NrW1)xi E "qlPlSql

q
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since u,w,(x*=e,)=O. Now )x,(u,Wl)4O SO that

(4.46) 3x, E[qlplSql
qx

i.e. EqP +l-
=1 Yq pSq=A, a constant. Such a relation cannot est among the pSq S unless

p =0. No sphere can be attached to the coordinate NW. This is demonstrated as
1,

Sfollows. As the yq are real, rotations can be used to pass to an equivalent set of
separable coordinates gq, for the sphere S such that

P1+1 [ ( )211/2E
q q pJl"

Since Zq(V): 0 equation (4.46) now implies

(4.48) 3x(pgX) 0, foralll.

This is only possible if p 0, i.e, no sphere is attached to the w coordinate.
Still assung q= 0 and V 0, consider the elliptic case. Let Nr= 1. No spheres

are attached to lW by the argument above and so z=w=x. Condition (4.16) is
satisfied and the system is separable. Let N 2. Using the above argument and the
symmetry of the elliptic coordinate transformations (4.35A) shows that no spheres
(beside the trivial ones) can be attached to any of the wj coordinates. Let x and x:
be any two of the elliptic-type coordinates in (4.35A). Equation (4.16) yields

Yi NWi(4.49)

Multiplying this last expression by (x-e)1/ and setting x=e for i 2, we find that
=0. This result is easily generNised to show that =0, for all i: contradicting our

initial assumption that one of the ’s was nonzero. Under these conditions, it follows
that the elliptic block E leads to separability only if V 0.

In the parabolic case using the same methods we find that only t can be nonzero
and then

(4.50) +’’" +x +e

i.e. parabolic coordinates are separable in this case.
Finally if 0 fq (i.e. Oq is of type I or II), then both elliptic or parabolic type

blocks are possible.
We have determined all Euclidean coordinate systems that can combine with a

given Vq to form a separable system for (4.1). Thus using the results of 2 the
R-separation problem for (,) has been solved. TNs procedure is systematised in grapN-
cal form in the next section.

5. Graphical representation of coordinates. We develop a graphical calculus to
represent the R-separable coordinate systems for (,), illustrating this procedure in
detail for m 1, 2, 3--the cases of physical interest.

From (4.28) and (4.30) the coordinate transformations for (,) are given by

y,= zUaX/ + 1 ffq ""
t=xn-l

uBq, qQ,
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and these can be given the graphical representation

L Lq

Here Gq is a separable system on N"(ol and the box indicates that there is just one
function oq on Gq, while the Latin number Lq(I, II, III or IV + ) specifies its type. Gq is
one of Kalnins and Miller’s graphs and will in general have form

(5.3) Gq G
where each G is one of the elliptic or parabolic types given in (4.32A) and (4.32B).

At the end of the last section we found the compatibility conditions for a oq-G
combination to be separable. To summarise these results we start with a given separable
Euclidean system G and then give the compatible o functions.

If G is of elliptic-type, then Lq could take any of its values I IV_. However
the cases ’q= 0, ’u 4:0 where x u is one of the coordinates on G can only occur if G
has form (. If the block G is of parabolic-type, it is only compatible with the
o-types I and II since it was shown in 4 that ’q4:0 did not satisfy (4.16). In the
allowed cases I and II, the 3’u term attaches itself to the coordinate ;vrwl of (4.35B).

These results are now generalised to a block of form

Lq
(5.4)

r’SIf all the Gq are of elliptic-type, then Lq can take any of its values, I IV +. The
parameters 3’ ort Gq can only be nonzero if the blocks G to which they are attached
have form (.

If at least one G is of parabolic-type, then Lq is restricted to types I or II. The
exceptional case N= 1 can be given our uniform general treatment if we regard it as
being equivalent to the two systems (3 and ( as discussed in [}4. A 3’u term can be
attached to C) (no spheres can be attached to this graph). Spheres can be attached to
( and this is compatible with q :: 0 but not with q 0 and 3’ 4: 0.

The parameters Wq and Vq can be normalised, since by making the separability
preserving transformations

(5.5) x"- ax"- + b,

we can take one Vq to be zero and one Wq to be 1. Further normalisations are possible
when E=0 because of the extra conformal symmetries K2 and D. For instance,
consider the case when one of the Lq’S is I in (5.2). The coordinates on this block are

(5.6) yb=zbd-b(Xm+l)2/4, bBq.

The dilatation D acts on the coordinates as

(5.7) yb- cyb, -- c2t C R

If this action is combined with the equivalence transformations

(5 8) Z b CZ b m+ 2xm+X "’)C
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and c= ),-x/3 then "Yb can be normalised to 1 or 0. If Lq is II on a block, then the same
normalisation is possible by similar methods. There are more equivalences possible
under the conformal symmetries, but the discussion of these will be postponed until the
operators have been determined in [}6. It is not possible to simultaneously normalise all
the 3,b’S. There is a different coordinate system for each vlaue of 3’b. Thus in general,
there is an infinite number of R-separable coordinate systems for (,) and the number-
ing of these systems in the Appendix is for tidiness only.

The following procedure emerges for the construction of all R-separable systems
for(,).

A. Construct the graphs representing all separable systems on R m.
B. For each of these construct all possible boxings.
C. From the discussion above determine all possible o’s compatible with the

boxings.
We now go through this procedure for m 1.
A. There is only one possible separable system on R

(5.9) (
corresponding to the choice of coordinate

(5.10) Z1--’X1.

B. There is only one possible boxing:

C. The resulting types with their coordinate transformations are listed in Table 1
of the Appendix.

We have displayed possible normalisations of the parameters vq, wq in brackets
alongside Lq, but have not substituted their values in the coordinate transformations
since the unnormalised forms will be needed for the m 2 and m-- 3 classifications.

For m 2 the separable systems resulting from step A are listed in Table 2 of the
Appendix. There are three classes of boxings arising from step B.

L1
(5.12a)

where G is the elliptic, parabolic or polar system of Table 2 in the Appendix,

L L=

and

(5.12c)
Z

where G,. is @. The only new systems are those of type (5.12a) as it will be shown that
the remaining systems can be derived from the rn 1 case. The unsplit class a types are
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listed in Table 3 of the Appendix. The class b systems are mixtures of the m 1 systems

L L
(5.13) and

where o 02, and these are listed in Table 4 of the Appendix. R 2 has split into R g
and so these coordinate systems are referred to as splitting types. For example, the
system 5: II, III (v2 0) in Table 4 has coordinate transformations

(5.14)
yl= (x3 + Ol)Xl +’Y1/a(x3 + o1),
y2= [x [1/2X2
t--’--X

that are easily derived from systems II and III in Table 1. The remaining systems of
class c are simply combinations of the m 1 systems

L1 L1
(5.15) and

where o o2, that is class b with L L_. They are listed in Table 4 of the Appendix.
For example the coordinate transformations for IV +(o =0,Wl2= 1) can be derived
from those of the system

IV+ ( Vl ---O, w12--1)
(5.16)

given in Table 1. They are

11/2ya [(X 3)2 _[_ 1 X

(5.17) y= 11 X2
t=X3.

Miller (1977) has also classified the R-separable systems for m 2 and developed
many of their properties but misses splitting types such as (5.14) and (5.17). In general,
his classification only includes those mixing types of class b for which one of the
coordinates is yl= x. These omissions are rectified in Kalnins and Miller (1979).

For general m the R-separable systems have form

(5.18)

where G is of parabolic or elliptic-type, or they will be a mixture of systems like (5.2).
In this case (,) is equivalent to the equations

(5.19) (Aqq-2eOt)qq--Tqq[q, -- I-[ q,
qQ
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where

(5.20) Xq-" Xq(Xb), bBq.
All such mixtures can be classified from the lower dimensional equations given in
(5.19).

The classification for m 3 for the unsplit types given in Table 5 of the Appendix
has not appeared before. These systems can of course be derived from our general
procedure but we list them for easy access. The splitting types for m 3 can be derived
from the tables for m 1 and m 2 given in the Appendix. For example consider

II(o =0) III

for which the coordinates are

yl cx 4 cosh(x1)cOS(x2),

(5.22)
y2= cx4sinh(Xl)sin(x :),
y3 [X 4 _[_ 03 [1/2X3
t=X4,

and these can be obtained from the tables for m 1 and m 2.

6. Operators. Each R-separable system for (,) is characterised as a commuting set
of second order differential operators that are in the enveloping algebra of (,). These
operators are derived from those representing separable systems on R m. In this way we
will establish the connection between separation of variables for (,) and the symmetry
group of (,).

We will first derive the operators for (2.1) from the Killing tensors for the
Hamilton-Jacobi equation (4.1) associated with (2.1). The Killing tensors characteris-
ing separable systems for (4.1) are of second order, and the work of Thomas (1946)
implies that they are in the enveloping algebra of e (n, 1). In other words if the Killing
vectors/,tj, are a basis for e (n, 1) then there are real constants a such that

(6.1) ki= E aJk( IJ,j,lJ, k } l <=i,j,k <_n.
j,k

Recall that (., } is the symmetric bracket which is defined by

(6.2) (/ / ) =/flx
, +/x
2

By a simple generalisation of the work of Kalnins and Miller (1977) the corresponding
operators for (2.1) can be obtained by the identification/-/2 defined in (2.25) so
that

(6.3) Xi=EaJk(j,k }
j,k

These will also be operators for (,) with the identification -o e since

(6.4) ), i iff ix ix
where and xI, are defined in (2.7).
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The work of Shapovalov (1979), and Kalnins and Miller (1981) provides the
machinery to determine the Killing tensors. They are

n--2 {ai ,,, (--1)i n2 lai
..4 nn-2(6.5) h E ---Pa+2 P,,-lP,, + -----’’a l-In, i=1,2,.--,n--1,

a=l a=l

where (@./) is the Sfftckel matrix defined in (4.6). We first find this matrix in terms of
the Sfftckel matrices for the embedded separable Euclidean systems dgq. These are the
n(Bq) xn(nq) dimensional matrices, (@q)gj, such that

bl

(6.6) gbb= tbq
(I)q q det((tbq)ij)"

The matrix (fij) can be taken as

(6.7)

0 0 0
(I)l

l])q

-1 -1
1 0 0

01 Oq

since this matrix satisfies

bX 1 q(6 8) gbb for b Bq
Oq Oq

By substituting for (ij) from (6.7) into (6.5), the Killing tensors are

(6.9) bBq

o=l,2,...,m,
)Xm+ E,

where

d by

(6.10) U,= E q Ann

In (6.9) the terms Fe Bq(bqV/q)p can be recognised as having the same form as that
for the constants of the motion for the separable system dq. This fact will guide us in
what follows.

The constant of the motion )t may also be written

(6.11) Xo=ptAop
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where

and

(6.12)

0

Here A is a diagonal matrix whose elements as determined by (6.9) are (AEo)bc
bv3’q /q. It is what will be called the matrix form of the Euclidean constants of the

motion arising on dSq. We express )t in terms of the y coordinates by using the
transformation matrix J:

(6.13)

In the y; coordinates

(6.14)
where

ho= ptjtAojP

(6.15) P= P=Oy,W.

and t denotes matrix transposition. Using (6.13) J is given by

(6.16)

Cl Cl

where from (4.30)
1(6.17) (q)a’-- " Ox" Z abq and (Jq)ab=OZb/Ox a.

bnq

As our final result is independent of the quantities Bq, X and Y we need not calculate
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them. Finally

(6.18) .Xo oq q rq- [OqO xozq + Oq f o o"lq +Foca.

In this equation

(6 19a) Fo ’’ e4cqACq --and o, Pq and z q are n(B) 1 vectors"

(6.19b) (’q) b="b, (Pq)b-Pb,

Ev=JAEuJ

(Zq)b=Zb bBq.

From (6.19a) r is just Aeo in the g b coordinates. Equation (6.18) implies that the
constants of the motion for v Bq do not depend on the structure of (,) on any of the
other blocks. This is natural since (,) is equivalent to the set of lower dimensional
equations given in (5.19). The problem of finding the operators for a general system has
now reduced to the determination of the constants of the motion on one of the blocks

Lq
(6.20) .

Kalnins and Miller (1982a) give specific formulae for the Euclidean constants of
the motion . On each irreducible block they find that

(6.21) e, Ma2b and { Mqb,Pb }, a, bnq,
are a basis so that

~E Eltbe2b _t_EBb( Mqb,Pb ) "Jr- E CabM2ab
(6.22)

)t=
b b a<b

Ab, B b Cab

The reader is referred to Kalnins and Miller (1982a) for the determination of the
constants in (6.22). Since (6.18) provides us with a relation of form

(6.23) Xo=ko(tEv,(lq)
all that has to be done for each of the o’s for I IV_+, is to determine the images of
the Euclidean constants of the motion in (6.21). In each case we will find an expression
X’ in the enveloping algebra such that h is determined to within a term in e i.e.

(6.24) X= X’ + F’e2.

(In this discussion prime is not the derivative). Since X is a constant of the motion and
h’ is in the enveloping algebra

(6.25) { E,X ) ,=0= { E,X’ + F’e } ,= { e,F’e}.

Solving this relation with E= p2 + + p2_
_

p) we find that F’ is a constant, but
since e is already on the orbit

(6.26)
in (6.24).
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The images of the Euclidean operators are displayed in Table 6.1; however one
example will be done in detail to show how they are derived. Consider the term
( Mqb, Pb ) which appears in constants of the motion in parabolic-type coordinates. The
matrix form e for this term is

(6.27)
--Zb/2 0

-z’/2
0

z q 0

0

as it is easily checked that p/ep ( mqb, Pb )" From (4.30) and (4.50)

yq--zq-l-Vq(Xn-1)2/4,
yb=zb, b#:q.

The calculation for the constant of the motion corresponding to (Mqb, Pb ) goes as
follows"

(6.28)

k(( Mqb,Pb },o= 1)= { zqPyb zbpyq,Pb } --I}xn-lE’q.’ FE2

1 _1)2 1 F,e2{Mqb,Pb}--/q(X P:-k---’qxn-lPbe-[
{ Mqb,P6 }-’/qB/4

since F’=0 from the discussion above. The corresponding operator for (2.1) and (,) is
obtained via (6.3) but it may be unambiguously written as (6.28) by removing the tildes.
Occasionally Pb has been used to represent both the Euclidean constant of the motion
OW/Oz b and OW/Oyb, a constant of the motion for the Hamilton-Jacobi equation
(4.1). Sometimes, as in (6.28), we have written Pyh to emphasise the difference.

TABLE 6.1
Images of Euclidean operators.

II III IVjE

v,,, P,,

P2 +’beB (vqP Bb) vqP (vqPb- Bb)
+’[bePb Pb, Bb +__wTP,

Mqb, Pb Mqb,VqP B does not does not

-’tqB/4 ),aP, /4 occur occur

The results in Table 6.1 can be used to obtain the operators for any m but we will
go through these results in detail for m 1 and m 2.

When m 1 the Euclidean operator is P1, and its images can be read from the row
containing P in Table 6.1 obtaining the results listed in Table 1 of the Appendix.
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When m 2 the operators resulting from the unmixed systems are listed in Table 3
of the Appendix. The operators for the mixing systems are simply those of the compo-
nent one-dimensional systems. For example the two Euclidean operators for (5.14) are

Px2 and p2 and by using Table 6.1 their images are

(6.29) 2( o1P1 B1 -I- "leP1, and ( P1, B1 ).
Alternatively the same result is easily obtained from Table 1 of the Appendix.

In the three-dimensional case the operators have not been listed in the Appendix,
but the following example will show how they are obtained. Consider system 4 of Table
6 in the Appendix.

(6.30)

The operators for ellipsoidal coordinates are easily derived from the work of Kalnins
and Miller (1982a) but we also record them in Table 5. They are

(6.31)
+ +

J’J+c2[(1 +a)p2+aP22+P],
J:z2 + aJ+ c2ap?.

Employing Table 6.1,

(6.32) Jb2J, PB2b-P, b=1,2,3

so that the operators for (6.30) are

(6.33)
E (Bb2- P), J" J + c2 [(1 + a)(B2- p2)+a(B22- p2)+ B32 P32],
b

J + aJ+ c2a( B?- Pl ).

The operators for the m 3 mixing types are also computed in the same fashion.
For instance the operators for the mixing type (5.21) can be derived from the tables for
the one- and two-dimensional cases. They are

(6.34) B+ B: M+ c:B2, and v3P3-(P3 B3}

All R-separable systems for the m= 3 for (,) have been characterised as commut-
ing sets of second order partial differential operators which are members of the
enveloping algebra. An immediate application for this characterisation is now given.

All separable systems on R " possess the Casimir operator Eum__ 1P,2. If E =0 and
our systems have form

(6.35)
Z
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then the operators corresponding to this invariant for each of the o types are:

m

I P+ 3’leB1,

m

II B+71eP1,
(6.36t m

III
1
m m

IV+_

By examining the forms of the operators in (2.25) (2.26) the following substitutions
hold on the solution space of (,) when E=0.

m m m

(6.37) _,P 2eK_2, ., ( Pb,Bb ) "+ eD and _B--+ 2eK2.
1 1 1

With these substitutions, the new expressions for the operators in (6.36) are sum-
marised in Table 6.2.

TABLE 6.2

L Operator

e[3"IB1 "2K_2]
II e[2 K_ + 3’1 P1
III eD
IV + e[ K :t: K_

Each of the operators in Table 6.2 is first order and can be diagonalised to reduce (,)
by a dimension. This feature is discussed by Miller (1977) for the one and two-dimen-
sional heat equations. His claim, however, that this is a feature of all systems of those
dimensions does not hold. For example the operators (6.29) of the splitting type (5.14)
can never be made first order.

The knowledge of the operators will now be exploited to find the extra equiva-
lences for E 0 that were mentioned in {}5. For a system like (6.35) it is possible, as was
explained in {}5, to normalise 3’1 to 0 or 1. Thus there are the possibilities for LI:

(6.38)

1 a. I (3,1=0)
b. I (3’x 1)

2 a. II (o1=0,3’1=0)
b. II (o1=0,3’1=11

3 III (vl=0)
4 a. IV- (v1=0,w2=-l)

b. IV+ (vl=0, wt=l).

The extra equivalences occur under the action of the operator A K_2-K2. The



R-SEPARATION FOR HEAT AND SCHRODINGER EQUATIONS 675

adjoint action of this operator is given in Table 6.3.

TABLE 6.3
Adjoint action ofA 3.

) e Ad A )It

Pa cos(s P, + sin(s B
M,e Mo
B,, cos(s B,, sin(s)
Ax A cos(2s)-A sin(2s)
A A cos(2s A sin(2s)

The adjoint action of A on any element (L1,L:) of the enveloping algebra is easily
shown to be

(6.39) esAdA3({ tl,t2 ))= (esAdA3(tl),esAdA3(t2) )

by using (2.29). Consider the action of A when s=-r/4 and for convenience let
J= e -rA3/4. Then from (2.29)

(6.40) e Ad A3/4(L) JZJ- 1.

The Euclidean operators for (,) are

(6.41)

where v= 1,..-, m + 1. For case 3 in (6.38), Bob=0 always, since such terms can only
appear for parabolic type coordinates. The corresponding operators as obtained from
Table 6.1 are

(6.42) 0 "o "raab
b a<b

If the action of J is applied to these operators using Table 6.3 we obtain

(6.43) ,o= y,.Abo( Pb Bb Bb + co

----EAbo(B Pff)/2+ E coabMab2
b a<b

since Pt, Pt,/v/ BJ, Bt, BJv/ +Pb/ and Mat Mat, under the action of
J. The expression obtained in (6.43) is precisely the one that would have been obtained
from the same Euclidean operators for system 4a in (6.38). In similar fashion it can be
shown that the systems la and lb are equivalent to the systems 2a and 2b respectively
under the action of

(6.44) J2=e-rA3/2"
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We have demonstrated that the systems in (6.38) collapse to the systems la, lb, 3 and
4b. The action of J on solutions of (,) is

[/’]m/2 [ ey’y ](V-y t-l)J(Y’t)= (lt) exp 22)) t+l’ t+l

(6.45) Jd(y,t)=t-’/Eexp[eY’Y ]d( y "@t 1 )
J4(y, t)= (-y,t),
J8(y,t) (y,t).

The expression for j2 is particularly notable: it is the Appell transform, and its
importance for the theory of the Heat equation is discussed in Widder (1975). The
above work is a generalisation of that of Miller (1977) for the one and two-dimensional
heat equations.

In conclusion, it is possible to exploit the conformal symmetries for unsplit sys-
tems when E 0 to show that some systems that look different are actually equivalent
under the action of the Schr6dinger group.

7. R-separable solutions. We now investigate the R-separable solutions of (,). To
accomplish this, it is necessary to determine both the R-separation factors and the
separation equations. The separation equations for (,) are the ordinary differential
equations determining the ,t,. functions in (2.5). From (2.7) these are the same as the
corresponding functions for the Helmholtz equation (2.1). Therefore this equation is
used to find the separation equations for (,). The form of (2.1) in the separable
coordinates x can be found by using this equations local coordinate description given
in (2.14). It is

(7.1) E 1 E [X/2b(bbl/2’d,5 ,S q b ) nt- bbAnOnnq
q.Q Oq bBq

1
+20(-1n’I’+ E n(Bq)(lg%)’O2t’=Eee

qQ

where

(7.2) gq= det(gbc), b, c Bq,
and A," is defined in (4.14). When t’=IIilff’i(x) is substituted into (7.1) and the
resulting equation is divided by t, we obtain the separation equations"

(7.3) q’= e9n,

and

(7.4) 2en-I +
Sq E

q. Q --q tn -1 "- -’ q c=
n ( Bq ) ( og oq ) qn Eqxtn 1.

Here Sq is the eigenvalue of the operator Sq whose action on ,t, is

Sq/ E [l/2b(ffbbl/2l xl q] =Sqq/"5 ‘sq ’b .ff’.E_2vbbhnnb
bBq
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The remaining separation equations are derived from (7.5) by noticing it is the Helm-
holtz equation on dgq2 with an extra term

(7.6)
bnq

By a simple modification of Kalnins and Miller’s results for I"(’q we obtain these
equations.

The one-dimensional elliptic case is an exception to the general construction of the
separation equations that we are about to give. The separation equation for this case is

+(e2[l(X1)2/4 q-’yix1] -s1)XTl--O.

Returning to our general treatment, we can confine ourselves to a block E of form
(4.32A) or (4.32B). For simplicity on each of these irreducible blocks the coordinates
xr X r+l r+nr-1,..., x are relabelled as x, x,- o, XHr just as in our discussion of the
coordinate transformations at the end of 4. The additional term contributed to the
separation equations by (7.6) for the elliptic-type A coordinates x is

(7.SA) Za(e)2c4rq( Nr )X E eb a=l,2,..., Nr.16 (X")N’-
b=l

For the parabolic-type B coordinates x this term is

( _1)Crl(xa)Nr-1(7.SB) Z
(E)2 Nr

=--- X + eb, a=l,2,...,N.
b=l

The separation equations in both of these cases are

(7.9) (Pa/Qa)l/2 d (PaQ )1/2 d]__q/tadx

+{ IIc*b(e--e)
b-Jl- E lb( xa)Nr-b

b=l

In this last equation

(7.10)
Pa=Yl(Xa-eb)’= Qa=Yl(xa-eb)

0, Pb=O
tb= jb(Jb+Pb_l) pb4:0

where Pb is the dimension of the sphere Spb attached to eb (see (4.32A) and (4.32B)). If
there is no sphere attached, then Pb=O. From (7.5) there is no loss in assuming
11 -s1. The constant b is the eigenvalue of the Helmholtz equation on the sphere Spr
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The form of b given in (7.10) appears in Kalnins and Miller (1982a) and is derived
from the spectral theory of the Sphere.

We now consider the separation equations for the remaining variables i.e. those on
the attached spheres S,h. As was mentioned in [}4 the separable systems for such spaces
have been classified by Kalnins and Miller (1982a). If we trace down one of the tree
graphs they use to represent these systems, it will have form (see (4.38))

(7.11)

The separation equations for the variables xl, X on Sw are

(7.12) - Xa (PaOa) xaa
t6+b=l 16(xa)"-b} a=O’ a=l,2,.-.,u,

with the same definitions for Pa, Qa and tb except that the number of elliptic or
parabolic coordinates N is replaced by u. We can of course take -ll as the value of
the Helmholtz equation on the sphere Sw and via the spectral theory to be -/(/x + w- 1)
(see Talman (1968)). These separation equations are unaffected by the terms Vq and %,
and are just the same as they would be on Euclidean space.

The separation equation for x "-1, (7.4), can be directly integrated:

(7.13) /n- qQOn( Bq)/4 exp Ex E Sq
OqqQ

As an example consider system 9 in Table 6 of the Appendix:

III(ol =0

(7.14)

The separation equations for this system are

(7.15) (xa)l/2 d [ d
dx--- Xa( Xa --1) -xa q

+ (x-l+-sxa+12+- 16 ’xa(x-l) a=1,2,
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and

(7.16) [xa(x3-1)]x/2 d ([x3(x3-1)]"/2 d
dx---Sq3 -jq3=O.

Here s1, 12 and j22 are the separation constants. These coordinates are in standard form
but they could easily be transformed to the more familiar expressions in terms of cos,
sinh etc. that appear in the Appendix. Indeed letting x 3 sin2, (7.16) becomes

1 d2# +j22xlt= 04 dv2

We also have from (7.13)

(7.17) XIt4 IX 4 [- 3/4- sl/2ee ex"/

In order to fully determine the R-separable solutions, we now find the R-separa-
tion factor R. From (2.9) and (4.30)

(7.18) R=-ef=e ., E abq.
qQ bBq

If we define

(7.19) Rr= e E Gbq,
b Er

then

(7.20) R= E E Rr,
qQ r.

as a result the essential structure of the R-separation factor is solely dependent on the
structure of each of the irreducible blocks E. Employing (4.50), it can be assume that

Y+ Yr+ 2 0, with y, being nonzero and zero in the parabolic and elliptic cases
respectively. By using (7.18) we obtain

(7.21)
q ; + 8 f fRr-- e "- bEr

The last term of R is a function of x"-x alone and so only contributes to trivial
R-separation and can be absorbed in xI,,_(x’-). An expression for E(zb) 2 term in R
in the separable coordinates x k can be easily obtained from (4.41), (4.43A) and (4.43B).
The expression for z in the x can be found from (4.50) since only parabolic coordi-
nates can correspond to the linear potential term -tz. Thus it is always possible to give
the R-factors in the xk coordinates. These general expressions are summarised in Reid
(1984). In each case the R-factor is independent of the variables on the spheres Sp. The
R-separation factors corresponding to the unmixed types rn= 1,2, 3 are given in the
Appendix. The R-separation factors for the two-dimensional mixing types may be
obtained simply from those for the one dimension. Similar comments apply for rn 3.
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In one and two dimensions separation equations can be solved to give known
special functions. Miller (1977) lists these results and investigates some of their proper-
ties (e.g. bases and overlaps for the SchrtSdinger equation). In higher dimensions,
however, the separation equations lead to new special functions about which little is
known. Development of the properties of these functions is a problem for future
research.

Conclusion. All R-separable coordinate systems have been classified and char-
acterised in terms of the symmetry group of equation (,). In a subsequent article we
will investigate the applications of this group theoretical characterisation. Moving
boundary value problems will be considered. It will be shown how the results for the
potential free Schr6dinger equation can be applied to equations in which the potential
term need not vanish. Boyer (1974), (1976) has classified all time-independent poten-
tials for the Schr/Sdinger equation which admit symmetry groups. Exact forms were
obtained for those potentials invariant under the Schr6dinger algebra of maximal
dimension. In particular he has shown how these cases: the potential free Schr/Sdinger
equation, the linear potential SchrtSdinger equation and the harmonic oscillator
Schr/Sdinger equations are all equivalent under the action of the Schr6dinger group.
Miller (1977) has shown how this equivalence is connected with the separability proper-
ties of the one and two dimensional SchrtSdinger equations" we will generalise his result.
The programme initiated by Kalnins and Miller for the one and two-dimensional
Schri3dinger equations will also be pursued" deriving results about the functions arising
as separated solutions of (,), using the group theoretical characterisations of these
systems.

Appendix. The main purpose of this appendix is to summarise in tabular form
results concerning R-separation for rn 1, 2 and 3.

In all the tables oiI Oiv +__ are the functions of Table 4.1, that is

Oii=(xm+l-b u)2,

and

A1 ov_+_.., xm+ + V +_- W X t.

As we have already mentioned

2 2(A2) r=sign((xm+l+v +_w ).
In the tables for the unsplit systems we have ambiguously removed the subscripts from
the parameters so that o o, w w and )’1 "/.

The general forms for elliptic and parabolic coordinates in (4.35) can be trans-
formed to give their more familiar appearance in low dimensions. For example we
make the transformations

(A3) xl- cosh(xl), xcos(x 2 )
to give elliptic coordinates their "usual" appearance in Table 2. It must be remem-
bered, however, that in higher dimensions this is not always possible. For cases like the
ellipsoidal coordinates of Table 5 the general forms of (4.35) must be used. In Table 5,
J1 M32, J2 M13, J3 M21 and ,I.,I =lJi2.
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In the tables some of the parameters e have been normalised. In general by
making the transformations

(A4)
an elliptic block

(A5)

and become

(A6)

X ax + b, ei-- aei+ b

(el e2

TABLE 1

R-separable coordinates and operators for ( Of2, + 2 E} ) q E

Coordinates ( yt, }Graph
x for all systems

Operator
R-separation factor R

II(v=O)

III(o=O)

IV + (V=0, W2-" 1)

yl=xl + (X2)2/4

yl Ol(2X + y/4(X + V)

yl OIII2X

2x1yl+_=oi +

P12 + yeB

R=eyxlx2/2

( P1 ) +P

"X1/4( X + V

R=0

vPt B )2 +_ w2p

R=r+e(xl)2x2/2

TABLE 2

Separable coordinates and operators for p21 +p2 E.

Name & graph Coordinates Operator

Elliptic

Parabolic

Polar

Cartesian
(R)(R)

Ze_.cl cosh( x )cos( x

Ze2= sinh(x1)sin(x2)
1 )2
X1X2p

Zr =X COS(X
Za X sin(x )
zl X

Z2 X

M22 + c2p
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Analogous remarks apply to parabolic blocks and to those representing separable
systems on the spheres Sp. As a final remark, the split types for m 3 may be obtained
from the results for m= 1 and m= 2 (i.e. from Tables 1 and 3). For a brief discussion
see (5.19)---, (5.22).

Acknowledgments. This article is the culmination of the early work of Charles
Boyer, Ernest Kalnins and Willard Miller. To all of these people, my thanks. I would
like to thank Ernest Kalnins especially, for his time, suggestions and encouragement.

Notes.
Table 3. The results of Table 2 have been used to simplify the presentation of this

table. For example in system 8

II(v=O)

and y"=o(2z is

II(v=0)

yl IX + vlXlcOS(X2),
y2 ix + v Ixsin(x).

(Recall that t x for these systems.)
Table 4. An entry L L2 in this table corresponds to the split coordinate system

yl (I1/2,.1 + 1 ff -3/2
L -1 0

/ 1 ff -3/2Y2= 2X2 +’"Y2 0

t=x Li" IIV+

An entry L in part c of Table 4 has coordinate transformations as above but with
L =L2.

Table 6. In analogy to the case m= 2 we have used the results of Table 5 to
simplify the presentation of Table 6. For instance in system 19

and y" 1/2
ofl zp is

HI(o=0)

III(v=O)

yl= IX4 + V 11/2X cos( x 2),
y2= IX4 + V 11/2X sin(x2)cos(x 3),
y3= ix4+ vll/2xlsin(x2)sin(x3).



R-SEPARATION FOR HEAT AND SCHRODINGER EQUATIONS 683

TABLE
Unsplit R-separable coordinates and operators for A + 2 8t it Et.

Coordinates yU, Operators

10.

Graph

II(v=0)

IV + v 0, W 1)

II(.=0)

II(v=0)

III(v=0)

IV+ (v=0,w:’=l)

x for all systems R-separation factor R

yu=_l/2OltI 2e

1/2
0I ge

yl =z + )’(x3)2/4

F2 .,2
"-p

FI O/(2"l-.p +

yU=ef2zU

yU 1/2
tlf 2r

yU 012 #u
+/- +/-’r

R=0

(vPt-Bx) +(t,P2-B2)

M122 + c2 oP1- B1)
R ec2x (cosh x + cos x ))/2

M+c vP P, x
R=O

vP Bi) + (vP Bz) + wZ( p2 + p2)

M?2 + 2[(0P B1) :J: w2p?]
R er +/- c2x (cosh x + cos (x ))/2

P12 + P2 + "yeB

M2,P }-’YB/4
R eVx ((x X )/4

(vP1 B1) + (oP2- B2) + "teP

Mt, VPE- B2 IP/4
R ’{[(x + o)((xl) + (x2)2)

2(X3 +V)

(vP BI) (oP2- B2)

R =ex3(xl)2/2

v(P: + pZ)_( P,B}-{ P,B}

(.P-)+ (0,_-)

R-.-er+x3(x)2/2
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TABLE 4

Split R-separable coordinates for + 2 el) ’ Eq’.

4. II(t, O) II( 4= O)
7. III( vi O) III( v 4= O)
9, IV+ IV+

2. II(v, =0}

Class b splitting types

2. IIII(o2--0) 3. IIV+(t,2=0.w2=1)
5. IIIII(t,2--0) 6. IIIV+(v2=0,w=l)
8. III IV + 0, w
10. IV+ IV:g

Cls’s c splitting types

3. III(vt=0) 4. IV+/-(ot=0,w(=l

TABLE 5

coordinates and operators for I + z + Pl E.Unsplit separable

Name & graph

Ellipsoidal

Paraboloidal

Prolate spheroidal

Oblai’e Spheroidal""

G

Parabolic

c,o--

Spherical

G,p= L
Conical

C’00’rdinates

X1X2X3.,1 c[ 11/2"-eo a
=c[

x- x)(,"- TM; )
Ze

Z3eo--- c[ x’l a ).( x a )(x .-..a.).
(,-)

0<x <1 <x2<a<x

x=-c(x +x2+ -1)2po

Zo C[ X1X2X3 1/2

z’_3o-- c[(x 1)(x2-1)(x 1)]I/2xq <O<x2 < <x

cos,,:, cos.Zps C

C sinh( x sin(x COS(Xps

.,3 Xp, sinh( sin(x sin(x

’1= coh(x cos(’x3),, )COS()

Zo c cosh(x cos( x sin(x

zo3 sinh( x sin( X

,1 )2,,pa’-5[(xl)2--(X

.,2 xlx COS(X3)

.2 xix sin(

.,1 X COS(X2

sin( x cos( x

.,3 x sin( x sin(x3)

X2X
"o

(x2- t)(x3-1) 11/2xl[

.,3 Xl[ (x--a)(x3-a) ]1/2
(-)

xl >O, O<x < <x3 <a

Operators

J.J + c2[{1 +a)e +aP + P3

s, }-{ r3, P +(p3 + ’)
j2 + .{j, &

J.J- c2( P + P3

J?

,l.J
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TABLE 6

Unsplit R-separable coordinates and R-factors for A + 2

Coordinates{ y, R-separation factor
Graph x4 for all systems R

II(v=O)

IiI(v=O)

n(,,=o)

III(v=O)

IV +/- (v=O, w2=l)
10.

11.

12.

yU Zeo

yU _l/2_u
oll Zeo

1/2
Oil 2eo

Ol + Zy

yl

p2 Zpo

y3 2po

yl 1/2
=ot Zp,, + 7/4x

y2 1/2
Oil gpo

y3 1/2
oil Zpo

y,, 1/2
0i[ Zps

yU+__ o Zps

Zos

II(v=O)
yU 1/2

Oil Zos

!f,C2X4(X1 + X + X
2

X2 X3- er +/- c2x4 xl + +

’yX4(X + X + X3)/4

4e{c2xat2E(xi)2-(Exi):’+6Exi]

ecZx (cosh:’ x)+cos-(x:’))/2

er,c:’x4(cosh2(x)+ cos:’(x 2))/2

eC2X (cosh X + COS X 2))/2
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Table 6 (continued).

Coordinates y", R-separation factor
Graph x4 for all systems R

llI(v=0)
13. y, 1/2

tfI Zos 0

IV+ (0 =O,w2 1)
14. y+, oi+Zo ec2x4(cosh2(xl)wcos2(x2))/2

IV (=O, w2=l)

y2

y3 2
n(o=o)

16. yl=o]{2gaWT/4X4 [X4((X1)2+(X2)2)2

y_o(2za ((X1)2- (X2)2) .]
y3 =O(2Za

2X4

17. y=zv 0

II(v--0)
18.

In(v=o)

IV+ (v--O,w=l)

21.

m(;ol
23.

24.

y ..1/2.,
iI asp

yU=o}(IlZZp

=0.1/2Y+ Iv+_Zp

yU 1/2
{lift Zoo

v_(,=O,w=t)
+_

!EX4(X1)2
2

1- er+_x4 xl
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AN INTEGRAL TRANSFORM INVOLVING HEUN FUNCTIONS
AND A RELATED EIGENVALUE PROBLEM*

G. VALENT

Abstract. An integral transform involving Heun functions is obtained. When combined with the explicit
solutions given by Carlitz new closed integral representations are obtained for some Heun functions. As an
application we solve an eigenvalue problem related to birth and death processes obtaining the exact spectrum
and eigenfunctions. A direct proof of their orthogonality and completeness is given.

1. Introduction. Heun’s differential equation [1] is the most general second order
differential equation with four regular singular points located at z=0, 1, 1/k 2,
where we take the real parameter k 2 in the domain 0 ( k210 < k 2 =< k < 1 } for some
fixed ko.

Heun’s equation is given by

dzg_
t-

ek 2 dy otflk2z + S

z 1-z 1 kaz -z+ z(l_z)(l_kz)y 0

(1.2)
where s is the so-called "accessory parameter".

Most of what is known about solutions of this equation is summarized in [2, p. 57].
The most important result is the existence of expansions of Heun’s functions in terms
of hypergeometric functions. The coefficients of such expansions obey a three term
recurrence formula which makes them hard to use. Furthermore it does not seem
possible to obtain explicitly the eigenvalues from such expansions.

The solutions of (1.1) which may be considered as the elliptic generalization of the
hypergeometric function (in the same sense as Jacobi elliptic functions generalize the
trigonometric ones) are of interest in many physical problems. Nevertheless little effort
has been made to obtain explicit integral representations for them. Since the fifties, as
far as we know, the main progress has been due to Carlitz [3] who obtained a finite set
of nontrivial exact solutions for (1.1). (By nontrivial, we mean solutions for arbitrary
values of the accessory parameter s.) It is interesting to note that he found these
solutions in a study of orthogonal polynomials for which Heun’s functions appear as
generating functions and not in a direct analysis of (1.1).

In this article we shall give an integral transform relating two Heun’s functions
with different parameters. This comes about if one looks for a solution of (1.1) as a
Mellin transform (in the sense of [4, p. 195]) whose kernel is itself a Heun function.
Unexpectedly this transform is successful, and when combined with the explicit solu-
tions given by Carlitz, it leads to a finite set of new integral representations for Heun’s
functions.

As an application we discuss thoroughly an eigenvalue problem which is relevant
to the study of quadratic birth and death processes (see [5] for an introduction). Upon
use of a previously derived integral representation we obtain the exact eigenvalues and
eigenfunctions.

*Received by the editors January 14, 1983, and in revised form June 6, 1984.
Laboratoire de Physique Th6orique et Hautes Energies, Universit6 Paris VII, 75251 Paris Cedex,

France. The Laboratory is associated with Centre National de la Recherche Scientifique.
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Contrary to the case where k2= 0, for nonvanishing k 2 the eigenfunctions are no
longer polynomials with respect to the variable. Nevertheless it is possible to give a
direct proof of the orthogonality of the eigenfunctions, to compute their norm and to
prove their completeness in the space of square integrable functions with the weight
W(X)=(1--X) -1.

The eigenvalues display a continuous dependence for k 2 N0 while for k 2 1 they
all vanish, a fact related to a deep change in the nature of the spectrum which becomes
continuous.

2. Connection relations for Heun functions. We shall denote a Heun function by
the symbol

H(a,fl;,,,e;k ) ( ),s,z =-H P;k,s;z

By a Heun function, we mean the solution of (1.1) which is holomorphic in a finite
neighbourhood of z-0. For Re3, > 0, using the Wronskian, we readily prove that this
solution is unique. In all that follows, we take Re7 > 0, and normalize H by

(2.1) H(P;k2,s;O)=l.

To make things more precise, we shall suppose that H is analytic in some domain
D= { z llzl __< R ) with fixed (and at the moment unknown) R > 0. R will be prescribed
later.

We define a transformation of the parameters P by

This transformation is such that relation (1.2) still holds for the new parameters.
We consider the function

G(z)--fol dttc-l(1-t)v-C-lH(P,;k2,s;zt)

fo dtU(t)H(P’;k2 s’zt)

with the restrictions

(2.3) Re, > Rec > 0.

Let us define the differential operator

&’z( P ) z(1- z )(1- k2z ) d 2

dz 2

d
+ [,/(1 z)(1 kZz)-Sz(1 k2z)-ekZz(1 z)] zz + Rflk27, -- S.
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We shall prove that G(z) is holomorphic for zD and is annihilated by .o’z(P ). This
will imply that G(z) is a Heun function with parameters P.

We divide the proof into several lemmas.
LEMMA 1. G(z) is holomorphic for z D.
Proof. H(P’; k2,s; zt) and (O/Oz)H(P’; k2,s; zt) are holomorphic with respect to z

uniformly for t [0,1]. One has the obvious inequality

,s;zt) =< Re(c-(1 t)Re(v-c-1) 3 H(P’ 2z k s zto )

for some o [0,1] and the left-hand member is integrable over t[0,1] because of
(2.3). This shows the holomorphy of G(z) for zD and the legitimacy of bringing the
derivatives with respect to z inside the integral over t.

Next we prove:
LEMMA 2. Z,a (P)G(z) 0, z D.
Proof. Using Lemma 1, a straightforward but lengthy computation, we obtain

(2.4) .z(P)G(z)=fol dtU(t)MoH(P’;kZ,s;v)+A/z+B’(k2z)
where

v= zt,

d - d
My V(1 0)(1 k2o)

dv2

A
0 2 0 ]H(P’ 2,t(1-t)-t2 +(/t-c)- ;k s;v),

fo { 2 ( dl ) ) }H(p ,k 2B= dtU(t) t2(X-t)-t2+t l+a+fl- -+afl-e.- ’" ,s;v).

At that stage the constants c, d, e are free parameters to be adjusted later on.
As is apparent from (2.4), it is crucial for this integral transform to be successful

that the coefficients A and B vanish.
Let us begin with A. Integrating by parts, we find that

(2.5) A= -t(1- t)-’H(P’ k2,s; zt)
t=l

t=O

since

U(t)=tc-t(1-t) -c-1.

On account of (2.3) and the holomorphy of Heun function, the right side of (2.5)
vanishes.

We now consider B. We choose the constants c, d, e as

c=a, d=(fl+y+l)k 2, e=flyk 2
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and integrate by parts twice to obtain

,; 2B=t2(1-t)U(t)-H(P k ,s;zt)+flt(1-t)U(t)H(P’;k2,s;zt)
t=l

These terms vanish in view of (2.3) which now reads

Re), > Rea > 0.

Using the values of c,d,e, we note that M is nothing but L’o(P’) which precisely
annihilates H(P’; k2,s; v). This constitutes the proof of Lemma 2.

An immediate consequence is"
THEOREM 1. If 1) Re), > Rea > 0, and 2) P’= TP given by (2.2), then for z D we

have

fo -a-1 zt)(2.6) H(P;k,s;z)--F()F(v_a) dtt-(1-t)

Proof. G(z) is ho]omorphic for z D and is annihilated by &(P). We know that
there is a unique solution to this problem which is H(P;k2,s;z) and hence G(z) is
related to it up to a mu]tiplicative constant which is obtained by letting z 0 and using
(2.).

Analytic continuation will extend Theorem 1 to the complex plane with a cut
along the positive real axis for Rez >= 1.

Let us make some remarks on this result.
First, Erd41yi had already obtained [6] an integral equation for Heun functions. In

his case, however, P’= P and he deals with a kernel containing at least one hypergeo-
metric function. His result is therefore completely different from (2.6).

Secondly, it is interesting to see what happens when k 2 0. In this case Heun
functions become hypergeometric functions, and (2.6) degenerates in an integral rela-
tion due to Bateman

r(c) f0_fm(a,b;;Z)=r()r(c_) dtt"-l(1-t)c-"-12Fl(a,b;c;zt), Rec> Rea>0.

Thirdly, since H(P’;k2,s;z) is a symmetric function of a and/3, we can write
down (2.6) with/3 in place of a everywhere in the right-hand member (and in that case
Re), > Re fl > 0).

We define

e’=e+-fl.

Combining T and T#, we have

T2= T2 identity,

which shows that no new relation can be obtained by iteration.
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3. Integral representations for some particular Heun functions. Let us first recall
the remarkable results obtained by Carlitz [3]. We refer to the article for the derivation
and we give only the results.

Consider

fx cos(2v/-sn- (v/- k -)),
f2 sin(2V-sn- l(vC-; k 2 ))

where the square root determination is taken to be positive for real positive argument.
The inverse function of the Jacobi elliptic function sn(z; k 2) is also multiple valued

and we take the branch which vanishes for z 0.
One can check that fl, f2 are two linearly independent solutions of Heun’s equa-

tions with parameters

Putting

#=1/2,

f=z’(1--z)b(1--k2z)g,
a(a-1/2)=b(b-1/2)=c(c-1/2)=O,

we find, in turn, other solutions with different parameters. We list below the explicit
form of Carlitz solutions normalized as in (2.1)

(3.1)

1 1 1 1
H 0,;,,--;k2

1 311
H -,1; -, -, ;k2 l+k2 ) sin(2#--0")

’So 4
;z

2s0V_

(1 1 3 1 1 ) cs(2s-o’)
H ,l;,,-;k2,s0--;z /1-z

(1 113 k2 )=cs(2s0’)H ,1; ,-, ;k-,So--;z v/i_kz

3 331
H 1,2, 22,2;k2

3 313
H 1,2, 2’ 2’2

k 2 ) sin(2So’)
’so-X--;z =2So#(l_z)

,S0- k2--’z 2So/z(1 k2z)

3 133
H 1, 2, 2, 2, 2;k2S0 4

;z
/(l_z)(l_k2z)

H ,2;--,--,-;k2,so-l-k2;z 2Volz(l_z)(l_k2z)
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Using Theorem 1, we get four new integral representations

(1 1 1 ) l f01 dt
H ,-;1 10"k2,so--’z r t(1-t)

cos(2s0sn- (V/- k 2))

(1 3 l+k2 ) 1 f01 dt cs(2s0sn-l(2;k2))
H ,-;1 1 l’k so 4

"z
r (1-t) /(1-zt)(1-k2zt)

33
H ,;2,1,1;k 2 ) 2fol dtv/-[ sin(2s0sn-l(v/;k2))so-l-k2, z

r v/l_t 2ozt(l_zt)(l_k2zt)
In order to use Theorem 1, one may take R < 1; analytic continuation extends the

relations (3.2) to the whole complex plane with a cut on the real axis for Rez >= 1. If a 1/2,
fl= 1, ,= 23-, 8= e= 1/2 formula (2.6) gives an integral which can be computed and one
recovers the results already given by (3.1).

Theorem 1 may generate additional formulas. For example let ’= 1-z. As a
function of ’, the Heun function has the parameters

),’=3, e’=e, k’2=l-k 2

p,.
fl’=fl, 8’=e, s’=s+aflk2

and k 2 is transformed into k 2/k’2.
Considering the solution which is holomorphic in a neighbourhood of " 0, we can

again prove Theorem 1 and obtain new integral representations.
In this example, we took ’ 1- z, but any one among the 24 changes of variables

given in [7, p. 577] will work. We shall not give all the related formulas which can be
easily obtained.

4. Application to an eigenvalue problem. Among the integral representations ob-
tained in (3.2), one is relevant for application to a birth and death process with
quadratic transition rates (see, for instance [5] for an introduction).

One is led to the following eigenvalue problem:

d(4.1) (1 x) --X-x x(1-kx)-d-x ---(1-x)-so yso(X)=0

with k 2o ( k 2 l0 __< k 2 _< ko2 < 1 } (the analysis for k 2-- 1 is given in [5]). The boundary
conditions are

(4.2) yso(0) 1, Go(l) =0.
4.1. Eigenfunctions and eigenvectors. The first condition in (4.2) implies that the

eigenfunctions are

G.(x;k)=H -, -;1,0,1;k So---’x
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The other linearly independent solution is easily excluded because it has a logarithmic
singularity at x 0.

The following lemma is essential to identify the eigenvalues.
LEMMA 3. Ifk 2o the eigenfunctions Go(X; k2) are continuous for x [0,1] and one

has

Go(1;k2)=

where K(k2)=r/2. 2F1(1/2, 1/2; 1,k 2) is the complete elliptic integral of the first kind.
Proof. We use the integral representation of Go(X; k2) obtained in (3.2)

1 dt cos2fsosn-lvxt;k2)}fo(4.3) Yso(X;k2)= -Z t(1 t) v/i-k2xt
The integrand is a continuous function of x [0,1] for [0,1]. Furthermore we

have the bound

1 cos(2s0sn- 1(/-; k2)) ch(2K" Im So)
__< =g(t)

t(1- t) /i-k2xt /t(1-t)(1-k2t)
with g(t) obviously integrable for t[O,1]. Hence we get the continuity of yo(X;k2)
and

1 dt cs(2S-osn- (V- k 2))G(1;k2)= fo t(1-t) /1-k2t
Putting t= sn2(O; k2), we get

sin(2soK)fo
As a side remark the simplicity of this main result is made more transparent if in

(4.3) we change the variables to

x=sn2(O;k2), xt=sn2(q;k:), 0,k[0,K].
Then the eigenfunctions may be written

Go(Sn:(O k:) k2) =! d+
on(+; kZ) cos(2+).snE(O;kE)_snE(+;k 2)

From Lemma 3 we conclude that the eigenvalues are given by

n:: K(0)
(4.4)

(s)
4KE(k2)

=n n*
K:(k)

*= (1,2,3,....}
and the eigenfunctions

(4.5) Yn(x;k2)__ l__ fol dt
r t(1- t)

cos(( nct/K )sn-1(V/-; k: ))
/1 k 2xt
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All the eigenvalues are simple.
If k 2 -0 we recover for eigenvalues n 2 with eigenfunctions 2F1( n,n; 1,x) which

are hypergeometric polynomials.
For k 2o the eigenvalues exhibit a continuous dependence with respect to k 2,

but if k2> 0 the eigenfunctions are no longer polynomials and have a complicated
structure displayed by (4.5). If k 2-- 1 (which lies outside 0) K(k2) has a logarithmic
singularity and diverges. All the eigenvalues collapse to zero, an indication of a drastic
change in the spectrum which becomes a continuous one (this was observed in [5]).

This is rather interesting from a differential equation theoretic point of view since
we have at our disposal a soluble model where, according to the value of the parameter
k 2, we can "see" the transition from a discrete spectrum to a continuous one.

One can check (4.4) using perturbation theory around k2= 0. Up to order (k2)2

the perturbation theory calculations are in agreement with (4.4).

4.2. Summation formulae for the eigenfunctions. As an interesting application of
the integral representation (4.5) we have to mention the possibility of evaluating several
sums involving the eigenfunctions yn(x; k2).

Let us first give an example. We start from the series given, for instance, in [7,
p. 5111

dn(tp, k2)=
,r 2,r nl q, (_)

o

+ l+q2"CS =,=o"()’ +[0,K].

For k 2o we have q= e-g’/g< 1 and the series is absolutely and uniformly conver-
gent for + [0, K ]. Furthermore it is easy to see that the series

n=0

is integrable over [0, K]. Hence we may multiply each term by

cn(+; k )
sn(O; kE)-snE(; k 2 )

and integrate term by term from 0 to 0. Ts ves
2 0d+ cn+dn ,

(sn20) +
q2

.y,(sn20).sn2 0 sn2+ 2gY 1 +

The integral on the left side equals /2. Taking into account the relation

(1g, g;1;  x
we obtain the summation formula

(4.6) q (1 1

For k No the left-hand member sees is uniformly convergent for x[0,1]. The
reader can check that this series defines a C function for x [0,1] and that it is
legitimate to differentiate it term by term. Hence differentiating (4.6) with respect to x
will give new relations.
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that
Similarly, using the known Fourier series (see [7]) for 1/dn and sn2, we find

2r n qn k’(-1)
q2

.y,,(x)=
,,__ 1 + v/l- k 2x 2K 2F1 "’’ - 1;k2x

where E E(k 2) is the complete elliptic integral of the second kind.

4.3. A useful integral representations for the eigenfunctions. The integral represen-
tation (4.5) for the eigenfunctions is not suited to prove their orthogonality because it
does not exhibit their vanishing at x 1. This means that one can extract out from them
a factor 1-x times some other integral. This is the aim of this paragraph, whicla
follows the remark made at the end of [}3.

We go back to the differential equation for the eigenfunctions, but for the moment
so is not supposed to be an eigenvalue

(4.7) dEy+(1 k 2 )dy So-(k2/4)(1-x)
dx--- --- 1 k2---- -x+ x(l_x)(l_k2x )

y O.

The change of variable u 1 x gives

(4.8) k 2 ) dy so/k’2+(k2/4)ud2y 1 + -d--u +du 2 1-u 1-k2u u(1-u)(1-k2u)
"y=O’

k2= k2/k’2 k’2= 1 k 2

Equation (4.8) has a first solution

1 1
f(u) =H -, -;0,1,1;k 2,s0/k ’2

In order to get the other solution, we put

y=u.Y

and obtain

d2Y (2 1 2 )dYso/k,2_l_c2+(9/4)c2du 2 u(1 u)(1 k2u)u 1-u 1-k2u --u+ u

Hence, we take as the second solution of (4.8):

f2(u)=uH ,-’2,1 l’k - -l-k2"ukp2

To prove the linear independence of fl and f2, we examine their Wronskian which is

df2 dfl -1W[fl,f2] =fl-d--ffu -fz-d-u Wo(1 u) 1(1 kZu)

An easy computation in the neighbourhood of u=0 gives W0= + 1 and we conclude
the linear independence of fl and f2.
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Since (4.7) has at most two linearly independent solutions, we must have a linear
relation of the form

y(x;k2)=Af2(u)+Bfl(u), u=l-x.

Now we take so to be an eigenvalue: since y,(x; k) vanishes at x= 1 this implies B=0
and we are left with

(33 ( nqr )
2 )(4.9) Y"(x;k-)=A"(1-x)H ’ 2’1’1; 72’ 2k’/K
-1-72;1-x

where the unknown constant

A- dx
y(x;k)

x=

is given by the following lemma:
L4. y,(x; k) is cominuous for x[O, 1] and

n’.l+q nNl* kNolim y(x;k)=(_l),
x--,1 k ,2 2K 1-q.’

Proof. We start by using the integral representation (4.5). Formally, the derivative
is given by

(4.10)

y,(x, k2)= l fol dt
r (l_t)(l_k2xt)

----.cos --sn- /-) - xt(1-xt) ---sn-l(v;-)Our task is to justify differentiation under the integral sign.
We first observe that

nr(1- k2xt)-3/2cos(--sn-X(r))
is continuous for x [0,1] and [0,1]. We have the bound

COS ----sn-l(gr-) =< =g(t)

where g(t) is integrable for [0,1].
For the second piece, we must consider two cases: either x [0, 1/2] or x [1/2,1].
If x [0, 1/2] the function

(1 k 2xt ) (1 xt ) -1/2" sin( ( n rr/K )sn (V/) )

is continuous for t[0,1] provided that it takes the value ncr/K for xt=O. Hence its
absolute value is bounded by some positive constant C

t/E(l- t) -/2 sin((nr/K)sn (v))
_-< =h(t);(1 xt) -1/2 Ct1/2 (1 t) -1/2

(1-k2xt) (1-k2t)
therefore h (t) is integrable for [0,1].
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If x[1/2,1] some care is required. Using the known relation

sn- l(v/--; k2) K- sn-1( 1-v .k2) 0<v<l,
l_k2v

we write

sin((ner/K)sn-l(vf-;k2))=(_l)n_ sin((ner/K)sn-l((1-xt)/(1-kxt) ;k2))

and if we take this function to be equal to (-1)n-lner/k’K for xt= 1 it will be
continuous for x [1/2,1] and [0,1] and its absolute value will be bounded by some
constant D. So we obtain

x-1/2(1_ t)-I/2 sin((ner/K)sn-l(v/-))
(1- k 2xt ) /1- xt

< (1,- t)- 1/2

(1-k2t)

where l(t) is integrable for t [0,1].
Collecting all the pieces, we conclude that y,( ;k 2) is indeed continuously dif-

ferentiable and it is legitimate to bring the derivative inside the integral.
We take in (4.10) the limit x= 1 and put sn2(O; k 2)

lfoK dt (_) nfoK sn0 (nerO)y (1", k 2 ) --r dn20" cos d0cnOdn O sin

These integrals are computed using the calculus of residues and the elementary proper-
ties of the Jacobi elliptic functions. The result is Lemma 4.

To conclude this subsection, we notice that an integral representation for f2(u) has
been obtained in (3.2). Combining it with (4.9), we get

(4.11)
)1/2f01yn(x" k2)= Zn(1-x dt

(-1) n-1 1 q_q2n
Z.= erk’ 1- q 2n

sin((nr/k’K)sn-(t(1-x) ;c2))
(1 t)[1 t(1 x)] [1 kg-t(1 x)]

When x cn2(0; k 2), with 0 [0, k’K ],

(4.12) y. (cn2(O; k2); k2) 2Z.fo sn(; c:) sin( ner
/sn2 (O; k2)-sn2(k; c2)

This relation is essential for computing scalar products involving the eigenfunctions as
we shall see now.

4.4. Orthogonality and norm of the eigenveetors. The scalar product for which the
differential operator (4.1) is formally self-adjoint is

(4.13) (f,g) =fo dx
ixf(X)g(x)

with real valued functions f, g.
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We shall prove
THEOREM 2. For n, p N* we have

1 (2K)2 l+q2"

( Y"’YP ) Pn3"P’ On=-n ,r 1- q2n

Proof. First, assume k> 0. Substituting the integral representation (4.11) in (4.13),
we have a triple integral

sin((n,r/k’K)/sn-(t(1-x)
Z dx((4.14) ( y,,y,) z, ,( dt

So.o

1 sin((nrr/k’K)sn-((S(l-x) ;2))
ds

Z & dt dsg(x; t,s).

As Mready explained in the proof of Lemma 4, the Nnction

sin(( n/k’K)sn-())/1 v

is continuous for v[0,1] provided that, for v= 1, we define it to be (-1)"-n/k’K.
Hence it is bounded by some constant D and we may write

IU(x; ,s)lS [(1 -t)(1 kt)(1 s)(1 ks)] -/

a bound which implies the absolute convergence of the integrN (4.14). Let

x=cn2(O;2), t(1-x)=sn2(;), s(1-x)=sn(,;2), O,,,[O,k’K]
and interchange the orders of integration,

x snsn dO

All the elliptic functions involved have for parameter. The term in the bracket is
elementary if one takes for variable u= sn(0;) and is equal to

In (sn’cn+ cn" sn).
Coming back to elliptic functions with parameter k, we note that

(y,,y)=4k’Z,Z dsin(n)dsin P )ln (sn’cn+ end" sn)

In order to simplify the logarithm, we use relation (4) [16, p. 152]

(4.15) sn.cn+cn.sn=. 1 + dn(-)
dn dn k sn( )
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Putting in (4.15) q=k’ +2iK’ and then changing k’ to -k’ gives another relation
which, when combined with (4.15), reads:

(snpcn+cnpsn)2 1 l+dn(p-) 1-dn(p+)
sn:p sn: k: sn( p ) sn( p + ff )

The scalar product is then transformed to

-K

i_n,r +
dq, exp Indp exp K K K 1 +dn( g, )

+K
dtp exp K K

d+exp( iprr+ ) sn(p +)
1-dn(p+)

The computation now becomes possible with the variables tp + q and gives

(1) 2K ,2 (--1)n+p-lfo2Kdx[sin(nqrx) (PqrX)] (=k Z,,Zv -- +sin-g- In
1I.p r n +p
snx )+dnx

2Kk,-Z,,Zp(-1)"-P fo:Cdx[sin(prx) sin(nrrx)] ( snx )
i(:)= r n-p K -- In

1-dnx
np

2nfoK (nrrx)(snx) n=p.4Kk’2Z dx cos -- In
1 dnx

The integrals of the form

snx n rrxfo2Kdxln( 1 _+ dnx )sin(--g-), nN*

all vanish because their integrand is odd with respect to the point x K. As a conse-
quence, for n #:p, the scalar product (y,,,yp) vanishes.

For n =p, the remaining integral is computed using the calculus of residues applied
to the function

e,,,z/K[ Cnzdnz k2snzcnz ]sn z 1 dn z

The contour is a rectangle indented at z=0 and has vertices -K, +K, +K+ io0,
-K+ ioo. We obtain

(4.16) Kdxcos -- In
1-dnx =n’l+q2,’ nt*.

Using (4.16) and the explicit form of Z,, we establish Theorem 2.
Recall that we assumed k 2 0, k2 > 0. By letting k 2 0, we obtain the result

( Y"’YP ) 2n "P"

Hence Theorem 2 is valid for k20.
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4.5. Completeness of the eigenfunctions. Let us begin with some definitions. We
shall denote by L2w the linear vector space of square integrable functions with respect
to the weight"

W(x)=(1-x) -1 [If[I dxW(x)f2(x)

only real valued functions are considered. The scalar product is taken to be

(f,g) =1 dxW(x)f(x)g(x).

Since the Lebesgue integral is used, Lis a Hilbert space [10].
In this subsection we shall denote by the orthonormal eigenfunctions.
LEMMA 5. l= ((1 X)", n t * ) is dense in L2

wfor the L2
w norm.

Proof. This result is an extension of the Stone-Weierstrass density theorem. It has
been proved in a very general framework in [17] (see remark 1, p. 725 of this reference).

THEOREM 3. ( ), n NI * ) is a complete orthonormal basis in L2w.
Proof. We consider the set of functions

h(q) (snk)2-cnkdnk, r*

where all elliptic functions have for parameter c 2. All these functions are odd, vanish at
e/= + k’K and have a real period 2k’K. Furthermore, they are C. Hence their Fourier
series converge uniformly for k k’K, k’K ]:

lim sup
No [0, k’K]

hr(/)- E n(S)sin
n=l

The coefficients n(r) are given by

1 fj:,K d6h (4)sin( nrr6 )(4.17) /J" (r) k-- ,’K k’K"

Integrating by parts twice in (4.17), we find for ,, the bound

C2

(4.18) I,1_-< -5- n N*, real C.

From this the absolute convergence of the Fourier series follows. Hence we may
2 2multiply each term by snk/sn 0-sn q and integrate term by term for q[0,8].

Using (4.12), we get

(4.19) ,, 2Z, P"(cnO)=f
0
dq (snq ): lsn cnk dnk

/sn- O- snq
Cr(sn20)

0 [-k’K, k’K], with pointwise convergence, where the Cr are known constants and p
is given in Theorem 2. But we have the bound for sufficiently large n (use 4.5 for the
eigenfunctions)

<= 2rk’yo (cn2 0 ) llL, (
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Since this upper bound is a convergent series (use (4.18)), we conclude that the series in
(4.19) converges absolutely and uniformly for O[-k’K,k’K]. Then we make the
change of variable x=cnZ(0;cz). For O[O,k’K] and x[0,1], it is continuous and
one to one. This implies

(4.20) lim sup Ic,.(1-x)r-Su(x;r)[=O,
No x[O, 1]

SN(x;r)= _, ,,(rlf
--1 2Zn fin(X)"

Hence { p,,n N*} spans with respect to the uniform convergence norm. This
density property remains true for theLnorm because of the bound

(4.21) fo dx Icr(a_x)_SN(X;r)I
2 r_ -ln()=< sup IC,(1--X) SN(X r)l: 1

1 -x x[O, 1-/]

fl1 ex
+ Icr(1-x)’-&v(x.r)l

:

-n 1-x

Since the function Cr(1 X)r- SN(X; r) belongs toL for any value of N, the right
side integral in (4.21) is absolutely continuous for r/ [0,1]. Therefore we can choose r/
such that this integral be as small as e/2, independently of N.

Relation (4.20) shows that the other term in the fight side of (4.21) can be made as
small as e/2 for some choice of N.

Hence the density of {p,nl*} in with respect to the Lr norm is obtained.
But for this norm is dense in L [11]; therefore { p,n *} is dense in L.

Since in a Hilbert space a spanning orthonormal set is automatically complete,
Theorem 3 follows.

As a side remark we note that L has a remarkably rich structure of construcfible
orthogonal bases, since for any value k o the eigenfunctions { p } form a complete
basis in L. Quite generally we may write

.n(x;k2 ) E enr(k21,k)r(x;k22), k2,
r=l

from which, for k 0 we get

n(X;kl2) enr(k’O)
r=l V1

2Fl(-r’r;1;x)

a series already given by Erd61yi [13, formula 9.1]. Using the integral representations
for p,(x;k), we may work out the coefficients er appearing in this expansion: a
nontrivial exercise !...

5. Conclusion. We have obtained an integral transform relating Heun functions
with different sets of parameters. From this result and Carlitz explicit solutions, we
have obtained new closed integral representations for some Heun functions.

Using this transformation, we have been able to solve an eigenvalue problem
related to a birth and death process, obtaining the exact spectrum and eigenfunctions in
a purely differential equation theoretic framework. The integral representations ob-
tained are sufficient to give a direct proof of their orthogonality, to allow the computa-
tion of their norm and to prove their completeness in the Hilbert space Lw
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Let us observe that the spectrum obtained in this differential equation approach to
birth and death processes is identical to that obtained by Stieltjes who directly solved
the forward Kolmogorov equation using continued fraction techniques developed by
himself (the continued fraction computation is given in [14] and its relevance to birth
and death processes is fully discussed in [15]).

The identity of the eigenvalues in these two completely different approaches
strongly suggests some underlying equivalence which may be extremely fruitful to
develop both fields: continued fractions on one hand and new transcendental functions
defined by differential equations on the other hand.
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DISCRETIZED FRACTIONAL CALCULUS*

CH. LUBICH

Abstract. For the numerical approximation of fractional integrals

1 fol"f(x)=F(a) (x-s) -lf(s)ds (x>=O)

with f(x)=xfl-lg(x), g smooth, we study convolution quadratures. Here approximations to If(x) on the
grid x O, h, 2h,..., Nh are obtained from a discrete convolution with the values off on the same grid. With
the appropriate definitions, it is shown that such a method is convergent of order p if and only if it is stable
and consistent of order p. We introduce fractional linear multistep methods: The ath power of a pth order
linear multistep method gives a pth order convolution quadrature for the approximation of I". The paper
closes with numerical examples and applications to Abel integral equations, to diffusion problems and to the
computation of special functions.

AMS (MOS) subject classifications. Primary 26A33, 41A55, 65D25; secondary 65D20, 65R20

1. Introduction. Fractional calculus is an area having a long history whose infancy
dates back to the beginnings of classical calculus, and it is an area having interesting
applications. The numerical approximation of the objects of classical calculus, i.e.,
integrals and derivatives, has for a long time been a standard topic in numerical
analysis. However, the state of the art is far less advanced for fractional integrals.
Hopefully, the present work contributes to narrow this gap.

Very readable introductions to fractional calculus are given by Lavoie, Osler and
Tremblay [12] and by Riesz [19]. See also the book of Oldham and Spanier [18] which
contains many references and applications from different areas such as special func-
tions of mathematical physics and diffusion equations. For easy reference we collect
first some basic definitions and results.

We consider Abel-Liouville integrals of order t (often also called Riemann-Liou-
ville integrals),

(1.1) I"f(x)= F(a---- (x-s)-tf(s)ds (x>=0) for Rea>0,

where F denotes Euler’s gamma function.
I"f(x) depends analytically on a (for fixed f and x). If f is k-times continuously

differentiable on [0, x], it can be continued analytically to a with negative real part via

(1.2) If(x)=dk.I+kf(x) for Rea> -k.
dx

If k =< Rea < 0 and f(J)(0)= 0 forj= 0,1,.. -,k- 1, then y(x)= If(x) is the solution
of the first-kind Abel integral equation

1 fo
x

(1.3) r(-) (x-s) ’-ly(s)ds=f(x) (x>=O).

* Received by the editors October 18, 1983, and in revised form July 13, 1984.
Institut fir Mathematik und Geometrie, Universit’t Innsbruck, TechnikerstraBe 13, A-6020 Innsbruck,

Austria.
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For integer a, I‘" is simply repeated integration or differentiation:

ikf(x) =fxfXk o ""’fox2f(xl)dxxdx2"’’dxk’
If(x)=f(x),

dk

I-kf(xl=xf(x).
I‘" is therefore often called fractional integral of order a and also denoted D-‘’, the
fractional derivative of order -a.

We extend the definition to functions f(x) x-:g(x), where g is sufficiently
differentiable for x _> 0 and fl 4: 0, 1, 2,-- is arbitrary. The relation

tO_1 ) x‘’+#-I
(1.4) I‘’F(/3) (x)=F(a+/3) (Rea>0, Re/3>0)

can be used as a definition for general a,/3 C,/3 4: 0,- 1,- 2,.-.. Expanding g as a
Taylor series with Bernoulli remainder we see that (I‘’tt-lg)(x) is then well defined.

For the numerical approximation we wish to preserve two characteristic properties
of/":

(i) the homogeneity of 1‘"

(IV)(x)= x‘’( IV(tx))(1)
(ii) the convolution structure of I‘"

1
I‘’f= F(a) t‘’-I * f"

So we consider convolution quadratures
n

(1.5) If(x)=h‘" , o,_f(jh)+h‘" Wnjf(jh )
j=o j=o

(x=nh)

where the convolution quadrature weights 0 (n >= 0) and the starting quadrature weights
w,,j (n >_ 0, j 0,. .,s; s fixed) do not depend on h.

Because of the factor h‘" we have then the homogeneity relation

(lf )(x) x‘’( l/f(tx)) (I).

Also the convolution structure is essentially preserved. It is violated only by the few
correction terms of the starting quadrature which will be necessary for high order
schemes. For the computation of the values If(nh) (n =0,...,N- 1) one needs only N
evaluations of the function f and, using fast Fourier transform techniques, only O(N
log N) additions and multiplications.

There remains the important question: How have the weights n and Wnj to be
chosen in order that If(x) approximate I‘’f(x) with a prescribed order O(h’)? A
complete answer is given in {}2. After introducing the appropriate definitions we show
in Theorem 2.5 that a convolution quadrature is convergent of order p if and only if it
is stable and consistent of order p. This result is an extension of Dahlquist’s [3] classical
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theorem on linear multistep methods. An easy way of computing a convolution quadra-
ture of order p is by using a pth order linear multistep method to the power a (Theorem
2.6), called a fractional linear multistep method. The proofs of the results in 2 con-
stitute 3. In 4 we give some brief remarks on the implementation of fractional linear
multistep methods. [}5 contains numerical examples for some applications of fractional
calculus" Abel’s integral equation, diffusion in a half-space, special functions of
mathematical physics.

We conclude this section with a remark on the notation: If a function f(x) is
undefined for x =0, we put for simplicity f(0)=0. The convolution of two functions
f(x), g(x) defined on x >= 0 is denoted by

(f * g)(x)=ff(x-s)g(s)ds (x>_O).

Given a sequence a (a.) we denote by-

a(’)= E a,,’"
n=0

its generating power series. We do not distinguish between a formal power series, a
convergent power series and the analytical function with which it coincides in its disc of
convergence. We refer to (a,) as the coefficients of a(’).

2. Convergence of convolution quadratures; fractional linear multistep methods. To
motivate the following definitions and results we consider first the case a= 1 in (1.1)
and (1.5).

If a linear multistep method (p, o) (where, as usual, p and o denote the generating
polynomials of the method, see e.g. Henrici [8]) is applied to the quadrature problem

y’(x)=f(x), y(O)=O, i.e. y(x)=(Xf(s)ds,
.’o

it is well known [17], [20], [15] that the resulting numerical solution can be written as a
convolution quadrature (1.5) where the weights 0, are the coefficients of

(2.1) a(’) o(1/’)

The convergence of a linear multistep method is determined by its stability and
consistency (Dahlquist [3], [4], also e.g. in Henrici [8]). In terms of the quadrature
weights ,, the method is stable if and only if 0, are bounded. Consistency of order p
can be expressed as

hw(e-h)=l+O(hP).

In the following definitions we extend these concepts to arbitrary a C. Here w (,)
is a convolution quadrature as in (1.5).

DEFINITION 2.1. A convolution quadrature is stable (for I) if

w.= O(n’-).
DEFINITION 2.2. A convolution quadrature is consistent of orderp (for I") if

h%(e-h)=l +O(he).
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Here and in the followingp is a positive integer.
Remark. For Rea > 0 this condition can be interpreted as

htoje_jh=1fo Xe ’dt+O(hP)’

that is, to yields an O(hP) approximation to the integral of the exponential function on
the interval (0, oo).

For the following it is convenient to introduce the notation
n

(2.2) f’f( x ) h , to,_jf( jh ) ( x nh ),
j=O

which is the convolution part of (1.5), and

(2.3) E=f]-I,
the convolution quadrature error.

DEFINITION 2.3. A convolution quadrature to is convergent of orderp (to I) if

(E;t-l)(1)=O(h#)+O(hp) for allflC, fl0,-1,-2,....

This definition is motivated by the following result.
THEOREM 2.4. Let to satisfy (2.4). Then we have"
(i) For every fl O, 1, 2, there exists a starting quadrature

(2.5) Wnj=O(nor-l) (n >= 0,j= 0,...,s)

such that for any function

(2.6) f(x ) x/- lg(x ), g sufficiently differentiable,

the approximation Ifgiven by (1.5) satisfies
(2.7) If( x ) If(x ) O( h p)

uniformly for x a, b] with 0 < a < b < oo. (More precisely, let fl + k (k integer)
such that 0 < Re/ =< 1. Then

If(x ) If( x ) O(x+9-h p) uniformly for bounded x.)

(ii) For every fl 4: 0,- 1,- 2,... there exists a starting quadrature w,j (which does
not necessarily satisfy (2.5)) such that for any function (2.6) the approximation Ifsatisfies
(2.7) uniformly for bounded x.

Remarks. a) Trivially, (i) implies (2.4).
b) The weights w, are constructed such that Itq+#-x=Iatq+B-x for all integer

q>__0 with Re(q+/3-1)_<p- 1 in (i) and (ii), and additionally those with Re(q+a+fl
-1)<p in (ii).

c) More generally, for ill,’" .,/3,, a starting quadrature (2.5) can be given for
functionsf(x) Ej.= xfli- lgj(X ), gj sufficiently differentiable, such that (2.7) holds.

In the following we consider convolution quadratures to for which

(2.9) to() r ()ar2()
where ri(’) are rational functions.
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We can now give the main result of this paper.
THEOREM 2.5. A convolution quadrature (2.9) is convergent of order p if and only if it

is stable and consistent of order p.
Remark. a) For the special case a 1, Theorem 2.5 reduces in essence to Dahlquist’s

convergence theorem for linear multistep methods [3], [4].
b) As the proof shows, condition (2.9) can be considerably relaxed. However, the

class (2.9) is probably large enough for all practical applications.
For a=k a positive integer, Ikf=H I f (k-times) is simply the repeated

integral of f. If we take Ihf to be the solution of a linear multistep method (p,o)
applied to y’=f, y(0)=0 (so that y=I f), then the repeated method If=Ih... Ihf
can be rewritten as a convolution quadrature (1.5) where the weights are the coeffi-
cients of the power series 0()k, with 0(’) given by (2.1). This can be interpreted as
the k th power of the multistep method. We remark that squaring linear multistep
methods (k= 2) has been used in the literature, see e.g. Dahlquist [5] and Jeltsch [10].
The following theorem shows that one can also take fractional powers of linear multi-
step methods. This result is a corollary of Theorem 2.5. It provides a simple means
for constructing convolution quadratures for arbitrary a e C.

THFOREM 2.6 (fractional linear multistep methods). Let (p, o) denote an implicit
linear multistep method which is stable and consistent of order p. Assume that the zeros of
o() have absolute value less than 1. Let (), given by (2.1), denote the generating
power series of the corresponding convolution quadrature o. Define o= (()) by

Then the convolution quadrature o is convergent of order p (to I).
We conclude this section with some examples.
Example 2.7. The fractional Euler method, 0(’)= (1-’)-, is of historical inter-

est. The method reads

(2.11) l:,f(x) h _, (_ 1)j( a)j f(x-jh).
O <_h <=x

For a -k (k 1, 2, 3,... ) this is just the k th backward difference quotient. Starting
from this observation, Liouville [14, p. 107] had already introduced fractional deriva-
tives by a formula similar to (2.11). Grinwald [7] and Letnikov [13] have shown that
(2.11) converges to the Abel-Liouville integral If(x) (for Rea>0). Their proof (of.
[12, p. 248], [18, p. 51]), however, does not reveal the fact that the method yields an
O( h )-approximation.

Example 2.8. The (p+ 1)-point backward difference formula (BDF), see e.g.
Henrici [8, 5.1-4], is of order p and satisfies for p =< 6 the assumptions of Theorem 2.6.
The fractional BDF methods given in Table 1 are therefore convergent of order p. For
a 1 the method reduces to the usual (p + 1)-point backward difference quotient.

TABLE 1

Generatingfunctions for (BDFp)’, 1 =<p =< 6.

p o()

(3/2- 2’+ 1/2’2)
(11/6 3’ + 3/2’2-1/3’3)
(25/12- 4’ + 4’2 4/3"3 + 1/4’4)
(137/60- 5" + 5"2-10/3"3 + 5/44-1/5’5)
(147/60- 6" + 15/2’2- 20/3’3 + 15/4’4- 6/5"5 + 1/6’6)
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Example 2.9. The fractional trapezoidal rule, 0(’)=(-(1 +’)/(1-’)), is con-
vergent of order 2 if Rea >= 0. Since the numerator has a zero on the unit circle, the
method is not stable for Rea < 0 (see (3.9), (3.10)).

Example 2.10. The following class of methods can be interpreted as generalized
Newton-Gregory formulas.

Let Vi denote the coefficients of

,i(1 .) ln’

(see Lemma 3.2), and put

"() (1-)-[0+(1-)+ +,_(1- )P-].
Then is convergent of order p (to I). For a= 1 this method reduces to thepth order
Newton-Gregory formula (i.e. implicit Adams method), for a 1 to the (p + 1)-point
backward difference quotient.

3. Proofs. We give first the proof of the central result, Theorem 2.5, and of its
corollary, Theorem 2.6, and finally the proof of Theorem 2.4. We begin with some
preparations.

Preparations. We shall repeatedly make use of the following asymptotic expansion
for binomial coefficients (cf. [6, p. 47])

=} [l+an-+an-+ +a_n-(-+O(n-)]
where the coefficients a depend analytically on . af(x), introduced in (2.2), can be
extended to

aU(x)=h f(x-jh) (xaO),
OhNx

which is the convolution of the sequence h" with f. Therefore a commutes with
convolution

iff is continuous and g is locally integrable.
This property is often shared by I":

I(f , g)=(If), g

which holds for locally integrable g and continuous f if Re > 0, and also for f with
f((0)=0 (j=0,-..,k-1) if Re> -k. In tNs case also the convolution quadrature
error E -I satisfies

(3.2) E(f g)= (Ef ) , g.

The proof of the above statements is easy and therefore omitted.
The homogeneity of I and - yields

 3.3) ( e;t ) 1)
Formulas (3.1)-(3.3) and an analytic continuation argument will be the essential tools
in the proof of Theorem 2.5.
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Proof of Theorem 2.5. We break the proof into several steps which are formulated
as lemmas.

LEMMA 3.1. If (Etk-1)(1)=O(hk)+O(h p) for k=1,2,3,. ., then to is consistent

of order p.
In particular, convergence of orderp implies consistency of order p.
Proof. We look first at the quadrature error for e t-x (as a function of t) on the

interval [0, x],

eh(x)=(Eet-X)(x)=ha E
Oh<=x

toje-Jh ( I"et-X ) ( x ).

As x -+ oe, the first expression of the difference tends to hto(e-h), and

(I’et-")(x)-+l (x-+m).
(For Re a > 0 this is immediate from the definition of Euler’s gamma function. For
Rea =< 0 it follows in the same way as in the derivation of (3.5) below, with E’ replaced
by I). So we have

(3.4) eh(oO)=h%a(e-h)--l.
We expand e t-x at t=0,

q k 1E --.e-X+-.( ’rq* e’-X)(t),
k=0

with q+ 1 >__ max( p,p Re a ). We write

with

eh(x)=eh(x)+e(x)

q 1el(x) =e-x E -((E;t)(x)
k=O

By (3.3), (Etk)(x) has only polynomial growth as x --+ oe. Hence

e() =0.

By (3.2),

So we obtain

1 1 t-e,(x)=-. E(tq et-X)(x)=-q-(((Et q) e X)(x)

-q! e (Etq)(s)ds.

lfo (3.5) eh(o ) e-S(Efftq)(s)ds.

By (3.3) and by assumption,
q ( sq+(Efftq)(s)=sq+a(Eh/st )(1) 0 a-Ph p)
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From (3.4) and (3.5) we obtain hence

h"to(e-h)-l=O(hP),
i.e., consistency of order p. El

Our next aim is to give in Lemma 3.2 a characterization of consistency. We may
write

to (’) (1 ’)-go (" )
where # is chosen such that go (’) is holomorphic at 1 and go (1) g= 0.

Consistency implies immediately g=a and go(l)= 1. We expand to(’) at 1"

(3.6) to (’)= (1 ’)-" [Co + c1(1 ’) + c:(1 ’):+

q-CN_I(1--)N-I-! (1 )N()]
where (’) is holomorphic at 1.

We can characterize consistency in terms of the coefficients ci.

LEMMA 3.2. Let ,t denote the coefficients ofZ 3,i(1 ’)i= (- In ’/(1 ’))-’. Then

to is consistent of orderp

if and only if the coefficients C in (3.6) satisfy

ci= Ti for O,1, ,p -1.

Proof. The expression

is 1 + O(hP) if and only if

which holds if and only if

( h )hto(e-h)
l_e_ h

g( e-h )

go(e-h)
l_e_h +O(hP),

’)- )pgo(’)= 1-" +O((1-" ).

(3.7) to(’) (1 ’)-a[c0+cl(1 ’)+ +CN_I(1 .)S-]+(1 .)Sr(,)
where r(’) (1 ’)-"(’).

LEMMA 3.3. to is stable ifand only if the coefficients r, ofr() in (3.7) satisfy

(3.8) rn--O(n-l).

Proof. It is immediate from (3.1) that (3.8) implies ton= O(n"-l). Conversely, let to

be stable. Then to(’) has no singularities in the interior of the unit disc, Iffl < 1, and by
(2.9) can therefore be written as

(3.9)
m

Whether the method to is stable depends on the remainder in the expansion (3.6).
We rewrite (3.6) as
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where the ’j are distinct numbers of absolute value I (let ’0 1,a0 a), u(’) is holomor-
phic in a neighbourhood of I’1__< 1, and u(’j.)4: 0, aj.4: 0,-1,-2,.... Expanding 0(’)
at ’j. yields (cf. partial fraction decomposition)

m

o(’)= E (._.j)-ajpj(._.j)+q(,)
j--0

where pj. are polynomials, p(0)4: 0, and q(’) is analytic in the interior of the unit disc
and sufficiently differentiable (say, k-times) on the unit circle I1-- 1, so that its coeffi-
cients are O(n-k), (e.g. [11, p. 24]).

It is now seen from (3.1) that

(3.10) O O( t/a- 1) if and only if Re%_< Rea for all j.

Correspondingly, r(’) can be represented as

j=O

with/j and q as p. and q above.
Hence (3.10) holds also with r instead of ,%. This gives (3.8). rn
The trivial direction of Lemma 3.3 is used in the next lemma.
LEMMA 3.4. Convergence implies stability.
Proof. If o is convergent, then it is consistent by Lemma 3.1. With N= 1 in (3.7)

we have therefore

We study

,0 (’) (1 ’)-a + (1 ’) r(’).

n 1
(Effl)(1) h Y’ %_j- F(a + 1)j=0

(hn= 1).

En is the n th coefficient ofj=O Odn--j

oa(’) =(1-’) a-X

1-"
+ r(’).

By (3.1) we have

(EI)(1) =ha[ na a-1 ] 1
F(a+l)+O(n ) +h rn-F(a+l)=O(h)+harn (hn=l)

which is O(h) only if rn= O(na-X). Now Lemma 3.3 completes the proof, rn
It remains to show that stability and consistency imply convergence. Let us first

have a closer look at the structure of the error.
LEMMA 3.5. Let a, C, 4: O,- 1,- 2,.... If o is stable, then the convolution

quadrature error of t/- has an asymptotic expansion of the form

(3.11) (EtB-1)(1)=eo+elh+ +eN_lhN-l+O(hN)+O(hB)

where the coefficients e= ej(a, fl, Co,... ,cj) depend analytically on a, fl and the coeffi-
cients Co,..., cj of (3.7).
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Proof. a) We need the following auxiliary result: The convolution of two sequences
un=O(n) and G=O(n) with v< min{ 1,/z- 1} satisfies

(3.12) u,_joj= O( n’).
j=0

This is seen from

j---0 j=l
n

and

n (j+l)- if/x>__0
for 1 __<j n 1.

if/x<0

b) For/3 :/: 0, 1, 2,... we obtain from (3.1) an asymptotic expansion

(3.13)

So we have

n8-1=bo(-1)n( )--bl(-X)n(-n+l)+
+bN-l(--1)n( -+N-1)

b(’)’= Y’ n#-’"=bo(1 ’)-/+ b(1 -’)-/+ +
n-----1

+ bN_l(1 _)-e+N- + S()
where the coefficients s. of s() satisfy

(3.14) s,=O(n#--N).
C) We have to study the expression

h Wn_j(jh) #-1 (hn=l).
j=l

y,=E=x,_jj- is the nth coefficient of y()=()b() wch by inserting (3.7)
and (3.13) can be written as

y()=do(1-)-("+#)+d(1-)-("+#)+ + +d2N_2(1--) -(a+)+2N-2

k
Cj.where d, Ej=ob_j

If N is chosen sufficiently large, then the coefficients of ()s() and

[b()-s()](1-)Ur() [b0(1--)-a+N+ +bN_(1--)-a+2N-]r()
are O(n"-) by (3.1), (3.8), (3.14) and (3.12).

By (3.1) we have therefore

yn=on,+O-l+eln(,+#-)-+ +eNn(,+#-)-N+O(n,-).
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This gives the desired result for

( E;t#-’)(1) ha+B-ly (Iat#- 1)(1) (hn=l).

In Lemma 3.8 below we shall show that e0 ep_ =0 if the method is stable
and consistent of order p. First, we need two auxiliary results in which we restrict our
attention to Rea > 0.

LEMMA 3.6. Let Rea > 0.

If (EtP-i)(1) O(hP), then (E’t#- t)(1) O(h p) for all Refl >p.
Proof. Let/3 =p + g. By (1.4),

By (3.3),

y (3.),

Hence also

r(p+) tp_ t_t-x=
r(p)r()

( Efftp-1)(X) O(xa-lhp).

Ef(tp-1, tg-1)(1)=(E;tP-, tg-i)(1)=O(hP).

(E;t#-i)(1)=O(hP).
Remark. EtP- is the Peano kernel of the quadrature to.

LEMMA 3.7. Let Rea > 0. There exist numbers o,,2, (independent of to) such
that the following equivalence holds for stable to:

(3.15) (E:tq-1)(1)=O(hq) forq=l,2,...,p

if and only if the coefficients c of (3.7) satisfy

(3.16) ci=5 fori=O,1,...,p-1.

Proof. The proof proceeds by induction on p. Trivially the statement holds for
p=0.

Assume now that Lemma 3.7 has already been proved up to order p. We shall
prove it for p + 1.

Let either of (3.15) or (3.16) hold. By the induction hypothesis, it suffices to show
that cp can be uniquely chosen such that

(EtP)(1)=O(hP+).
From Lemma 3.6 (and from Lemma 3.5 for p 0) we know already

(3.17) (gtp)(1) O(hp).

For any integer n we may write

p+l p+l

nP= b’(n+k-l) b,(-X)"(k)
k=l k=l

so that (with hn 1)
n p+X

( )(atP)(1)=h"

_
toj(n-j)PhP=hp+ b toj(_l)#-j -k

j=O k=l j=O
n--j
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The inner sum is the n th coefficient of

to()=o(1_)-"-*+ +9p_(l_)-"+--*
(1- ’)*

+ c,(1 f) +’-* + (1 f)’+-*r(f).

Using (3.1), (3.8) and (3.17) we obtain

(EtP)(1) r(a + 1)

where p depends only on a and 0,’" ", p- 1- Hence (3.15) holds for p + 1 instead of p if
and only if additionally Cp= /p. rn

We have now arrived at the final step of the proof.
LEMMA 3.8. Let aC. If to is stable and consistent of order p, then it is also

convergent of order p.
Proof. Let first Rea > 0. Since (3.15) implies consistency of order p by Lemma 3.1,

the numbers i of Lemma 3.7 and 3,i 3’(a) of Lemma 3.2 are identical.
By Lemmas 3.5 and 3.6 we have then for Rea > 0, Re fl >p

=o (j=0,-..,p- 1).

By analyticity, this holds then for all a, ft.
If the method is consistent of order p, we have by Lemma 3.2 c=,(a) for

0,- -,p- 1. Now Lemma 3.5 gives the result. El

We have thus completed the proof of Theorem 2.5. El

Proofof Theorem 2.6. The linear multistep method is consistent of order p, i.e.

hto(e-h)= l + O(hP).
Taking this relation to power a yields

h‘’to‘’(e-h)=l + O(hP),
so that to‘" is consistent of order p for I‘’. Under the given assumptions on (p, o) we can
write

to(’) (’-1) fl (1 ,i,)-1

where v(’) is analytic and without zeros in a neighbourhood of Iffl 1, and ’ are the
zeros of O(’) on the unit circle. Hence

to‘’() fl (1- ’,’)-‘’u(’)
i--0

where u(’)= v(’)‘" is analytic in a neighbourhood of Ig’l 1. By (3.9) and (3.10),

,4o)=

so that to" is stable. Now Theorem 2.5 completes the proof. El

Proof of Theorem 2.4. The proof is based on a Peano kernel technique similar as in
Lemmas 3.1 and 3.6.
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(i) Fix/3 4: 0, 1, 2,.... Let the integer m such that

Re( rn +/3-1) =<p < Re(rn +/3).
A suitable starting quadrature can be chosen by putting

m

(3.18) h E w,j(jh)q+#-a+(Etq+l-x)(1) =0 (q=0,1,...,m-1;hn=l).
j----1

This gives a Vandermonde type system of equations for w,)(j= 1,..., m),
m

E WnjJq+13-1-’O(na-1) by (2.4).
j=l

Hence also

(3.19) w,)=O(n"-)
as desired.

Let f(x)=xa-g(x), g sufficiently differentiable. Expanding f as a fractional
Taylor series with Bernoulli remainder term gives (let f(’)= 1-if)

N 1) 1 N+fl-1 +fl)(3.20) f(x)= E f(q+- (0) q+fl-1 (t ,f(U )(X).
q-’O r(q+/3)

x +
r(N+/3)

If Re(N+ fl 1) >p, then (3.3) and (2.4) yield

( Efft N+B-1)(X) O(xN-p+a+B-lhp).

If additionally Re(N-p + a + fl)>0, then (3.2) and the boundedness off(N+a) give

(3.21) Eff(tN+#-l* f(u+l))(x)=(Efftu+#-l* f(u+’))(x)
=O(xU-++,h)

for bounded x.
By our choice of the starting quadrature ((3.18), (3.19)), by the homogeneity

relation (3.3) and by (3.20), (3.21) we have
m

If(x)-If(x)=Ef(x)+h Y’

=O(xm-p++O-lhp)+ + O(xN-p++l-hP)+O(xN-p++/h)

O(xm-P+/-Xh) uniformly for bounded x.

This gives (i) of Theorem 2.4 (note/] m -p +/3).
(ii) If m is (3.18) is replaced by l>m with Re(l-p+a+-l)>=O, then the

corresponding starting quadrature weights satisfy

Wnj=O(nt-l-P+a+O-X),
and the same arguments as above show

If(x ) If(x ) 0 ( h v) uniformly for bounded x. []
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4. Implementation.
4.1. Weights of fractional linear multistep methods 0a. The coefficients of oaa,

defined by (2.10), are computed most efficiently by Fast Fourier Transform (FFT)
techniques for formal power series as described by Henrici [9, {}5]. The weights
0a(0a), ,.,(a)"", .N-1 are thus obtained using only O(NlogN) additions and multiplications.

4.2. Starting quadrature weights w,j. Multiplying (3.18) by n q+a+/3-1 and using
(1.4) we obtain

(4.1)
n

Wnjjq+8_l q+a+/3-1 q+/3-1

./=1 F(a+q+/3)
n -j=IE %-jJ (q=0,---,s-1).

Exploiting the convolution structure of the right-hand side, the weights wnj(n
1,..-,N and j=l,...,s) can be computed from (4.1) with O(N log N) operations,
using FFT-techniques (cf. [9]).

The starting quadrature of (ii) in Theorem 2.4 can be used on short intervals. If wnj.
of (ii) do not satisfy (2.5), then they dominate % for large n, and errors in the
evaluation off(jh) (j= 1,..-,s) are unduly magnified.

(As a marginal note: For large n the fight-hand side of (4.1) can be computed only
with large relative error, due to cancellation of leading digits. Moreover the Vander-
monde system is ill-conditioned for large s. Hence the weights w, are computed with
possibly low accuracy. This does, however, not affect the accuracy of the quadrature,
since it is only important that (4.1) holds up to machine precision).

4.3. Computation of lI. After f=f(jh) have been evaluated, the values of the
convolution ft’f(nh)=hY’.=lO,_af(n=l, .,N)can be computed simultaneously
by FFT-techniques with only O(NlogN) operations.

5. Applications and numerical examples.
5.1. Abel’s integral equation. Historically, the first application of fractional calculus

was probably given by Abel in his study of the tautochrone problem ([1], see also [18, p.
183]). This led him to the integral equation

1 jx -1/2(x-s) y(s)ds=f(x),

the solution of which he found to be

y(x)=I-1/2f(x).

For our numerical experiments we have used the (BDF3)-1/2 method (third order
backward differentiation formula to power -1/2, see Example 2.8). We give the results
for the function

x
f(x)=l+ x

The exact solution is then given by (see [18, p. 121])

(5.1) 1_1/2 X

l+x
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where 2F1 denotes the hypergeometric function. The solution at x=l is y(1)=
0.4579033863. The numerical results are given in Table 2.

TABLE 2

error error/hh numerical solution

0.04 0.4579085018
0.02 0.4579040377
0.01 0.4579034683

0.0799
0.0814
0.0820

5.2. Diffusion problems. As a simple example, consider the heat equation in a
half-space

with initial condition

with boundary conditions

and either

ut=Uxx (x>0, t>0)

(t>0)

(i) u(O,t)=f(t) (t>0)
(ii) ux(O,t)=g(t ) (t>0)
(iii) ux(O,t)=G(u(O,t)) (t> 0).

or

or

The solution at the surface x 0 satisfies (cf. [2, App. 2 to Ch. V])

1 fo,(t_s)-l/2 (O,s)ds (t>O)u(0,t)--

For boundary conditions (ii) the surface temperature u(O,t) is thus obtained as
-I1/2g(t). For boundary conditions (i) this formula is a first kind Abel integral
equation for the surface flux ux(O,t), which hence equals -I-1/2f(t). In case (iii) we
obtain a second kind Abel integral equation for u(O,t). The application of fractional
linear multistep methods to such equations is discussed in the author’s paper [16]. The
solution u(x, t) can be recovered from the surface flux by

u(x,t)= V
t-s)-/exp

4(t-s) ux(O’s)ds"

As a numerical example related to (ii), we have used the (BDF4)1/2 method (see
Example 2.8) to compute

(5.2) 11/2 sin V- v/-j1(v)

where J1 denotes the Bessel function (see [18, p. 124]). At t= 1 the solution is J1(1)
0.4400505857449. The numerical results are given in Table 3.

TABLE 3

h numerical solution error error/h4
0.0 010(505854008 -0.344o- 0.134o-
0.02 0.4400505857240 0.209o-O -0.130o-
0.0l 0.4400505857436 0.128to- -0.127o-
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5.3. Special functions. The relations (5.1) and (5.2) are special cases of

2Fl(a b" c" x)=F(c)xl- Ic-b[xb-X(1--X) -a] and
r(b)

2J(/)=--- (2v%-) ’P’- sinv/-.
Among the special functions which can be represented as fractional integrals of simpler
functions are" hypergeometric functions, confluent and generalized hypergeometric
functions, Bessel and Struve functions, Legendre functions, elliptic integrals etc. (see
[12], [18]). Convolution quadratures for their computation are particularly effective if
one is interested in obtaining many values on a grid simultaneously.

Acknowledgments. The author wishes to thank E. Hairer and G. Gienger for
helpful discussions, and G. Bader, P. Deuflhard and U. Nowak for their interest in this
work.
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THE REPRESENTATION OF FUNCTIONS AS LAPLACE AND
LAPLACE-STIELTJES TRANSFORMS*

F. J. WILSON"
Abstract. We develop necessary and sufficient conditions for a function to be represented as a Laplace or

Laplace-Stieltjes transform by considering the behaviour of the function on a single vertical line. Various
kernels, based on ideal inversion kernels for the Fourier transform, are considered and three new inversion
formulae for the Laplace transform are developed.
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1. Introduction. In this paper we examine criteria for a function f(w) to be
represented as a Laplace or Laplace-Stieltjes transform by considering the behaviour
of the function on a single vertical line. We consider integral transforms of the form

1 5 k(t,v,c,h)f(c+iv)dve(t c x)

where k(t, v, c,X) is a kernel similar in form to the ideal inversion kernels for the
Fourier transform which were examined in [11 and [61.

In [2] Cooper gives necessary and sufficient conditions for a function to be
represented as a Laplace transform by considering integral transforms of the form

1 f (c+iv)tle (v,X)f(c+iv)dvF( t, c, h ) - o

We extend these results by considering a wider class of kernels some of which, for
example the Post-Widder kernel

hk(t,v,c,X)= X-t(c+iv)

cannot be written in the form e(C+i)tl(v,.). We also prove our results for p in the
range 1 =< p =< whereas Cooper in [2], because the proofs of his main theorems depend
on Fourier transform theory, has to restrict p to the range 1 __<p =< 2.

We show that, under certain conditions on f(w) and the kernels k(t, v, c,h), the
boundedness of the set ( F(t,c,)t)e-’ } in Le(0, o), 1 <p <_ , is necessary and suffi-
cient for f(w) to be represented as a Laplace transform and if f is the Laplace
transform of a function F then F can be found by considering the weak limit of
F(t, c, X)e-t in L(0, o0) as h - o0. Similarly for p 1 we show that the boundedness
of the set {F(t,c,)t)e -at } in L(0,) is necessary and sufficient for f(w) to be
represented as a Laplace-Stieltjes transform and if f is the Laplace-Stieltjes transform
of a function H then H can be found by considering the limit of fF(u, c,)t)du as

Received by the editors May 9, 1984.
Department of Mathematics, University of Wales Institute of Science and Technology, Cardiff CF1

3EU, United Kingdom.
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We show that the Weierstrass and Abel kernels, the Cesaro kernel of positive order
and the kernel of ordinary convergence satisfy the conditions of the theorems. We then
produce three new inversion formulae for the Laplace transform by showing that the
following kernels

h )h+lX-t(c+iv)

,+Ox-t(c+iv )

and

(iv)e(c+io)tF 1-

the Post-Widder kernel,

where Ox ,o ()t)
h+l

as

the extended Post-Widder kernel,

the extended Phragmen kernel

also satisfy the conditions of the theorems. Lastly we show that for a particular class of
kernels it is possible to determine the abscissa of absolute convergence of the Laplace
transform by considering the behaviour of f(w) on any line in the half-plane of
absolute convergence.

2. Notation. We write

(LF)(w)= e-WtF(t)dt

(SH)(w)= e-WtdH(t)

and

for the Laplace and Laplace-Stieltjes transforms.
For any real a we write F Lp[a; (0, o)] when F(t)e-at Lp(O, ) and

H V[a, (0, o)] when H is a function of bounded variation over (0, o) and

e-’ldn(t)l
is finite. We will denote the dual of Lp(O, oe) by Lp,(O, o). For 1 __<p< oe we use the
following notation for function norms

and for p o

(t); (0, o)I1,= I(t)
p
dt

q(t); (0, o)IIo--ess sup I(t)
0<t<oo

We write e-(’+iV)tk(t,v,c,,) 1 boundedly for almost all (v,t) in (- oe, oe) x (0, oe) as
X when

ess sup [e-+’)tk ( t, v, c, X ) I<M
0<t<oo
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for all > ’0, where M is a constant independent of v and t, and

e-(C+iV)tk(t,v,c,X)l

as , for almost all (v, t) in (- , oo)(0, ).
We write

{g(t x, ,) dt is bounded uniformly in
x
and ,

dx

when f g(t, x,)dt is bounded uniformly in x and X and f g(t, x,)dx is bounded
uniformly in t and X.

For the Fourier transform of k(t, v, c,X) with respect to v we write

1 j ivxkK(t,x,c,X)=
-o

e- (t v,c X)dv.

We will denote the characteristic function of the interval (a,b) by X(a,b)(O).
’In all theorems we are only concerned with so to avoid any difficulties with

small values of X we will restrict to the range h > h 0-

3. Necessary conditions for the representation of tunctions as Laplace or
Laplace-Stieltjes transforms. We now show that, under certain conditions on the
kernel k(t, o, c,,), the boundedness of the integral transform

F(t,c,h)e --at e -at f-__o k(t,c,v,)f(c+ iv)dv2r

in Lp(0, ) is a necessary condition for a function f(w) to be represented as a Laplace
or Laplace-Stieltjes transform.

For the theorems dealing with necessary conditions there are no restrictions on the
relative values of the real numbers a and c apart from the restrictions imposed by the
given function F(t) and the kernel k(t, v,c,;k) but in 4, where we prove the corre-
sponding sufficiency theorems, we will require that a =< c.

Firstly for the case 1 <p < .
THEOREM 1. Let f= LF, where FLv[a; (0, )] and 1 <p < , and let c be a real

number such that the Laplace transform, f(w), converges absolutely for w=c+ iv. As a

function of v let k(t,o,c,X)L(-, o0) for all t>0 and > ,o.

1( (x and for all (x>0at be bounded uniformly in t>o
Let f e ate(a-c)lK(t,x,c,, ) d

and > ,
o. Then there exists a constant Mp such that

I]F(t,c,X)e-at; (0, o) IlpZMp

uniformly in for all > o.
Proof. By hypothesis there exist constants N and N2 such that

O

ate a-- c)xe [K(t,x,c,X)ldt<=N

and

fo e-ate(a-c)xlK(t,x,c,X) ldx <=N2.
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Now

e-at f_F(t c,,)e-t= k(t,v,c,X)f(c+ iv)dr2’11" oo

e a, oo

k(t,v,c,X)dv e XF(x)dx2r o

1 fo F(x)e_Xe_te{_XK(t x c,A)dx.

Hence, using Holder’s inequality,

IlF(t,c,X)e-at; (0, c)I1

axlPe-ate(a-)xlg(t,x c,X)
"0

fo e-ate(a-c)xlK(t’x’c’’)

< (2r)-*’/-N/*/ dt IF(x)e K(t x c,X)Idx

<= (2,r)_/2N/,
oo

iF(x)e_al,dx e-atea-c}lK(t,x,c,X) ldt

<= (2,r)-’/2Nz//Nx fo IF(x)e-l dx

which is bounded, since FL,[a; (0, m)], where the two interchanges of integration are
justified by Fubini’s theorem.

Theorem 1 also holds for p c and p 1 but we show that it is possible to prove
the necessity theorem under less restrictive conditions on k(t,v,c,A) for these two
particular cases.

Secondly for the case p c.
THEOREM 2. Let f=LF, where FLoo[a;(O, c)], and let c be a real number such

that the Laplace transform, f(w), converges absolutely for w c + iv. As a function of v
let k(t,v,c,X) L(- oo, c) for all t>O and ,>A. o. Let

ate(a-c)xe- IK(t,x,c,X)ldx

be bounded uniformly in and , for all > 0 and , > ,
o. Then there exists a constant Moo

such that

IlF(t,c,X)e-a’; (0, )I1

uniformly in X for all X > X o"



724 F.J. WILSON

Proof. Using the same method as in Theorem 1, we have

[[F(t,c,,)e-at; (0, o)
1 [o axe ate(a-ess sup F(x) e- ")XK(t, x, c, ,) dx

0<t< oo 0

<= 2v1 IIF(x)e- ax; (0, o)II ess sup
0<t< ot

e-ate(a-c)x[K(t’ x, c,X)[dx

which is bounded uniformly in h.
Thirdly for the case p 1 we need to consider Laplace-Stieltjes transforms.
THEOREM 3. Let f= SH, where H V[a; (0, oo)], and let c be a real number such

that the Laplace-Stieltjes transform, f(w), converges absolutely for w=c+ iv. As a

function of v let k (t, v, c,) L( o, oo) for all > 0 and h > h o. Let

fo e-ate(a-c)xlK(t,x,c,h ) ]dt

be bounded uniformly in x and for all x > 0 and > o. Then there exists a constant M
such that

IlF(t,c,,)e-at; (0, o)

uniformly in , for all h > h o.
Proof. Using the same method as in Theorem 1, we have

[[F(t,c,X)e-at; (0, oz)I1

dt e-ate(a-c)XK(t’x’c’2t)e-axdH(x)

1 e_ e_e(_lZ Idn(x)] K(t,x,c,X) Idt

which is bounded uniformly in X. The interchange in the order of integration being
justified by Fubini’s theorem.

Whilst these three theorems are adequate for most of the particular kernels that we
will be considering, the kernel of ordinary convergence, k(t, o, c, X) e +i)tX
does not satisfy the conditions of the theorems, since, even for the case a c,

is not bounded.
For the kernel of ordina convergence we need the following necessity theorem.
ToN 4. Let f=LF, where F Le[a; (0, m)] and p > 1, and let c be a real

number such that the Laplace transform, f(w), converges absolutely for w= c + iv. As a

Nnction 4v let k( t, v, c, X) L( ) for all > 0 and X > X o.
Let the transformation Sx be defined by

1 ate(a_c)

where g Lp(0, ).
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Then, if the set of transforms (Sx } forms a bounded set of transforms from Lp(O, o)
into itself, there exists a constant, Mp, such that

[[F(t,c,X)e-at; (0, o)I1-<_
uniformly in , for all > ,

o.
Proof. The proof follows that of Theorems 1 and 2 up to the equation

F(t c,X)e-at= 1 foF(x)e_axe_ate(a_c)xg(t x c,,)dx

and the result then follows directly from the hypothesis.
A similar theorem can be proved for the case p= 1 but we do not need this

theorem as the kernel of ordinary convergence does not satisfy the conditions of
Theorem 4 when p 1 [1, p. 291].

4. Sutticient conditions tot the representation o| tunctions as Laplace or
Laplace-Stieltjes transtorms. We now show that, under certain conditions on f(w)
and the kernel k(t, v, c,X), the boundedness of the integral transform

F(t,c X)e-at e-at f k(t,v,c,h)f(c+iv)dv2r

in Lp(O, o) is a sufficient condition for a function f(w) to be represented as a Laplace
or Laplace-Stieltjes transform. As already mentioned in [}3 we require that the value of
a be restricted to a < c.

Firstly we prove the theorem which gives sufficient conditions for a function to be
represented as a Laplace transform for p in the range 1 <p =<

THEOREM 5. Let f(w) be holomorphic in Rew > c and continuous in Rew >= c. For
every > 0 let there be an A( ) such that

throughout the half-plane Rew > c. For some m let

as vl o, for every > 0 let

as u o and let

f(c+iv)=O(v")

f(u)=O(eu)

(c+ reia) O

as r for some 0 in the range -r/2 < 19 < r/2.
Let f(c+ iv) L(- o, o) and let e-(C+i)tk(t,v,c,X) 1 boundedly for almost all

(v,t) in (- o, o)(0, o) as X o.
For some a < c let

IIF(t,c,X)e-at; (0, )

uniformly in for all , > o.
Then, for 1 <p<= o, f=LF where FLp[a; (0, o)] and F(t)e-at is the weak limit

in Lp(O, o) of F(t,c,X)e-at as h o.
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Proof. Let n be a nonnegative integer such that n > rn then for Rew > c

fo fo f_WtF( 1
ne_Wtdtt"e t,c,X)dt= k(t,o c,,)f(c+io)do

f_ wte (c+ iv)t dt
1

f(c+ iv)do t’e
2

as X , where the interchange in the order of integration is justified by Fubini’s
theorem and the limiting process by donated convergence. Therefore

= nl f[ f(c+io) do
: [w-(<+io)]

as X -- for lew > c. Now by hypothesis

uniformly in X. This is a bounded set in the dual of the Banach spaoe L,(0,
and is therefore relatively weakly compact. Hence there exists (t,c) such that

(t,c)e-t(O,) ana (t,c)e-at is a wea limitint 7oint of (t,c,X)e-Le(0, ) as h . Since

t"e-W’eat

for lew > a then as X + f t"e- wry(t, c) dt is a limiting point of
Hence by the above statement and (4.1) we have, for lew > c,

{ nl U f(c+iv)t’e- t, dv

(- 1)"f(’)(w)
where the use of Cauchy’s formula is justified by the hypothesis, since n > m and
(w-c+ 1)-mf(w) is bounded [3, p. 1326].

Because of the uniqueness of Laplace transforms F(t,c) must be independent of
the choice of c; therefore lettingF(t)= F(t, c), we have

for Rew> c, where F(t)e- is the weak lit in L(O, m) of F(t,c,X)e- as
Define

,(w)= e t)dt;

then (w) is holomorphic in Rew > c and

()(w) (-1) te-WtF(t)dt=f()(w).

Therefore for Rew>c (w)=f(w)+p(w) where p(w) is a polynomial of degree at
most (n-l). Letting w=c+rei, we have I(c+re)lO as r for -/2<0<
/2, since FLp[a;(O,)] and, by hypothesis, [f(c+reiO)lO as r for some 0
in the range -/2<0</2. Hence for Rew>cp(w)=O and therefore (w)=f(w).
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Hence f(w)=f e-WtF(t)dt where FLp[a; (0, )] and F(t)e -at is the weak limit in
Lp(O, c) of F(t,c,,)e -at as , o.

Secondly for the case p 1 we prove the theorem which gives sufficient conditions
for a function to be represented as a Laplace-Stieltjes transform.

THEOREM 6. Let f(w) be holomorphic in Rew > c and continuous in Rew >= c. For
every > 0 let there be an A(8 ) such that

f(w)[ <Aeslw-’12

throughout the half-plane Rew > c. For some m let

as vl o, for every > 0 let

as u---) o and let

f(c+iv)=O(vm)

f(u)=O(esu)

f(c+rei)=O(1)
as r for some 0 in the range -r/2 < 0 < r/2.

Let f(c+ iv) L(-c, c) and let e-(C+i)tk(t,v,c,X)--. 1 boundedly for almost all
(v,t) in (- o, o)x(0, m) as h .

For some a c let

IIF(t,c,X)e-at; (0, )I1 z
uniformly in for all > o.

Thenf= SH, where H V[a; (0, m)] and

H(t)-H(O)=J tF(u,c,X)du.
Proof. Let n be a nonnegative integer such that n > m then, as in Theorem 5, we

can show that for Rew > c as X

nl f(c+io)
do(4.2) te-W:(t’c’h)dt - [w-(c+ io)]"+

Now by hypothesis

IlF(t,c,X)e-a’; (0, ) IlxZM
uniformly in X. Therefore (fF(u,c,)e-aUJu) is a bounded set in the dual of the
Banach space C0(0, ) and is therefore relatively weakly compact. Hence there exists
h(t,c) V(O, ) such that h(t,c) is a weak limiting point of fF(u,c,)e-aUdu as
X . Therefore

wte at dh "e- wtf(t"e (t, c) is a liting point of c ) dt

as.
Hence by the above statement, (4.2) and using Cauchy’s formula, as in theorem 5,

we have for Rew > c

nt f f(c+iv) dv=(_l).f(.l(w)t’e-Wteatdh(t’c)=
[w-(c+iv)] +
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Because of the uniqueness of normalised Laplace-Stieltjes transforms, h(t, c) must
be independent of the choice of c; therefore letting h(t, c)= h(t) we have

fo tne-Wte"tdh(t)=(-1)nf(")(w)

for Re w > c.
Define (w)=f e-Wteatdh(t). Then q(w) is holomorphic in Rew > c and

(n)(W)=(--1)nfo tne-Wteatdh(t)=f(n)(w).

Therefore for Rew > c

where p(w) is a polynomial in w of degree at most (n- 1). Letting w c + rei, we have

f(c+rei)=O(1) asr for-r/2<0<rr/2,

since h (t) V(0, oo), and, by hypothesis,

p(c+rei)=O(1) asr

for some 0 in the range r/2 < 0 < r/2. Hence for Rew > c

where A is a constant, and therefore

f(w)= e dh(t)-A.

Now if we define

H(t)-H(O)=f’eaUdh(u),
"0

then

f(w)= e-WtdH(t)-A

and the constant A can be absorbed into H(t) by altering the value of H(t) at the
origin.

Hence

f(w)= e-WtdH(t)

where H V[a; (0, o)] and

H( ) H(O) xli__,m fot F( u, c, h ) du.

Most of the particular kernels which we will be considering are of the form

k( t, v, c,X ) et+tl( v,X ).
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For kernels of this form it is possible in Theorems 5 and 6 to replace the condition
f(c+ iv) L(- c, ) by the condition l(v,h)f(c+ iv) L(- oe, ) for all X>)t o. If,
in addition, p is restricted to the range 1 =<p =<2, then the conditions If(c / rei)l0
and f(c+ rei)=O(1) as r o for some/9 in the range -r/2 < O <r/2 in Theorems 5
and 6 respectively can be omitted [2, p. 230].

5. Particular kernels. We now consider the conditions which must be satisfied by
the kernels for them to be used in the theorems that we have proved.

L1. k(t, o, c, ,) L( o, o) as a function of v for all t > 0 and )t > )t 0.
L2. e-(+i)tk(t,v,c,t)--, 1 boundedly for almost all (v,t) in (- o, )(0, oe) as

L3.

{e-ate(a-c)x g( x c, X) dt is bounded uniformly in
x

dx

and )t for all [ x > 0
t>0

and X>Xo.

L4. The set of transforms { Sx} forms a bounded set of transformations from
Lp(0, oe) into itself, where the transformation Sx is defined by

1 fo ate((Sxg)(t)=
2

g(x)e- a-c)xK(t,x,c,A.)dx

where g Lp(0, o).
We say that k(t,v,c,)t) is an L(a<=c) kernel if it satisfies the conditions L1, L2

and either L3 or L4. If the conditions are only satisfied when a=c, then we write
k( t, v, c, X ) is an L(a c) kernel.

The Weierstrass kernel

k( t, v,c,X ) e(C+i)te-2/x2

satisfies L1 and L2.

e Ct

f? iv(x- v2 /hK(t,x,c,X)=
2

e- t)e dv

)ke ct { -)k2(x- t) }V- exp
4

Therefore letting y )t(x )/V-,

fo e-’te(’-XlK(t,x,c,X) Idt

=exp( (a-c)2 } xX/v exp(_ 1 2}
< 2-exp (a-c

)k2
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Similarly,

ate c)xe [K(t,x,c,X)ldx

.2 f-tx/v - y-v(a-c)/Tt] dy

< exp( (a- c)2 }
and therefore L3 is satisfied. Hence the Weierstrass kernel is an L (a c) kernel.

The Abel kernel

k ( t, v, c,X ) e(C+gO)’e-/

satisfies L1 and L2.

C
ct

fooK(t,x,c,X)=
-oo

e-iV(x-t)e-lVl/Xdv

2Xe ct 1

2v/ 1 +h2(x-t)2"

Therefore letting y x- t,

0 -ate(a-c)xe K(t x c,h)[ dt= e(a-c)y

which cannot be bounded if a < c. We will therefore only consider the possibility a c.
In which case

fo e-tlK(t’x’c’’) Idt= - i + ,2y2
dy

-oo l+X2y2dy

2-.
Similarly f e-tlK(t,x,c,X)ldx and therefore L3 is satisfied when a=c. Hence
the Abel kernel is an L(a c) kernel.

The Cesaro kernel of positive order

(k(t,v,c,X)=e(c+i)t 1- X(_x,x)(v),

satisfies L1 and L2.

a>O

(K(t,x,c,X)= ect f 1- e-ix-t)dv

=eafoXCOS[V(x-t)](1--)’dv
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and

K(t,x, c,X) <__ Be ct max( X, X-lx tl--1)
where B is a constant dependent on a [5, p. 30]. Therefore letting y x- t,

f0 e-a’e("-’XlK(,x,c,X) Id<= e(-Bmax(X, X-IYI-"-) dY

which cannot be bounded if a < c. We will therefore only consider the possibility a c.
In which case

e K(t x c,X)Idt<= Bmax X,X- Yl dy

ydy+
o

Similarly

e X)ldx<2B 1+
1

and therefore L3 is satisfied when a=c. Hence the Cesaro kernel with a> 0 is an
L (a c) kernel.

The kernel of ordinary convergence

k(t,v,c,X)=e(c+iv)tx(_x,x),v.(

satisfies L1 and L2.

e ct

fx --iv(x--t)I((t,x,c,X)= e do

[ ectsinx(x-t)x-t
The kernel does not satisfy L3 even in the case a c but it does satisfy L4 for a c and
1 <p =< 2 since the set of transforms { Sx} forms a bounded set of transforms from
Lp(O, ) onto itself, where

1 f sin?(x- t)(Sxg)(t)=7 Jo g(x)
x-t

dx,

for 1 <p =< 2 [7, p. 256]. Hence the kernel of ordinary convergence is an L(a c) kernel
for 1 <p =< 2.

The Post-Widder kernel

X )X+lk(t,v,c,)t)=
)t-t(c+iv)
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which was derived by Cooper in his work on Fourier transforms, [1, p. 292], satisfies L1
and L2.

h+l fo e-ivxK(t’x’c’h)= 2x/ _ [X-t(c+io)] x+l

and letting w ,- t(c + iv), we obtain

K(t,x,c,X)=e-XX/tecx fx’-tc+i wx/tw-X-1e dw
h- tc- io

2v/XX +e-XX/telxlx
r(x+l)ltlx+

for x >= 0 and >= 0. L3 can only be satisfied when a 0, in which case

fo e-CXlK(t,x,c,,) ldx
2/h+ foF(X+I)tX+I

e-X/txXdx

Similarly yo e-CXlK(t,x,c,,)ldt=2x/-. Hence the Post-Widder kernel is L(O<=c)an
kernel.

The extended Post-Widder kernel

k(t,v,c,,)= X+Ox_t(c+iv)

where Ox=o(X) as , o, which was derived in [6, p. 82], is also an L(O<=c) kernel.
The extended Phragmen kernel

k(t,v,c,X)=e(C+i)tF! iv)
which was derived in [6, p. 84], satisfies L1 and L2.

e X-F 1- doK(t’x’c’X)=
2 -oo

and letting w 1 iv/, we obtain

e ct (k) 1+i
K(t, x, c,k)= e-x(x-t) -i -if eXW(-F(w) dw

21eCte-,(x-t)e-e-x(x-

by [4, p. 231].
Therefore letting y x- t,

fo ate(a-c)x X) Idt fe K(t,x c 2e(a-c)y,e Ye-e-xydy
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which cannot be bounded if a < c. We will therefore only consider the possibility a c.
In which case

fo e-CtlK(t x c X)ldt 2av )e bYe e-hYdy

he-XYe e-XY dy

=.
Similarly

cte K(t x c,X)Idxz 2v-ff

and therefore L3 is satisfied when a= c. Hence the extended Phragmen kernel is an
L(a c) kernel.

An interesting result which was noted by Cooper [2, p. 233] is that for L(a <=c)
kernels it is possible to determine the abscissa of absolute convergence of the Laplace
or Laplace-Stieltjes transform, f(w), by considering the behaviour of f(w) on any
line w=c+ it) in the half-plane of absolute convergence. For L(a<=c) kernels the
abscissa of absolute convergence is the infimum of the values of a for which
IlF(t,c,X)e-at; (0, )llx is bounded uniformly in h. For L(a=c) the abscissa of abso-
lute convergence is the infimum of the values of c for which IIF(t,c,X)e-Ct; (0, o)11 is
bounded uniformly in ,.
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ON ZEROS OF INTERPOLATING POLYNOMIALS*

ROGER W. BARNARD’, WAYNE T. FORD" AND HSING Y. WANG :I:

Abstract. Polynomials to be used in interpolation of digital signals are called interpolating polynomials.
They may require modification to assure convergence of their reciprocals on the unit circle.

This paper concerns discrete time windowing, which consists of scaled truncation of a series such as

rn,n" a sinx
PN(Z)--- 1+ E (zm+z-m)sinc--’ sincx=

x
m=l

where N> 1, to obtain an expression of the form

P* Z L-1 Z slnc-----N,L(Z) I+ ( +z-m)Cm
m=l

We delete the asterisk to write PV,L when each c 1.
The zeros of PU, L are shown to have unit modulus for L N. Examples are given to show that little can

be said of the zeros of PU, L for L> N. Conditions are found to define real sequences of the form,
c 1 < m < oo so that P* has no zero of unit modulus. Several standard discrete time windows areN,L

shown to define real sequences which are special cases of the conditions developed.

Introduction. Polynomials to be used in interpolation of digital signals are called
interpolating polynomials. These polynomials may require modification to assure con-
vergence of their reciprocals on the unit circle. Such modification is a principal concern
of this paper.

A real function, g, defined for all values of the real independent variable time, t, is
called a signal. A digital signal, 3’, is a real sequence, { 3’m" O0 < rn < oo ), consisting of
equally spaced values or samples, 3,,, g(mAt), from the signal, g, with a time incre-
ment or sample interval, At. Thus, the independent variable for digital signals such as 3,
is sample time, mat, or simply sample number, m.

The signal, g, is studied in terms of its classical Fourier transform, G, as a function
of real frequency, to. The digital analog of the Fourier transform consists of the study
of a sequence such as 3, in terms of its Z-transform, which is defined to be the power
series, F, having 3,m as the coefficient of z m. Frequency’s digital analog comes from
evaluation of Z-transforms such as F on the unit circle with the negative of the in
z ei referred to as frequency. If the coefficients in F are used without any actual
evaluation of F(z) or g is used without computation of G, such use is said to be in the
time domain. But if F(z) is used with evaluation for some z of unit modulus or G is
used, such use is said to be in the frequency domain.

Signals are based on even functions in a number of applications and in this paper.
This restricts digital signals to self-inversive cases meaning that F(z) F(z- l) for z #: 0.
Equivalently, 3, is a symmetric sequence meaning that 3,m 3,-m for all m.

A second signal, f, with Fourier transform, F, poses as a filter of the signal, g, if
the convolution integral, g, f, of g and f is considered. Of course, the Fourier
transform of g, f is the product of the Fourier transforms, G of g and F of f. The
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Mathematics Department, Texas Tech University, Lubbock, Texas 79409.

*Mathematics Department, Chinese University of Hong Kong, Hong Kong.
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discrete analogy consists of the product of Z-transforms, I’ and , where the latter
refers to the power series with the sample, Om=f(mAt), taken from the filter, f, as the
coefficient of z m.

Reduction of certain frequencies is a fundamental aim in application of a filter, f,
to a function, g. This can involve definition of f by the requirement that F(0) be a
constant, c, for I01 < 00 but zero otherwise. If so, c can be chosen so that

(1.1) f( ) sinc oot,

where

a sinx(1.2) sincx

These equations illustrate definition of a real signal from specification of its Fourier
transform. Similarly, digital signals are often defined by specification of Z-transforms.

The Fourier transform, F, of the f in (1.1) is referred to as a frequency window
since it has compact support in frequency. Application of such a window to a signal, g,
is known as frequency windowing. This paper concerns discrete time windowing. This
consists of scaled truncation of an infinite sequence such as 3’ to obtain a finite
sequence of the form { Cm/m: L < rn < L } wherein the finite sequence, { c L < rn <
L ), is referred to as a time window.

Suppose a given digital signal, { bk" oo < k < oo }, is such that bk is understood to
correspond to the time, kNht, with the sample interval, NAt, where N is a natural
number such that N> 1. If this digital signal is to be compared with digital signals
based on the smaller sample interval, At, the given digital signal must be interpolated
to the smaller sample interval, At. For example, insertion of N- 1 zeros between every
b, and bk+ followed by multiplication of the Z-transform of the result by the
interpolating series,

leads to

(1.3b) A(z) =a E anzn E bjzv Pv(Z)

Since the coefficient of zv, akv, in A comes from products of bj. and sinc(mr/N)
such that kN=jN+ m, it follows that m=0 (modN), sinc(mr/N)=O for nonzero m,
and aN bk. Thus, A is an interpolation of the given B.

A major purpose of this paper is to study possible alternatives to the interpolation
used in (1.3a) in terms of truncation of the interpolating series in (1.3b). We consider
the interpolating polynomial,

(1.4) PN,L(z)
A ( L-i mr)z L-1 1+ E (zm+z-m) sine--if-

m=l

where N> 1.
Note that PN,L is a polynomial of degree 2L-2 except that it has degree 2L-3

and PS.L(0) 0 when L 1 (modN). In any case, its real coefficients imply conjugates
of nonzero roots to be roots, and symmetry of coefficients implies reciprocals of

(1.3a) P;v(z)
A oO

--m) mr
1+ (z +zm sinc---

m=l



736 ROGER W. BARNARD, WAYNE T. FORD AND HSING Y. WANG

nonzero roots to be roots. Since the conjugate and the reciprocal of a root of unit
modulus are equal, and the conjugate of a real root is the root itself, nonzero roots can
occur in pairs. In other cases, a nonzero root, its conjugate, and their reciprocals are all
different and plot as the vertices of a trapezoid in the complex plane.

We show that the zeros of PN, L are all of unit modulus for L =< N. Since

(1.5) Pv,tc+ ( z ) PN,N ( Z )
PN,N+ has a zero at the origin in addition to the zeros of unit modulus of PN,N. We
use examples to show that little can be said of the zeros of PN,L for L > (N+ 1).

Conditions are then developed to define real sequences of the form, ( c 1 <= m <
}, so that the polynomial,

(1.6) P* (z)
A

L-1 gm -m mrr
N,L -"Z 1+ E ( +z )CmSinc----m=l

has no zero of unit modulus. A number of standard discrete time windows are shown to
define real sequences which are special cases of the conditions developed.

2. Zeros of Pv,L for L =<N. Our study of PN,L, for L<=N, is based on the
properties of H,L as defined by

(2.1)

LEMMA 2.1.

HU,L(O ) = (2r/N)PN,L(Z)/ZL-

Hs,r(O)=fO+/N sin[(2L- 1) t/21(2.2)

Proof. Use the identity,

(2.3) fO+r/Neimtdt= eimo
eimr/N-- e-imr/N

O ’/N im

2sin(m/N) 2 imO" m
slnc,m/N N

e

to eliminate the sinc in (1.4). Then, substitute (1.4) in (2.1) and compute

0+/(1 + e" 1 e"(-l
+ e-" 1 e-"(-l ) dt

o-/ / 1 e" 1 e-"

=[o+/(o_
/ ,1 + eU(l-eU(-)-(1-e-"(-l))dtle"

o+/( e"- e"- 1 + e-"(- 1)1+ dt
o-/ 1 e"

+/i(L-)/ -i(L- )/a

0-/ e./_ e_i/
dr,

which implies (2.2).
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LEMMA 2.2. Suppose 0 < 0 r/N < 0 + r/N < 2r. Then,

(2.4) dHN,L(O)
dO sin[(2L-1)t/2]lo+’/u

is zero if and only if

(2.5a) sin(L0) sin[(L- 1)r/N] =sin(Let sin[(L- 1)0].

Proof. Differentiate (2.2) to verify (2.4). Then, set the derivative in (2.4) to zero
and clear fractions to obtain

(2.5b) 0= sin[(2L- 1)(O+r/N)/2] sin[(O-r/N)/2]

sin[(2L- 1)(O-r/N)/2] sin[(O+r/N)/2]

sin(L0) sin[(L- 1) r/Nl

-sin(Lrr/N) sin[(L- 1)01,

involving a trigonometric identity which can most easily be verified by writing the sines
in (2.5b) in terms of complex exponentials and combining terms on both sides to
compare exponents. This completes the proof. D

LEMMA 2.3.

(2.6) HN.,(O) (2/L ) sin( Lr/N )cos( LO )

2[,/U sin( LO )cos( Ls )sin 0 cos( L0 )sin( Ls )sins+
10 cos s cos 0

2[,/N Cos(Ls)cos[(L- 1)0] -cos(L0)cos[(L- 1)s] ds.;o coss-cos0

Proof. Use the variable of integration, s t- 0, to write (2.2) in the form,

(2.7) sin(Lt)cos(t/2) cos(Lt)sin(t/2) dt

f/U sin[L(O+s)] cos[(O+s)/2]
’/N sin[(O+s)/2]

wherein the latter integrand can be written in the form,

(2.8) f_,/N cos[L(O+s)] ds=
1 sin[L(O+s)]

r/N "
r/N

-r/N

L-1 (sin[ L(O + r/N)] -sin[ L(O-w/N)] }

(2/L) sin(Lr/N)cos(LO).
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Change the integration interval from (-r/N,r/N) to (0,rr/N) to write (2.7) in the
form

(2.9) HN, L (0) + (2/L ) sin(Lrr/N)cos( LO )

f,,/N sin[ L(O + s )]cos[(O+ s)/21 sin[L(O-s)lcos[(O-s)/2l ds
sin[(O-s)/2]

f0=/( cos[(O+s)/21 +sin[(O+s)/2]
cos[ ( O- s

( O s )/21 )sin(L0)cos(Ls)
cos[(0+,)/2]+
sin[(O+s)/2] coS[(sin[(0_s)/2]0s )/2] ) cos( LO ) sin( Ls ) ds

=f/N sin(L0)cos(Ls)sin0- cos(LO)sin(Ls)sins
o sin[(O+s)/2]sin[(O-s)/2]

which implies the first equality in (2.6). Observe that

)  os( )cos( z0 )[cos  osO]sin( Lr/N )cos(
0 COS S COS 0

shows that Hu, r(O ) is given by an integral in which the numerator of the integrand has
the form,

cos( Ls )cos( LO ) [cos s cos0 + sin( LO )cos( Ls )sin 0 cos(LO )sin( Ls )sins
cos(Ls)[cos(L0)cos0 + sin(L0)sin0] cos(L0)[cos(Ls)coss + sin(Ls)sins],

which implies the remaining equality in (2.6). 1
THEOREM 2.1. The zeros of PN, L have unit modulus for L <= N.
Proof. Set L to N in (2.5) to observe that

(210) dHN’N’O’=o(
iff sin(N0)=0 iff O=krr/N.dO

Although 0 kr/L is not a zero of the derivative of HN,L, we use it to write the first
equality in (2.6) in the form,

(2.11) HN,L ( kr/L ) ( -1) k+ I(2/L ) sin( Lr/N )

+ 2( 1)k+1f/N sin( Ls )sins
o coss- cos(cr//)

Since the above integrand is positive on (0,or/N) if L <=Nk, the integral in (2.11) is
positive. Thus, HN,L(kr/L) has (L-l) changes of sign as k counts from 1 to L,
PN, t(Z) has (L- 1) zeros in the upper half of the unit circle, (L- 1) conjugate zeros in
the lower half of the unit circle, and the proof is complete. []

3. Zeros ot Pv,L |or L > N. Several examples are given to show that Theorem 2.1
cannot be extended to cover L > N. The most trivial example,

(3.1) PN,N+ ZPN,N
has a zero at the origin in addition to the zeros of unit modulus of PN,N"
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by
We discuss PN, L, for L > N+ 1, in terms of HN, L, given in (2.1), and FN, L, defined

A
(3.2) FN,L(X) HN,L(O )

COS 0

Observe that each zero of FN, L in the interval, (-1,1), implies two zeros of HN,L,

which implies two zeros of unit modulus of PN, L"
The example,

(3.3a)
3

n2,4(0)=’n’+4 E 1 sinmr
m=l

---cos m0
4

r + 4 cos 0 cos 30

r + 8 cos 0 1_6 cos 0,
3

defines

(3.3b) F2,4(x) q- 8x-.l--.x 3, x cos0,

which has three real roots, two in (-1, 0) and one in (1, ), since it is positive at
x -1, x 0, and x 1, but it is negative for x -1/2 and for large positive x. Its two
roots in (- 1, 0) force four roots of unit modulus on the polynomial,

6 (m-- 3)rr(3.3c) P2,4 (z) E z" sinc
2

m=0

1 ( 2 + 6z 2 + 3’n’z + 6z 4 2z 6)3r

Since P2,4(0)(0 and P2,4(1)>0, the two remaining roots consist of one root in (0,1)
and its reciprocal in (1, m).

The second example,

(3.4a)
5 mn26(0)=,n-+4 y 1--sin-cosm0m

m=l

4 4
r + 4cos0- cos 30 + cos 50

r + 4 3 cos 0 cos 0 + -=-cos 0

defines

(3.4b) F2,6(x)=,n’+4(3x-.l.x3+ l65 xf’ ) x=cos0

which has three real roots in (-1, 0) and two complex roots, since it has the same sign
as x as Ixl , a positive maximum at -Vc-/2, a negative minimum at -1/2, a
positive maximum at 1/2, and a positive minimum at /2. The three roots of F2,6 in
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(- 1,0) force six roots of unit modulus on the polynomial,

10 (m-- 5)r(3.4c) P2,6 ( z ) E z sinc
2

m=0

15r
3-5z 2 15r 3z10)+15z4+----z -615z 6 5z 8-6

( 2
1 +-i-B(z) z where B(z)=Q(z-)+Q(z)

with

(3.5a)
Since

Q(z) 3z 5z + 15z.

(3.5b) d__Q_Q= 15(z6-61) and dB= 15(z12-1)
dz Z2-61 dz Z6(Z2+ 1)

it follows that xB(x)> 0 for nonzero real x,

inf(IB(x) I’x real} [B(-1)1=26,
sup{ 1 + 2B(x)/(15r)’x < 0} 1- 52/(15rr)< 0,

and P2,6 has no real roots. Thus, its remaining four roots must form the vertices of a
trapezoid in the complex plane.

4. Zeros of P* We seek real sequences of the form, { Cm" 1 < m < o } such thatN,L
polynomials defined by (1.6) have no roots in { z’lzl 1}. The search will be based on
using the same real sequences in defining the polynomials,

L-1

(4 1) Qv,z(z )
a

1 +2 c,,z"sinc-,
m=l

which will then be such that

(4.2) Re Qv, L ( e ,o)] cos( L 1 ) 0 Re P*V,L ( e iO )].
DEFINITION 4.1. R denotes the class of functions which are analytic and of

positive real part on ( z "[z[ < 1).
First, take L to be infinite in (4.1), set %= 1 for all m, and denote the result by

(4.3) w(’)
zx o mr

1 + 2 mslnc----,
m=l

which will be shown below to lie in R. A classical result will then be used to develop
conditions on ( %" 1 =< m < oz } to imply Qv,L R. Another classical result will then be
used to show that the same conditions imply that P*N,L, as given in (1.6), has no zeros of
unit modulus. Alternative criteria for determining whether a given ( c 1 _< m < o } has
the desired properties will then be shown.

LEMMA 4.1. The function, w, maps ( "1’1 < 1 } onto the vertical strip bounded by
(w" Rew=0)tO(w" Rew=N}. Thus, wR.
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Proof. Compute

(4.4a) w(’)=l +
N m -imr/N)l- ( elmer/N-- e

m=l

1 + N--(- ln(1-ei’/N)+ln(1--e-i’/N))
1 + N_ In 1 e-ir/N

left l e /N

Since w is analytic for I1 < 1 and w(0)=l, it suffices to consider w(’) for Izl-1.
Compute

(4.4b) Rew(ei)=a + Re( --tefN in 1-1_eiO+i’/Nei-i’/N )
1 + _N Imln ei(O-r/N)/2( e-i(I’-rr/N)/2-- ei(-r/N)/2 )

ef ei(+r/N)/2( e-i(t+r/N)/2_ ei(t+r/N)/2 )

1 + Nlmln(e-i’/Nsin[(d-ef/N)/2]r sin[ ( + r/U )/2]- --+ef N, O(ef/N, 2ef-ef/N),
[]

)

LEMMA 4.2. Let L be an integer exceeding unity. Let rr. denote the unique positive
root of
(4.5) 2rt+r- 1=0.

Then, 0<rL<l and rL <r+ 1. Also, r> l-(2/L)lnL, and r l as Lo. Adopt the
definitions,

(4.6) f()
A ., a," and sL( )

a -1

S-" "n =0 n =0

If fR, then Re[sL(’)]>0 on (:ll<r.). Moreover, the example using a0=l and
a 2 for n > 0 shows that r cannot be increased in the conclusion.

Proof. [2, p. 523]. []

LEMMA 4.3. Let L > 1, r (0, r) with r defined by (4.5), andf as denoted in (4.6).
Iff R, then

(4.7) Re E amrmzm >0 on { z "lz I<= 1}.
m----0

Proof. Set ’= rz in partial sums of f as denoted in (4.6), and note that Izl 1 if
and only if I’1 _-< r < rL. Then, Lemma 4.1 implies (4.7). []
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LEMMA 4.4. Let ( b 0 <= n < ) such that bo 4: 0, and let f be denoted as in
(4.6). Then,

(4.8) bna. >_0

for allf R if and only if

(4.9) Re -o b’z >= on { "1 1 }.

Proof. [2, pp. 517-518].
LENN 4.5. Lemma 4.4 remains valid with (4.8) replaced by

(4.10) Re baz 0 forIzl<l.

Proof. Clearly, validity of (4.10) for all fR implies validity of (4.8) for all f R.
It remains to show that Lemma 4.4 implies validity of (4.10) for all f R. Fix f with
0 <lfl< 1 and let f R. Then,

satisfies g R. Thus, (4.8) can be written in the form,

(4.12) Re 0 forll,
n=0

wherein setting I’l 1 merely reduces (4.12) to (4.8). Let z ’/1’1 to write (4.12) in the
form,

(4.13) Re 0 E b,a,zn >_0 for [zl=l.
n=0

Since fR implies Re(a0)>=0, (4.10) applies for z=0, which combines with (4.13) to
imply (4.10). rq

THEOREM 4.1. Suppose { b/ 0 <= n < , bo 1 } is a real sequence satisfying (4.9).
Let

(4.14) Cm- rmbm, where 0 <_ r < rL

with rL being the positive root of (4.5). Then P* defined by (1.6), has no zeros inN,L

{z’lzl-1}.
Proof. Lemma 4.1 shows w R. Apply Lemma 4.5 to w to show that f R, where

(4.15) f(’)
A

1 + 2
m=l

Apply Lemma 4.3 to show that

(4.16) 1 + 2 bmr mz sinc7
m=l
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has positive real part on (z’lzl< 1}. Since (4.14) shows (4.16) to be the same as (4.1),
(4.2) implies the desired result. D

Classical tests to determine whether a given finite sequence, (c 0 < rn < L ), can
be used to define a window implying the results in Theorem 4.1 are given below.

THEOREM 4.2. A sequence, ( b 0 <= m < L, bo 1 }, initiates some infinite sequence,
( b 0 <= m < , bo 1), such that

( )1(4.17) Re 1 + E bmZm > for Izl< l
m=l

if and only if

(4.18)

1 b bk_ b
b 1 b b_

bk_ b 1 b

b, b, b 1

>0

for 0 < k < L [6]. Moreover, (4.17) is equivalent to the existence of a probability measure,
xt,, on [0, 2r such that

1 fo2r imO(4.19) bm=- e d(O ), O=<m< .
Proof. [5] for (4.18) and [7] for (4.19). rn
THEOREM 4.3. If the real sequence, (b 0 <=m < L, b0= 1 }, is such that (4.18) is

satisfiedfor 0 < k < L, let

(4.20) Cm bm (1 2 logL
L

define the coefficients in (1.6). Then P* has no zero of unit modulus.N,L

Proof. The inequality above (4.6) shows that (4.20) defines c satisfying the
hypotheses of Theorem 4.1. 3

5. Windows. The generalized Hamming window [4] is a standard parameterized
time window which defines real sequences satisfying the conditions in Theorem 4.2.
This window is defined by

(5.1a)
bm=a+(1-a) cos K_,1 =a+(1-a) cos-f-

K-1 K-1
forK=2J+l and -J=-<m<-

2 2

or

(5.1b)

2r(2m+ 1) r(2m+ 1)bm=a+(1-a)cos 2(K-1) =a+(1-a) cos
2J-1

K K
forK=2Y and -J=--=__<m=<-=-l=J-1,

22
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wherein a ordinarily lies in [1/2,1). The generalized Hamming window is known as the
Hamming window if a 0.54 and as the Hanning window if a is one-half.

The even case, with K= 2J, is discarded here for lack of symmetry. Then, the
generalized Hamming window becomes

b a + 1 a i’m/J i’m/J
:2 (e +e- )

=a+(1-a) cos--- for -J<=m<=J.

THEOREM 5.1. Use b given by (5.2) with J=N- 1 > 0 and 0 < a < 1. Then, ( b "0
<= rn < N- 1, bo 1 } initiates the infinite sequence, ( b 0 <= m < c, bo 1 }, satisfying
(4.17) if b is defined by (5.2) for all m.

Proof. Compute

(5".3) E bmzm=
Ot

-t"
ir/N

q-
m=0

1 z 2 1 ze 1 ze-i"/N

Since (1-z)- maps the unit disc onto { w" Re(w)> 1/2}, and the bracket in (5.3) is a
sum of compositions of (1-z)- and rotations of the unit disc,

(5.4) Re E bmzm >-- Izl< l
m=o 2 2’
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Abstract. Asymptotics for the greatest zeros of symmetric orthogonal polynomials is investigated in
terms of the asymptotic behavior of the recursion coefficients.
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Let da be a positive measure on the real line such that supp(da) is an infinite set
and all the moments of da are finite. In addition, we will also assume that all the odd
moments, of da vanish. The corresponding orthogonal polynomials are denoted by
p,,(da), n=0,1,..., where p,,(da, x)=’t,,(da)x"+ .... The object of this paper is to
investigate the asymptotic behavior of the greatest zero X,,(da) of p,,(da) in terms of
the recursion coefficients a,,(da) in the three-term recurrence formula

xp,, a + P,, + + a ,, p,,_
where a0(da)= 0 and

an(da)=’yn_(da)/’yn(da), n= 1,2,....

We will be concerned with the case when supp(da) is unbounded, and it is well known
that this is equivalent to the unboundedness of the sequence ( X,,(da)}, and the latter is
equivalent to the unboundedness of (a,,(da)}. An example of particular significance is
the case of the Hermite polynomials, which are orthonormal with respect to

dH(x)=exp(-x2)dx.
In this case

(1) a,, ( dHl f/2

and

lim X,, ( dH) n /2 v/

(see e.g. Szeg/3 [20, p. 106 and p. 132]). G. Freud [5] considered

(2) dam(X)=exp(-[x )dx, m>0

and proved

F(m/2)(3) n---oolim X,,(da,,,)n r((m+ 1)/2)
1/m
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for m=4 and m=6. In this same paper Freud conjectured that (3) holds for every
m > 0. Freud’s conjecture was proved by Rahmanov [19] for m > 1. Another conjecture
by Freud [4] states that if da is given by (2) then

(4) lim a,(da,,)n_l/,=l [v F(m/2)]l/m,__, 2 r((m+ 1)/2)

Freud [4] proved (4) for m= 4 and rn 6, whereas for all even integral values of m (4)
was recently proved by Magnus [8]. There is an intimate connection between Xn(da)
and an(da), namely

nk= lan-k ( da) jkJk +(5) X,( da) 2 max Jk real.
A >0 =lJ

This relationship was proved by Freud [5] and it is a slight improvement of a result by
Chebyshev [19, p. 188]. Formula (5) arises from the Rayleigh quotient of the relevant
Jacobi matrix. On the basis of (5) it is an easy exercise [5] to show that (4) implies (3). It
was shown by Lew-Quarles [6] (m=4), Mttd-Nevai [9] (m=6) and
Mt6-Nevai-Zaslavsky [10] (rn even) that

an(dam)n_/m l [v/_ F(m/2) ]l/m -2)=g r((m+ 1)/2) +O(n

and thus one may expect to obtain asymptotics better than (3). In fact, for the Hermite
case it is known that

(6) X, (dH ) n-/2= v- 2-/23-/3iln- /3 + o( n- a/3 ),

where i is the least zero of Airy’s function defined as the unique solution of

z" + xz/3 0

which remains bounded as x m (see e.g. [17, p. 408] and [20, p. 132]), and this may
be used to prove the following result.

THEOtEM. Suppose that all the odd moments of da vanish and the recursion coeffi-
cients a,(da) satisfy

(71 a,(da)=cn[1 +o(n-2/3)],
where c > 0 and 6 > 0 are independent of n. Then

(8) X,( da)n-8= 2c- c3-/3(28 )2/3ixn-2/3 + o(n-2/3 )

where is the smallest zero ofAiry’s function (i 3.3721 ).
Remark. The underlying idea in the proof of (8) is that the problem of estimating

the largest zero Xn(da) of the orthogonal polynomials associated with da is trans-
formed into another problem which is essentially equivalent to estimating Xn(H) and
then (6) is applied. In view of the importance of the asymptotic formula (6) we recall
here the outline of its proof whereas for details we refer the reader to [17] and [20]. The
Hermite polynomials h, satisfy the differential equation

z" + x(2v/2n + l x)z=O,
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where

z(x)=h,,(vl2n+ 1 x)exp(- (v/2n + 1 x)2/2).
This equation is almost a linearly transformed form of Airy’s equation

z" + xz/3 O.

Based on this observation, Sturm’s comparison theorem applied to these two differen-
tial equations yields (6).

Proof of the theorem. In order to simplify notation, we will write X, and a, instead
of X,(da) and a,(da) respectively. First we will estimate X, from above. Let us fix A
such that 0 < A < 1 and choose e e(A, 3) so that 0 < e < 1/2, e < 1/(43A) and

(9) (1-x)n<(1-28Ax)/2, O<x<2e,

holds. For given n we can apply (5) to find j’ =jff(n), k 1, 2,..., n, such that jff > 0
and

Since

1 Enk=lan_kJk’Jk+l

" In-- )2

[2en]

)2
k=[en] k=l

there exists v such that en <_ v <_ [2en and

j*j*+ 1

EZ=(je)2-en-l

Hence

1 a, Y’-k a =v+ n-ak.ai+ln-kJkJk+ E a ;**

2 X. < + max-en-1 =l(j:)2’ =v+l(j:)2

and consequently

1 maxl<<"a"-+max{ max
Eql-lan-JkJ+

max a,_}.(10) en 1 jo k=l Jk

Now we will show that for sufficiently large values of n the inequality

E]]-lan_ kjkj+(11) max a._ max
[nlkn j>o ]lj

holds. If we assume that there ests a sequence n < n 2 < such that (11) is not true
for n n then by (10)

1 maxlkna"-k+ max an_,2 X, n nen-1 [en]kn

[z] denotes the integer part of z.
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and thus by (7)

and this contradicts

lim sup X,,(n,)-< 2c(1 e)< 2c,

lim X,,n-= 2c,
n ot

which was proved by Freud [5, Thm. 7] whenever (7) holds. Having proved (11), we
obtain from (7) and (10) the inequality

vt2nl-l(1-k/n)
(12) 1 X,,n_ <cmax ,-..k=l fi, Jk+l -2/3

" Jk >0 ,g,[2en]i2
+o(n ),

z"k Jk

so that by (9)

1 Y’.[k]l-1(1-28Ak/n)1/2j.j+1-X,n- < cmax + o(n -2/3 )
jk>O S’[2en] 2

k Jk

Introducing the notation N= [n/(28A)], we can rewrite the previous inequality as

1 - , E]]-(N-k)/2jkjk+
-2/3X,n Cv N

max
Et2enli2

+o(n ).
j>o =14

Taking (1) and (5) into consideration, we obtain

and thus (6) yields

Hence

2X,,n- <c - XN(dH)+o(n-2/3),

X,,n- < 2c- c3-1/3ilN-2/3 q- o( n -2/3).

X,,n- < 2c- c3-1/3(23 )2/3iln-2/3A2/3 + o( n- 2/3),
and since 0 < A < 1 is arbitrary we can let A tend to 1 to obtain the upper estimate

(13) Xnn-<2c-c3-1/3(23)2/3iln-2/3+o(n-2/3).
Estimating X, from below can be achieved along lines similar to the previous argu-
ments. We pick A> 1 and choose e=e(A,3) such that O<e<l/2, e<3A, e<l/(43A)
and

)1/2 3(14) (1- 23Ax _< (l-x) 0_< x_< 2e/(aa).
Let N= [n/(23A)]. Then we can apply (12) with da= dH and n N to obtain

V[2eNl-l(1--k/N)l/2jkJk+l -2/31 1/2 1 ,=1 +o(N )gx (e tu- max
Jk>-O Z-’k Jk

Since N= [n/(23A)] and (14) holds, we get

1 -1/2 n-
"-Xu ( dH )U < maxjk>0

=1 (n-k) JkJk+l
[ne/(3Z)l i2
k= dk

+o(N-2/3),
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and therefore by (5) and (7)

n -2/3Xu(dH)U-1/2<--X.+o(n ).

Now the inequality

(15) X,n-n> 2c- c3-1/3 (28)2/3in-/3 + o( n -2/3 )
follows immediately from (6) by letting A 1. In view of (13) and (15) the Theorem has
completely been proved.

There exist several orthogonal polynomial systems whose recursion coefficients
satisfy (7) and thus (8) can be applied to find asymptotics for X,(da).

The associated Pollaczek polynomials are orthogonal with respect to

d (x) Ir(x + v + ix)I 1=F1(1 X + ix,g; 3" + , + ix; 1)I- dx,
where either 2X + 3’ > 0, 3’ > 0 or 2X + 3’ > 1, 3’ > 1 [2], [18]. For these polynomials the
recursion coefficients are given by

and thus

1 n[l+O(n 1)a.(da)=-((n+3’)(n+2t+3’-l)=- -],

(16) X(da)/n 1 6-1/3iln-2/3 + O( n- 2/3 ).
For the case 3’ 0, that is for

(17) a (x)=lF(X+ix)l dx,
Freud [5] gave an estimate for X,(da) that is weaker than (16). The measure associated
with the symmetric Meixner polynomials [2] is closely related to (16).

The Associated Hermite Polynomials are orthogonal with respect to

-2

d(x)=exp(-x2) 3’ tV-lexp(-2ixt-t2)dt dx, -<x<,

where 3’ > 0 [1], and their recursion coefficients satisfy

a,( dot) 2

so that

(18) Xn(dt)n-1/2= v/-- 2-1/-3-1/3ian-/3 + o( n-/3 ).
When 3’ 0 these polynomials are the Hermite polynomials.

The Hermite-Sonine Polynomials are orthogonal with respect to

(19) da(x)=lxlXexp(-xa)dx, -oe<x<m,

X > 1 [2], [20] and in this case

[n+O
(20) a"(da)= V 2

where 02m=O, 02,,+1 =X. Thus X,(da) again satisfies (18).
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The Freudpolynomials are orthogonal with respect to

mda(x)=lxlXexp( [x )dx,
where X > -1 and rn > 0.

CONJECTURE.

(21) 1[ r(m/2) ]l/mnX/m[l+O(n-l)]a,,(da) - V r((m+l)/2)

In view of (19) and (20) this holds for m= 2. For m=4, >- 1 this was proved by
Lew-Quarles [6]. As mentioned before (21) also holds for rn 6, X 0 [9] and rn even
integer, X= 0 [10]. Thus

I’(m/2) ]l/mgn(dt)Yl-1/m-- r((m+l)/2) (1-6-1/3m-2/3iln-2/3+ o(n-2/3))

for m 2, 4, > -1 and m even, 0.
Finally, we point out that polynomials that are orthogonal on a half infinite line

such as the Laguerre polynomials may be transformed by a quadratic change of the
variable into symmetric orthogonal polynomials on the real line, and thus our theorem
can be used to determine the size of their greatest zeros as well. Further recent results
on the behavior of zeros of orthogonal polynomials are given in [3], [7], [11]-[16], [19]
and [21].

One of the referees of this paper suggested finding explicit expression for the error
term in (8) or at least an expression for an appropriate bound of the error term in (8).
In [17, p. 408] F. W. J. Olver does provide such error analysis for the zeros of the
Hermite polynomials. Naturally such a result would help to assess the computational
feasibility of the approximation. At this time, however, we are unable to produce
nontrivial error bounds in (8). Nonetheless we expect to return to this problem in a
subsequent paper. We thank all the referees for their valuable remarks.
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ORTHOGONAL POLYNOMIALS, MEASURES AND RECURRENCE
RELATIONS*
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Abstract. Properties of measures associated with orthogonal polynomials are investigated in terms of the
coefficients of the three term recurrence formula satisfied by the orthogonal polynomials.
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1. Introduction. Let da be a positive measure on the real line with finite moments
and infinite support, and let (Pn}n%0, Pn(X)=’&x’+’" ", )’,>0, be the system of
orthonormal polynomials associated with da. The polynomials Pn satisfy the recurrence
formula

(1) xp,,=an+lPn+ + bnPn+ anPn_l, n=0, 1,. .,
where P-l=0, p0=70, a0=0 an=’Yn_l/’Yn and

x , (xle (xl.

By J. Favard’s theorem [10, p. 60] every system of polynomials generated by (1) where
a.> 0 (n 1, 2,... and b N is in fact a system of orthonormal polynomials. The
corresponding measure d is uniquely determined if and only if the associated moment
problem has a unique solution, and the latter holds if, say, both sequences { a } and
{ b } are bounded. Recently there has been an upsurge in research activity concerning
the determination of the relationship between orthogonal polynomials, recurrence rela-
tions and measures. Several such papers are listed in the references. In particular, R.
Askey and M. Ismail [1, p. 102] asked whether it is true that if

1 c
(2) an=-+-+O(n-2) and bn=0n

where c > 0 then the absolutely continuous portion of the corresponding measure dec is
in SzegYs class which means that loga’(cost) L1. One of the main goals of this paper
is to show that the Askey-Isrnail problem can essentially be solved. More precisely, it
follows from Theorem 3 below that if (2) is replaced by

1 c d -2an=-+-+n-+(n ) and b,=0

where c > 0 and d then log a’(cost) L1. While we suspect that condition (2) fails to
imply the integrability of log a’(cost), we do not have evidence supporting our claim at
the present time. Let us point out that Theorem 2 in fact yields a’(x)>= constv/1-x
Ixl< 1, if only a $1/2 and b=0. The latter is quite a surprise if compared with J.
Shohat’s result [26, p. 50] claiming that if supp(da)=[-1,1] then loga’(cost)L if
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and only if

k=l k=l

and

k=l

The natural way to connect the recursion coefficients with the measure is via
Stieltjes transforms (see e.g. [1]). However, it seems that this approach is feasible only
when the recursion coefficients are given in terms of explicitly defined expressions such
as rational functions of n. The general cases can better be handled by techniques
introduced on one side in [5]-[9] and on the other side in [15], [16], [18], [19] and [20].

If p, is generated by (1), then we define S, by

2 2]p(x)+a [bk_bg ]p, l(x)pk(x)}"(3) Sn(x)= {[ak+l ak k -1
k=0

All of our results are based on the formula

(4) Sn(x)=a22n+1Pn (X)-- x-bnpn(x)Pn+l(x)+p+l(X)]an+l
proved in [8]. (Caution: the notation in [8] is somewhat different!) The second of us
believes that the significance of (4) cannot be overestimated, and it will play a funda-
mental role in future research on general orthogonal polynomials (see e.g. [22]). The
other ingredient of this paper comes from [16] where the necessary spectral analysis was
accomplished.

In order not to interrupt our forthcoming discussion, we first prove the following
technical proposition. In what follows a+ denotes the positive part of a and log + and
log- are also defined in the usual way.

LEMMA 1. Let ( a } and ( b ) satisfy an+ >= 1/2(1 + [bn[) for n > N and let Pn and S
be defined by (1) and (3) respectively. Then

(6)
(7)

(8)

(1 -x) 4Sn(x ) Ixl<- 1,

(1 -x2)p(x) <= 4Sn(x ), Ixl=<l,
max p,2 (x)<4(n+2)maxlS,(x)l+
Ixl__<l Ixl__<l

maxp(x) =< 4(n + 1):z max ISn(x)l,
Ixl__<l Ixl=<l

 11++ Ixn+.-an+ an+l +1

l_x2

and

(10) maxSn+l(x)maxSn(x).exp{4(n + 2)2([an+22 a+2 11+-an+llbn+l-b.I) }
ixl=<l ixl__<

holdfor n > N.
Proof. By (4)

n+l Pn(X) Pn+l(x) + 4an+l (x-bn)2
Pn+l2an+l



754 JOANNE DOMBROWSKI AND PAUL NEVAI

and

2[ I(X)_Sn(x)=an+l Pn+
x-b, )]22an+l

pn(x 1[ an+ (x b.) p(x)+-4 - 2]

If 2a,+l>_l+lb, then 4an+l-(X-bn)2_>_l-x 2 for Ixl<_l. Thus (5) and (6) are
satisfied. Inequalities (7) and (8) follow from (5), (6) and Bernstein’s theorem [17, p.
139]. Writing

[2 2]2 [b _bn]pnPnan+l-an an+2-an+l Pn+l+an+l +1 +

and applying (5)-(8), inequalities (9) and (10) follow immediately.
THEOREM 1. If lim, 1/2, lim, b, 0 and

(11) E {lan+l--anl+ [bn+l-b,I} < oo
n=O

then the orthogonal polynomials Pn generated by (1) and the corresponding measure da
satisfy

(12)
o I_x2

Z, i -l<x<l,
k=O

and the convergence is uniform on every closed subinterval of (- 1,1).
Proof. Theorem I follows immediately from (3), (4) and

x b 2lim p(x)- ai Pn(X)Pn+l(X)+Pn+l(X )
21/i-x 2

which holds uniformly on every closed subinterval of (- 1,1) if (11) is satisfied [16].
THEOREM 2. Let (a )n=l and (b)%o satisfy an+ >= 1/2(1 + Ibl) for n > N,

lim an 1/2, lim bn 0 and., .2{[an+x-a.]++ [b.+l-b.I } < oo.
n-----1

Then there exist a constant K> 0 such that for the orthogonal polynomials Pn defined by
(1) andfor the associated measure da we have

(13) /a-xZlpn(x)[<=K, -1=<x=<1,

n 1, 2,. -, and

(14) a’(x)>=K-lvll-x 2 -1 <x<a

Proof. Repeated application of (10) shows that the sequence (S ) is uniformly
bounded in [-1,1] and then (13) follows from (6) whereas (14) follows from Theorem
1, (3) and (4).

Remark 1. The sharpness of Theorem 2 may best be illustrated by the ultraspheri-
cal polynomials which are orthogonal with respect to da(x)=(1-x2)dx in [-1,1].
For these polynomials

1 1-4e2 1 constan=+ ul----2---n+ +O(n 4) and b,=0
n
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SO that the conditions of Theorem 2 are satisfied if and only if I1_ 1/2 whereas (14)
holds if and only if e =< -.

THEOREM 3. Let (an}= and (bn)n= o satisfy a/>-1/2(l+lbnl) for n>N,
lim, a 1/2, lim b 0 and

Y’ n([a,+x-a,]++lb,+-b] } <.
k=l

Let da be the measure associated with the orthogonalpolynomials defined by (1). Then

(15 ) da ( x ) w ( x ) dx + mass points outside ( 1,1)
where w is posit&e and continuous in (- 1,1), w vanishes outside [- 1,1] and w belongs to
SzegO s class, that is

(16) Ilog w(cos ) dt <

Remark 2. If Y’.n (la,,- 1/21 + Ibl} < then the number of mass points in do is finite
and all such mass points are located outside [- 1,1] (see [4] and [11]).

Proof of Theorem 3. By the conditions E(lan+ an[ + [bn+ bn[) < holds as well
so that by the Theorem in [16] and by Blumenthal’s result (see e.g. [18, Thm. 3.3.7, p.
23]) formula (15) holds with w(>0) C(-1,1) and supp(w)=[-1,1]. Therefore only
(16) needs to be proved. Let 8, be defined by

3n 4([ 2 2 1+ ,+ 1-b[)an+2--an+ +a lb+
Then by the assumptions made

(17) Y’n3<,

and applying (9) and (10) with n > N, we obtain

_(,,+:}2 log + S+:(x)
dx

fol-n
-2 log+ Sn(X)

dx q_nfll-n-2<= /1- x

+log+{ max IS. l(X) I)f1-(n+ 1)-2
ixl__<

+
dl_n_

/’J1-n-2 log+ an(s)
dx

0

(l--x)3/2

dx

2 log+(maxS,,+l(X))+n + 1 Ixl_

fol--n
-: log+ Sn(x )

-<
/1 -x

dx+2(n-1)3,+ 2 log+( max S,(x))n Ixl_l

+2(n-1)3+2( 1 ) 1 ( }lg+ maxSn+(x )
Ixl__<l
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Therefore

ea-(n+X)-2 log+ Sn+l(X)dx<_/’1-n-2 lg+ Sn(x)
dx +18n8

+ log + maxSn(X) n+l
lg+ maxS,,+t(x)

n ixl__<l ixl__<l

from which

f01-(n+1)2 log+ Sn+I(X)
dx s f01-(N+1)2 log+ S+I(X)dx+18 E k3/i --- v/1-x k=N+l

+ N+I lg+ maxS+(x
121<1

follows. Now letting n m and applying (3), (17), Theorem 1 and Fatou’s lemma, we
see that

’/
log- w(cos t) dt >

By similar arguments

f log- w(cos ) dt >
/2

holds as well. By Jensen’s inequality

logw(cos ) dt <

and thus Theorem 3 has completely been proved.

2. Applications.
A. Ya. L. Geronimus [12]-[14] raised and solved the following problem. Let rn >= 0

be a fixed integer and let (bk } ’--0 and { ak }__1 (ak > 0) be given sequences such that
bg 0 for k >= m and ak 1/2 for k > m. Let { p }o__0 be the orthogonal polynomial
system generated by (1) and let da be the corresponding measure. The problem is to
find da. We will show that on the basis of our results da can easily be found. It follows
from (3) and (4) that

(18) 4Sn=p- 2xp,,p,,+l +p2,,+ 1, n >= m,
and

(19) S=Sm, n>=m.
Thus by Theorem I and 3 and by Remark 2,

(20) d (x) 2 vq x’-
7 p2m(X)--2XPm(X)Pm+l(X)+p2m+l(X)

X(X) q-/=IE Jl (X-X,)
where X is the characteristic function of [- 1,1] and xz’s are the mass points with mass

Jz > 0. It is well known [27] that for an arbitary system of orthogonal polynomials if the
associated moment problem has a unique solution then x is a mass point for da with
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mass J if and only if Y.p2(x) < o and then

(21)

1= p2(x) lim a,+l[P’k+l(X)p,(x)--pk+l(x)P’k(X)]J
k=0 k+o

lim a+[p+(x)/p(x)l’p(x)=- lim a+[p(x)/p+l(X)]’ 2

k--+ m

Therefore by (18) and (19) the mass points x are zeros of S,, and hence M=< 2m + 2.
However not all zeros of S,, are in fact mass points. Applying the recurrence formula
(1) and (3)-(4) we obtain

(22) 4S 2=P,,+ -P,,P,,+ 2, n >= m
so that

(23) Pn+l Pm+l n>=m, ifS,,=0.
P,, Pm

On the other hand, by (18)

(24) Pm+l =x_ V/x 2-1 if Sm=O
Pm

(here v/x 2- 1 > 0 if x > 1 and V/x 2-1 < 0 if x < 1). Thus by (21) x is a mass point if
and only if Sm(x)=O and [Pm+l(X)l<lPm(X)[. By (22)

2 Pn+2 P,,
4Sin’= ( Pn/Pn+ 1) Pn+X ( Pn+ 2/Pn+ 1)’p2,,+1, n >= m,P,, + Pn +

if S,, 0 so that by (21), (23) and (24)

2S(xt) =J-X(x,- X-I )-Jl-l(x,+ /x 1)= -2Jl-1/x-1.
Thus the mass points xt in (20) are those zeros of Pm--2XPmPm+I +pm2+l for which

Pm / ( X/)1 < Pm(XZ)I and the corresponding mass Jz is given by

S;(x,) Sm’(X,)

B. The previous analysis can be applied to the case when

1 [1/nlim a,, -- 0 and lim ]b,, [1/n O.

Without going into details we point out that in this case one can prove

limsup p.(x)]l/n< O0

uniformly on every compact set in the complex plane, and thus

S(x)= lim S,,(x)
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is an entire function. The corresponding measure da can be written as

1 V/1-x___a x2- i
da(x)=2-- S(x) X(x)dx+ E -;i-t3 13(x-x’)xtZ

where X is the characteristic function of [-1,1] and Z is the collection of those zeros
x of S for which lim,lp,+(xt)/p(xt)[< 1. Of course, Z is a finite set.

C. The Pollaczek polynomials satisfy (1) with

a (n+X+a+c)(n+X+a+c_l),
n=l,2,--.,

and

b
n=0,1,2,.bn n+X+a+c

where the parameters a, b, c and are chosen so that b R and an>0. Pollaczek [23]
(see also [3]) investigated the case when either a > Ibl, 2 + c > 0, c_>_ 0 or a >
2,+c>__ 1, c>-1 and determined that da is absolutely continuous. Hence da is
completely described by (16). The explicit expression for a’ [3, p. 185] shows that a’ is
not SzegiS’s class in this case. Since

1 a const
an= 2 2n

l- n2., + O(n )

holds, we see that the conditions of Theorem 2 are satisfied provided that a < 0, b 0,
and consequently

a’(x)>K-l/1-x2= -1 =<x<l,=

with a suitably chosen positive constant K if a < 0 and b 0. In particular, log a’(cost)
L in this case. Examples of Pollaczek polynomials with not necessarily absolutely

continuous measures have been investigated in [1], [2], [24], and [29].
D. Let { a } n--l satisfy 0 < an=< 1/2, limn-,o a, 1/2 and

E [a+x-akl < oo,
k=l

and let b,=0 for every n. Let det be the measure associated with the orthogonal
polynomials p, which are defined by (1). It is well known that in this case supp(da)=
[- 1] (see e.g. [18, Thm. 3.3.7, p. 23]). Let us show that + 1 are not mass points of da.
If x is a mass point, then by (21) limn_.oolp,(x)l=0 so that there exists n o such that
Ip,,(x)l<=p,,o(X) for every n and Ip.(x)l<lP,,o(X)l for n <n 0. By the recurrence formula

IXP,o(X)i<=ano+ [ P.o+ a(X) + ano[ P,0-(x)I < pno(X)l

and hence Ixl< 1, that is x#: + 1. It has been shown in both [8] and [16] that da is
absolutely continuous in (-1,1). Therefore da is absolutely continuous on the whole
real line and by Theorem 1

1 Vq-x2

da(x)- 2rr y’.kO=o[aZk+l--al p(x) X(x)dx
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where X is the characteristic function of [-1,1]. By the previously quoted theorem of
Shohat [26, p. 50] loga’(cost)L if and only if (a,- 1/2)< c.

E. If there exists N such that a > an+ for n > N and lim a 1/2 and if b 0

for every n, then the conditions of Theorem 2 are satisfied. Hence a’(x)>= K-iV x 2

Ixl =< 1, holds in this case.
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PROBLEMS WITH ARBITRARILY MANY SOLUTIONS*
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Abstract. We derive multiplicity results for autonomous superlinear ODE’s of the form

-u"(x)=g(u(x))+t, x(O,r), tR,

(o)=()=o,

with g’(- oz)< + oz and g’(+
We show that for any given n N there exist at least n solutions of the problem if is sufficiently

negative. The proof is carried out by using variational methods jointly with a rearrangement argument.

Key words, superlinear Sturm-Liouville problem, multiple solutions, variational problem, mountain pass
solution, Steiner symmetrization
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1. Introduction. We consider here the solvability of ordinary differential equations
with superlinear nonlinearities of the following type:

(1) -u"(x)=g(u(x))+t, x(O,r), u(0) u(r) =0,

with

lim
g(s) + and lim sup ,g (s.) < 1 1,

s+c S s- S

i.e., the nonlinearity crosses all eigenvalues ) , k 2, k N, of the eigenvalue problem

-o"(z) =xo(z),

It is easy to see that (1) admits no solution if is bigger than some 0. On the other
hand the results of E. N. Dancer [4] (see also [1], [5], [6]) ensure in particular that (1)
admits at least two solutions for smaller than 0. We recall also the results of C.
Scovel [12] for the equation

(3) -u"=6u2+t in (0,r), u(0)=u(r)=0.

He has shown that for all kN there exist values t,< < such that for < t,
there exist k solutions of (3).

The aim of this paper is to prove such a result for equation (1) under general
assumptions on g. The key idea to arrive at this result is the following: it is easy to see
that (1) has a negative solution which is a local minimum of the associated functional.
A second solution can then be found by the mountain pass theorem. We shall show
that this mountain pass solution must change sign if is large enough negative. A
"rearrangement" of the minimizing paths then shows that the mountain pass solution
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has in fact precisely one sign change. Finally, doing the same on the intervals (0, r/n),
we then show that these solutions can be joined to obtain solutions having 2n-1
nodes.

We point out that it is essential for our method that equation (1) is autonomous
(including that is a constant). The nonautonomous equation as well as, of course, the
corresponding partial differential equation, remain therefore open problems.

2. Statement of the result. We consider (1) under the following assumptions on g:
( gl )g CI(R) with

limsupg’(s)--:g-< 1, lim g’(s)-- + o,
S-* --00 S-* +Cx3

(g2)g CI(R) with

limsup g’(s) < + oe, lim g,’(s)= +
S-’-* --0 S"-*

Of course (gl) is a stronger assumption than (g2) and it is the situation in which we are
mainly interested. We shall assume the condition (gl) throughout the paper until the
proof of Theorem 1.

Our goal is to prove the following theorem:
THEOREM 1. Assume ( g2) holds. Then for any k N there exists k R such that for

< tk problem (1) has at least k distinct solutions.
Remark 2. In Theorem 1, when (gl) holds, we actually prove that there exist a

negative solution, and solutions with 1, 3, 5,...,2k-1 nodes. We shall also discuss the
possible existence of positive solutions of (1).

We remark that if (gl) holds, then there exists a constant o such that for > o (1)
has no solution. This follows from the following calculation:

Since g(s)-g-.s>_ -c, Vs, we have for t>c and any solution u of (1)

-u"-g-u=(g-g-)(u)+t>O

and hence u > 0 by the maximum principle, since g-< 1. Multiplying this equation by
sin x, we get

(1 g-)( u, sinx) (( g- g-)(u), sinx) + (t, sinx )

>= ((1 g-) u, sinx)- (d, sinx) + (t, sinx)

which implies d> t. Hence there exists no solution for > d.
On the other hand, if (gl) does not hold, i.e. if g-< 3,1, then the above estimate is

not valid, and one then expects solutions for arbitrarily large t. In fact, for the
following closely related equation

-u"--Xu+(u+) p+tsinx, x(O,rr),

where p > 1, one has the following result (see B. Ruf and P. N. Srikanth [11]): If
(,,,+ ), then there exist at least 2k + 2 solutions for any t>0.
It is to be expected that the same result holds for the inhomogeneity instead of

sin x and for more general nonlinearities g with g- (, 5, k + 1), lim, + ( g(s )/s)
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We shall use variational methods on the space E=H0X(0,rr). We work with the
functional I: ER

I(u):= 1/2 lu’l=- a(u)-t u,

where G(s) f g(t) dt is the primitive of g.
It is clear that I C2(E, R), and we have
LEMMA 3. The functional I satisfies the Palais-Smale condition, i.e. any sequence

(u,,)cE with l(u,) bounded and I’(u,),+O in E’, contains a convergent subse-
quence.

Proof. Since g- < 1 we can find a constant a (g-, 1) and a constant M such that
g(s)>as-M, Vs<0. Let (un) be a sequence satisfying the hypothesis, and set rn=

u,;’ g(u n) t, which converges to zero in H- 1. Multiplying rn by u- := max( u, 0}
we get

from which we get

and hence

u’n’u- (g(Un)+t)u- =< cllu;ll-

lu’ l=-ft (au]-Mu.)
u,, <0]

=< q.llu-II

ilu;_ll
: -- all u; =< qll u; I1.

Therefore Ilu,lle<_ C, VnN, and hence also Vllu-IIc0__< C, VnN. This means that
the u,, are bounded from below, and hence also g(u,) is bounded from below.
Therefore there exists a b > 1 (by (gl)) such that

g(u)>=bu,-M VnN.

Now we multiply r, by sinx and get the estimate

fo’ sinx( g( u,,)-u,,) dx < C.

Using the estimate for g we then obtain

’ sinx(b-1)u,,dx C,

o’Sinx
C VnN,

and then also fo sin x. g(u.)_< C, Vn N. Since g(un) is bounded below, we finally get

fo sinxlg(u.)l<=C VnN.

Let G be the Green’s operator of -/ with the associated Green’s function K. Then

u.=G(g(u.l+t+r.)= fo K(x,Yl(g(u,,(yl)+t+r.(yl)dY.
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It is easily seen that K(x,y) satisfies the estimate

O<K(x,y)<=C.siny.

Using this in the above equation, we obtain

s;u,,<__ C.sinylg(u,,(y))l+ K(x,y)(t+r,,(y))dy<=const VnN.

From this one concludes by standard arguments that (u,) contains a convergent
subsequence. U

We point out that we have actually proved that if I’(un)O in E’, then (un) is
precompact. Therefore we have in particular proved that the set of the solutions of (1),
for a given t, is compact. This shows that Theorem 1 is in some sense optimal when
(gl) holds; in fact one cannot generically expect to get infinitely many solutions of (1)
for the same value of t.

3. A priori estimates. We first recall how a negative solution of (1), which is a
local minimum of I, can be found.

In fact, choosing < -g(0), we see that zero is a supersolution of (1). By J. Kazdan
and F. W. Warner [7] we can fix a negative subsolution u. Using arguments as in H.
Hofer [6] and D. G. De Figueiredo and S. Solimini [5] one then proves the existence of
a local minimum of I in [u, 0]. We remark that from the subsequent arguments it will
follow that any negative solution is a local minimum.

LEMMA 4. For k, e R + given, there exists T(k, e) R such that if < T(k, e), then
u < k on e, r e] for any negative solution u of (1).

Proof. Fix k, e R +. Now choose < 0 such that

1
sup g(s) < t, (4k/-t)l/2<e.

[-k,0l

We set

x, := inf{x[O, rrl lu(x)__<-k or u(x)= min u(s)}.s[0,r]

We estimate u on [0,Xl]. Note that in x we have Ut(Xl)O and U(Xl) -k, and that
> -t/2 in [0, Xl]. By the Taylor formula we therefore have

2 )2U(X)>’U(X1)-4r-Ut(X1)(X--X1)--(X--Xl) >=-k--(x-x
Setting x=0, we get 0>= -k-(t/4)x, and hence X <=(4k/-t)1/2

Doing the same arguments on the other end of the interval, we find that if
x2=sup{x[O,r]lu(x)<= -k or u(x)=minto.lU }, then x2>=r-e.

Finally we note that u_<-k in the interval (Xl,X2), because otherwise we get a
local maximum . with u()>__ k which would imply ii(.) > 1/2t > 0: a contradiction.

PROr’OSITION 5. Assume gl). Then there exists a constant r R such that for < r

equation (1) has exactly one negative solution.

Proof. We have only to show that for r sufficiently negative there is at most one
negative solution. Let us assume that there are two, say u and u 2. Subtracting the two
equations, we have

(4) ( u 2 igl)" g(b/2) g (Ul).
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Set

g(U2(X))--g(Ul(X))
a(x)’= u2(x)-u(x)

if t/2 (X) :i/= t/l(X),

if b/2(X) Ul(X )

Now we choose kN such that s< -k implies I(g’(s))+-(g_)+l<6, for some 8>0.
By Lemma 3 we now have for < T(k, e)

fo [(a(x))+-(g-)+l<t$r+2e.m,

where m sup R- g’(S )I.
We rewrite (4) as follows:

But the eigenvalues bti of

(6)

U 2 Ul)" a(x)( u:- b/i).

u"=ta(x)u
are all strictly bigger than one, if we choose t$> 0 and e > 0 sufficiently small; this
follows by A. Manes and A. M. Micheletti [9], since (a(x))+(g_)+< 1 in Ll(0,r),
and (a(x))+>=a(x). This shows that u_=ut.

We now turn to the discussion of the existence of positive solutions. We shall show
in the next proposition that (1) has no strictly positive solution for large negative.
This result is based on and generalizes a recent nonexistence result of M. Ramaswamy
[10]. On the other hand, we shall show that there is a negatively diverging sequence of
values of t for which (1) has positive solutions which have (degenerate) zeros in (O,r).
Finally, we remark that the autonomous character of the equation (1) is essential for
the nonexistence result; in fact, we will construct a superlinearity for which (1), with
replaced by sin x, has a strictly positive solution for arbitrarily large negative t.

PROPOSITION 6. There exists t* R such that (1) has no strictly positive solution for
t<t*.

Proof. Let be given, and let u be a strictly positive solution of (1). We set

=inf(sR+l-g(s)=t}, a=inf(x(O,)lu(x)=fl}.
Note that u is symmetric around /2; this follows since by the unique solvability

of the Cauchy problem every stationary point x of u is a symmetry point. Therefore
the only stationary point of u is /2, and u is strictly increasing in (0, /2).

We want to give upper estimates of a and /2- a.
First, we consider u-u(a) as a solution on (a,- a) of the equation

(7) -"= -u"=g(u)+t= g(u)-g(u(a)) , o(a)=o(-a)=O.

Since o0 in (a,-a) it follows that the first eigenvalue of the coefficient
(g(u(x))-g(u(a)))/(u(x)-u(a)), which we denote by #l((g(u)-g(u(a)))/(u- u(a)))
(see e.g. [9]), is equal to one. But we have for all x (a, -a)
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for some >/z(a). Hence, if we let g(u(a))= ---) + oc, we get u(a) --) + oc and hence
---) + o which implies ]g’()] oc by assumption. Therefore

(g(u)-g(u()))/(u-u())- +
uniformly for t---)- 0. This implies that the length of [a,r-a] tends to zero as
--) 0 (see [9]).

To obtain an estimate for a, we consider w(x)=(x/a)u(a)-u(x) on [0,a] as a
solution of the equation

(8) -"=u"=-t-g(u) g(u())-g(u)
(/)u()-u

(0)=()=0.

W,

Since u" g(u) >= 0, because u </3, u is convex in [0, a] and therefore w > 0, hence

ll(g(u(a))-g(u(x)))=l on [0,a].(x/a)u(a)-u(x)
But, since g(u(a))> g(u(x)) by the choice of a,

g(u(a))-g(u(x))
>
g(u(a))-g(u(x))

(l,)u(,)-u(x) u(,)-u(x)
Fixing (:= inf(sR+ Ig(s)>=-1/2t) we get for u(x)<(:

a g(())g(u(,)) g(u())
u(,)-u(x) =-i u(,)

On the other hand, for u(x)>__ 8 we have

g(u(,))-g(())
u(,)-u(x)

for some _> u(x)> . Hence we get in any case that

g(u())-g(u)
uniformly for ,

since - implies g( u( a))/u( a) + and i + . Therefore we conclude that
also a0 as t .

We have shown that for - a0 and a--,r/2. This contradiction shows
that there cannot exist a positive solution for large negative.

Remark 7. The above proof works on any interval. If on the other hand a certain
interval is given, the condition lims + g’(x) + could be relaxed to a suitable
finite lower estimate of this limit. Our proof in fact shows that with the assumption
g’(s)s_ +o + the length of an interval on which there exists a strictly positive
solution tends to zero for ---)

This remark leads to the observation that Proposition 5 is not true if we omit the
requirement that u is a strictly positive solution. In fact one has:

PROPOSITION 8. There exists a sequence t,(,-o) oc such that (1) has a positive
solution (with interior degenerate zeros) for t,.

Proof. For given consider the Cauchy problem

(9) u"= g(u)+ t, u(0) u’(0)=0.
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Multiplying this equation by u’ and integrating, we get

(10) -lu’lZ=G(u)+tu,
where G(s) f) g(t) dt denotes the primitive of g. Also, since g is asymptotically
monotone, we have the relation

(11) G(s)<g(s).s fors large.

Let now R + be the smallest value such that G() t. Then, assuming < g(0),
the solution of (9) starts monotonically increasing in zero, and by (10) it grows
monotonically until it either reaches the value , or it tends monotonically to some
limit. However, this last case is not possible, since this limit has to be (since u’(t)
must tend to zero for -) and then

for large negative, because this implies large, and hence g()> G()/= -t. Such
an estimate for u" is clearly impossible.

Therefore u must reach in some finite point, say x(t)/2, and since this value is
then again a symmetry point, we have that u is a positive solution on [0,x(t)].

Finally, since u is a strictly positive solution on [0,x(t)], the Remark 7 implies that
x(t)--,O for t--+ -oo, and one sees easily that x(t) depends continuously on t. There-
fore there exists a sequence tn- such that x( t,,)= r/n, for n large enough, and
hence we can join the solutions on [0, r/n] to obtain positive solutions on [0, rr] having
degenerate zeros in the points jrr/n, 0 <=j <= n. []

Remark 9. The autonomous character of (1) is essential for Proposition 8. In fact,
the following construction leads to a convex superlinearity f satisfying (gl) and such
that for

(12) -u"(x)=f(u(x))+tsinx, u(0) u(rr) =0

the proposition does not hold.
We construct a sequence of asymptotically positively homogeneous problems; we

choose a strictly convex function f0 with X1 <f0’( + )<X2. By A. C. Lazer and P. J.
McKenna [8] and S. Solimini [13, {}2] there exists o <0 such that the corresponding
problem (12o) has a strictly positive solution u 0. Setting mo-maXxtO,=lUo(X), we
choose a strictly convex function fl with

f,(s) { =f(s 1’ s<m’
strictly convex with ) 2 <f0t( + 00) < 3"

For the problem (121) there then exists < -1 such that there exists a strictly positive
solution ul, with m maxx i0,,lul(x ). Repeating this argument, we can find a strictly
convex function f,, lnN, such that (12,,) has a strictly positive solution u, for
t,,<_ -n, and u,, is also a solution for (12,,,), for m> n, and for the problem (12) with

f-- sup,, e N { f,, }.
4. A solution with one sign change. Here we want to show that the mountain pass

solution can be assumed to have exactly one sign change.
For given t, we choose r R + such that

I(r.sinx)_<I(u_),
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where u is the negative solution of (1). Now let

and set

F= { 3, C([0,1],E)I ,(0) =_u,,(1)- rsinx }

C= inf max l -l ( ) ) > I u )
yF[0, 11

By the mountain pass theorem as given in A. Ambrosetti and P. Rabinowitz [2] one has
in particular the following result.

TUEOREM. Let /,, c F such that

maxl(7,,( ,)),,_. C.
[0, 1]

Then there exists a subsequence (’,,) such that one can find a sequence (u) with
u,, y,,, and u u, where u is a critical point of I at leoel C.

We introduce the following class of functions"

= (uEl(u(x)>O,u(y)<O)x<y,

(u(x)>O,u(y)>O, x<z<y)u(z)min{u(x),u(y)}).
Note that if we find a solution in at level C, then this solution has exactly one
nodal point. In fact, cannot be negative, since by Proposition 5 there exists only one
negative solution of (1), and it is at a lower level. Moreover, for large negative,
cannot be positive, since by Proposition 6 it has to have interior zeros which contradicts
the second requirement of . Finally, the condition of says that v can have at most
one sign change.

Note that is closed for the pointwise convergence (and therefore in E).
We now introduce a procedure which will assign to any u E a set of "rearranged"

functions lying in .
We denote by o" E H(R) the Steiner symmetrization of a positive function in E

around zero, i.e. for ue E, uO, o(u) is the unique function which is even, nonincreas-
ing on [0, m) and such that

meas{xlo(u(x))y}=meas{xlu(x)y}, VyR,

where measA stands for the Lebesgue measure of A. o(u) satisfies
(a) For h" [0, m)R continuous" f h(o(u))dx "= f h(u)dx
(b) o(u)e HI(R),

iR do(u) 12 mR du 2

dx-dX dx,
(c) o is strongly continuous in the H-norm (see J. M. Coron [3]).
We introduce some more notation. For u E, let a + { u > 0} and a_ { u < 0}.

Then a + + a_ , and we can define the following set

{
1 d(p p )> ( + p+Np+, +

Clearly, (u) is nonempty and convex.
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For u E and (p+,p_)(u) we now define

s(u,p+,p_)= { 0+- [(u+-)l(x-P
and we set

1
if d(x,p +_) <_ a +_,

otherwise

S(u)= [,.J {s(u,p+,p_)}.
(p+,p_).(u)

By the properties of the Steiner symmetrization we have

I(v)<=I(u) VvS(u).
PROPOSITION 10. Let (u,)c E be a sequence with u,- u in E, and let (p+,p_)

(u,,) withp,_op +. Then (p+,p_)(u) and

o s u,,,p"+,p_)v=s(u,p+,p_) in E

Proof. Since u u -+, o and the translation operator are continuous in E, the result
follows easily.

COROLLARY 11. For any u E the set S( u ) is connected in E.
Proof. The map s(u,., .)" (u)E is continuous by Proposition 10, and since

(u) is convex, we obtain that S(u) is connected.
COROLLARY 12. If (u.)cE is a sequence with uu in E, and vS(u), then

there exists a subsequence (v.) with v. v in E for some v S(u).
Proof. Since v. s(u.,p _) )+,p for some p +,p (u.) we can choose a conver-

nk Dnkgent subsequence (P+,r-)-(P+,P and apply Proposition 10 to obtain

- v=s(u p+ p )

PROPOSITION 13. If V is connected in E, then also U vS(u) is connected.
Proof. Take any two closed sets C1, C2 with UuvS(u)=CIUC2 and CqC2(

U, rS(u)= . For uv we have S(u) C or S(u) C2, since S(u) is connected.
Now let Vi=(uvlS(u)c Ci), i=1,2. The Vi are relatively closed because if (u,)cV;
with u, u then there exists (o,)cS(u,)AC of which a subsequence (o,k) converges
to vS(u) by Proposition 10. But since C is closed we have oC and hence
S(u) C. By construction we have 71 L)72=7 with Y1 (-’172-- " Therefore "/--]/i with

1 or 2, since 7 is connected, and hence LI S(u) c C, for 1 or 2.
PROPOSITION 14. Fix < -f(O) and let C be the critical oalue given in (13). Then

there exists a critical point u with I(u) C and u5.
Proof. By the definition of C we can pick a sequence 7F such that

maxio,lI(’,(t)),_C. We have seen that Uv,,S(u) is connected and that
supI(Ll,v,, S(u))_<sup I(’,(t)), X/nN. We can find an open, connected neighbor-
hood A,, of t.Jv,,S(u) such that d(x, LJ v,, S( u )) <= l/n, /xA,, and that supI(A,)__<
supI()+ 1/n. Therefore one finds a path A, with ,(0)= u and (1)= r. sinx and
such that

sup I([n(t))< sup I(y,(t))+ 1 VnN.
t[O, 1] t[O, 1]

By the mountain pass theorem we can therefore find a sequence u,,. ,k with u u,
where u is again a critical point at level C. Since moreover d(u,,,.,5)<= 1/n and 5 is
closed, we have u5a. q
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By our previous remarks we have therefore found a solution u with exactly one
sign change, provided is sufficiently negative.

5. Joining of solutions defined on (0,,rr/n). The purpose of proving the existence
of solutions which have exactly one sign change is that such solutions (if they are
defined on a suitable sub-interval, say (0, r/n)) can be joined to solutions having many
nodes. This is based on the following observation.

LEMMA 15. Let u be a solution of (1), and let x(0,r] be a zero of u. Then
lu’(x)l=lu’(O)l

Proof. Multiplying (1) by u’ we have

1 d ,(
2 d

2 dx lu x)l =-x (F(u(x))+tu(x))"

Therefore (choosing F(0)= 0) by integration

1 2 1 12-lu’(x) =--Iu’(0) -F(u(x))-tu(x).

Hence, if u(x)--0: lu’(x)l-lu’(O)l.
We are now in the position to complete the proof of Theorem 1.

Proof of Theorem 1. First assume (gl) and let k N be given. Consider (1) on the
interval (0, r/m), rn 1,..., k-1. Choosing smaller than some T (depending on k),
we find solutions u on (O,r/m) which change sign exactly once (Proposition 14). By
Lemma 15 we know that Um(O)=Um(’tr/m). Therefore, u,, can be extended to (0,r) by
setting

u( x ), x (O, r/m ),

u x x ( ’n’/m, 2r/m),
rn

1,1 X-- X q’r
rn rn

Hence we obtain the negative solution on (0,r) and k-1 solutions having 2m-1
(rn 1,..-, k- 1) sign changes, respectively.

If we replace (gx) by (g2) then the argument works for large m and therefore the
statement of the theorem still holds, rq

Acknowledgment. We should like to thank E. N. Dancer and O. Kavian for their
kind help and stimulating discussions.

Note added in proof. A similar result has been obtained simultaneously by A.
Castro and R. Shivaji, Multiple solutions for a Dirichlet problem with jumping nonlin-
earities, to appear in the Proceedings of Conference on Diff. Equations, Arlington,
Texas, 1984.
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Abstract. A method is presented to characterize selfadjoint realizations of a singular Sturm-Liouville
differential expression on a finite interval, where the singularities are of limit-circle type.
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1. Introduction. In this article we present a new method for defining selfadjoint
realizations of a certain class of singular Sturm-Liouville differential expressions

d d(1) "r -p ( l -+ q ( )

on a finite interval (a,b). We assume throughout that p and q are measurable and
real-valued functions on (a, b) which satisfy the minimal conditions

(2) p-l,qLloc(a,b ).
Moreover, we assume that p is positive,

(3) p(t)>0 a.e. on (a,b).
Thus, " is a quasi-differential expression in the sense of Naimark [1, V.1]. A function
y is said to be a solution of the equation ’y=0 if (i) y is absolutely continuous on
(a, b), (ii) py’ is equal a.e. on (a, b) to an absolutely continuous function (which, with a
slight abuse of notation, we denote by the symbol p’), and (iii) the identity
-(p’)’(t)+q(t)(t)=O holds a.e. on (a,b).

The right endpoint b is said to be a regular endpoint for - if

(4) p-X,qLl(c,b) for some c(a,b).
Similarly, the left endpoint a is regular if

(5) p-l,qLl(a,c) for some c(a,b).
If both endpoints are regular, then the differential expression - is called regular;
otherwise, it is called singular. Note that, for " to be regular, neither p-1 nor q need to
be bounded on (a, b).

All solutions y of a regular Sturm-Liouville equation ’y=0 are continuous on
[a,b], and the same property holds for the function p’. Hence, boundary values can be
assigned to these functions. The characterization of those boundary conditions which
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give rise to selfadjoint realizations of a regular differential expression in the Hilbert
space L2(a,b) is well known and can be found, for example, in the monographs by
Akhiezer and Glazman [2, Appendix II] and Naimark [1, [}5.18].

The study of singular differential expressions is considerably more difficult. The
solutions of a singular Sturm-Liouville equation ry=0 generally exhibit singularities
near the endpoints, so one cannot assign boundary values there. Weyl [3] has developed
a theory for the construction of selfadjoint realizations of singular differential expres-
sions, which is based on a distinction between singularities of limit-circle type and those
of limit-point type. The characterizations are, however, not concrete and therefore
difficult to apply. The same remarks can be made for the theory developed by
Titchmarsh [4].

In this article we present a new method for characterizing selfadjoint realizations
of singular Sturm-Liouville differential expressions of the form (1), where q is
bounded and the singularity at either endpoint is of limit-circle type. We limit the
discussion to the case of one singular endpoint; the extension of the method to cases
where both endpoints are singular is straightforward. Specifically, we assume that the
coefficients p and q satisfy, in addition to (2), (3), and (4), the conditions

(6) fbp_l(s)ds O((t-a)-V) as S a, 3, (0, 1

(7) qL(a,b).

Thus, b is a regular endpoint and a is a singular endpoint for r. For bounded
potentials q, the condition (6) is both necessary and sufficient for the singularity at a to
be of limit-circle type.

A selfadjoint realization of r in L2(a, b) requires the specification of two boundary
conditions, one at the regular endpoint b and one at the singular endpoint a. At b we
impose a condition of the usual type,

(8) BlY(b)+B2(py’)(b)=O BZ +B22 4=O.

Given such a condition, there are an infinite number of conditions at a which give rise
to a selfadjoint realization of r in L2(a, b). The particular condition

(9) limy(t) exists and is finite
tSa

is known to generate a selfadjoint realization which coincides with the Friedrichs
extension of the minimal operator in L(a, b) associated with r. Although the condition
(9) is often referred to as the "natural" one, relating it to the Weyl or Titchmarsh
theory of singular Sturm-Liouville problems is nontrivial.

As we will demonstrate, (9) is but one of several equivalent characterizations of the
same selfadjoint realization of r. These characterizations follow in a systematic way
from a particular representation of the elements in the domain of the maximal operator
defined by . The procedure sheds some light on the role that the particular condition
(9) plays within the general framework of Weyl’s theory.

2. Characterization of the Friedrichs extension. Let (a, b)- be defined by
the expression

-1(10) ,(t)=l+ p (s)ds, t(a,b).
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Then L2(a,b), because (a,b) is finite and p satisfies (6). Furthermore, q,(t)> 1 for
all t(a,b) and ’(t)= -p-l(t) a.e. on (a,b).

Let M be the maximal operator associated with r,

(11) My=ry, ydomM,

where domM= (y L2(a,b):y and py’ locally absolutely continuous on (a,b) and
-y LZ(a,b)}. The following lemma gives a representation of the elements of domM.

LEMMA 1. For every y domM there exist two constants c and d and an element
g L2(a, b), such that

(12) y(t)=c(t)+d+fat(q(t)-q,(s))g(s)ds, t(a,b),

(13) y’(t) -cp-(t)-p-l(t)f’g(s)ds, t(a,b).

Proof. Because q is bounded, domM consists of those y L(a,b) for which y
and py’ are locally absolutely continuous on (a,b) and (py’)’ LZ(a,b). Hence, for
every ydomM there exists a gL2(a,b) such that -(py’)’=g. Integration of this
identity gives the representations (12) and (13). [3

Selfadjoint realizations T of - are obtained by restricting M. The restrictions result
in constraints on the element g and the constants c and d in the representation (12).
The boundary condition (8) imposes one such constraint, viz.,

(14) (n B2)-1- nld-- fal(n n2- nlt(s))g(s)ds.

Another constraint is obtained by imposing a "boundary condition" at the singular
endpoint. For example, the condition (9) leads to the constraint c--0. The following
lemma explores the ramifications of this constraint.

LEMMA 2. Let y domM. Then the following conditions are equioalent:
(i) y has a representation of the form (12) with c=0;
(ii) y is bounded on ( a, b );
(iii) lim/, aY(t) exists and is finite;
(iv) limt+(t-a)Vy(t)=O;
(v) lim, a( PY’)(t)= 0;
(vi) lim, . ( a) ( py ’)( 0 for any c (0, 1/2);
(vii) pa/2y, L2(a,b);
(viii) (t-a)-/pl/2y L2(a,b) for any a(0, 1/2);
(ix) y’ LX(a,b).

Proof. (i)* (ii). Elementary estimates yield the inequalities

(15) t(k(t)-q(s))g(s)ds <=q(t) g(s)ds + (s)g(s)ds

_< q ( )( a )1/2 -I- II][I g I["

Because of (6), q(t)(t-a)1/2 tends to zero as $ a, so there exists a positive constant C
such that, for any g L2(a, b),

(16) <=CIIg[I, t(a,b).
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Every ydomM has a representation of the form (12), where the integral obeys the
inequality (16). Clearly, y is bounded on (a,b) if and only if c=0.

(i)o (iii). A more careful estimate of the second term in (15) yields the inequality

fa [ (fa)1/21(17) (q(t)-q(s))g(s)ds <= q(t)(t-a)l/+ t(s)ds Ilgll.

Because of (6), there exists a positive constant C such that q,(s)=< C(s-a)- for s
sufficiently close to a. Thus we find that, for any g LZ(a, b), we have the more refined
estimate

(18) ft(rk(tl-rk(s)lg(s)ds]N+(t)llgll, t(a,b),

where q is independent of g, tk is bounded on (a,b) and +(t)= O((t- a)1/-) as
a. Every ydomM has a representation of the form (12), where the integral tends

to zero like (t-a)/- as + a. Clearly, y(t) tends to a finite limit as + a if and only
if c=0.

(i) (iv). The proof is similar to the proof of the previous equivalence.
(i) (v). For anygL2(a,b) we have

)1/2(19) (s)ds N(t-a Ilgll, t(a,b).

Representing y as in (12), so py’ is given by (13), we see that (py’)(t) tends to zero as
a if and only if c 0.
(i)(vi). The equivalence follows immediately from the proof of the previous

equivalence.
(i) (vii). According to Lemma 1, we have for any y domM,

(20) pl/2(t)y’(t)= -cp-1/2(t)-p-a/2(t)(s)ds, t(a,b),

for some constant c and some g LZ(a,b). Now, using (19),

2 b
-1(- tg( s p t)(t- a) at.p (t) )ds dtzllg

The last integral is bounded:

b (t)(t a)dt t’’(t)(t a)dt (b a)+%(t)dt C,

SO

b
p (t)

2

L’g( s ds dt C[Igll =.
The second term in the right member of (20) defines therefore an element of L2(a,b).
The first term, on the other hand, does not, unless c=0. Consequently, pl/2y, L2(a,b)
if and only if c 0.

(i)0 (viii). We use the representation (20) of pl/2y, and observe that

t-a) p (t) 12 2 btg(s)ds dt<=llgll p (t)(t-a) dt.
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The last integral is still bounded if a (0, 1/2), so

t-a) p (t) )ds dt<C]lg

The expression (t-a)-/2p-/a(t)ftg(s)ds defines therefore an element of La(a,b) as
long as a(O, 1/2). On the other hand, the expression (t-a) -/2p-/2(t) clearly does
not define an element of L2( a, b) if a (0, 1/2), so the function ( a )- /:pl/:( ) y’( )
with a(O, 1/2) belongs to La(a,b) if and only if c-O.

(i) (ix). According to Lemma 1 we have, for any y domM,

(21) y’(t)=-cp-l(t)-p-l(t) g(s)ds, t(a,b),

for some constant c and some g L2(a, b). Now,

p t) g(s)dsdt<= p (t) Ig(s)]dsdt

-lg(s)l p (t)dtds<-Ilgl] p (t)dt ds

The last integral is bounded, so the second term in the right member of (21) defines an
element of LX(a,b). The first term does not, unless c-0. Hence, y’ L(a,b) if and
only if c 0. []

Lemma 2 shows that the domain of the maximal operator M can be restricted in
many equivalent ways. Let T be defined by

(22) Ty=My, ydomT,

where dom T= (ydomM :y satisfies (8) and any one of the conditions (i)-(ix) of
Lemma 2).

THEOREM 3. T is selfadjoint in L2(a, b).
Proof. Let f, g dom T. Then

(Tf g)= [f,g]b + (f rg)
where

[/,g] -(pf’),+f(p,’).
The bilinear form [.,. vanishes at b, because f and g satisfy the boundary condition
(9). It also vanishes at a, as one verifies most easily using the conditions (iii) and (v) of
Lemma 2. Hence, T is symmetric.

It follows from Lemma 1 and the definition of T that M, the maximal operator, is
a one-dimensional extension of T. Furthermore, M is a two-dimensional extension of
the minimal operator associated with -. Since T is symmetric, we have T* D T. But T*
cannot be a proper extension of T, because then T* would coincide with M; hence,
T*--T.

The operator T coincides with the Friedrichs extension of the minimal operator
associated with the differential expression ’. Hence, we have established several equiva-
lent characterizations of the Friedrichs extension. In the special case of the Legendre
differential operator, a proof of the equivalence of the condition (iii), (v) and (vii) of
Lemma 2 can be found in Akhiezer and Glazman [2, Appendix II, {}9]; the other
characterizations appear to be new. The simple characterization given by the condition
(i) of Lemma 2 appears to be particularly interesting.
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Abstract. The Stckel transform is a mapping of the commuting constants of the motion (corresponding
to a separable coordinate system) for one completely integrable classical or quantum Hamiltonian system to
the constants of the motion for another such system. Here the transform is defined and given an intrinsic
characterization, and a large family of nontrivial examples is worked out of systems which are "Stckel
equivalent". Among the simplest examples are geodesic flow on an n-dimensional ellipsoid with distinct axes,
which is equivalent to the motion of a mass point on the unit sphere in R’’+ under the influence of a
quadratic potential with distinct eigenvalues, and the Kepler (Coulomb) problem in three dimensions which is
equivalent to the pseudo-Coulomb problem.

Key words. Stckel transform, Hamiltonian system, separation of variables
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Introduction. It has long been known that the Hamiltonian systems corresponding
to geodesic flow on an n-dimensional ellipsoid in Rn+ with distinct axes and to the
motion of a mass point on the unit sphere in Rn+ under the influence of a quadratic
potential with distinct eigenvalues are both completely integrable [1], [2]. The original
proofs were based on Jacobi’s separation of variable techniques for solution of the
Hamilton-Jacobi equation. With the recent discovery of many examples of completely
integrable Hamiltonian systems which are not separable and the attempt to develop a
general theory for all such systems, interest in the old (separable) examples has revived,
[3], [4]. Now, however, the emphasis is on the explicit construction of the algebraic
constants of the motion for these systems in the cotangent bundle of R+ 1. (This was
not done by Jacobi.)

Uhlenbeck [5] and Devaney [6] appear to have been the first to discover and utilize
the algebraic constants of the motion for the sphere problem. In [3] Moser developed a
geometric approach to the ellipsoid and sphere systems in which he was able to derive
the algebraic constants of the motion for both systems without using separation of
variables. He made the interesting observation that the two systems are closely related:
under the "hodograph transformation" Pi x;, x i---,p the constants of the motion
for one go to the constants of the motion for the other. (The relationship persists for
the quantum mechanical analogies of these systems where the hodograph transforma-
tion is replaced by the Fourier transform; see the "sphere model" in [7].)

This striking correspondence between two physically distinct separable systems
motivated the authors of the present work to study the relationship of these systems
from the viewpoint of separation of variables. (This makes good sense since there is a
one-to-one relationship between separable coordinates for a system and certain involu-
tive families of constants of the motion for the system. Separable coordinates have a
coordinate-free characterization.) Our study has led us to the concept of the Stckel
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transform, which maps the constants of the motion for one orthogonal separable
system to the constants of the motion for another orthogonal separable system. Two
systems related by a sequence of Stgtckel transforms are said to be Stgtckel equivalent.
Interestingly this equivalence, while intrinsic has no general connection with the hodo-
graph transform.

The basic idea behind the Sfftckel transform is related to the Jacobi metric in
analytical dynamics [8, p. 172]. Let H(y, p) be a Hamiltonian, quadratic in the momenta
Pi, and V(y) a scalar potential such that the Hamilton-Jacobi equation H+ V-E is
separable in the orthogonal coordinates (xi). Then the Hamilton-Jacobi equation
V-XH--E is also separable in these coordinates for the new Hamiltonian V-1H. This
invertible transform H V-1H can be defined intrinsically, i.e., independent of coordi-
nates, by extending it to the involutive family of constants of the motion that char-
acterize ( x ).

In {}1 we review the intrinsic characterizations of orthogonal coordinate separation
for the Hamilton-Jacobi and Helmholtz (Schr6dinger) equations in terms of second
order symmetries of these equations. In {}2 we define the Stckel transform between two
Hamiltonian systems, first in a coordinate dependent manner and then intrinsically
(Theorem 3). In {}3 we work out a family of (nontrivial) examples of Sttckel equivalent
systems, one of the simplest of which is the pair of systems discussed by Moser. In each
case one of the systems consists of the n-dimensional geodesic flat space or constant
curvature Hamiltonian with an added separable potential. The other system is either of
the same type or is an induced Hamiltonian on an n-dimensional coordinate hyper-
surface in (n + 1)-dimensional flat space. The explicit algebraic integrals for each of
these systems are not worked out here but can be obtained directly from the results of
[9].

Finally, in {}4 we show that the classical mechanics ideas of {}2 can be carried over
to quantum mechanics without difficulty. We conclude with an intrinsic characteriza-
tion of Stckel equivalence for quantum mechanical systems.

All functions treated in this paper are assumed to be locally analytic.

1. Intrinsic characterization of separation. Let V be an n-dimensional (local)
pseudo-Riemannian manifold and / the associated cotangent bundle (n>__2). If
(yX,.-., y) is a local coordinate system on V then (y,.-., y, p,..., p,) is the
corresponding canonical system of coordinates on 17". If the metric ds on V takes the
form

ds2= _gijdyidyj

on V", then the Hamiltonian H on 1" can be written as

(1.1) U(y, p)

and the Laplace-Beltrami operator is expressed as

1(1.2)

where g= det(go.), and
The Hamilton-Jaobi equation is

(1.3) H( yi, )jS ) gi’OiSjS= E
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and the Helmholtz equation is

(1.4) A(yi)=E+(yi).

Our interest is in additively separable orthogonal coordinate systems for (1.3) and
multiplicatively R-separable orthogonal coordinate systems for (1.4). We know that the
orthogonal coordinate system (x } is additively separable for (1.3) if and only if the
metric

(1.5) ds 2 EHi2 ( dx’ ) 2

is in Sttckel form [10] (see (2.1)). Furthermore, there is the following intrinsic char-
acterization of variable separation [11], [12]"

THEOREM 1. Necessary and sufficient conditions for the existence of an orthogonal
separable coordinate system { x } for the Hamilton-Jacobi equation (1.3) are that there
exist n quadratic functions Gk=Y.i,jg{)Pil, (GI= H) on 7" such that

1) (G,,Gt)=0, l=<k, l<=n.
2) The set (Gk) is linearly independent (as n quadratic forms).
3) There is a basis ( oa(j)" 1 <=j <_ n ) of simultaneous eigenforms for the ( Gk ).

(Here we follow the definitions of Eisenhart [13] for the roots and eigenforms of a

quadratic form with respect to a metric.)
If conditions 1)-3) are satisfied, then there exist functions g(x) such that

gJdx j, j= 1,..., n. (Here ( } is the Poisson bracket on V’.) The separable solutions
of (1.3) are characterized by the equations G(xi,SjS)=,, j= 1,-.-, nj (21 =E)
where the , are the separation parameters.

Recall that a function V(x) is a Stgtckel multiplier with respect to a Sttckel form
metric ds 2= EH2(dxi)2 provided the metric d2= Vds 2 is also in Stackel form [14].

PROPOSITION. Let ds2=EHi2(dxi) 2 be a Stgtckel form metric. The following are
equioalent:

1) V(x) is a Stgtckel multiplier.
2) There exist functions +j=+(xj) such that

V(x)= E +j(xJ)Hj-.
j--

3) The function V(x) satisfies

(1.6) j/,V- ).iVig,logHj-2- O,V)alogH2=O, j4=k, j,k=l,. .,n.

Here =In this paper we shall be concerned with the Hamilton-Jacobi equation with
potential,

(1.7) Y’gi.i(y)i)SOiS + V(y)= E.
i,j

The technical conditions for additive separation of this equation in the orthogonal
coordinates { x } are that a) the metric ds 2, (1.5), is in Stckel form with respect to
these coordinates and b) the potential V is a Stckel multiplier in the coordinates { x }.

Theorem 1 extends to the following intrinsic characterization of variable separa-
tion for (1.7) [15].
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THEOREM 2. Necessary and sufficient conditions for the existence of an orthogonal
additive separable coordinate system (x ) for the Hamilton-Jacobi equation with poten-
tial H(y, 3iS)+ V(y)=E are that there exist n quadratic functions Gk=Ei,jhJk)pipj,
(G H) and n functions Vk(y), ( V V) on (/" such that

1) {G,+ V,, Gt+ V}=0, 1 <=k, l<=n.
2) The set ( Gk } is linearly independent (as n quadratic forms).
3) There is a basis ( (j) 1 j n ) of simultaneous eigenforms for the ( Gk }.

The separable solutions are characterized by the equations Gk (x32S ) + Vk(x)=k, k=
1,. ., n, ( E) where the are the separation parameters.

Here the eigenforms (j) are related to the separable coordinates dxj by (2)=
g2(x) dx2 where g2 is a nonzero function. The above results are easily proved by slight
modifications of the proof of [16, Thm. 3].

2. Stckel equivalence. Let H be a quadratic Hamiltonian on a 2n-dimensional
symplectic manifold, {x } be an orthogonal separable coordinate system for the
Hamilton-Jacobi equation H(x,32S)=E and V(x), W(x) be two nonzero Stckel
multipliers for H in the coordinates (x’ }. Then the Hamilton-Jacobi equation

) + v(x)

separates in the coordinates { x } and so does the equation

Ht(xi, jS ) + W-1V= E
where H’= W(x)-IH is a Hamiltonian on a new manifold ". (Indeed, W-1V is a
Stckel multiplier for H’.) We say that H’ + W-1V is a Stckel transform of H+ V.

We first examine the significance of Stckel transforms in terms of Stckel matrices.
Now g=lH is in Stckel form, i.e., there exists an n x n invertible matrix

S=(Si(x)) such that

(s- 1) ,,
where S-1 is the multiplicative inverse of S. Since W is a Stackel multiplier for H there
exist functions l(x) such that

W(x) E
j=l

It follows easily that W-XH is in Stackel form with n x n Stckel matrix

(2.3) S’=
II(X )

l=<j=<n, l<=a<=n-1.

Thus the Stckel transform consists in the replacement of the nth column of S by the
column vector (/1(x1), In(xn)). (We have singled out the nth column by convention.
More generally, we shall see that the replacement of any column in a Sfftckel matrix by
a new column vector (ll(xl), ln(xn)) defines a Stckel transform so long as the new
matrix is nonsingular, i.e., so long as the corresponding potential is nonzero.)

A more sophisticated approach to the Stckel transform is through the roots pi) of
the quadratic functions G which characterize the separable coordinates, Theorems 1
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and 2. As is well known, the symmetries G take the form

(2.4) Gi= Oi)Hf-p, i= 1,..., n
j=

where G H, 0.}= 1 and, ([16], [13, Appendix 13])

(2.5) qio(ki)= ( O(qi)-- io(ki’ )qlOgH[2 q,k= l,. n.

If W(x)=j=l(x)IIf- is a Stckel multiplier for H, then it is straightforward to
show that the functions

(2.6) W(x) E l(x)ioii)H-j---1

satisfy the conditions { Gi + W/, Gk + Wk } =0, W W and characterize the separable
coordinates { x}, as shown in Theorem 2.

A set of roots loci)’ corresponding to the transformed Hamiltonian W-1H is given
by

(2.7) loci)’= WIOi)_ Wi + 1, i= 1,..., n.

This follows easily from
LWMM, 1. Let (IO l(X)," ", ion (X)) be a solution of the system

(2.8) qiok--(ioq--iok)q|Ogn; 2

where H= i= H- is in Stckelform. Then

p’ l,(xi)(pk-ioi)H-2+ 1k
i=1

q,k=l,. .,n

k=l,...,n

is a solution of the system

(2.9) qiotk ( Iotq-- lotk ) qlOg (O-2/W)
where W= 2’= li(xi)H-.

Finally, the Stckel transform has an intrinsic characterization.
THWOM 3. Let (G, V" 1,..., n) be a set of quadratic polynomials and poten-

tials corresponding to an orthogonal coordinate system { x } for the Hamiltonian H+ V
G + V (VO), i.e.,

1) (G,+ V,, Gt+ Vt)=0, l=<k, l<__n.
2) The set of quadratic forms (G,) is linearly independent.
3) There is a basis ( w2)" 1 j <= n ) of simultaneous eigenforms for the ( Gk ).

Suppose the system (Gi, W,.) also satisfies conditions 1)-3) with the same basis of eigen-

forms. Then the system G, Vi’) where

(2.10)
G; Gj Wj.W IG + IG1,

V/ /Wx + Vl/

satisfies conditions 1)-3) and corresponds to the orthogonal coordinate system { X ) for
the Hamiltonian G’ + V’ G + V(. In particular, ( G’k + V;, G; + V’ } O.
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Proof. It is clear that the system (G’, V’), defined by (2.10), satisfies conditions 2)
and 3). Condition 1) for the systems (Gi, V), (Gi, W,.) is equivalent to the requirements

a) {G,,Gt)=O,
b) (Gk, V,}+{Vk, G,}=O, (G,,W,}+(W,G,}=O, l<=k, l<=,.

It is straightforward to show that a) and b) together with the properties (L,M + M:
=(L,M)+(L, M2), (L,M}=-(M,L) and (L, MIM_}=MI(L,M:}+(L,M1)M
of the Poisson bracket for functions L(x,p), Mi(x,p) imply (G, G]}=0 and (Gj,

0, 2 =<j, _< n. Furthermore ( G’, V/) + ( V[, G; } 0. Q.E.D.
The Sthckel transform is invertible in the following sense.
COROLLARY 1. Let H, Gi, V, V and G, V/, W, W be defined as in Theorem 3. Let

U= W-. Then U is a Stiickel multiplier for G + V( W-H+ W-V in the orthogonal
separable coordinates ( x ), corresponding to ( G[, Vi" 1,..., n ). Furthermore the
transformed system is identical to (G, Vi).

For computational convenience the preceding results have been expressed in terms
of an explicit basis G of quadratic forms and an associated basis V, W,. of potentials.
However, the results are clearly basis free" they apply to an n-dimensional vector space
)U of quadratic forms K in involution, and associated potentials Vc(x), Wc(x). The
maps K---) Vc, K--) Wc are linear. Furthermore we can extend the definition of the
Stckel transform by noting that any nonsingular quadratic form go for which

Wco 0 can serve as a Hamiltonian with which to define a transform. Thus a given
space is associated with many different Hamilton-Jacobi equations. It is this simple
observation which leads to the most interesting applications of the Stiickel transform.

Let and &o be two n-dimensional vector spaces of quadratic forms in involu-
tion, each of which has a simultaneous eigenbasis of differential forms. We say that
is Stckel equioalent to Off if there is a finite sequence of Stckel transforms al,..., a
such that .9--atoat_ a1(5{’). (If b is a Stckel transform of and a is a
Stackel transform of b(,g’) then a b is the composition which maps zct to a(b(F)).)
We are associating the potential V:=0 with each of g and .a. It is clear from
Corollary 1 that Stackel equivalence is a true equivalence relation.

THEOREM 4. Let Off and . be n-dimensional vector spaces of quadratic forms in
involution, each of which has a simultaneous eigenbasis of differential forms. Then ’ is
Stgtckel equivalent to oU if and only if :U and ,’ have the same eigenbasis.

Proof. Suppose .’ and g are Stckel equivalent. Since a space of quadratic forms
and its Sttckel transform have the same eigenforms, it follows that a and must
have the same eigenforms.

Conversely, suppose oU and .co have the same eigenforms. It follows from The-
orem 1 that there exist coordinates (xl, ..., x") such that the basis of eigenforms is
(dxl, dx"). Thus ff and .’ correspond to n n Stckel matrices S and Sze in the
same coordinates. Let k(x), li(X i) be the ith column vector in Sc, S, respectively.
Note that an elementary column transformation of S in which column k is replaced
by k+ akh, where a is a constant and h < i, leads to another Stckel matrix associated
to the same Hamiltonian K=K and the same coordinates. (Indeed such a transforma-
tion merely corresponds to a change of basis forms K., j 2,. ., n.) The same remarks
hold for S.

By using the elementary column transformations if necessary, we can always
choose Sc and S. such that the following properties hold: each matrix Sj, 0 =<j_< n
where Sj=(ll(XX),12(x2)," .,lj(xJ),kj+l(xJ+l),. .,kn(xn)), j=l,.-.,n-1, So=Sa
S, S is nonsingular and each matrix element (S- 1)., (0 <j__< n, 1 __< i, h __< n) is
nonzero. From the remarks following (2.3) we see that the replacement Sj Sj_I
defines a Stickel transform aj and =a a,,(’). Q.E.D.
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COROLLARY 2. If ’ and r are Stckel equivalent then can be mapped to by
a sequence of at most n St?tckel transforms.

It is a consequence of Theorem 4 that (roughly speaking) any orthogonal separable
coordinate system on an n-dimensional pseudo-Riemannian manifold is Stackel equiva-
lent to any such system on another n-manifold. The primary practical and theoretical
interest of Stckel equivalence concerns systems that are equivalent via a single Stckel
transform.

The following construction, a special case of the general Stckel transform, con-
stitutes an important application of transform methods to the study of Hamiltonian

systems. Let H be a quadratic Hamiltonian on a 2n-dimensional symplectic manifold
V,, and suppose the Hamilton-Jacobi equation

(2.11) H(xi, OgS)-XW(x)+ V(x) E, W0

separates in the orthogonal coordinates { x } for all values of the parameter ;k. Then
H(x,p/)=Y’.g=xH-2p2 is in Stckel form and the potentials W, V are Stckel multi-
pliers for H. Furthermore, via Theorem 3, this separable system is characterized by n
linearly independent quadratic forms Gk(x,p) on 1, and 2n potentials Wk(X), Vk(X),
k=l,...,n such that GI=H, W-- W, V V and the family {Gk--XWk+ Vk} is in
involution with respect to the Poisson bracket. The separable complete integral
S(x; X; E)=ES(x; X; E) of (2.11) is characterized by the equations

with E= E. Dividing (2.11) by the nonzero Stckel multiplier W(x), we obtain the
transformed Hamilton-Jacobi equation

(2.13) W-H-EW- + W-V=h
where now E is considered as a parameter and ;k is the "energy". Clearly (2.13) admits
the same separable complete integral S(x; ; E) as does (2.11), with separation parame-
ters X,E2,.--, E,. Furthermore the separable solutions are now characterized by the
Hamiltonian W{-G EW +WV and the constants of the motion

(2.14) (Gk- wlWkG1)-bEW{-1Wk-l-(Vk VlW;1Wk), k=2,...,n.

This corresponds to a special case of Theorem 5.
This special Stiickel transform can be very useful when both the systems (2.12) and

(2.13), (2.14) correspond to spaces of physical or geometrical interest: one of the
systems may prove more tractable than the other. In particular, the Stickel transform
does not, in general, preserve the symmetry algebra of a Hamilton-Jacobi equation so
one system may have a higher degree of symmetry than the other.

In the following section we will derive a number of examples of Hamiltonian
systems on flat spaces and spaces of constant curvature that are related by Stickel
transforms.

3. Examples. We begin the section with some simple low-dimensional cases where
Stickel transforms appear and are useful. This will be followed by a derivation of
families of examples associated with constant curvature spaces in n dimensions.

One of the simplest examples is associated with the Coulomb problem [17]. The
Hamilton-Jacobi equation for this problem (expressed in Cartesian coordinates x) is

(3.1) p+p22+p-Cl=E, r= E (xi)
r

i=1
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Here q is a real parameter. This equation separates in spherical coordinates (r, 0, q).
The associated pseudo-Coulomb problem

(3.2) r(p21+p+p)-Er=q

also separates in these coordinates, where now E is considered as a parameter and q is
the "energy". Here (3.2) is obtained as a Stckel transform of (3.1) by the potential r-1.
Although (3.1) and (3.2) are equivalent, (3.2) is more tractible from a symmetry point
of view. Indeed for (3.2) the fundamental constants of the motion (the angular
momentum vector and the Laplace-Runge-Lenz vector) form a 6-dimensional symme-
try algebra isomorphic to 0(4). However for (3.1) the corresponding constants of the
motion fail to generate a finite-dimensional algebra under the Poisson bracket [17].
Similar comments apply for the quantum Kepler problem [18].

For our next example we use the fact that if ds2= Y’=I Oi2(dxi) 2 is in Stickel form
and Ox,,Hj=0 for all j then H-2 is a Stckel multiplier for the reduced Hamiltonian
associated with the (n-1)-dimensional space ds ’2 n-X 2Y"i= HiZ(dx ) and coordinates
xl, x "-1. (This follows directly from the Levi-Civita conditions [13, p. 265].) Let
H p +p22 + p32 be the Hamiltonian for three-dimensional Euclidean space (expressed
in Cartesian coordinates x i) and pass to parabolic coordinates

(3.3) xl ’O cos 0, x=/sin0, x3=1/2((-/a).

The Hamilton-Jacobi equation for these orthogonal separable coordinates takes the
form

(3.4) H-
1 1 p=E.i+,l-(P+P)+ 2l

Since 0 is an ignorable variable, corresponding to a complete separable integral we
have Po ’, a separation parameter. Now the potential -2,/-2 is a Stackel multiplier

+p{). Dividing by this multiplier, we canfor the reduced Hamiltonian ( + /2) x( pn
recast H E in the form

212 2 222 2/Prt+ rtz ( p +pn ) + l E

where p= v/-E. (Here, we must make the restriction that both E and E’ are
negative.) Now (3.5) is just the Hamilton-Jacobi equation for the hyperboloid

(3.6) -x--y- Z 2-- 1, > 1.

Indeed the coordinates are related by

=--, t-z= l-(3.7) x=,/, y t+z
/ 4/ r/

Note that the Hamilton-Jacobi equations for these two geometrically distinct problems
have essentially the same solutions.

For a more sophisticated example we consider the Hamiltonian H=p+p2
,(z2 + z) on Euclidean two-space, expressed in terms of the Cartesian coordinates zl,
z 2. In terms of elliptic coordinates Xl, x2 the Hamilton-Jacobi equation is separable
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and the separation is characterized by

(3.8)

H--G1----4( (el-x1)(e2-x1) 2 (el-x2)(e2-x2) 2 ) +x2)--E
Xl X2

P,q +
X2__Xl Px2 q"X(X1

G2 _4(x2(ex-Xl)(e2-Xl)px2+xl(ex-x2)(e2-x2) 2) =E2X1-x2 X2-x Px2 -[-kXlX 2

Here e < e2 are real constants and for fixed z1, z 2 with z1g2 =/=0 the corresponding
elliptic coordinates x are uniquely chosen such that x <el< x2 <e2 and xi=/ is a
solution of

z?

Now consider the case e =e, e2 =0 and note that xlx 2 is a Stckel multiplier for G2.

Dividing by this multiplier, we can write G2 E2 in the form

xl-e 2 x2-e ) 2 E2(3.9) H’=4 XS,,x,Px,+ X2--XI’ Px2 q-
XIX2’

This is just the Hamilton-Jacobi equation, expressed in parabolic coordinates, corre-
sponding to two-dimensional Euclidean space with an added potential. In Cartesian
coordinates zg, H’ X where

(3.10) H’=pl +p +
E2

2ez2- z2x
Here for given z1, z 2 with z 4:0 the corresponding parabolic coordinates x are
uniquely chosen such that x < e < x2 < 0 and xi= is a solution of

z12 =0.2z2--/x+

For the case ele2=/=0 it is still true that XlX 2 is a Sttckel multiplier for G2.

Dividing by the multiplier we can rewrite G2 E2 in the form

(3.11) H"= -4( (el--Xl)(e2--Xl) 2 (el--x_2_)_(_e2--x2) 2) E2
Xl(Xl__X2 ) Px + Xa(X2__77i" Px2 XlX2

This is the Hamilton-Jacobi equation in parabolic coordinates induced on the para-
boloid

in three-dimensional Euclidean space by the potential E2(z21Wz-2z3(el+e2)-
ele2) -1.

Since many of our examples concern coordinate hypersurfaces corresponding to
orthogonal separable coordinate systems, we will briefly digress to discuss the induced
Riemannian structure on such hypersurfaces. Let V" be a local pseudo-Riemannian
manifold and 1) the associated cotangent bundle. Let H be the Hamiltonian on V
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and suppose the Hamilton-Jacobi equation H(x i, OiS)=E separates in the orthogonal
coordinates (xx, ..., x"). By Theorem 1 these coordinates can be associated to an
involutive family ( Gi" 1,..., n } of quadratic forms on 1 where H= Gx. The
metric, expressed in the separable coordinates, is

n

(3.12) ds2= E H(x)(dxJ).
j=l

Now consider the pseudo-Riemannian manifold Z"-1 obtained by restricting V" to a
coordinate hypersurface, say x"= c, c a constant. The induced metric on Z"- is

n=l

(3.13) dg2= E Hff(,g)(dxJ)2, =(xl,’’’,xn-1)
j=l

Similarly, we can identify the cotangent bundle 2"-1 as a restriction of pn. If (X, p) are
local symplectic coordinates on pn, then (,) are local coordinates on 2"-, where
=(Pl,"’, P,-1) and for the restriction we set x"=c, p,=0. The pullback of the
quadratic forms G to 2,-1 is

n-1

(3.14) 4,= E #’)(,c)nf z(,c)p}, i=l,...,n

and (,)=0, 1i, ln, where (.,.)’ is the Poisson bracket on 2"-t. The
Hamilton-Jacobi equation for Z"-

(3.15) (2,W)=H(,c,3W,O)=E, j=l,.-.,n-l,

separates in the coordinates (xl, ., x "-x) and these coordinates are uniquely associ-
ated with the (n 1)-dimensional involutive family spanned by the forms di, 1,. ., n.

We see that an orthogonal separable coordinate system { xl, x"} for V" leads
to orthogonal separable systems and corresponding involutive families of quadratic
forms for all of the pseudo-emannian manifolds induced on the coordinate hyper-
surfaces.

Our basic example is the "generic" separable system {x, .,x" } on V" with
metric

(3.16) rI,* 
j=, f(xj)

where f is a nonzero function of a single variable. (At this point we shall not be precise
about the range of values permitted to the xJ.) It is evident that this system is
separable. Indeed the columns of the Stckel matrix can be chosen as

(3.17) li(x)

xl) i-1

f(x1)

f(x n)

i---1,. ., n.
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It is not difficult to show [9] that V is a space of nonzero constant curvature if and
only if (d"+X/dun+l)f(u)=c, a nonzero constant. Furthermore, V is flat if and only
if (d+l/du+l)f(u)=O. If V is Euclidean, then f is a polynomial of order n-1 or
H.

Note that the Hamiltonian in these coordinates can be taken to be

(3.18) Gx -’k f(xJ)
j=l I-Ii4=j(Xi-xj) pj2.

and the quadratic form obtained by expanding the Sttckel matrix on the 1st column is

i)
(3.19)

j=l -I77-((7 Xj )
pf

For convenience we choose the coordinate hypersurface Zn-1 in the normalized
form: x= 0. Then the metric on Z"-1 in the separable coordinates (xl, x 1) is

n-1 xJI-I (Xi_ xJ)(dxJ)2
i4=j(3.20) d2=- E

j= f(x)

and the Hamiltonian is

" f(x)(3.21) 1

where now < n. Note that (,--0.
Making use of the identities

n l)k fO, k=0,1,..-, n-2,
(3.22) E (x 1, k=n-1,

i--1 I-Ii4=l(XI--xi) t y’nI=1X k--El,

for the case k n, we see that the potential

(3.23) V1 xJ

j=l

is a Stckel multiplier for the Hamiltonian G1. Furthermore, using (3.11) for k= n-1,
we see that the potential Vn associated with V is

(3.24) V,,= -xlx2""x n.
It follows that V, is a Stckel multiplier for G, and the Sttckel transform

ln f(xj !_(3.25) K= V- lGn--
"= xJI-Ii 4= j(x xj)

pj2.

is the Hamiltonian forthe coordinate hypersurface Z" in Vn+ 1, with metric (3.16), same
f, n replaced by n + 1 (compare with (3.21)). We have shown that (for all f) the system
generated by the Hamiltonian Gx, (3.18), in V" is Sttckel equivalent to the system
generated by the Hamiltonian K, (3.25), in Z. We can consider Z" as an n-dimen-
sional hypersurface in V" + .



ST)CKEL-EQUIVALENT INTEGRABLE HAMILTONIAN SYSTEMS 789

All of the examples where f is a polynomial of order =< n + 1 occur as hyper-
surfaces in (n + 1)-dimensional flat space. Well known is the case [9], [10]

(3.26) f(u)=(u-el)(u-e2)... (U--en+x), e <e2< <en+ 1.

Here the embedding space is Euclidean space E n+l with Cartesian coordinates z=
(z1,’" ", z, + ) and metric

(3.27) ds=dz?+ +dz2+x
We now consider the unit sphere S" in E "/ 1,

:z =1(3.28) z? -.{- z + -[- Zn+

The metric on S is obtained by restricting ds to (3.28). The appropriate coordinates
on S are elliptic spherical coordinates (x, x) defined as follows, [3], [9]" through
each point S with no i 0 there pass exactly n confocal cones

(3.29) ,1 z2
i=1 ei--x--O’

corresponding to the parameters h xl, ., x" where

(3.30) el <xl<e2<x2<e3 < <xn<en+l
Indeed we have the identity in ,

%1 j=I(Xj X)
(3.31)

i=1 ei--’ Fln+l
ll=l (el--k)

The metric on S" expressed in the elliptic spherical coordinates x takes the form 4

times (3.16) with f given by (3.26) [9]. Comparing coefficients of -2 in the Laurent
series expansions for both sides of (3.31), we obtain the result

n+l n+l

(3.32) V xJ=
j=l i=1 1=1

Since the constant E e can be absorbed into E for the Hamilton-Jacobi equation
G + V E, we can consider the separable potential V as a quadratic potential in
Cartesian coordinates.

Now we consider elliptic coordinates in E n+l. Through each point z E "+ with
no z=0 there pass exactly n + 1 confocal ellipsoids [3], [19]

(3.33) " z-/2
i=1

corresponding to the parameters x 0,.. ", x where

(3.34)
We have the identity in

(3.35)

xO<el<xl<e2 < <xn<en+l

1 n_l Z/2 n+l (_xJ-1)
i=l ei--,= .lI--I1-(--j,
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Suppose e >0 and consider the ellipsoid Zn obtained by setting x=0. It is straight-
forward via (3.14) to show that the induced metric on this hypersurface is

dj2= 1 xq-Ii,./(xi- xS)(dxS)2

j=l

where f is given by (3.26). This shows that the Hamiltonian system on the sphere S
(elliptic spherical coordinates) is Stgtckel equivalent to the Hamiltonian system on the
ellipsoid (elliptic coordinates). (Moser [3] has demonstrated that these two systems are
equivalent via the hodograph transformation, see also [4]. Similarly, the "sphere model"
in [7, Chap. 3] displays the equivalence of these systems for the Helmholtz equation.
However, the following Stckel equivalent systems are not equivalent via the hodograph
transform.)

We now consider the cases where degf=n+ 1 and f has repeated roots, or
degf=<n. In each case we will compute the expression of the separable potential
V -= xJ in terms of "natural" cartesian coordinates (z;} and identify the coor-
dinate hypersurfaces in terms of cartesian coordinates. The method we follow, a limit
procedure based on (3.31), was pioneered by B6cher [19] and refined by two of the
authors [20]. The results are complete except that determination of the range of the
coordinates is left to the reader. (The "natural" coordinates zg, y may be complex but
the separable coordinates and the roots will be real.)

Consider first the case dimf=n+ 1, where f has roots es of multiplicities
N1... s=lNs=n+ 1. Then, as shown in [17], the identity (3.31) is modified to

(3.36)
J=l j=l (X-e,) Ns+

where S/+1 E, Y/Y/+ 1-i" Here

I1".
j=

Fly=

J J j

where
(i) Ns= 2p (even),

1 1
j=l,...,p,

P

(3.37) Exj- ENse,= E SJN, + ejSJN + 1)"
j a a---1

It follows from (3.26) that the coordinate curves are given by

e Nj S
(3.38) E E -d-+- =0

J=l j=l (X-ej) N,+I-j

We can take zl zI, z2= z2" " ZN=Z "-’Z Z Z PZN +1 N,"

J(ii) Ns= 2p + 1 (odd), as above but yj,S+ 1= Zp+ 1"

Here the coordinates Y/are real. Equating coefficients of X -2 on both sides of (3.36),
we obtain
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For example, if N 2, and N./= 1 for 1 <j N n 1 we have

x-2ex e=e(z+z)+-( +iz) + ez.+.
.j y 2 .j 2

To treat the case degf=< n, we start from the basic identity [19], [20]

(3.39) Y
j=l (k--ej) "2 ) 1-I.;=1( x.’)

ejy/ I-In+2j=l /=1

fOrn+2general2 cyclidic coordinates x J. Here the ay are hyperspherical coordinates (f

= y 0), related to cartesian coordinates z formulas

(3.40) zi=Yi/(-1Yn+l +Yn+2), i=l,. .,n.

(Note: There is some freedom in the choice of y,+x, y,+.) Now suppose that n + 2
roots ez degenerate to roots with multiplicities N1,...,Np where EsNj=n+2. As
shown in [20], formula (3.39) then becomes

(3.41) E
J=a j=l (X--ej) NJ+a-j ( ) I-I;=I(X-- xJ)EeSL+I--7- 7v,

J I-Ij=l(k-ej)

and =EjSNJj+I=0. At this point it is convenient to set =-1/’, xj= -1Ix’j,
ej= 1/ej so that (3.41) becomes

J
oj+

P SNj+Ip N J1
(3.42)

J=l j’=l (-e,) J=l (,’-eS)

(,(1/eS)S+ 1)
1--i x tj
j=l

(I-I____ff_21! eS)N) fi (’-x’J).
1-IjL ( " ej ) N,

.j =1

Here we have added ’2 to the left-hand side of this equation and restricted ,’ to the
domain I"1 > levi, Vj.

Following B6cher’s procedures, to obtain the coordinate curves corresponding to f
with degf=< n and distinct roots of multiplicities N2,. -, Np respectively, we let e
in (3.42). (Here, we are assuming N1>=2.) We use the notation [N1,N2,...,Np] to
denote this coordinate system. The result is easily seen to be

(3.43)
N

E S)+l(--kt) NI-j-1

j=

p Nj-1 p SJ

+ E E S/+l (X’e[l) Na-j+IXt-2q- E --Na--’+-I
J=2 j=l (V-e,)N,-j+I J=2 (

(X;=2(1/ej)SN+ 1)
,jl-I n. x

(I-Ia--------Z2-!ea) (-1) N’ fi (N-x’").
P j=
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Equating coefficients of (t) NI --2 on each side of this identity, we obtain

(3.44) S
(E=2(1/ej)SJ ,)N,N,+,)(I-I*]=2(ej

Equating coefficients of (kt) N1 -3 and making use of the condition 2 0, we have

P

(3.45) x ’j . Njej
j=l J=2

s,
N1>_3,

sl’
s
$21, Nl=2-

Here $21 (y{)2, S 2yly.
For N > 3 we can define hyperspherical coordinates )3/so that

(3.46) v/-y] )3 1/ 1 "1
YN1,

and (of course)
p N
2

J=l ,]=1

Passing to Cartesian coordinates z via (3.40), we can obtain the linear potential

s-(_ z -
This potential will be real only for a pseudo-Euclidean space.

For N 3 we can set y =p21 and, from (3.46), (3.40), achieve the linear potential

Finally, for Nx 2 we can obtain the oscillator potential

S.__ p Nj

2 (z,.’) z,
S J=2 j’= /=l

Thus all the potentials V correspond to either linear or oscillator potentials in

terms of Cartesian coordinates. The coordinate hypersurface x-- x; for N 1, N2," ", Np]
is given by

N

(3.47) 7. S)+l(-X’) N-j-1
j=

p Nj-1

-lt- E /xS/+lTvj -./’ + (xiej) ux-j+l( X,)-2
J=2 .]=1 txi--ej)

JP SNj+I

J=2 (xi--e])
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Note that since SXN +1 does not occur explicitly in (3.47), hyperspherical coordinates Yl
can always be chosen such that this hypersurface is quadratic in terms of the associated
cartesian coordinates in E / 1.

4. Stckel equivalence |or SchrOdinger equations. Here we work out the ap-
propriate modification of the results of 2 for the Schr3dinger (or Helmholtz) equation
with velocity dependent potential. On V this equation can be written in the form

9f’+ =- Ap + O v/ + V/ E+(4.1)
where A is the Laplacian

and

(4.2) Q.v/= _, Qigij)j/.
i,j=l

Here, Qi(Y) is a covariant vector and V(y) is a scalar function. Applying the definitions
and techniques of [16], [21], we obtain the following necessary and sufficient conditions
for multiplicative R-separability of (4.1) in the orthogonal coordinates {xi},
eI-I . (J)(= x)):

1) the metric ds-=Y’,iH(dx) 2 is in Stckel form,
2) there is a function Q such that Q;= B;Q in the coordinates { x j },
3)n :z _2R2

i=1H (R ;i )+ V is a Stckel multiplier where

(4.3) -2R= Blog(H1... H,/HZ)+Q, Ru=)iR i.

If conditions 1)-3) are satisfied, then Ri= )iR.
Now suppose that the SchriSdinger equation (4.1) R-separates in the orthogonal

coordinates { xj }. In these coordinates (4.1) takes the form

(4.4) --Oi[(f-H)O] +eiH-Oi /+ V/=Eq,

where V =HH...H. Let W0 be a Stckel multiplier for the metric ds=
II(dx). Our basic observation is that the SchriSdinger equation

(4.5) W-I[A+ O.v + VI/=E
i.e.,

(4.6) IN+ Q"v + W-1V]/=Eq
is also R-separable in the coordinates { x}. Here N is the Laplace operator corre-
sponding to the metric Wds 2. We say that N + Q’. v + W-1V is a Stckel transform of
A+Q.v +V.

Variable R-separation for (4.1) can be characterized intrinsically.
THeOreM 5. Necessary and sufficient conditions for the existence of an orthogonal

R-separable coordinate system {x } for the Schrbdinger equation (4.1) are that there
exist n second-order differential operators

(4.7) k= Ak + viQgik).vj+. Vk, k= 1,..., n,
i,j=
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( a’ ) on V" where

(4.8)
1 LAk--

i,j=l

and At A such that
1) 0, =<
2) The set (Gk k 1,..., n } is linearly independent as n quadratic forms on

where

n

G, ij
g<,) p;pj..

i,.j=

3) There is a basis { 0(j) 1 <=j <= n ) of simultaneous eigenforms for the ( Gk }.
If conditions 1)-3) are satisfied, then there exist functions gJ(x) such that o(j)=gJdxj.

(Note that the division (4.7) ofk into three terms is coordinate independent. Indeed the
operators A, are in self-adjoint form with respect to the measure on V" given in local
coordinates by dy dy" whereas Q and Vk V(l= V) are scalar valued functions on

Proof. Suppose the operators satisfy conditions 1)-3). Comparing coefficients of
third derivative terms in [,,at’l]= 0, we obtain {Gk, GI)=0. It follows from Theorem
1 and comparison of second derivative terms that there exists an orthogonal coordinate
system (x ) such that

(4.9)
n

’k P}k)H-2(Oii+fiOi) + Z QiP}k)Hi-2Oi + Vk.
i=1 i=1

Here f/= 0/log(H1... H,/Hi2), 0i= Ox,, Qi Ox,Q and the functions p}k)(x) satisfy con-
ditions (2.4), (2.5).

At this point it is convenient to perform the similarity transformation

(4.10)

where 20iR fi + Qi. We find

(4.11) =
where

(4.12) = Vk + Y’p}’)Hi-2( Rii- 2R2 )

Comparison of the coefficients of 01 in [,.’l,dk]-- 0 leads to

(4.13) 3,k= 31(O)T), 2 <= k <= n
where

(4.14) T= V+ Y’H-2( Rii- 2R2i ).
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Since ao.9 i,lT’k we see from (2.5) and (4.13) that

Oj,T= ajTO,logHf + atTOjlogH[- :,
Thus T is a Stckel multiplier and (4.1) R-separates in the orthogonal coordinates

Conversely, if (4.1) R-separates in the orthogonal coordinates { x } then there exist
functions qt(x/) such that T= Y’.t+ t(xZ) Hi- where T is given by (4.14). It is straight-
forward to verify that the operators z’k e Rzke- R defined by (4.11), (4.12) with

=,

satisfy conditions 1)-3). Q.E.D.
Shapovalov [15] has stated without proof a theorem which implies Theorem 5.
COROLLARY 3. Let { zC’, k 1,..., n } satisfy conditions 1)-3) of Theorem 5 and

let { W, k 1,..., n ) be a set ofscalar valuedfunctions on V" such that W14:0 and

(4.15) (G,+ W,, Gt+ W) =0, l<=k,l<=n.

Then the system { zg! } where

also satisfies conditions 1)-3) and corresponds to the orthogonal coordinate system { x }
for the Schr6dinger operator 3"=. In particular { t’,, } O.

This is the operator analogue of Theorem 3 and is proved in a similar manner.
In analogy to (2.12) there is a special case of the Stckel transform for Schr6dinger

equations in which the formal eigenfunctions are preserved by the transform. Consider
the eigenvalue equations e’kq=Ek+, k= 1,..-, n, corresponding to the R-separable
equation (E E)

(4.16)
/- i=1

in the orthogonal coordinates { xj }. Here k is a parameter and

(4.17) 1
3i (ai)vl-3i) + V,- XW,.

iiSuppose the quadratic form (a(o } is nonsingular and W4:0. Then Wz is a Stackel
multiplier for this form and the equation

admits the same R-separable solutions as does (4.16). Here (4.18) can be cast in the
self-adjoint from

(4.19) "(’)
Oi -;--1
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-1where a

(4.20)

=I-I" JJ W= w;-.j= a (l),

(,,= a(,) In(

and

(4.21) q=eS@) eS=[ Wln-2a] 1/4

g

Thus the Stckel transform takes R-separable solutions q of (4.16) on the manifold V
to R-separable solutions of (4.19) on a manifold Vn’.

Note that the natural metric on V" with respect to which the ’k are formally
self-adjoint is f dx. Similarly the natural metric on V"’ is (W"a dx. A formal
computation yields

dx

or (Wtq,q)= (O,O) where (., .), and (., .) are the inner products on
respectively. Thus the inner product, hence the spectral resolution for the operators
is in general not preserved by a Stckel transform. However, in particular cases the
spectrum is preserved, e.g., the transform from the Coulomb to the pseudo-Coulomb
problem where the irial Theorem [18] shows that the discrete spectrum is unchanged.
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Abstract. Usin the Painlev test, it is shown that the only interablc nonlinear Klein-Gordon equations
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In [7], two of the present authors (J. B. M. and P. J. O.) considered the problem of
which nonlinear Klein-Gordon equations

(1) u:,t=f(u )

are completely integrable. They referred to the Ablowitz-Ramani-Segur (ARS) conjec-
ture, [2], [3] which states that if a partial differential equation is integrable by the
inverse scattering transform (IST) method, then all its reductions to ordinary differen-
tial equations have the Painlev6 property, i.e., all their moveable singularities are poles.
It was shown in [7] that if f(u) is a linear combination of exponentials, the only
equations of type (1) whose corresponding ordinary differential equation for travelling
wave solutions

u(x,t)=w()=w(x-ct),

arising from the invariance of (1) under the group of translations, has the Painlev6
property, are those of the form

(2) Ux C2e 2fl u + cle + c_ e- B -t- c_ 2e- 2fl

for constants c2,.-. c_ 2. in fact the singularities of u are not really poles, but rather
"pure logarithms" in the sense that ux, u and exp(/3 u) have only poles. This extension
was included in the ARS conjecture as originally stated.

A paradox apparently remained; namely that the form (2), which does include the
well-known Liouville equation (only one nonzero ci), the sine-Gordon equation (c2
c_2=0, c= -c_, /3=i) and the Mikhailov equation (cx=c_2=0), [8], [9], [12] all of
which are known to be completely integrable, also includes the double sine-Gordon
equation (c2 c_ 9_, c c_ 1, /3 i), which is not integrable. Indeed numerical
studies have shown that its travelling wave solutions do not behave like solitons under
collisions, [1]. This apparent problem, however, is easily resolved if one considers a
second one-parameter group of symmetries of (1),

(x,t) (?tx,-it),

*Received by the editors July 3, 1984, and in revised form January 21, 1985.
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leading to a different form

u(x,t)=w(xt)=w(l)

for the group-invariant solutions. Then w satisfies the ordinary differential equation

(3) lw" + w’=f(w)
where xt.

In order to apply the ARS conjecture, we need to analyze the singularities of
solutions of (3) in the case f has the form (2). To eliminate logarithmic singularities, set
v exp(/3 w), so v satisfies

(4) v"

All second order ordinary differential equations with the Painlev6 property have been
classified by Painlev6 and Gambier and can be reduced, through a change of variables,
to one of fifty canonical forms--see [5]. An obvious candidate to reduce (4) to is the
equation

(5) w" w’ w’ ,w+/ +-+yw
W Z Z W

which is canonical form number 13 in [5, p. 335]. Thus we need to determine when (4)
can be reduced to the canonical form (5). The change of variables

(6)
reduces (g) to

--Zp U-"zqw

W
t2

W(7) w"= -Ebnwn+lz nq+p-2

where the sum is on n= 2,1,- 1 and -2 (but not 0!) and the b,’s and c,’s are related
by irrelevant powers of p.

In order for (7) to agree with (5), we need to have all of the following four
conditions to hold:

a) either b2 0 or 2q +p 2 0;
b) either b 0 or q +p 2 1;
c) either b_ 0 or q +p 2 1;
d) either b_ 2 0 or 2q +p 2 0.

Clearly this is not possible if all the b,’s are nonzero. If only one b, is nonzero, there
are no difficulties. The original equation was the Liouville equation Uxt--eBU which is
integrable using the Bcklund transformation

wx= ux+ exp (u+w), wt=-ut-exp (u-w)

with w satisfying wxt= 0, [4]. Alternatively, we can set

u=llog[2 wa,eO/(e"-1)2/3]
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leading to vx= 0. If b2=b_2=0, bib_ 14:0 then (4) is already in the canonical form (6)
with ,=8=0, cq34: 0, so no change of variable is required, i.e., p= 1, q=0. This is
the case of the sine (and sinh-) Gordon equations, which are integrable by inverse
scattering methods. If bl---b_l=0, bb_aO, then we again have the sine-Gordon
equation, but we have made a different choice for defining v in terms of u. This should
not alter the Painlev6 character of the equation, and indeed p 2, q=0 will satisfy
conditions a)-d). Curiously enough this reduces (4) to a canonical form (5) with
c =/3 0, 8 4: 0, which is not the same as above. This shows that the same equation
can be reduced by different changes of variables to different canonical forms.

If bx--b_2=0, b2b_ 14:0 (or, respectively, b_l=b2=0 bxb_O), then we have
the Mikhailov equation

ut= be + b’e-,
which was shown to be integrable by a 3 3 matrix scattering problem, [8], [9], [12]. In

(respectively 4this case, conditions a)-d) have the solution p , q= g p , q= x),
and hence this reduction of Mikhailov’s equation does have the Painlev6 property.

Finally, if bxb 4: 0, even if b_ b_ 0, one would need p 0, q 1 for a)-d) to
be satisfied. But this is not an acceptable change of variables as would not really
depend on z. Thus we cannot reduce (4) to the canonical form (5) if bib24:0 whatever
the values of b_ and b_ _. By symmetry, the same holds if b_ b_ 0 no matter what
values b and b have. Of course, this does not completely prove that (4) in this case
does not have the Painlev6 property since (6) is not the only possible choice of change
of variables and it may be possible to reduce (4) to some other canonical form. Indeed,
we have just seen that starting with ba b_ 0, bb_ 4 O, the change of variables (6)
with p= 2, q=0 is a rather contrived way to reduce (4) to the canonical form (5)
compared with the more obvious choice v= w 2. To check that if blbg_ 4: O, equation (4)
does not have the Painlev6 property, one could study the behavior of its singularities
and show that they are not pure poles, or, alternatively, follow through Painlev6’s
deviation of the fifty canonical forms, as in [5], and see that it does not fall into one of
these categories.

Instead of doing this, however, it is just as easy to check the Painlev6 property for
the partial differential equation (2) directly, using the method introduced by Weiss et
al. [10], [11], and improved by Kruskal [6]. First set v exp(flu), so (2) becomes

(8) OOxt OxO + C2o4 + ClU3 + C_ o + C_ 2"

Suppose o(x, t) is singular along the curve

+(x,t)=x+cp(t)=O

with q arbitrary. Let us expand v near this curve in a Laurent series

(9) o--r Z a,(t)q".
n=0

Without loss of generality, we can suppose c 4: 0. (If c =0, c_ 2 4= 0 change variables
by replacing v by I/v; if c=c__=O, change v to v2 if c10 and v -2 if only c_ 4=0.)
Balancing the lowest powers of + in both sides of (8), we have one possible solution
r 1. Equating the coefficients of p-4, we get

2a2 dqodt
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SO

(10) C20t dq9
dt"

Substituting (9) into (8) and identifying the coefficients of n-4 gives an equation for
all of the a,’s except a2 which does not appear when one equates the coefficients of
q-2. Indeed n= 2 is the "resonance" in the ARS terminology, [3]. More precisely, the
coefficient of q- is

dq dao
2aa---a dt

which by (10) gives the expression

(11)
for a1. At order -2, we find

da
2aoa2 al dt

dotoa0--+ 4c2aa + cla3o,

Oll-- --Cl/2C2

dao 1 d2qo/all2
 I-Z

If this quantity does not vanish, one cannot find an expansion for c in the form (9).
Terms of the form

(a2 + 6210gb)

are needed at that order, and at higher and higher orders in q one will need higher and
higher powers of logarithms of q. Such an expansion is not of Painlev6 type.

In [7] the proof of the ARS conjecture was done by first showing that the solution
o(x, t) must be meromorphic when both x and are allowed to assume complex values.
This was then specialized to gain the required Painlev6 property of group-invariant
solutions. It also immediately gives the modification of the ARS conjecture by Weiss et
al. [10], [11] which predicts that an equation will not be integrable if some nonpolar
singularity exists on a line /(x,t)=x+cp(t)=O for q0 arbitrary. In particular, if
d Ztp/dt24: O, then c must vanish. This leads to an understanding of the result of [7].
For translation-invariant solutions, we have only straight lines x ?,t + k, so d2cp/dt2--O
in this case, and a nonvanishing a does not pose any difficulty. Alternatively, the
original ARS conjecture for the scale-invariant solutions would also lead to the same
conclusion cx 0.

So far we did not find any restrictions on c_ and c_ 2. However, if c_: does not
vanish, a similar argument shows that c_ 0, namely we look at solutions with the

O= Oto + a12+ ..-,

which, because of the coefficient c multiplying the highest derivative Gt in (9) may be
singular when c =0. Indeed, if c_ 4:0 one finds that it is a singular logarithmic point,
with logarithms first entering at order q3.

In conclusion the analysis of the singular behavior of solutions shows that the
solutions are meromorphic along arbitrary curves if and only if blb2-- 0 and b_b_ 2 =0.
We conclude that the only possible integrable cases are the Liouville, sine-Gordon

By (10), (11) all the terms cancel except for %dao/dt, the value of which is

dq0
2aoa2--- + 6c2aoa + 4c2a3oa2 +
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(sinh-Gordon) and Mikhailov equations, in perfect agreement with the known integra-
ble character of these equations and the nonintegrable character of the double sine-
Gordon equation, as suggested by numerical studies of its solutions.
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ON THE INFINITELY MANY SOLUTIONS OF A SEMILINEAR
ELLIPTIC EQUATION*

C. JONES AND T. KIIPPER:

Abstract. A dynamical systems approach is developed for studying the spherically symmetric solutions of

Au+f(u)=O, where f(u) grows like lulu as lulls. Various scalings are introduced to elucidate the

singular behavior near the center and at infinity. The solutions of interest appear as trajectories in a

three-dimensional phase space with a different amount of oscillation around a certain invariant axis. Using
this oscillation, solutions with a prescribed number of zeros can be found when o < 4/(n 2).

Key words, spherically symmetric solution, oscillation properties, dynamical systems
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1. Introduction. Variational arguments have been very successful in finding solu-
tions of semilinear elliptic equations. Strauss [16]. proved, by a nonlinear minimax
argument, that a certain class of equations on R have infinitely many solutions.
Berestycki and Lions [2] proved the same type of result allowing more general nonlin-
earities. A canonical example is given by the equation

(1.1) au+lulu+Xu=O,

where Ax= Laplacian in xR"(n> 1), k <0, o>0 and one is interested in classical L2

solutions. Any of the above-mentioned results applied to this example guarantees the
existence of infinitely many spherically symmetric solutions if o < 4/(n- 2).

Equation (1.1.) is the standing wave equation for many nonlinear evolution equa-
tions, for instance the nonlinear Schr6dinger, heat and wave equations. In nonlinear
optics, this Schr6dinger equation arises as a simplification to the Maxwell-Bloch
equations. The solutions described in this paper may be relevant to some recent work
on the behavior of an optical ring cavity, see McLaughlin, Moloney and Newell [11].

It has long been suspected that these infinitely many solutions are ordered, in
some sense, by the number of zeros of the solution in the radial variable. Nehari [13]
and Ryder [15] proved results that cover the case n= 3, but the general case has
remained open. The variational proofs mentioned above give only information about
the energy values of the solutions and tell us nothing about the shape of their graphs.

In this paper we take a dynamical systems approach so as to realize the number of
zeros as a geometrical property in phase space. Using this, we are able to prove for a
large class of problems the existence of solutions with a prescribed number of zeros.

Spherically symmetric solutions of the equation

(1.2) Au+f(u)=O
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satisfy the ordinary differential equation

n-1(1.3) Urr-}-Urq-f(bl)---O,

where r is the radial variable. We shall look for solutions of (1.3) that satisfy the
boundary conditions

(1.4) b/r(0) "-’0,

(1.5) lim u(r)=0.
+ ot:

Condition (1.4) is necessary to have a regular solution of (1.2), while (1.5) is forced (it
turns out) by looking for an L2 solution.

We make the following assumptions about f(u):
(1) f: R R is C1.
(2) f(u)--k(u)lulu/ g(u), where

k(u)=(k+ ifu>__O,
k_ if u<0,

and k+>0, k_>0,

13’ 13’-1 )), g’(u)--O(lu aslu + forsomeT<o+l.

(3) f(0) 0, f’(0) < 0 and if u is the smallest positive number for which ff(s) ds
0, then u is not a critical point; similarly for the largest negative number for which

Remarks. (1) The function f(u)= lulu +u with X < 0 and o > 0 is easily seen to
satisfy these hypotheses.

(2) It is convenient to write f(u)= k +_lu[u + g(u), with the understanding that k +
is k+ if u>__0 and k_ if u<0.

(3) Condition (3) seems a little strange and it is rather annoying that we need it. It
says that in the phase portrait when n 1, 0 has two homoclinic orbits, one in the right
half plane and the other in the left. This condition can be weakened somewhat as will
be remarked in [}4.

This paper is devoted to the proof of the following theorem.
THEOREM. If n > 1 and o < 4/(n- 2) then given m there is a solution of (1.3)-(1.5),

u(r) on [0, c) with exactly m zeros in [0, ). /f n= 2 these solutions exist for any o.

The relationship between o and the space dimension n is the most subtle aspect of
this problem. The Pohozaev [14] identity tells us that we cannot expect solutions to
exist if o > 4/(n-2). The variational proofs use the condition o < 4/(n-2) for the
compactness of a certain operator. It is interesting to see how the condition enters in
the dynamical systems arguments.

Another drawback of the variational argument is that it needs the nonlinear term
to be odd. This is not needed in our proof.

In 2 the basic framework in which we work will be given and explained. The basic
idea of how the oscillation (number of zeros) is measured using a winding number in
the plane is given in 3. This winding number idea is then used in 4 to obtain curves
for the problem near + that have the necessary oscillation. Using some simple
estimates, this is sufficient to obtain the solutions in the case o < 2/(n-2) or n--2.
This is done in 5. The full result is proved in [}6; it needs another transformation and a
much deeper understanding of the behavior near r 0.
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2. Basic framework. Firstly, convert (1.3) to a system

n-1 d
(2.11 u’=v, v’= -v-f(u),

r dr"

As r + , (2.1) looks like the system when n 1. We need to use this information in
a concrete way. To do this, introduce the transformation

r
(2.2) 0 r+l

Equation (2.1) then becomes

(2.3) v’=- (n-I)(1-0) v-f(u) d
0 --rr

0’= (1- O)2

Notice that the independent variable is still r, but r as a dependent variable has
been changed. The plane O 1 is now invariant (O’=0) and carries the flow of (2.1)
with n 1. Equation (2.3) is, however, still singular at p 0. This can be corrected by a
change of independent variable which has the effect of multiplying the equation by 0,
call the new independent variable

’=pv,
d

(2.4) v’= -(n-1)(1-p)v-pf(u), =-3-"
o’ o -0)

The plane O 1 is still invariant and carries the flow associated to (2.1) with n 1.
The phase portrait for the example of f(u)=[ulu+ Xu is shown in Fig. 1.

FIG. 1
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From the assumption about f(u), 0 must be a saddle and have two homoclinic
orbits as shown in Fig. 2. However there may be more than one critical point inside
each loop and there may be other critical points outside.

U

FIG. 2

If 0- 0, the flow is that of the equation

(2.5) u’=0, v’= (n- 1)v,

for which the u-axis is a line of stable critical points. Notice that each vertical line is
invariant. The flow is shown in Fig. 3.

",/ \ /

FIG. 3

/ \

The natural phase space for the problem (2.4) is 2 X[0,1]. The plane O=0
corresponds to r=0 and 9 1 to r= + . So the boundary conditions (1.4), (1.5)
translate to looking for an orbit (u(s),o(s),p(s)) that satisfies

(2.6) lim (u(s),v(s),p(s))=(a,O,O)
OQ
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for some a 4: 0, and

(2.7) lim (u(x), v (), t) (s)) (0, O, 1).

In the full phase space such an orbit connects a critical point on the u-axis in O 0
to the point (0, 0) in p= 1. The number of zeros is the number of times that the orbit
crosses the plane u=0. From the direction of the vector field on this plane, it can be
seen that this corresponds to the number of oscillations around the invariant line
u v 0. Therefore we are looking for solutions of the kind depicted in Fig. 4, where
the amount of oscillation is prescribed.

FIG. 4

The first step towards finding an orbit of the kind described above is to analyse
the local behavior near the critical points to be connected.

The linearisation of (2.4) at (0, 0,1) is

(2.8)
0 1 O)-f’(0) 0 0
0 0 0

whose eigenvalues are 0, +_.(-f’(0))1/2. The associated eigenvectors are (0,0,1), (1,
+__ ( -f ’(0))l/2, 0). These are the eigenvalues and eigenvectors of the one-dimensional
system (Fig. 2) and a neutral eigenvalue whose eigenvector points away from the plane
p=l.

We can construct the center-stable manifold Wi,c at (0,0,1). It is a small two-
dimensional surface which contains a piece of the stable manifold of (0, 0) in t 1, see
Fig. 5.

It is easy to check that in a sufficiently small neighborhood of (0,0,1), if x=
(u,v,O) WCoc then x-t (the solution of (2.4) starting at x) tends to (0,0,1) as
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Therefore W contains points whose orbits satisfy the correct boundary condition
(2.7).

FIG. 5

At a critical point in the O 0 plane, the linearisation is

(2.9) 0 1-n f(a)
0 0 1

The eigenvalues of this matrix are 0, 1- n, 1. The stable eigenvector is (0,1, 0). The
eigenvectors associated to 0 and 1 are (1,0,0) and (0, -f(a)/n, 1) respectively. The
unstable manifold points into the 0 >0 space. This unstable manifold (call it WloU(a))
corresponds to the unique solution of (1.3) that satisfies u(0)-a. This could actually be
used as a proof of the uniqueness.

FG. 6

Near a, these unstable manifolds can be collected together in the center-unstable
manifold, Wcu

o, see Fig. 6. These manifolds are unique because they are negatively
invariant; see Jones [9] for this type of argument. The idea here is that if there were two
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surfaces with center-unstable behavior, the complementary stable direction would tear
them apart (in backward time).

Now set W=Un WoUc(a). W is then a surface containing the line {(u,o,0)" o
=p 0}. It contains all the solutions to the original problem which are regular at r= 0.

The argument will proceed by iterating Wo of (0,0,1) in backward time and
making it intersect W. Part of the problem is that we cannot get an estimate on how
far W extends in the 0 direction that is uniform in a.

3. Winding number. In this section we define a winding number for a certain type
of curve in R 2. It will then be shown how we use this to measure the oscillation of
solutions.

Let C be a curve in R2, that is C is given by a function ," [s0,sl] 2.
DEFINITION. C is called an admissible curve if the following are satisfied:
(1) q is continuous and q(s)4= 0 for all s(So,Sl].
(2) q(So)= 0 and a tangent vector to C exists at s0.
This last condition says that

lim
q(s)

s-,s S So

exists and is nonzero; we shall always denote it +0-
The main point about an admissible curve is that we can assign an angle to each

point on it, 0(x) according to the rules:
(1) 0(4,(s0))= arg(p0 (argument of q0), where arg(+0) [0, 2r ).
(2) O(O(s)) is continuous in s[so,sl].

This is possible from the definition of admissibility. If O(s) is written as r(s)e i(s),
where a suitable branch for 0(s) is chosen, then

r(s)eis)/(s So)

as s-so. If O/o=roei, we have r(s)/(S-So)-Oro and O(s)-oOo.
DEFINITION. The winding number of an admissible curve C is then defined to be

I(C)= - rr
+1 -- rr

+1

where [x]= greatest integer less than or equal to x.
This rather strange looking definition becomes less mysterious when it is noticed

that the function

maps the points -r/2, r/2, 3r/2,... into the points 0,1,2,..., respectively. Thus
this winding number counts the net number of crossings of the vertical axis in 2. For
example, the curves in Fig. 6 have winding numbers 0, 3 and -2.

This winding number does not measure the exact number of crossings of the
vertical axis by these curves. It seems then that this number could only be used to
obtain a lower bound on the number of zeros and not give the exact number. However,
it turns out that the winding of the relevant curves gives the exact number of zeros. The
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curve used is not the solution but a curve on Wcs. It is the power of this method that
the topological winding of this curve determines the exact number of zeros of the
solution with initial value at the end point of this curve. See Proposition 3.5 below.

It is convenient to give a covering space interpretation to this winding number as
then the action of the flow as a homotopy can be viewed easily. The problem of dealing
with curves that go to 0 but have well defined tangent vectors there can be dealt with
by blowing up the origin and then using the covering space of this space.

Consider polar co-ordinates on R2(0). This is a mapping of R2(0) to +X S1,
(s,O)+XS and +={r:r>0}. R+S can be completed to +S by
adding on the set r=0. Let j:2\{0}/SX be the inclusion given by polar
co-ordinates. Set X ! + S1.

Let C be an admissible curve in R2. We claim that a curve 7 in X can be
naturally associated to C as follows. If C is given by q" [s0,sl] -, will be given by
q [s0,sl] X. For s(so,Sl], define

For s=so, set (s0)=(0, arg+0 ), where +0 is the tangent vector to C at s0. To check
this is continuous; for s near so, write O(s)= r(s) exp{ iO(s)}. Then

j(ck(s))=(r(s), O(s))(O, lim O(s)).
S---- So

But

lim 6(s)/(S-So)=+o

and

b(s)/(S-So)= (r(s)/(S-So) } exp( iO(s)}.
This implies that if qJ0=p exp{ i’t’ }, then

O(s)v asseso.

The space X= + S admits ’-- + as a covering space. Since we wish to
measure crossings of the v-axis, it is convenient to use a covering map that sends
vertical lines at integer intervals to the lines 0=rr/2,3r/2,.... If (r,x)X, such a
map is:

(31). p(rx)=(r 2r(2x-l,
4 [2x-14

The line x 0 is sent to 0= 3r/2 and x 1 to 0= r/2, etc.
From standard covering space theory, see Munkres [12], the curve ff can be lifted

to a curve in " and this is unique given the choice of starting point. For each
qp-l(q(So)), there is a unique curve ff so that p()= ft.

The winding number of C, I(C), is now determined by the number of crossings of
lines x=0, _+_ 1, + 2,.-. that ff makes. If ff is given by " [s0,sl]-)f and

(s)=(r(s),x(s)),
then this is

I(C)---[.(S1) --[.(S0)
It is easy to check that this is independent of the choice of (s0).
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Now consider how maps on R 2 lift to this covering space. This will lead to lifting
homotopies.

Let R 2 _. 2 be continuous and satisfy:
(1) (0) and 2\(0) are preserved;
(2) I) is differentiable at x=0 and D(0) is nonsingular.

There is naturally associated to such a tI) a map 4)"XX so that

+(j.(x)) =j.(+(x))

for x R2\{0}. Recall that j: R2\{0}R+ S1= X is the polar co-ordinates map.
It is trivial to define 0 on X to commute with j,

P(r,O)=(R(r,O), y(r,0))

where

O(re

Since is differentiable at 0

i)=R(r,O) exp(iT(r,0)}.

Since D(0) is nonsingular

is nonzero and

lim 1--*(rei)=D*(O)ei
r--- 0 r

lim
R(r,O)

(3.2) lim ,{(r, 0)= arg( DO(O)ei}.
r--0

It follows that 0 can be extended to X by setting

(0, 0) arg ( DO (0)ei ).
is thus continuous in r and 0 separately. Further R(r, 0) 0 uniformly in 0 since

is continuous at 0 and (3.2) is uniform in 0 from the definition of differentiability. It
follows that is continuous on X.

Now consider the case of a homotopy R - [a, b] R 2 under the following
assumptions:

(1) (0} and 2(0} are preserved by O, for each t. (Ot(x)=O(x,t)).
(2) tI) is differentiable at x=0, for t[a,b]. Dt(O is nonsingular and continu-

ous in t.

(3) [tI),(x + h)-O,(x)-Dt(O)h[-O uniformly in t[a,b].
DEFINITION. A homotopy N2[a,b]-R2 is called admissible if (1)-(3) above

are satisfied.
Let )(n 2\(0})[0,11X [0,11 be jid.
PROPOSITION 3.1. If P is an admissible homotopy, then there exists a homotopy

+" X [0,1] --, X such that

(3.3) +o]=jo

on (U 2\(0}) [0, II
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Proof. The above considerations about a map on R 2 guarantee that , is defined
for each and (3.3) is satisfied. It remains to show that is continuous. From the
above reasoning , is continuous in (r,O). Since Dxt(O) is continuous in t, is
continuous in for fixed (r, 0). Joint continuity then follows from (3).

The space X=R+xS is covered by ff=R+xR as mentioned earlier. From
standard covering space theory, lifts to a homotopy on J). So

2x [0,11--,2.
Let C be an admissible curve and an admissible homotopy. It is obvious that

t(C) is also an admissible curve, for any [a,b]. Since C is not a closed curve,
I(t(C)) can change with t. This is measured in

Let A 2 be given by

A={(r,x)’x.}.
The proof of the following proposition is immediate from the winding number.

PROPOSXON 3.2. If ,((so))A and t((sx))A for all t[a,r] then

I(*t(C))=I(*o(C)).
The next task is to relate this number and homotopy to the flow of (2.4).
Let w=(u,v,O)N 2 x [0,1], in the notation of (2.4). Rewrite (2.4) as

d(3.4) w’=F(w), dr"

From the assumption that f(u) is C, F(w) is easily seen to be C on (0,1). Let
q(x, t) be the flow operator for (3.4). Now restrict x to lie in the set { =3’ } R 2 for
some 7 (0,1).

We claim that q(x, t) is defined for all . For > 0, this follows from the fact
that energy is decreasing for (2.1). Set

then along orbits of (2.1)

H(u,v)=-+ s)ds;

dH (n- 1)
U2.

Consequently in forward r, the solution to (2.1) with (u(ro),V(ro))=(Uo, Vo), is con-
strained to lie inside H(u,v)=H(uo, Vo) and so exist for all r>=0. This property then
transfers easily to (2.3) and (2.4). That solutions to (3.4) exist for < 0 follows from
Corollary 5.1 to be proved in 5. This gives an a priori estimate to solutions of (2.1)
with r __< r0.

Consider I, as a map on (O=,}X[a,b] some a,bN. From the above it is
defined and continuous with values in R 2 X [0,1]. Let r" N 2 X [0,1] R 2 be the natural
projection and set r ’I’. Now consider as a homotopy on N 2,

(3.6) " n2 [0,1]-+R 2

with the understanding that the domain R 2 depends on 3’.
We must check that (I) is an admissible homotopy. Condition (1) is satisfied

because u 0 is a solution of the equation. Since (I) is a restriction of the solution
operator of (3.4), (2) follows because F is C1. (3) is the only condition that is not
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immediate. But the fact that the difference quotient of the solution operator approaches
the derivative uniformly on compact intervals of is part of the proof that it converges.
In particular it follows from the proof of Theorem 3.1 in Hartman [8, p. 98]. (3) would
follow easily from assuming that f is C 2 but in our main example

f(u)=lulu+Xu,

f may only be C at u 0, if 0 < o < 1. We have proved the following proposition.
PROPOSITION 3.3. is an admissible homotopy.
Recall W,c from 2; this is the local center-stable manifold of (0, 0,1) for (2.4). It

consists of orbits that satisfy the desired boundary condition at + . Let

wcs= U WfoS t= U *(W;CoSc, t).
t=<0 t_0

Wcs is the global center-stable manifold. The main curves whose winding number will
be measured are ones that lie in Wcs n ( 0 T }.

Let x Wcs t ( p T } and Cx be a compact curve in Wcs { O T ) joining x to
(0,0). In other words, if Cx is given by q [s0,sl] (P=T), q(s0)= 0 and q(sx)=x. We
claim that such a curve C is admissible.

Because the manifold W{2c for (2.4) is unique, it contains a piece of the curve
u o 0 for O near 1. This line separates Woc into two pieces

Wi,Sc Wu W

where wR C ( U > 0) and WLc ( u < 0). The point x Wfoc some t, and therefore it
lies in wR.t or WL.t. Assume without loss of generality that x wR.t and that
c\{ (So)) C w. t.

Now q is clearly continuous and q(s)4:0 for s4so. We only have to show that a
tangent vector exists at so. C.tc WR and q(So).t ((0,0)} [0,1]. Since p’ is indepen-
dent of u and o in (2.4) (C\(k(So))).tc wRc(p=) some . Since Wl,c is smooth
and transverse to ( O }, wR ( p } is a one-dimensional curve in ( O } and has
a tangent vector at (0, 0). It therefore follows that C. does also. It is now easy to see
that Cx has a tangent vector at so and we have proved the following proposition.

PROPOSITION 3.4. If Q, is a continuous, compact curve in WCSN (r=y } given by

’ [s0,sl] (P=Y) with q(s0)=0 and q(sl)=x4: 0, then C is admissible.
If x Wcs, the solution to (2.4), x(t) with x(0)=x satisfies x(t)- (0, 0,1) as
+ 0. The reason our approach works is the following proposition.
PROPOSITION 3.5. If C is a curve as described in Proposition 3.4, then

I ( Cx) number of zeros of u ( ) in the solution x ( ), [0, ).

Remark. This proposition is not obvious because C is not the solution curve, it is
a curve in Wcs.

Proof. C Wcs ( 0 T ), we can apply the homotopy derived from the flow. If
is a large positive number, then

(3.7) I(,(C)) 0

since (Cx)c WR (or W). From Proposition 3.2 tlere exists t[0,z] with t((So))
or t(q(sx))in the set A.
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The tangent vector to WR { O }" t, for all < 0, lies in the set { u > 0}. This can
be seen by checking the vector field on u=0 and H(u,v)=O for (2.3), see Fig. 7.
Notice that it points for large and t=0 into the region between the bulb H(u,v)=O
and {u=0, v<0}.

u

FIG. 7

It follows that t(@(So)) never crosses 0=r/2 or 0=3r/2. Consequently
t((So))A for all t[0,-].

Therefore t(@(s1))A for some t[0,-]. In fact it must cross A at least l(Cx)
times for [0, -], from (3.7).

Now t(b(S1)),’X[0,1] and p(t(@(S1)))=lt((S1))--dt(X)---(lt(X)). But
/t(X)--W(t) is the solution of (2.4) satisfying w(0)=x. If t(k(S1))(-A then t(x) { u

0 }, which means that if w(t) (u(t), v(t), 0(t)) u has a zero at that value of t. The
direction of the vector field of (2.4) on the v-axis is determined by u’ O v. Since we can
assume O > 0, it is as given in Fig. 8.

FIG. 8
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A solution can only cross v---0 with angle decreasing in forward time. In the
covering space, tt((Sl)) can only cross a line .4 with decreasing horizontal co-ordinate.
It then follows that it must cross exactly I(Cx) times. Therefore u(t), t[0, o), has
I(Cx) zeros.

As a consequence of the proof above we can see that I(tt(C)) can only increase
as decreases with < 0.

PROPOSITION 3.6. If C is a curve as described in Proposition 3.4, I(t(Cx)) is a
decreasingfunction of t, for all R.

4. Behavior near + oo. The proof of the theorem will proceed by iterating W, of
(0, 0,1), in backward time and ensuring that it eventually intersects W. The zeros of
the solution will be obtained by constructing curves in Wcs with a certain amount of
winding. It was proved in 3 that the winding of such a curve determines exactly the
number of zeros of the solution starting at the end point. In this section we shall prove
the existence of curves in Wcs with arbitrarily large winding number.

Recall the basic equation (2.4):

u’= pv,

v’= -(n-1)(1-p)v-pf(u),
p’=p(1--p)2.

Let IF’c R [0,1] be given by

W=((u,v,p):l-y<=p<=l},

V > 0 is fixed.
We claim that W is a Wazewski set in backward time, see Conley [5] for definition.

Let

W= (x W:x’t W some t<0},
W+- (x W’x.(t,O] W for all t<0}.

For W to be a Wazewski set, it suffices that W and W+ be closed in R 2)< [0, 1]. Since
W+= {(u, v, p):p--1-3’ }, this is obvious. The point about a Wazewski set is that one
can define a continuous map R W W+ as follows. For x W, let

"r(x)=sup{t<O:x.t W},

and set R(x) x. (x). Wazewski’s principle says that R(x) is a retract of W to W+.
It maps a point x e W to the place where it first leaves W.

Now choose 3’ so that WcS q { p 1 3’ } is nonempty. In fact WcS N ( p 1 3’ }
will be a curve containing (0, 0). Let F be a continuous curve in Wcs satisfying the
conditions:

O) (0,0, a -V)e r.
(2) r\{(0,0,1-3’)}c {u>0}.
(3) There exists exactly one point y in F rq { p 1 }, see Fig. 9.
The set F= F\( .P } c W and so we can restrict R to F as a continuous map; it

is then obvious that R(F)c Wcs. The following lemma is what we need about the
behavior near p 1 (r + oo) for the existence theorem.

LEMMA 4.1. There exists x R(F)c Wcs such that Cc R(F) and I(Cx) is arbi-
trarily large.
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o=l-y

FIG. 9

FIG. 10

The lemma says that R(F) contains curves as shown in Fig. 10.
The idea is that because of energy dissipation, the solutions will move outside the

"bow-tie" of (O 1 } but the oscillation in (O 1 } will cause them to rotate around
(0, 0). There is, however, a nontrivial estimate to be made. Since the solutions are
moving away from ( O 1 }, it is a little delicate to check that the oscillation can still be
forced on them.

Recall from 2 that (0, 0,1) has one negative, one positive and one zero eigenvalue.
Let E s, E u and Ec be the associated eigenspaces, with (y,z,’r) as the co-ordinates
given by the decomposition ESEUEc. We can assume that ’=l-o. There is a
local center-unstable manifold Wf given by

y=gl(z,’r)

in a neighborhood of (0, 0, 0). WoSc is given by z g2(Y, )- Now change co-ordinates on
2 [0,1] so that near (0, 0,1), Wf and WCoc become orthogonal planes. Near (0, 0,1)
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these could be:

=y--gl(Z,l--p),
rl=z--g2(Y,l--p ),
r=l-p.

Near the origin the equations now take the form

(4.1) rl’ fll +f(’, 1, r),
r’= -(1 --T)’r 2

where a<0, /3>0 and fi(,q,r)=O([l+[rtI+Ir[), i=1 or 2. The relevant parts of the
new phase portrait are depicted in Fig. 11.

FIG. 11

Set V= V(e,8)=[-e,e]X[-e,e]X[O,8] in (’,,r) space. If e is small enough, V is
a backwards Wazewski set. We shall need some notation

z; WloU c { r=e), z3 W,cn { n -e),
z; wLn W, cn

It is clear that these sets are just single points. Recall that Wl= WM { =0}. Let
D be a neighborhood of z in {=e} and D{ a neighborhood of z{ in {=e}.
Define D] and Df similarly, see Fig. 12.

Let P"V V+ be the Wazewski map for V, where V and V+ have the analo-
gous meaning to W and W+. P is defined on D{ z?} and D{z }. We can also
define a map Q’D { e } as follows. Let T(z) be determined by z. T(z)= z.
If (,,) and is still the flow,
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FIG. 12

can be solved, as a function of z, near (zi-, T(z)). This follows from the implicit
function theorem, knowing that the vector field is transverse to /= e. Let the solution
be denoted T= T(z). Now restrict D to lie inside the domain of T(z) and set

Ql(Z)=z’T(z).

Similarly define Q_ on D-.
We shall need an estimate on what Q1, Q2 do outside the box and one on what P

does inside. Let K= {(’,,’)" =e and ’=< -a’), K= {(’,,’)’/=e and ’>__a’},
see Fig. 12.

LEMMA 4.2. If D{ is small enough,

QI(D; (I<=O))cK1,.
LEMMA 4.3. IfD is small enough,

:(n-cq(n>=0})K,2.

LeMMA 4.4. IfD is small enough, the, any set A c K1, ( D? with z qA satisfies
p(A)c (=

where D is some prescribed neighborhood of z.
LV.MMA 4.5. IfD is small e,ough, the, ay set A c K, (qD with z A satisfies

where D{ is a prescribed neighborhood of z{.
We shall only prove Lemmas 4.2 and 4.4; 4.3 and 4.5 only involve changing

notation. We shall do 4.4 first.
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Proof of Lemma 4.4. The set ( /= e}\(z- } c V, therefore P is defined on A.
Since =0 and ’=0 are invariant relative to V, it is clear that P(A)c (,/>=0) c (’__<0}.
The lemma will follow from proving the following two facts; a is fixed and positive"

(1) If D- is small enough, P(K]C3D) lies in a prescribed neighborhood of

(2) If zk z and ( zk } cK then P(z)z.
Note that (2) does not trivially follow from the continuity of P because P is not

defined at z-. We firstly prove (1). This is the key estimate, for it says that the
influence of the flow in ( 0) is stronger than that of z’.

Let z (’o, /0, 0) K,,, some a > 0. Define

T,(z)=inf(ltl’t<Oand z.t{=8)),
r(z)=inf(Itl’t<Oand z.t (’= -e}).

(1) follows from showing that

(4.2) T(z)/T,(z)O as zz,
for then the orbit z. will reach " -e before it reaches -= 8, and this will be true for
any 8, making ]z zi small enough.

From (4.1)

(4.3) " a" +fx (’, 1, ’),
with a < O. On any orbit of interest " __< O. Since " 0 is invariant,

fl (’, /,) g(’, r/, ’)
where g(’, ,/, r) can be made as small as desired by making V small. Therefore

dt -Integrating, we have

fol-a >= dt
T

SO,

2__ln ’____0
_

Tr"
This is the estimate on Tr. For - we have from (4.1) in V, " = -.2 and so

2=

which gives

1 1

or,

1 1 1r>--- >
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if % is chosen so that i > 2%, for instance. But then

T/T <=- n --eSince z K,,, ]’0]> a%, and so

4a’ IT/T< ..ln--

as z --> z-, ’0 -o 0 and the right-hand side (which is positive) tends to 0. This proves (1).
It then follows that P(z,)--, { -=0} in the sense that all limit points lie in { ’=0}.

For (2) it suffices to show that any such limit point is zi. Suppose P(z,)---, ?. where
2 =/= z-; then has coordinates (-e, /, 0) for some l =/= 0. But such a point lies in the
range of P, so P(2)=, for some 2 {l=e}N{=0}Ch{-e=<’<0}. By continuity of
the flow we would then have zk , but 4: z;- which is a contradiction.

Proof of Lemma 4.2. Recall that QI"Df {/=e} and Ql(Zf)=z. We shall
compute OQ1/Ow in two different directions w. Let g(z) be the vector field of (4.1) at
z (’,i, p). We claim the lemma follows from proving the following:

(1) OQ/lwxg(z)=(at, a2,a)has a>0 and ag>0if w-(0,0,1).
(2) OQx/3wg(z)=(bx, b2,b3) has b3>0 if w=(0,- 1,0).
To see that these prove the lemma, consider the images of the curves 0, "- -and "r=0, ’=-e inside the neighborhood D{. Q maps these to curves in { /= e}

emanating from z-. Further the region { __<0)D{ is mapped under Q to a region
bounded by these two curves, since Q is one-to-one. If D{ is small enough, it easily
follows from the information about the tangent vectors in (1) and (2) that this region
lies in K some a > 0, see Fig. 13 of /= e. The shaded area is Q({ 1 < 0} D{). To see
this, one has to calculate the cross product with the vector field at this point, but notice
the vector field is only nonzero in the second component at zi

z

FIG. 13
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To prove (1) and (2), calculate:

OQ
Dc ( z "r ( z ) ) w + -- ( z "r ( z ) ) (V "r ( z l w )

recall that is the flow. Now

(4.4) i}a v(z))w (z)o-7- x g(z?) ( g

since (8/Ot)(z,r(z))=g(z(). So it suffices to compute the right-hand side of (4.4)
which is the same as

We can now see why information about the tangent vectors is obtained through the
cross product with g(z) as in (1) and (2). The problem is that Q is not exactly the
flow, but it differs from the ow by something in the direction of the ow and tNs
drops out when crossed with the vector field. (4.5) can be computed using the equation
of variations.

Both D(,t)w and (O/Ot)(,t) satisfy the equation of variation of (4.1). It is
most convenient to work with this back in (u, v, 0) variables. It is:

u 0 0 v u
(4.6) v -OI’(u) -(n-I)(1-0) (n-1)v-f(u) v

o o (1-p-2o(1-o)

Since the orbit through z has p 1, we can simplify (4.6) to"

8u’=Sv+vSp,

(4.7) o’= -f’(u)u+ ((,- 1)-f(u)) 0,
8p’=O.

In these co-ordinates, we can write

W(z,t) (Su(t),SO(t),O)

where c=- 1 for (1) and c=0 for (2). Note that c is independent of because of
80’ 0 in (4.7). Now compute

(4.8) D(z,t)x(z,t)=(-(cSoa), (cSu), (6u28o-8o28u)).

With c= -1, projecting into (r=0}, (4.8) has co-ordinates (8ox, -8u). In the =0
plane this is orthogonal to the vector field at z, in a counterclockwise direction. Since
the transformation to (,) co-ordinates is orientation preserving, (a,a2) lies in a
counterclockwise direction from g(z) and so ax > 0.

We need to show that for each of the values of w (0, 0,1) and (0, 1, 0), the third
component is negative, since reverses the orientation of O. Let =U2OI--U2U
and compute, using (4.7),

’= -cv2(n-1).



822 C. JONES AND T. KPPER

In case (1), c= -1 and to’> 0. For (2) to’ =0. It remains to compute the values at
0. This can be done back in (’, /, z) co-ordinates. Since the change of co-ordinates

preserves orientation in r 0, the sign of to is the same in each co-ordinate system.
For (1), to is the third component of (O,O, 1)g(z{), which is zero. For (2), we

have (0,- 1, O)g(z{) and g(z{) has zero second and third components. Moreover its
first component is positive. It follows that to < 0 at 0.

In both cases at z(zi-), to <0 as desired.
Proof of Lemma. 4.1. Using these results, we can prove Lemma 4.1. It suffices to

find for given N, F so that -[- T,0]c W and if Yc.t=(u(t), v(t), O(t)) then u(t)
has at least N zeros in [- T, 0]. Clearly there exists a smallest ’> T so that . " ( p
1 , ), set . ( ]’)= x. From Proposition 3.5, I(Cx)= number of zeros of u(t),
[- T, 0], which is bigger than N.

To find such an , work in (8, /, r) variables. Recall F is a curve in W,c joining
Wc and some point on the p-axis, not (0,0,1). In (8,/, r) variables we can assume this
includes a piece of (1 =0)n V and this piece is a curve converging to the ’-axis. It
follows that we can pick z F so that, for some o < 0, z. o Di- C { ,/=< 0); for any
neighborhood Di- of zi-, obviously z depends on Di-. Now apply Q1, by Lemma 4.2
Q(z.to)Kl for some z>0, and by continuity it lies in a prescribed D-, neighbor-
hood of z-. Therefore there exists t, so that z. tx KaD. Now apply P, through
Lemma 4.2, P(z.t)(=-e}tq(/>__0}D-. So there exists 2 such that z.t2
(= -)n(n=<O)nD-.

We now have a z so that the orbit z.[t2,0 rotates around one half-time, through a
neighborhood of zi- to a neighborhood of z-. It is also clear that r < 0 on this orbit.
Notice the important fact that back in (u,v,o) co-ordinates u(t) must have a zero
between the neighborhood of z- and that of z-.

Lemma 4.3 can now be applied to z. 2, to obtain so that z. K2 D-,
obviously making D{ smaller again if necessary. Then apply Lemma 4.5 to obtain 4

so that z.t4 (=e}N{,I<=O}nD{, with a possibly different Di-. Now a full circuit
has been made and u(t) has two zeros. This argument can now be repeated to obtain
an arbitrarily large number of zeros.

5. Completion of proof when o <2/(n-2). Recall that we are working with the
equation (2.4) in the phase space R2 [0,1]. So long as n > 1, Lemma 4.1 guarantees the
existence of a curve Cx c R(F)c Wcs with I(C) arbitrarily large. This lies in the set
(p 1-7 ). The flow operator (3.5) can then be applied to this set. We shall apply it
with large negative so as to pull Wcs back to p 0. We need an estimate to guarantee
that is defined and to see how dt(C) can grow in R2.

It suffices to prove the estimate for the original equation.
LEMMA 5.1. If u(r ) is a solution (with n > 2) of

(5.1) u"+n-lu’+f(u)=O, u(ro)=Uo, u’(ro):Vo

where f(u) is C and F(u)= ff(s)ds is bounded below, then there exist CI, C2 so that,
if r<ro

(5.2) lu(r) I<= Cxr --n

and

(5.3) lu’(r) IZ C2r-n
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where C1, C2 are constants depending on (Uo, Oo), uniformly on compact sets of (Uo, Vo)
oalues for fixed ro (0, ).

Proof. Rewrite (5.1) as

multiply by r"- lu’,

(rn-lut)t-k-rn-lf(u)=O;

{ 1 ,_1u,)2}’-(r +r =0.

Now integrate from ro to r,

1 ,,_ 1 )2 ff(r u’)2-(ro Xv0 + r 2n 2f(u)u =0.

Integrating by parts, with F(u)= ff(s)ds, gives

1 n_au,)2 1 2 2n- (2n frF (s))s 2n-3(r =-(ro lV0)--r 2F(u) + -2) (u ds.
ro

Since F(u) is bounded below, we can find k > 0 so that F(u) >_ k; then if r =< ro
1 n_Xut)2 fr(5.4) (r <_k +kr2n-2+k(2n-2) rs2n-3ds<_k2

where kx, k 2 depend on uo, vo and ro. From this, (5.3) easily follows and an integra-
tion from r to ro gives (5.2).

COIOLLARY 5.1. Under the same assumptions as in Lemma 5.1, /f (u(t), v(t), p(t))
satisfy (2.4) with (u(0), v(0), p(0))= (uo, vo, Po), 0 < Po < 1 then there exist constants C,
C2 such that

(5.5) lu(t) I=< Cx[o(t)] 2-",
(5.6) Io(t) I_-< C2 [o(t)] 1-

for all t(-m,0], where C and C2 depend uniformly on compact sets of (Uo, Vo) values
with fixed Po.

Proof. Lemma 5.1 gives the estimate on solutions of (2.1) and therefore on solu-
tions of (2.3) with p=r/(r+ 1). Now reset the parametrisation to get the appropriate
estimate on solutions of (2.4).

If n 2, the above still holds but now with Ilnr replacing r 2-".
LEMMA 5.2. If u(r) is a solution of

(5.7) u"+ 1 ’(-u’+/(u)=0, u(ro)=Uo, u ro)=Vo

where f(u) is C and F(u)= ff(s)ds is bounded below, then there exists C1, C so that
if r<=ro
(5.8) lu(r) 1<= C[lnr
and

(5.9) lu’(r) }__< C=(1/r)
where C and C2 depend uniformly on (Uo, vo) over a compact set if ro (0, m) is fixed.
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Proof. All the reasoning in the proof of Lemma 5.1 holds up to (5.4). This
immediately gives (5.9) and an integration gives (5.8).

COROLLARY 5.2. With the assumptions ofLemma 5.2 and the set-up of Corollary 5.1,
the estimates

(5.10) lu(t) l=< Cl]lnp(t)I,
(5.11) Iv(t) I< C2(1/p(t))
hold under the same conditions as in Corollary 5.1.

It now follows from Corollaries 5.1 and 5.2 and the equation p’= p(1 p)2 that, so
long as n > 1, the flow operator (3.5) of (2.4) can be applied to the ( p 1 7 } slice for

T, 0], and T< 0. Moreover

(5.121 I(,(Cx)) >= I(Cx)
from Proposition 3.6.

Because of the growth condition (2) on f(u), F(u) is bounded below and the
above corollaries can be applied. If n > 2, it follows that oot(Cx) lies in a set in R 2 of the
form

[-Clp2-n, Clp2-n]x[-f2pl-n, f2pl-n],
and if n 2 in a set of the form

[- Clllnp[, Clln01] [- c,.(/p), c2(1/p)].

We must now analyse the manifold at the other end. Pick u0 > 0 so that if u _> u0

(5.131 kxu+l <=f(u)<=k2u+X;

this can clearly be done from the conditions on f(u). Now choose P0 so that
{P=Po} contains a curve L0 with (0,0)L0, LoC {y>=0} and if (u(t), v(t), p(t)) is
the nontrivial solution of (2.4) with u(t)-+ uo as t-+ oe, p(T0)= P0 then u(To) Lo.
This can be done as Wu can be constructed by a finite number of local center-unstable
manifolds out to u0. We can now state the lemma we need to prove.

LEMMA 5.3. For each p [0, P0], there is a connected curve Ko c W with p fixed on
it such that

(1) Kc { u >= 0),
(2) (0, 01 K,
(3) Ko 3 { u cp- 2/0 } =/= for some C> 0 independent of
Proof. Return to the original system again:

n-1(5.141 u"+u’+f(u)=O,

and let

(5.151 u(’, O) =’1,.

For each fixed r sufficiently small, either

(5.16t u(3,,r) > Z2
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for all V u 0, m), or there exists a such that

(5.17) u(,r) =-
and (5.16) holds for all 3,[u0,). If (5.16) is false, then choosing a minimal , for
which (5.17) holds, continuity of u(,r) guarantees that (5.16) holds on [u0,), as it
does at u0.

Corresponding to u(’,r) there is a solution of (2.4), (u(t), o(t), p(t)) with
lim/_,_ u(t)=uo. Set Ro=Oo/(1-po). For fixed r(0,R0] if (5.16) happens for all
7 [uo, ) then the lemma obviously holds at the associated value of p.

Suppose then that there exists a 7 for which

(5.18) u(’, r) 3,.

The lemma will follow from finding a constant C for which

(5.19) [ Cr-2/.

Using the usual Green’s function, we can rewrite (if n > 2)

(5.20) )u(3,,r) ,- s(1-(s/r)"-z)f(u(l,s))ds /(n- 2).

If (5.18) holds, then

-= s(1-(s/r) f(u(/ s))ds /(n-2)

Assuming that >= u0

)Y--< s(1-(s/r)n-2)ds (k2l+1/(n-2))2

from which it follows that

r,> n/k2

and the lemma holds. If n 2, (5.20) is replaced by

u(,,r) ,- s(ln-lns)f(u(’,s))ds;

after repeating the above manipulations we arrive at the same estimate,

r[ >= 2/k2.

Translating back to (u, v, p) space, the lemma is proved.
We now have enough information to prove the theorem in the cases
(1) o<2/(n-2), n>2,
(2) n 2.
For case (1), to construct the solution with m zeros where m is even, apply the

flow to a curve C with I(C)>m. Choose large negative so that p(t)<=tao, then
,(Cx) lies in the region where Ko is defined. Now ,(C) lies in a strip about the
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v-axis of width Cl[P(t)] 2-n from (5.5) and K
0
extends out at least to Cp-2/ (Lemma

5.3). Set p=p(t), and then the condition that these intersect if is large enough
negative is that 2- n > 2/o, or o < 2/(n 2), see Fig. 14.

t(Cx)

u cp- 2/0

FIG. 14

To check the winding, I(dPt(fx))> m and so it must intersect Ko at a point y so
that the piece of dt(Cx) between y and (0, 0) has winding number j, for each j even
between 0 and M.

To be more precise, choose so that

< c[o(t)l

which can be done if o<2/(n-2). Let q(s), S[So,S1] be a parametrisation of
t(Cx). Denote by C, the curve q restricted to [s0,s ]. We can find q=q(j) so that
q(q) (u=0) and I(Cq)=j for all O<j<=m. Moreover

I(C) <=j

for s[q(j),q(j+l)]. Let j<m and even, then q restricted to [q(j),q(j+ 1)] is a
curve connecting the negative v-axis to the positive v-axis with the angle making a net
increase. Also it stays inside the strip

Cl[P( t)l:Z-n <= u <= CliP(t)] :z-n.
From (5.21), the strip

is divided into two components by the curve Ko(t). In order to increase its angle,
therefore, q(s) must cross K(t) for some s[q(j),q(j + 1)]. We thus have an intersec-
tion of d#t(Cx) with Ko at winding number j.
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It follows from Proposition 3.5 that the solution starting at this point has exactly j
zeros. One checks easily that P0 can be chosen so that it picks up no more zeros on
[O, Ro].

For the case of no zeros, we must analyse the tangent vectors of Ct(Cx) and K at
the origin. The tangent vector to t(Cx) is always sandwiched between the negative
v-axis and the unstable manifold in quadrant four for the n 1 case, see 3. However,
the tangent vector to Ko becomes tangent to the u-axis and so an intersection is forced
again if is large enough negative.

To obtain the solutions with an odd number of zeros, one constructs the curve K
in the left half-plane with the symmetric properties.

For the case n 2, observe that the analogue to (5.21) is

Cllnp(t) [< C[p(t)]

which can be satisfied for any o if is large enough negative, making p small.

6. Completion of proof when 2/(n 2) =< o < 4/(n 2), n 4= 2. The proof of 5 will
only work when o < 2/(n- 2). It is tempting to try to improve the estimates to prove
the full theorem. However, this is not possible; we shall see by the end of this section
that the ones given in 5 are, in some sense, the best possible.

The idea of the above proof was to see how far out in the u-direction a slice, in
some { p= } plane, of the manifold W0u can be extended. In terms of the original
problem (1.3), the solutions that satisfy (1.4) end up as the curves on this manifold. If
their graphs are drawn u against r, it is well known that these graphs form an envelope,
see Fig. 15. In other words they do not fill out the (u,r) plane, at least now while
staying positive. Back in (u,v,p) space, we can imagine an envelope that marks the
edge of the manifold Wu. If one can guarantee that some backward iteration of Wo
gets inside this envelope, existence could be proved, see Fig. 16.

FIo. 15
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W

eof W0

FIG. 16

However, the best general growth estimate one can obtain for these equations is
r 2-n and the envelope actually grows at the rate r-2/0. Hence it looks as if the result of
5 is the best possible. The paradox is resolved by realising that Wu does not end at
the envelope!

To understand the behavior of Wu, we must analyse the limit r=0 more care-
fully. In fact we shall scale so as the envelope stays bounded.

The transformation needed is the Emden-Fowler transformation. This has been
used to analyse the pure power and similar cases, see Fowler [7], Chandrasekhar [4],
Joseph and Lundgren [10]. Here we shall retrieve the phase planes obtained by these
authors as limit systems of a three-dimensional problem.

Consider again the original equation

Transform this by

where r 2/0. One obtains

n-1u"+ u’+f(u)=O.

y rtu er--

(6.1) y+(n-2-2r)j,+r(r+2-n)y+h(y)y"+l+r2+g(r-y)=O,

where

h(y)={ k+

recalling that f(u)=h(u)lu[+l+ g(u), see 1.

if y>0,
if y_<0,

d
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We introduce p= r, where a is chosen so that 0 < a < -, and write (6.1) as an
autonomous system.

(6.2) 2= -(n-2-2,r)z-,r(,r+2-n)y-h(y)y"+-pZ+’)/’g(p-/’y),
p=ap.

This is defined for p > 0. Now define q(p,y):

(6.3) q(p,y)=lpZ+’)/’g(p-’/’y) if p>0,
0 otheise.

Consider the system

(6.4) = -(n-2-2r)z-z(r+2-n)y-h(y)yo+l-q(p,y),
p=ap.

Note that p 0 corresponds to r= 0 or s . We need to check that the right-hand
side is C. It suffices to check that q is C near p 0.

From the assumptions on g given in 1, the following two quantities

g( p-’/"y nx (
and

(6.6) g,( p-/y)/p-v-1)/= H2(p,y)
are bounded as p 0 and the bound is uniform over compact sets of y values.

To show that q is continuous, it suffices to show that q(p,y)O as p0 and
that this is locally uniform in y. But if p 0

Since <o + 1, 2 + -rT>0, and so q(p,y)O as p0 uniformly on compact sets of
y values. It follows that q is continuous at p 0.

To check the derivatives, if p > 0

3YO =P2+)/ ,/g,( p /y =p +-- ))/H ( p,y )

As above 2 + r z7 > 0 and so q/y 0 as p 0.
To compute q/3p at p 0, the limit

lim p+)/-g(p-/y)
p0

must exist.

p(2+,)/,- tg( p-,/,,y) =p(2+,-,r-,)/,Hl(p,y),
and so the above limit exists if

(6.7) 2+-r3,>a

and is 0. Equation (6.7) is possible for some choice of a so long as

2+-r,>0

which is equivalent to y < o + 1.
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Oq/3p will be continuous if it converges to 0 as p O. If p > 0

p =p g( p ) +p2/,- ( p ) y.

The first term tends to zero as above. The second term is easily seen to converge to zero
if (6.7) is satisfied.

This means that the system (6.4) is a C system on R2 [0, ). The plane p 0 is
invariant and contains the information about r= 0. The next step is to understand the
structure of this phase portrait at and near p 0.

The point (0, 0, 0) is a critical point for (6.4). Linearising at this point, we obtain
the matrix

(6.8)
0 1 O)-r(z+2-n) -(n-2-2r) 0
0 0 a

The eigenvalues of this matrix are r, r-n + 2 and a. The associated eigenvectors are
(1, r, 0), (1, r- n + 2, 0) and (0, 0,1), respectively. The eigenvalues z and a are always
positive, while

r-n+2>0

if

o<2/(n-2)

and r- n + 2 =< 0 if o >= 2/(n 2). If we assume o >= 2/(n 2), we can form the local
unstable manifold WlUoc to (0, 0, 0) for (6.4), associated to the two eigenvalues z and a.

As mentioned at the beginning, if n 2, this method becomes considerably harder
to apply but the results of {}5 give the theorem.

As usual, set

wu=U wL.t.
t>_o

The reason that this technique works is that Wu is mapped back to Wu in (u, o, 0)
co-ordinates. The transformation from (y,z,p) to (u,v,p), call it G, defined on R2
(0, o) is given by

u=p-,/,y, v=p-(,+l)/,(z-.ry), p=pl//(l+pX/’).

This takes solution curves of (6.4) to those of (2.4).
LEMMA 6.1. G(WUN ( p >= O))c Wu.
Proof. The lemma states that if (yo, zo,Po) is an initial condition for (6.4) with

solution (y(s), z(s), p(s))(0,0,0) as s-, then G(yo, zo,Po)=(Uo, Vo, Po) has a
solution (u(t), v(t), O(t))to (2.4)with u(t)/, some 3,, as t-. It suffices to
show that u(t) is bounded as t---, -.

Inside WloUc, there lies a strong unstable manifold that is one-dimensional; call this
Wl,Uc It is tangent to the eigenvector (1,r,0) and clearly lies in the invariant plane
p 0. Choosing co-ordinates (’, r/) on WloUc so that the p-axis and WI, become axes in
that order, it follows easily (see Fenichel [6]) that

In(s) l<=ce "’, some c>O



SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION 83

as s- m, for any solution on Wlc. Since the eigenvector for has a nonzero y
component, it follows that

ly(s) I<-_ce, some c>0

as s -. But u=r-y=e-Sy(s); so this implies that lu(s)l is bounded as s -,
as desired.

We shall use this lemma to deduce the behavior of Wu by understanding W u.
The relevant properties about Wu will be obtained by the same idea as used in [}4,
namely to study the limit system and then to view the full problem as a perturbation of
this. The next task then is to analyse the system in the p 0 invariant plane.

Restricting (6.4) to p 0,

(6.9) y z, , (2"r n + 2) z + "r( n 2 "r ) y h ( y ) y "+1.

Set F(y)=f(’r(n-2-’r)rt-h(rt)rt"+l)drt and

Z 2

(6.10) H( y,z ) =-- F(y )

then H is the Hamiltonian for (6.9) if the dissipative term is absent, which happens
when 2 n + 2 0, or

In general,

o=4/(n-2).

/:/= (2r- n + 2)z 2

and /:/> 0 if o < 4/(n 2), /:/< 0 if o > 4/(n 2). The three-phase portraits are shown
in Fig. 17.

4/(n- 2) o=4/(n- 2) o > 4/(n- 2)

FIG. 17

This is the structure that changes at the critical value of o. The important point is
that the unstable manifold switches from oscillating about the origin to spiralling into
one of the right-hand critical points. This is in Joseph and Lundgren [10].

The fact that the unstable manifold spirals out in the subcritical case will perturb
to the desired information for Wltc in the full system. The phase portrait depicted "for
o < 4/(n- 2) in Fig. 17 only holds if o > 2/(n- 2). At o= 2/(n- 2), all those critical
points collide at the origin. We need to prove then that this spiralling always occurs if
n4:2.
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Let u uWoc be the local unstable manifold at (0, 0) for (6.9). Set 1u=Us _> 0 Woc" s If
x IYV u, there exists an s so that x Wc. s. Let D be the curve in Wloc.~u s joining x to
(0, 0). D is clearly an admissible curve.

LEMMA 6.2. If o < 4/(n 2) and n 4: 2, then given m 7/+, there exists x W so
that I(D) < m.

Proof. 17V u is the union of two solutions and (0, 0). We must show that each of
these solutions oscillates infinitely often about 0 in a clockwise direction. It suffices to
show that if (y(so), Z(So)) {z>0)N{H>0} for some So, then there is an s>so for
which z(s)=0 and at the smallest such s> so, y(s)> 0. This says that any orbit in the
upper half plane must leave it at some future time through the positive y-axis. This,
together with the symmetric statement about the lower half plane, proves the lemma.

Firstly we prove that if z(s)4:0 for all s> so then y(s) becomes infinite, i.e. given
k there exists s> so so that y(s)> k. Suppose ly(s)i<=k for all s>__So; then from (6.9),

d _(2,r_n+2)Sz-s (e ) < C

for some constant C>0. But then z(s) cannot blow up in finite time. Suppose
z(s) + c as s +; then y(s) + as s + also. It follows that z(s) stays
bounded. But then o(y(so), Z(So)) is nonempty. Since /:/>0 there are no periodic
orbits so, by Poincar6-Bendixson, o(y(so), Z(So)) must contain a critical point. But
since all the critical points lie in H< 0 (this is just the point (0, 0) if o < 2/(n- 2)), this
contradicts the fact that H> 0 on the orbit. Therefore y(s) must become unbounded.

Suppose that for any given k, there exists so that y(g)= k1/. Set z=6w in (6.9)
to obtain

(6.11) p=aw, =(2"r-n+2)w-y(]yl-’r(n-2-’r))/8.
Let 0 arctan(w/y), computing

(6.12) O=(2-n+2)sinOcosO-cos20(]y -(n-2-))/8-SsinO.
Since yl > k

< (2- n + 2)sin 0 cos0- (k/i)cos20 S sin20 + ( (n 2 )/tJ)cos0.
Now let S k1/2,

where C is some constant bounded independently of S if it is large. But then there
exists an s so that//(s) 0 by choosing k large enough. This means z(s) 0.

Checking the vector field on z=0C { H>0) shows that when z(s)=0 for the first
time, y(s)> 0. This proves the lemma.

In the same spirit as 4, we now show that this winding property can be inherited
by Wu c ( p =3’ } for small enough 3’.

Define the Wazewski set

W= {(y,z,p)’p[0,3’]}.

This is clearly a Wazewski set in forward time if 3’ is small. Choose 3’ small enough so
that WcN { p =3’ ) is a one-dimensional curve. Let F be a curve " [3’o, 3’1] WoUc q
{0__<p__<3’) such that (b){p=0}, O([a,b])c {y>0) and (a)=(0,0,3’). Set F=
F\,{O(b)); then FcW since p’=ap. If R"W W- is the Wazewski map, set
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f= R(F). Obviously 9 is a continuous curve in ( P=3’ ), so it can be considered as a
curve in 2. With (s)=R(ck(s)), which is defined for s[a,b), and D=q([0,s)) we
claim the following are true of f.

LEMMA 6.3. Under the assumptions ofLemma 6.2
(1) (0, 0) fl and f is admissible.
(2) For all s, I(D) <_ O.
(3) Given m 7/+, there exists an s so that I(D) < -m.
In order to prove Lemma 6.1, we need a set of propositions that are analogous to

Propositions 3.3-3.6. The proofs are essentially the same as in that case, only with
appropriate reversal of direction.

Let D be a connected curve in WUc3(p=po) with O<po<o, :[0,h]
( P P0 } such that k (b) x and (a) (0, 0).

PROPOSITION 6.1. Any D as described above is admissible. Let (y(s), z(s), p(s))
be the solution satisfying (y(0), z(0), p(0))= x.

PROPOSITION 6.2. -I(Dx)=number of zeros ofy(s) in (-,0].
Notice the minus sign, I(Dx) is in fact negative. The flow of (6.4) restricted to

{ P =P0 } any 0 =<p0=< 3’ determines a homotopy

(6.13) xI," -x [a,bl--,U

with any a < b < 0. It is well defined because it is a scaling of the original flow which
was well defined.

PROPOSITION 6.3. 9 is an admissible homotopy.
PROPOSITION 6.4. I(/t(Dx)) is a decreasing function of t.

Proof of Lemma 6.3. (1) is obvious as the tangent vector f at (0, 0) is a tangent
vector to Wlc. By continuity of the flow if x=(y(0), z(0), p(0)) is close enough to
p=0 it stays close for an arbitrarily long time. Therefore by Lemma 6.2 it has an
arbitrarily large number of zeros; by Proposition 6.2, -I(D) can be made arbitrarily
large. This proves (3).

To prove (2), suppose this were not true; apply the flow (6.13) q to Ds. From
Proposition 6.4 I(/t(D))> 0 for all < 0. But for sufficiently large negative t,
WUoc and I(+t(D))= 0. This contradiction proves (2) and therefore the lemma.

The transformation back to (u,o,O) co-ordinates, namely G takes f to a curve
G(f) with the same properties at f. In other words G(f) is admissible, I(G(D))<=O
for all s and there exists s so that I(G(D)) is an arbitrarily large negative number.
This follows because the transformation (6.8) is orientation preserving and maps the
z-axis to the o-axis.

Now apply the flow (3.6) of (2.4) to C back to = y1/4/(1 + y1/). If is such
that Ot(Cx)C {0=}, let Ex=Ot(Cx). Intersections between E and G(fl) are solu-
tions of the problem. We want to find intersections that supply the desired number of
zeros.

Let us work in the covering space of N 2 as described in {}3 with the covering map
given by (3.1). Lift both E and G(f) to this space 2. Let the lift of G(2) be called Y,
choose it so that the end point lies in the interval [0,1] on the x-axis. Y is then a curve,
from the above mentioned properties of G(f) (Lemma 6.3), that does not intersect the
line x 1 but intersects x 0 and x m for every m 7/+.

Now suppose I(Ex)--k, and k can be made arbitrarily large. Let E be given by
q" [so,sx] N 2. The lift of Ex, say/x, is determined by the choice of interval in which
(So) lives, in other words by the choice of N for which (So)[N,N+ 11.
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Now Y divides the covering space " into two components. If (0, r/) is the end-point
of Y on { r= 0), i.e. the x-axis (r is the radial variable in polar co-ordinates on phase
space), then ((r,x)’r=0, x < r/} lies in one component and each line x= K, with k > 0
lies in the other.

With N, k as above, ($1) must lie in k + N<=x =<k + N+ 1. It follows that if
k + N >= 1 and N =< 0 then this lift of E must intersect the curve G(). Each. N supplies
a different solution corresponding to such an intersection point, call one determined by
a choice of N, J. Notice that we can find Ju for INI arbitrarily large as k can be
chosen arbitrarily large. We must prove that the solution Ju has IN zeros.

LEMMA 6.4. Jt has INI zeros.

Proof. Let 15 be the intersection point between G(f) and /x. Let B / be the
portion of/, between i and (S0); similarly B- is the portion between 15 and (sl). It
is obvious that

I(B+)+I(B-)=INI.

Let (u(t), v(t), p(t)) be the solution of (2.4) satisfying

(u(O), v(O), p(O))= (p(’), p/4(1 +p/4));

then I(B+)= number of zeros of u(t) in [0, o) and I(B-)= number of zeros of u(t) in
(- o, 0]. Since N is any element of 7//, we are done.

Remark. This limiting phase portrait shows that the growth estimates of 5 are the
best possible. The eigenvalue other than at (0,0) is -n+ 2; coming in at this
direction would correspond to growth at the rate r 2-n, which is the estimate obtained
in 5. The envelope corresponds to a curve that stays bounded in the scaled variables.
In fact it is tangent to Wu at the first time it turns around. It therefore grows like
r- 2/0.
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Abstract. The Dirichlet problem in a bounded region for elliptic systems of the form

(.) -Au=f(x,u)-v, -Av=Su-yv

is studied. For the question of existence of positive solutions the key ingredient is a maximum principle for a
linear elliptic system associated with ). A priori bounds for the solutions of (,) are proved under various
types of growth conditions on f. Variational methods are used to establish the existence of pairs of solutions
for ).
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Introduction. In this paper we propose to discuss the elliptic system

(0.1) -Au=f(x,u)-v, -Av=6u-’cv in

where f is a bounded smooth domain in RN, N>= 2, subject to Dirichlet boundary
conditions u v 0 on Of. The solutions (u, v) of this problem represent steady state
solutions of reaction diffusion systems of interest in biology, namely systems of the
form

(0.2) ut=DaAu+f(u)-o ot=D2Ao+e(u-’yo )

where D1, D2, e and , are positive constants, and one looks for solutions u(t,x),
v(t,x) defined in (0, o)f, subject to Dirichlet boundary conditions on (0,
The type of nonlinearities which are of importance in the applications will be described
in the Examples I and II below. System (0.2) shows that both species may diffuse. In
this sense it is an extension of the well-known FitzHugh-Nagumo system, which serves
as a model for nerve conduction, cf. [5] or Hastings [7]. We also mention Koga-
Kuramoto [10], where the complete system (0.2) appears and steady state solutions are
discussed. There is an extensive bibliography in this subject. We mention three addi-
tional papers, which are more closely related to the investigation presented here,
namely Rothe-de Mottoni [13], Rothe [14] and Lazer-McKenna [11].

In the applications the constants , and , which appear in system (0.1), are taken
to be positive. So we shall make this assumption throughout this paper. It follows then
that the second equation in (0.1) can be solved for v in terms of u. Let us denote by B
its solution operator under Dirichlet boundary conditions. That is, given u, we define
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Bu as the solution of the problem -Av+-v=Su in 2, v=0 on 32. Thus our problem
becomes the one of finding u such that

(0.3) -Au+Bu=f(x,u) in

We observe that the left side of (0.3) contains a local (differential) operator -A, and a
nonlocal (integral) operator B. This fact gives rise to quite interesting questions. It is
essential at the outset to understand the operator -A + B. In {}1 we study its spectral
properties and establish a maximum principle for solutions of linear equations like

(0.4) -Au+Bu-)tu=g(x) in

where the real parameter ;k is restricted to certain ranges depending on ,, 8 and the
region . In 2 we establish a priori bounds for solutions of (0.3) under the main
assumption that the nonlinearity f at o0 is below the smallest eigenvalue of the
operator -A + B; this assumption will be stated precisely as condition (f2) and it
characterizes a class of systems which are here called sublinear. The two examples
below, which were treated by previous authors [9], [11], [13] and [14], are included in
the classes studied in the present paper. Their results are therefore sharpened as far as
ranges of the parameters involved and signs of the solutions.

Example I. f(u)=)tu-g,(u), where ) is a real parameter larger than the first
eigenvalue of the operator -A + B, and g is a function behaving like u 3, but not
necessarily odd; of. [11], [13], [14].

Example II. f(u)=u(u-a)(1-u), where a is such that 0<a<l,/2. This is the
sort of nonlinearity arising in the FitzHugh-Nagumo equations, [5], [9].

The a priori bounds obtained in 2 will be needed in an essential way to perform
appropriate truncations of the nonlinearity f, so the problem could be treated by
variational methods. This will be done in {}5.

In 3 we discuss a class of systems whose model nonlinearity is the one given by
Example I. Using the results of 1 we are able to establish the existence of a positive
and a negative solution. This result complements a previous one by Lazer and Mc-
Kenna [11], who proved the existence of two nontrivial solutions by topological degree
arguments. Their method, however, does not yield the signs of the solutions obtained.
The maximum principle for equations like (0.4) becomes very useful in this respect.

In 4 we sketch a result on the existence of positive solutions for a superlinear
elliptic system. Results similar to the ones known for the scalar case hold true in view
of the aforementioned maximum principle. The question of the a priori bounds for
positive solutions of superlinear elliptic systems may be a hard one. If the growth of the
nonlinearity at +o0 is at most like (N+I)/(N-1), for N>3, then the results of
Brdzis-Turner [2] extend readily. The range [(N+ 1)/(N-1), (N+ 2)/(N-2)] poses
serious difficulties. The methods used in de Figueiredo-Lions-Nussbaum [3] to treat
the scalar case rely on the results of Gidas-Ni-Nirenberg [6], which are not available
as yet for the type of systems studied here. We remark that Troy [15] has extended
some of the results in [6] to systems. However, Troy’s systems do not include the ones
we are concerned with. Also in 4 we prove a nonexistence result basing it on our
extension to systems of the well-known Pohozaev’s identity.

In 5 we consider a class of systems whose model nonlinearity is the one given in
Example II. Using the Mountain Pass Theorem of Ambrosetti-Rabinowitz [1], we
establish Theorem 5.1 on the existence of two nontrivial solutions for such systems,
extending a previous result of Klaasen-Mitidieri [9]. This result shows clearly the
relevance of the volume of t2 and of the parameters 7 and 8 on the existence questions.
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It also exhibits the importance of a large positive parameter h on the existence of two
positive solutions for the system

-hu=Xf(x,u)-v, -hv=3u-3’v, in

subject to Dirichlet boundary conditions, and the nonlinearity f is of the type given by
Example II. This relates to the scalar case studied in Rabinowitz [12].

The contents of this paper are as follows"
1. The operator h + B.
2. A priori bounds for solutions of sublinear elliptic systems.
3. Existence of positive solutions.
4. Remarks on a superlinear system.
5. Existence of two nontrivial solutions for a class of sublinear systems.

1. The operator -A + B. Consider the linear Dirichlet problem

(1.1)
where f c RN is a bounded and smooth domain, 3’ and 3 are positive constants. Let us
denote by B its solution operator: v Bu. It is well known that

B :LV-()H2()GH(); B :LP() W:’P(f]); B:C’()C2+’().
Let us define the operator

T -A+B :L-(f])L:(2), with D(T)=H:(a)H(a).
Clearly T is symmetric, that is, (TUl, U:)=(Ul, TU:) for all Ul, U_D(T), where ( )
denotes the L: inner product. Using the L regularity theory, one can prove that T is a
closed operator. Let us denote by 0 <x < ’: <- X =< the eigenvalues of h under
Dirichlet boundary conditions, and by t the corresponding eigenfunctions. Then it is
easily verified that

(.2)
3’ +X----, k=1,2,-..

are eigenvalues of T. Moreover the same q’s defined above are their corresponding
eigenfunctions. Since (q) is a complete orthonormal set in L2, it is readily shown that
the } are the only eigenvalues of T. We shall prove in the sequel that in fact the
spectrum o(T) of T consists precisely of these eigenvalues. For each ) in the resolvent
set p(T) of T, let us denote by Tx =(T-i)-1 its corresponding resolvent operator.

LMa 1.1 (a representation formula of the resolvent operator for some values of
). Suppose that the real numbers a and b satisfy the following conditions

(1.3) a>-X, 3’+b>-X, bq:O, and

(1.4)
Then ) -a- b is in the resolvent set p(T) and

(1.5) Tx= [1-b(yWb-A)-l](a-A) -1.

Proof. With X= -a- b, one can write

r-Xl=(a-A)+b b
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Using condition (1.4) above, one obtains

T-XI=(a-A)[I+b(3’-A) -] =(a-A)(y-A)-l(y+b-A).
Finally using condition (1.3), it follows that

Tx= ( y + b- A )-I(3’- A )( a- A ) -1,
which readily gives (1.5). t2

Remark 1.1. A calculation shows that ,, taken in the ranges indicated below, are
representable as X -a- b, with a and b satisfying (1.3) and (1.4)"

(i) All , =< 3’ 2v/-. These ’s correspond to b > 0.
(ii) If 3’ + X1 > x/g, there are some additional values of , namely 2v/-3’ __< <

,1 + 8/(3’ + X). These ,’s correspond to b negative in the range X 3’ < b <
-/(+k).

Remark 1.2 (monotonicity of the sequence ,). We observe that 3’ + , > v- implies
that x < ’_ < =< "". Of course one does not have in general such a monotonicity of
the eigenval-es ,k. Clearly 3’ + ,1 > is not a necessary condition, since it in fact
implies the stronger statement that the function s s+/(3’+ s) is monotonically
increasing in the whole halfline [’x, o). A necessary and sufficient condition for this
monotonicity involves also the second eigenvalue ,

2, namely < (3’ + )(3’ + , ).
COROLLARY 1.2 (compactness of Tx). For all , o(T), the resolvent operator Tx is

compact.
Proof. For any ,, o(T) one has the resolvent equation

( x )
So if Tx is compact for some ,, then it is compact for all ,’s in the resolvent set. By the
previous lemma Tx is compact for =< 3’ 2v/-. []

The following result is an immediate consequence of Lemma 1.1 and Remark 1.1
above.

COROLLARY 1.3 (positiveness of Tx for some values of ,). If 3’ + k > f’, then Tx
is positive for all 2f 3’ <= < ,1.

Remark 1.3. The positiveness of Tx is a maximum principle for the equation

-Av+Bv-Xv=u inf], v=0 on Of].

It says that if uL2 and u>=0 a.e., then v>__0 a.e. In fact, it follows from the
representation formula (1.5) that a strong maximum principle holds. Namely, if u
C(f]) and u>=0 in f, then v>0 in f and the outward normal derivative (Ov/O,)<0.
(Recall that f] is being assumed to be smooth. So the interior sphere condition is
satisfied.)

Remark 1.4. If 3’ > 2Vr, then the condition 3’ + 1 > - is automatically satisfied,
and Corollary 1.3 says that in this case Tx is positive for X in an interval which
contains 0. In general one cannot expect that be positive. Indeed, if 3’ 8 1, then
Corollary 1.3 says that Tx is positive for 1 =< , < X.

PROPOSITION 1.4. The spectrum o(T) of T consists ofprecisely the eigenvalues
Proof. We have seen above that the point spectrum Po(T)= (" k= 1,2,.-. }.

Let Po(T). Then T- ,I is one-to-one. If we show that T-I is onto, it follows by
the Closed Graph Theorem that X p(T). Thus we claim that the equation Tu-u v
has a solution u for each given oL2. Taking Ip(T), we see that this equation is
equivalent to Tu-lu=(h-l)u+o, or

(1.6) u , Iz ) T,u + T,v
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By the Fredholm alternative (1.6) is solvable iff the homogeneous equation u=

(7-I)T,u has only the solution u= 0. But this is actually the case, since this homoge-
neous equation is equivalent to Tu=u. Recall that

Remark 1.5. The above proposition follows also from general results in functional
analysis. Namely, since T is a self-adjoint operator, it follows that its residual spectrum
Ro(T) is empty. Next, since -A- is Fredholm for every C, it follows that
-A + B-h is also Fredholm for all h C. Consequently the continuous spectrum
Co(T) is also empty.

Remark 1.6 (a useful inequality). Let denote the smallest of the eigenvalues ,.
We have seen above that 1 if 3’ + h > -- We assert that

(1.7) ( Tu, u ) > Xll u ,,
Indeed, since (q,) is a complete orthonormal set in L2, we can write u=2a,q, where
a= (u,). So

( ru,u) E ( E ( u,
from which the claim follows. A similar argument shows that

(a.8) f lvul=/( u,u)>__Xllull =,
Remark 1.7 (uncoupling of systems and maximum principles). The usual maximum

principle for systems, as well as the maximum principle proved here, seems to be
related with the possibility of uncoupling the elliptic system. To make precise our
observation, let us look at the linear elliptic system

(1.9) -Au=au+bv+f(x), -Av=cu+dv+g(x)
subject to Dirichlet boundary conditions: u= v=0 on , where f is some bounded
domain in RN, and a, b, c and d are real constants. Suppose that b4:0 and c4=0;
otherwise the problem trivializes. The uncoupling of system (1.9) is possible if the
matrix of the coefficients

M=a
c d

has two distinct eigenvalues, # and #. Such a condition is equivalent to

(1.10) (a-d)+4bc>O.
Of course this is the case if b and c both have the same sign. However, to infer the
signs of u and v from the signs of the corresponding functions in the uncoupled
system, one requires that both b and c be positive. This gives the usual maximum
principle for systems. On the other hand, if b and c have opposite signs, the uncoupling
is still possible provided a and d "compensate" for the negativeness of bc. Through
some calculations one can prove the following result, which essentially gives our
maximum principle.

PROPOSITION 1.5. In addition to (1.10) assume that bc < O, c(a- d)> 0, <, and

" 2 < )kl. Then if f>= O, g >= 0 and cf>= (a 1)g, it follows that the solutions u and v of
(1.9) are positive in .

2. A priori bounds Ior solutions oI sublinear elliptic systems. Let us consider the
elliptic system

(2.1) -Au=f(x,u)-v, -Av=u-v in f,
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where 2 is a bounded smooth domain in RN, subject to Dirichlet boundary conditions.
We always assume that 7 and are positive constants. The nonlinearity f is subject to
the following conditions"

(fl) f" 2 R R is locally Lipschitzian,
(f2) limsuPlsl_,o(f(x,s)/s)<, (uniformly in f), where denotes the smallest

eigenvalue of the operator -A + B studied in 1.
Condition (f2) characterizes system (2.1) as being sublinear.
Examples. 1) f(u)=,u-h(u)u, where h is a C function such that h(0)=0,

h’(s)s>O for all s4:0 and liminfs_ _+h(s)>,, (for instance h(s)--s2). This is the
case considered in [11] and [14].

2) f(u)=u(u-a)(1-u), where 0<a<l. This is the type of nonlinearity that
appears in the FitzHugh-Nagumo equations; cf. [5], [9].

Remark 2.1. By a solution of (2.1) we mean a classical solution. That is, a pair of
functions (u,o) which are in C2(2)qC() and which are 0 on 3f. We observe that if,
u,H(2)cqC() satisfy (2.1) in the distribution sense, then by a bootstrap argu-
ment it follows that u,o C2’(). We remark that in general one cannot drop the
hypothesis that u and o are in C() in order to be able to bootstrap. However, this
would be possible provided one assumes some growth condition on f.

In order to obtain the a priori bound for the solutions of (2.1), we shall assume
either one of the conditions below.

(f3) limlsl_(f(x,s)/lslP)=O, where 1 <p < (N+ 2)/(N-2), if N>= 3, and 1 <p<
z, if N=2,

(f4) limsuPll_o(f(x,s)/s)<-/y,
where the limits are uniform in f.

Remark 2.2. In the scalar case (i.e. -Au=f(x,u)) condition (f4) corresponds to
f(x,s)<O for s>/3>0 and f(x,s)> 0 for s< -/3, where ]3 is some real number.

PROPOSITION 2.1. Under hypotheses (fl), (f2) and (f3), the solutions of (2.1) are a

priori bounded in L.
Proof. It follows from (f2) that there exist 0 </ < , and M> 0 such that

(2.2) f(x,s)<=ls+M, for0=<s<, f(x,s)>=ls-M for-<s<0.

The second equation in (2.1) can be solved for v in terms of u. And in this way system
(2.1) is equivalent to the equation

(2.3) -Au+Bu=f(x,u),
using the notation of 1. So we need only to prove bounds on u. The corresponding
bounds on v are obtained immediately from the second equation in (2.1). Multiplying
(2.3) by u, integrating by parts and using (1.8), we obtain

Xfu <flvul +  u)u= x,u)u.

Next we estimate the last term in (2.4) using (2.2)

 2.5)

which implies f u 2 =< C. (We shall use the same C to denote different constants.) Using
(2.4) and (2.5) again and recalling that B is a bounded linear operator in L2, we
conclude that flY’ u12_-< C. It follows from (f3) that given e > 0 there exists C > 0 such
that

[PIf(x s)I  ls
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Finally using this inequality and invoking Lp estimates and the Sobolev imbedding
theorem, we conclude that there exist a constant such that Ilull

Remark 2.3. We emphasize that the dependence of on f is through the constants, M and C. So if we change f for Isl >= maintaining/, M and C, the new equation
(2.3) with this modified f has the same solutions of the original equation (2.3). This
fact will be used in [}5.

The following result was proved by Rothe [14] and Lazer and McKenna [11] under
less general hypotheses on f. The main idea in the proof below is taken from those
papers.

PROPOSITION 2.2. Under hypotheses (fl), (f2) and (f4), the solutions of (2.1) are a
priori bounded in L.

Proof. (i) We first claim that for u C(), with u= 0 on , one has

(2.6) min u < ( Bu)( x ) <-max u

Indeed we know that v Bu satisfies the equation
1 8(2.7) v=-Av+--u.

Let us prove the first inequality in (2.6). If v _> 0 that inequality is trivially true. So let
us assume that for x fl we have V(Xl)=minv<0. Then Av(xl)>=0 and (2.7) implies
that v(xl)>=(8//)u(xl), from which the first inequality in (2.6) follows readily. In a
similar way we prove the second inequality in (2.6).

(ii) It follows from (f4) that there exist positive constants k and m such that

(2.8) f(x,s) <= -k < Isl>=m.s

We claim that Ilull, m for all solutions u of (2.1). Indeed, suppose by contradiction
that Ilull-M> m for some solution u. It follows from (2.6), using the first equation
in (2.1) that

8
(2.9)

8
min u < Au +f(x, u) <-max u.

3’ --3’
If there is x0 f such that u(x0)= M, we obtain from (2.9) and (2.8) that

8--M<_f(xo,U(Xo))<_ -ku(xo)= -kM,

which is impossible. In a similar way we arrive to a contradiction if u(x)=-M for
some x f. [::]

Next we discuss the question of bounds for positive solutions of the system (2.1).
As remarked before we need only to obtain bounds on u, and then corresponding
bounds on v follow readily.

PROPOSITION 2.3. In addition to (fl) assume the following condition"
(f5) there exists a constant m>0 such that f(x,s)=O for s>_ m.
Then all nonnegatioe solutions u of (2.3) are bounded above by m.

Proof. Given a solution u of (2.1), define the function as o(x)=u(x)-m for
u(x) > m and w(x) 0 for u(x)__< m. Such a belongs to H0(2). So it follows from
(2.3) that

(2.10)
2flv 
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In view of (fS) and the fact that (Bu)(x)>O for xfl, we conclude from (2.10) that
f[Tt12--0, which implies =0. t3

Remark 2.4. This proposition will be used as follows. Suppose that the function f
is such that there is an m>0 for which f(x,m)=O. Then we consider system (2.1) with

f replaced by a new function f defined as f for s _< m and as 0 for s > m. If for this new
system we could find a nonnegative solution u, then by the proposition above such a u
would be indeed a solution of the original system.

Remark 2.5. Now if f(x,s)=f(s) satisfies (f2), f(0)>_0 and f(s)>0 for 0<s<e,
then either there is an m > 0 such that f(m)= 0 or f satisfies (f3). In the first case we
treat the problem as in the previous remark. In the second case we proceed as in
Proposition 2.1 and obtain an a priori bound on positive solutions.

Remark 2.6. Similar statements can be made for nonpositive solutions u.
Remark 2.7. A sufficient condition for all (eventual) nontrivial solutions of (2.1) to

bepositive. Assume that 3,+X > and that f(x,u)>=au for all u, where -3,+ 2v/ =<
ct <’1. Then the nontrivial solutions u of (2.1) are positive in f. From (2.3) we obtain
Au + Bu >= au, and the result follows readily by Corollary 1.3.
Remark 2.8. The previous condition applied to Example 2 gives interesting conclu-

sions. Indeed, we can in this case compute explicitly the value of m in (2.8). Then
truncate f outside Isl >_-rn in such a way that the new f has derivative equals to -a for

Isl> m. By Proposition 2.2 the solutions of (2.1) with this new f are the same as the
solutions of the original equation. Moreover, from the way the truncation is done, it
follows (by a straightforward calculation) that now f(u)>= -au, (where we are denoting
also by f the truncated function) provided /3’ < a. So the previous sufficient condition
applies. Summarizing, the solutions of (2.1), in the case of Example 2, are positive if

(2.11) 8
< sa <=’/- 2v.

Observe that, if (2.11) is assumed, then the condition 3,+1 > - is automatically
satisfied, cf. Remark 1.4. We remark that no solution of (2.3) in this example can be
nonpositive (i.e. u < 0 in f). In fact the solutions in general change sign.

3. Existence of positive solutions. We consider again system (2.1) of the previous
section or its equivalent expression in the form of equation (2.3). In this section we

examine the question of existence of a positive solution under an additional condition
on the nonlinearity f at 0. In order to simplify the presentation in the sequel, we

suppose that f does not depend on x. The case when f depends also on x can also be
treated by the method used here; under appropriate conditions on f similar results may
be obtained. So we assume the next condition.

(f6) liminf_,o(f(s)/s)> k1.

Examples. Condition (f6) is satisfied, for instance, if (i) f(0)> 0, or (ii) f(s) is C
and f’(0)> Xl. A special case of (ii) was considered in [111.

THEOREM 3.1. Assume that +X > -g. In addition to conditions (fl), (f2) and (f6),
suppose that f is C for s >__ 0 and

(3.1) inf(f’(s)’O<=s<fl} > 3, + 27r-,
where 18 <= + eta is the first positive zero off(s). Then equation (2.3) has a positive solution
u, or equivalently, system (2.1) has a pair (u,v) ofpositive solutions.

Remark 3.1. The hypothesis 3’ + > - in Theorem 3.1 implies that }tl. Recall
also that under this hypothesis -, + 2v < ,1, and so we can make use of Corollary
1.3. The condition on the differentiability of f can be relaxed and in consequence (3.1)
has to be replaced by an appropriate one-sided Lipschitz condition.
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Proof of Theorem 3.1. (i) It follows from (f6) that there exist u >1 and so > 0 such
that f(s)>= us for 0 =<s =<s0. Thus el is a subsolution of (2.3) for all e such that
0 < e < e0 so/max

(ii) If fl<o then (x)--fl in is a supersolution of (2.3). If /3= + we
construct a supersolution for (2.3) as follows. It follows from (f2) that there exist
-3,+ 2v/-8 </<1 and C>0 such that f(s)<=ls+C. We then take as the solution of
A + Bo =/t + C in fl, 0 on Of. In view of Corollary 1.3, > 0 in f and e > 0

can be chosen in such a way that eft1 < o in f.
(iii) So (2.3) possesses an ordered pair of a sub- and a supersolution. Now in order

to apply the method of monotone iteration, it is still required that (a) Tx (-A + B-
,I)- be a positive operator for some real number ), and (b) the function s f(s)-)s,
for the same X, be nondecreasing in the interval [0, max]. These two requirements are
accomplished if one chooses X =-3’ + 2v/-. Indeed, (a) then follows by Corollary 1.3
and (b) follows from (3.1). Therefore the method of monotone iteration can be applied
and one obtains a solution of (2.3) in the interval [eft1, ].

Remark 3.2. It should be remarked that besides (f2) no growth condition is
required on f.

Remark 3.3. A statement similar to Theorem 3.1 holds true for the existence of
negative solutions of (2.1). In this case, condition (3.1) is replaced by

(3.1)- inf{f’(s)" fl’ <s=<O) > -+2/

where fl’ <0 is the first negative zero of f(s). In order to prove such a result, we
can reduce it to the situation of Theorem 3.1 by the substitution z u.

Example. f(u)=au-u with a>0. In this case fl= v/, and min(f’(s)’O<=u<=fl)
2a. So conditions (f6) and (3.1) are satisfied if < a ),/2- Vc. We then see that

in this example there are values of a for which (2.3) has a positive solution provided

Clearly this is the case for instance if 7 is large. This is also the case if , > (V- + 1)v
and 2 is a sufficiently large ball. Indeed, for large balls X is essentially zero and this
last inequality implies readily condition (3.2). Clearly in this example there is also a
negative solution, namely -u, where u is the positive solution.

Comparison with the results of Lazer-McKenna. In [11] the following system is
studied

(3.3) -kAu=Xu-h(u)u-o, -Ao+v=u ina

subject to Dirichlet boundary conditions. Under certain conditions on k, h and h it is
proved that

(3.4) kAu+ (1 A) -1u=Xu-h(u)u,

which is an equivalent form of (3.3), has exactly three solutions. In [11] a topological
degree argument is used, which does not give the sign of the two nontrivial solutions.
Under essentially the same hypotheses, our Theorem 3.1 says that one of these solu-
tions is positive and the other is negative. Our precise result is the following. We state
only the one corresponding to the existence of a positive solution. A similar one can be
drawn for the existence of a negative solution.
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COROLLARY 3.2. Under the assumptions below, equation (3.4) has a positive solution:

(3.5) 1 + ,x > 1/v/
(3.6) hCI(R,R), h(0)=0 h’(s)s>O Vs4=0,

1(3.7) kX: + 1 + 1
< k,

(3.8) sup{h’(s)s+h(s)’O<=s<=fl} _<X + k- 2V-,
where fl is the only positive solution of h (s )= k. (Observe that fl could be + .)

Remark 3.4. If h’(s) is nondecreasing, then fl < and (3.8) simplify to/3h’(/3)__<
k- 2v/-. So positive solutions of (3.4) exist if the diffusion rate k is large.

4. Remarks on a superlinear system. Consider the elliptic system

(4.1) -Au=f(u)-c, -Av=3u-3,v in a,
subject to Dirichlet boundary conditions, with 3,,8> 0 and -3, + 2v/ < 0. Assume the
following conditions on the nonlinearity f:

(fl)’ f" R / R / locally Lipschitzian,
(f7) liminfs__, +(f(s)/s)> 1,
(f8) limsupso(f(s)/s)<,1,

(f9) lim+(f(s)/s)=O where 1 <o <=(N+ I)/(N-1), if N>=3 and 1 <o< ,
if N=2.

As seen in the previous section, (4.1) is equivalent to

(4.2) -au+u=f(u).
Under the hypotheses above we may proceed as in the scalar case (cf. Br6zis-Turner
[2]) and we prove that (4.2) has a positive solution. Condition (f9) is used to get a priori
bounds for the positive solutions of (4.2). We do not know how to proceed in order to
obtain such bounds in the case when (N+ 1)/(N- 1) < o < (N+ 2)/(N- 2) and N >= 3.
The results of [3] for the scalar case are not immediately extended to this case. For that
purpose, the first step would be to see how the results of Gidas-Ni-Nirenberg [6] look
(if at all!) in this case. We remark that the extension obtained by Troy [15] does not
cover the type of systems studied in this paper.

Remark 4.1. The condition -3, + 2f-< 0 is used in order to guarantee that the
operator To-- (- A + B)-1 is positive. If this condition is not satisfied, but one has
3, q-1 > V/-, everything still works provided 1 in the right sides of assumptions (f7)
and (f8) is replaced by ,x-3, + 2Vc3-.

Nonexistence ofpositive solutions in the case when f(u)= up, for p > (N+ 2)/(N- 2)
and N >= 3. As in the scalar case this is proved using an identity of the Pohozaev type.
The function f(u)=up for u>=0 is extended as f(u)=0 for u <0. Then it follows from
Remark 2.7 that all eventual solutions u and v of (4.1) are positive in f, provided we
assume that -3’ + 2v < 0. Consequently the nonexistence of nontrivial solutions for
system (4.1) (in star-shaped domains f) with such an f follows readily from the two
lemmas below.

LEMMA 4.1. Let u and v be solutions of (4.1). Then the following identity holds

(4.3) 2 ol2 P2NfF(u)-(N-2) fuf(u)-2fuo- -g ftv (x. ) 12 1 2]Ivu -glv l
where F(s) f)f and f denotes (volume) integral over f and (surface) integral over
3. Here v denotes the outward unit normal.
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LEMMA 4.2. Let u and v be solutions of (4.1). Assume that - +2 <0. Then
u (1/7c) v is positive in and

Ou 1 Ov
< <0 on

To conclude this section, we prove the two lemmas above.
Proof of Lemma 4.1. First we use the general form of Pohozaev’s identity for

solutions of the -Au=g(x,u) in and u=0 on O; see [3]. This identity will be
applied separately to the first and second equations in (4.1). Observe that for the first
equation, g(x,s)=f(s)-v(x), and for the second equation, g(x,s)=3u(x)-ys. Then
we obtain the following two identities

(4.4)

(4.5)

2

[
(If one prefers to ignore [3], identities (4.4) and (4.5) may be obtained in the standard
way Pohozaev’s identities are proved. Use the multiplier x. V u in the first equation of
(4.1) and x. XTx in the second.) It follows from the divergence theorem that

(4.6) f f(x.Vu)o= -Nfuo.
Next dividing (4.5) through by 8, subtracting the result from (4.4) and using (4.6), we
obtain

u12_ 1(4.7) 2NfF(u)-(N-2)fuf(u) 4fuv+ -- fv2 (x’,)[IV -glvvl2].
Now it follows from the second equation in (4.1) that

(4.8) flvol -=,fu -vfo
Taking (4.8) into (4.7), we obtain the identity (4.3).

Proof of Lemma 4.2. It follows from -+ 2/ < 0 that there exists a real number
k such that < k < /- f. Using (4.1), it is easy to check that

(-A+k) u-v 0 ina

from which the assertion of the lemma follows. Observe that we know that all (even-
tual) solutions of (4.1) would be positive.

5. Existence of o nonUivial solutions for a class of sublinear systems. Let us
once more consider system (2.1) under conditions (fl), (f2), (f3) or (f4). As in previous
sections we discuss, instead of system (2.1), its equivalent form given by equation (2.3).
In this section we propose to treat the question of existence of solutions of (2.3) by a
variational argument. So we look for the critical points of the functional

(5.1) (u)= IVu +(Bu,u)- F(x,u)
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Xwhere F(x,s)=fof( ,)d. Although this functional is well defined in H if we
assume (f3), this is not the case if (f4) is assumed instead. Observe that both (f2) and
(f4) restrict f only in one direction. So some truncation has to be done. The existence of
a priori bounds on the solutions of (2.3) in either case ((f3) or (f4) assumed), as proved
in 2, allows us to truncate the nonlinearity f in such a way that the functional is
well defined in H and it is bounded from below. Indeed, if case (f3) is assumed, we
choose an appropriate > 7 and do this truncation for Is[ >= (see Proposition 2.1 and
Remark 2.3) preserving/, M and C and in such a way that limll,(f(x,s)/s)=l
where 0 < <. In case we assume (f4) the truncation is done for Isl>_-m (see Proposi-
tion 2.2), and in such a way that limll_(f(x,s)/s)=-k, where the constant k is
given in (2.8). The truncation so done has the very essential feature that the new
equation (2.3) with this truncated function has the same solutions as the solutions of
the original equation (2.3).

One sees immediately that " H(2) R is C and

So the critical points of are the H0 solutions of (2.3). By a bootstrap argument it
follows that these solutions are in fact in C2’().

LEMMA 5.1. The functional t defined above satisfies the Palais-Smale condition.
Proof. (i) In view of Poincar6’s inequality we may consider H endowed with the

inner product (u, to)nl= f XTu. Vto. It is well known that the nonlinear operator f: H
-H defined by (f(u),to)n=ff(x,u)to, VtoH, is compact. (Recall that f has
linear growth in view of the truncation.) On the other hand the (linear) operator

"H -H defined by (u, to)nl f (Bu)to is also compact. This follows readily from
the compact imbedding of H in L2. Consequently ’=I+-f, that is, ’ is of the
form identity+compact operator. Thus to prove the Palais-Smale condition, it is
enough to show that any sequence (unH) such that [@(un)[__< C and ’(u,)-o0 in

H possesses a subsequence (denoted again by u,) such that [[u,[[/ =< C.
(ii) It follows from ’(u)0 that given en $0 there exists a subsequence of (u)

(denoted again by u,) such that

Now using (5.3) with to= u and estimating with the help of (1.8), we get

<=

From the properties of the truncated f we obtain from (5.4)

[l

Next from I(u.)l c we infer that

(5.6) 12 f( uo)u x u.flvu. .+2fir( )]+c

and finally using the properties of the truncated f, we obtain from (5.6) and (5.5) that
flvu,,12<=c/cllull which proves that Ilull__< C. r
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Remark 5.1. It follows immediately from the previous remarks that system (2.1)
has at least one solution under hypotheses (fl), (f2), and (f3) or (f4). Indeed, since is
C functional, bounded below and satisfying the Palais-Smale condition, it follows
that it has a global minimum ux, (ux)= inf{ (u)" u H0 }. One cannot expect in
general the existence of more solutions. Indeed if f(u)=hu with h <,, equation (2.3)
in this case has only the trivial solution! So some additional assumption is necessary.

Now we treat a problem which is superlinear at 0, in the sense that the condition
below holds:

(fl0) f is differentiable at 0, f(x, 0)= 0, and f’(x, 0) < ,.
Example 2 in 2 satisfies condition (fl0).

TnFOREM 5.2. Assume conditions (fl), (f2), (f3) or (f4), and (fl0). In addition
suppose that there exists > 0 such that

(5.7) F(l)>=F(s) VO<_s<=l,

2F() >mint 1 (l+t)2 (l+t) N-1 3 (l+t) N .O<t<21/N_ 1
2 -S 2 2 (l+t) u+-3’ 2-(l+t) N

where R denotes the radius of the largest ball contained in f. Then equation (2.3) has at
least two nontrioial solutions.

Remark 5.2. Condition (5.8) is the analogue of a condition introduced by one of
the authors (D.G.F.) in [4] for the scalar case. We remark that if there is a > 0 such
that F()> 0 then the condition is satisfied (for example if f is a large ball and 8 is
very small). The special case of Example 2 was studied by Klaasen and Mitidieri [9].
Condition (5.8) follows readily from their conditions: (i) f to be a large ball, and (ii)
/3 > 9/(2a2- 5a + 2).

Proof. It suffices to prove that there exists ?t H such that (fi)< 0. Once this is
done, we see that the global minimum u of is a nontrivial solution since (Ul)=
inf < 0. The second solution is obtained immediately by an application of the Moun-
tain Pass Theorem of Arnbrosetti-Rabinowitz [1], since 0 is a strict local minimum in
view of assumption (fl0). In order to see that there are points in H where the
functional is negative we consider the functions u below. We may assume that the
ball centered at 0 with radius R is contained in f, where R is the radius of the largest
ball contained in f. Defining

d if Ilxll <=R/(1 +t),

l+t( R )] R
u, (x) 6 1 R x II- / k if l+t <- x =< R,

0 if x \BR(O),

the result follows by a calculation from conditions (5.7) and (5.8).
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ON THE EIGENVALUE PROBLEM FOR COUPLED
ELLIPTIC SYSTEMS*
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Abstract. We consider the eigenvalue problem

L,u, =, m,.iu in [2,
i=1

u,=O on

where f is a bounded domain in R", n>_ 1, with smooth boundary )f and for k=l,...,r, L, is a second
order uniformly elliptic operator. The coupling coefficients are such that rnij >_ 0, 4:j and for at least one k,
m.h. 4: 0. We establish the existence of positive characteristic values with associated positive solutions. We
also investigate the multiplicity of such characteristic values and establish bifurcation results for nonlinear
perturbations of the linear problem.

Key words, coupled elliptic systems, eigenvalue problems, bifurcation in nonlinear systems
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1. Introduction. Consider the eigenvalue problem

LkUk’-k mkiU in ,
i=1

Uk=O on 0,

where 2 is a bounded domain in R n, n 1, with smooth boundary )2, and for
k=l,. .,r

(1.2) 2
L, a ikj 3: xj

+ a -x + a
i,.j= i=l

is a uniformly elliptic differential operator of second order with coefficients continuous
on and ao(X)>=O, x. The coefficients mki 1 <__k, i<=r are also assumed to belong
to C(,R). The parameter , is assumed to be positive.

In a recent paper, P. Hess [11] showed that if mij.> 0, 4:j and if for at least one k,
m -, 4: 0, then (1.1) has a positive characteristic value with associated nontrivial solution
U--col(u1,"" .,Ur)K--{vC(,r): viO 1 <=i<=r}. The purpose of this paper is
to examine this important result more closely. We obtain a somewhat more detailed
understanding of the multiplicity and character of the nontrivial solutions to (1.1),
leading to results on bifurcation questions for associated nonlinear eigenvalue prob-
lems.
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To this end, we shall begin by proving the main result of Hess [11] in a slightly
different way, relying on ideas employed earlier by the second author in [18]. We then
give an extension of the restilt to the multiparameter problem

(1.3) LkUk=hk mkiu in f,
i=1

uk =0 on k=l,. .,r.

Together with some conditions for the uniqueness and simplicity of such characteristic
values of (1.1), our result on (1.3) explains how multiplicities greater than one occur in
a number of cases. Finally, we apply these results to the problem of positive solutions
to nonlinear eigenvalue problems, including the problem of coexistence steady states in
the Volterra-Lotka competition model with diffusion, recently studied by Cosner and
Lazer [8].

2. Main results. Let Lk, l<=k<=r also denote the realization of Lk in C0(O,R)
subject to Dirichlet boundary conditions. Then Lk" C(,R)zdom(Lk)--, Co(O,) is
invertible, with compact inverse. Furthermore, LT, is a positive operator with respect
to the cone of nonnegative functions. Denote by M the matrix M=(mij), 1 =< i, j_< r
and think of M as a multiplication operator. (Recall that mij>0 if i#:j.) Then (1.1)
may be written as

(2.1) Lu=XMu,
where

and L- is a compact operator on C0(, r) which is positive with respect to the cone
K in Co(, r), i.e. L-X(K)cK.

Let us choose/ > 0 such that all elements on the main diagonal of M+/I M+/,
where I is the r r identity matix, are positive. Then (2.1) is equivalent to

(2.2) ( L + Xt)u= X(M+ I)u,
and since/.t and X are positive (L +/X) -x is also a compact operator positive with
respect to K. Thus (2.2) is equivalent to

(2.3)
We let Ax=X(L+Xt)-t(M+ t). The following result then holds.
LEMMA 2.1. Let r(Ax) denote the spectral radius ofA x. Then the mapping r(Ax)

is continuous on (0, oo) with limx_,0+ r(Ax)=0.
Proof. The map Ax depends continuously on X in the strong operator topology.

Since the family (Ax} is a compact family, it follows from a result of Nussbaum [13]
that the map r(Ax) is continuous.

LEMMA 2.2. Assume mk 4:0 for some k (1,..., r }. Then there exists > 0 such
that r(Ax) 1.

Proof. According to Hess-Kato [12], there exists >0 and
0, x f such that

LkUk ,mkkUk
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Letting u=col(O,...,u,,O,...,O) one gets Lu<_kMu. Thus (L+Xt)u<=X(M+t)u.
Hence for this value of X

u =<(L+,)-(M+ )u,
i.e. u <=Axu.

Iterating this inequality, we get u <_Au, and since the C norm is monotone with
respect to the cone K, we get

lulzlh llul.
Hence 1 _<Jail 1/". Thus r(Ax)> 1.

THFOP,FM 2.3. Let m =/= 0 for some k { 1, 2,-.., r }. Then there exists a smallest
)t > 0 and u IC{0} such that

u=Axu,
i.e. Lu= XMu.

Proof. Since r(Ax) is continuous and r(Ax)o0 as X o0 and since by Lemma 2.2,
there exists X such that r(Ax)=> 1, it follows that there exists a smallest ) such that

r(Ax)=l.
Since Ax is positive and compact and K is total one may employ the theorem of
Krein-Rutman (see [2]) to conclude that there exists u K{0} such that

u=r(Ax)u=Axu,
i.e., Lu )t Mu.

COROLLARY 2.4. If )t > 0 is any other characteristic value, then
Proof. Let )t be a characteristic value. Then there is u=/=0 such that u=Axu.

Iterating, one obtains u=A[u. Hence 1 <=IA,I/, implying that r(Ax)>_ 1. The result
then follows from the proof of Theorem 2.3.

Now consider (1.3). Assume that (Xl,"" ", )tr) is restricted to a ray emanating from
the origin of R" into the positive cone. Theorem 2.3 then obtains in most cases. To see
this, observe that if (Xl,...,)tr) is as restricted, (1.3) is equivalent to

(2.4) Lu tlQu,
where

)Q= ".. M, t I,

,>__0 and (X)2+ +()=1. The result follows provided rhh=Xmk4:0 for
some k {1,2,...,r}.

Suppose now that X (Xl,.-., X,) is such that X >_- 0 and Xl 2 > 0. Define

A --Ix 12(g / N [2tt)-l(+ tt)
with

a)= 1

1- ".
)t

Mo
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If IX12=l, and X/> 0, i=1,-.-,r, we define F(X)=/(X), where i>0 is the smallest
number such that r(Axo)= 1. There are a number of conditions under which the
function F is continuous. In particular, we have the following result.

THEOREM 2.5. F is continuous at o (gt +)rC Sr- provided any one of the following
conditions holds"

i) mi.). >-- 0 for i,j 1,..., k.
ii) If F())=/), then is the only positive number such that u=Atxou has a

nontrivial solution u K.
Proof. In case (i), r(Atxo) is a nondecreasing function of t, > 0. The result follows

from an application of a result of Nussbaum [13]. In case (ii), one uses a simple
compactness argument.

3. Coupling and multiplicity. In this section we investigate the question of unique-
ness and multiplicity of the characteristic values of (1.1). We begin with the following
lemma.

LEMMA 3.1. Suppose I>O is chosen so that all entries of the matrix M+ are
nonnegatioe and that there exists xo such that (M+/)(x0) is irreducible. Then if
Lu=XMu and uK(O}, then in fact uintK (where int is with respect to the cl()
topology).

Proof. Since Lu XMu we have that

and componentwise

(Liq-)klJ,)ui =, (mij
j=l

+ 18;) u; >_ O.

It then follows from the Hopf maximum principle that for each (1,-.-, r }, either
ui=-O on fa or ui(x)>O, for all xfl.

Since u /,(0}, there must be at least one 0 {1,.-., r } such that u i0(x) > 0 on
2. If there is no other such i, (M+/x)(x0) has a one-dimensional invariant subspace,
contradicting the assumption of irreducibility. Hence there is (1,...,r}, il=/=i o
such that uh(x)>0 on ft. If 0 and are the only such, then (M+/x)(x0) has a
two-dimensional invariant subspace, again a contradiction. Iterating this argument now
guarantees u(x)> 0 on f for i= 1,.--, r. It further follows from [10, Lemma 3.4] that
Ou/v is negative on )fl for each i, proving the result.

THEOREM 3.2. Suppose there are l* >= 0 and xo such that (M+ t*)(xo) is irreduci-
ble. Then if ) is as in Theorem 2.3, ) is a geometrically simple eigenvalue.

Proof. Suppose u and v are nontrivial solutions of (1.1) with uK. Lemma 3.1
implies u intK. Hence for small 8, u-Sv intK. Let 8" sup(8> 0: u-Sv intK },
8. =inf{8 <0" u-SvintK). Since v=/=0 at least one of 8" or 8. must be finite. With
no loss of generality, assume 8" < m. Then u-8*v OK. Lemma 3.1 implies u=-8*v.

LEMMA 3.3. Suppose there are IX >= 0 and xo such that (M+ l* )(xo) is irreducible.
Then if t is as in Theorem 2.3, (I-Ax)2z=O implies (I-Ax)z=O.

Proof. Suppose (I- Ax)Ez 0. Then Theorem 3.2 implies that (I- Ax)z cu, where
u=Axu. Let A[ denote the Banach space adjoint of Ax considered in Co(2,"). The
Krein-Rutman theorem implies there is a continuous linear functional f* (with
f*(K)c[0, m] and f*(intK)c(0, oo)) such that Af*=f*. Hence

f *z-f *Axz=cf *( u )
which implies 0 cf *(u). Hence, since u int K, c O.
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THEOREM 3.4. Suppose mii>__O for i=1,..., r. Then if M(xo) is irreducible for some
xo f and t is as in Theorem 2.3, )k is an algebraically simple eigenvalue and the only
positive eigenoalue admitting a solution u, where u K.

Proof. That , is an algebraically simple eigenvalue is a consequence of Lemma 3.3.
Suppose now X’> is such that o= X’L-1Mv, with v K. Then Lemma 3.1 implies
vintK. Furthermore, since r(Ax) is a strictly increasing function of ), r(Ax,)> 1.
The Krein-Rutman theorem implies the existence of fiK(0) such that r(Ax,)=
Ax,. Applying Lemma 3.1 to the equation

LO MO,
r(Ax,)

we conclude that in fact int K. For i > 0 and sufficiently small, v 8 int K. Let
8*=sup(8>0" v-SfiintK). Since intK, 8"< and v-8*K, i.e., 8*__<v.
Hence 8*r(Ax,)g)=8*Ax,v<=Ax,v=v. It follows that 8*r(Ax,)_<8*, and so r(Ax,)=<l, a
contradiction.

We do not know in general whether Theorem 3.4 remains valid if the assumption
m ii>_ 0 for 1,..-, r is removed. However, with some additional restrictions on the
system (1.1), the theorem remains valid. As we shall see, the restrictions are substantial.
Nevertheless, the result is quite useful from the point of view of applications to
nonlinear analysis. Before stating the result, we give two lemmas which will be needed
in the proof.

LEMMA 3.5. Suppose that mij(x) <__ l/r, 4=j, and that 1 <__ m ii 1 + 1/r for
j, i= 1,..., r. Then there is no positive eigenvalue for (1.1) admitting a solution in K(0).

Proof. The result follows from an application of the maximum principle. See [14,
pp. 188-192].

LEMMA 3.6. Let m ii+ 1>0 for 1,..., r, let M+ I be irreducible, and assume
there is >0 and uK\(O) such that Lu=Mu. Then N((I-L-1M)2)=
N( I L- 1M) u ), whenever L-1M ML- 1.

Proof. That N(I-L-1M)=(u) follows from the fact that uintK (see Lemma
3.1). Consider ,(L + )-I(M+ 1). By the proof of Theorem 3.4, r(X(L + )-I(M+ 1))

1. If A denotes the Banach space adjoint of X(L + X)-X(M+ 1), the Krein-Rutman
theorem guarantees the existence of continuous linear functional f * such that Af *

f* and such that f*(intK)c (0, ).
Suppose (L-XM)2x=O. Then Lx-XMx=cu, for some cR. Hence (L + X)x-

X(M+ 1)x=cu, or equivalently, x-X(L+)-I(M+ 1)x=c(L+ )-lu. It follows that
f*x-f*(X(L+h)-l(M+l)x)=cf*((L+h)-lu). Now f*(X(L+X)-I(M+I)x)
(Af*)x=f*x. SoO=cf*((L+)-lu). Since uintK, c=0.

Finally, if L- 1M--- ML- and (I- ,L- 1M)2x 0, then a simple computation
shows (L XM)2x 0. Hence (L- XM)x 0, or equivalently, (I- XL- 1M)x O.

Remark 3.7. We note that in Lemma 3.6 that we do not need m ii> 0 for some
i {1,2,. ., r}.

THEOREM 3.8. Suppose that the conditions of Theorem 2.3 are satisfied. In addition,
assume

(i) m ij l/r, if =t=j;
(ii) -1/2r<mii<l/2r, fori=l,...,r.
If L-1M= ML-1, (M+ I) is irreducible, and if is as in Theorem 2.3, then is a

simple eigenvalue for (1.1) and the only positive eigenvalue admitting a solution u, with
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Remark 3.9. (a) Since (1.1) may be rescaled, conditions (i) and (ii) above are
restrictions only on the relative sizes of the diagonal versus off-diagonal terms of the
matrix M. The commutativity condition requires that Li--tj for i,j 1,..., r, and that
M be constant, although M may have negative entries on its main diagonal.

(b) The proof relies on an "unfolding" of the problem in a manner analogous to
that employed in [12]. We also obtain partial results in case (M+ I)(xo) is irreducible
for some x0 f (dropping the commutativity assumption).

Proof of Theorem 3.8. Assume initially only that M satisfies conditions (i) and (ii)
of the hypotheses and that (M+I)(xo) is irreducible for some x0. Let ,>0 and

R and define Ax, by

Ax,t=X(L+X)-I(M-t+I).
We first observe that there is t* (0,1-1/2r) such that Ax, is a positive opera-

tor for > 0 and < t* and that the equation

(3.) u=Ax,,u
has no solution with > 0, t*, and u K{0}. To see that this is the case, consider

1 1
2r

< min mii (x) <- max mii (x) <x xe 2r

for some i {1,2,.--,r}. It follows that if O<t<1-1/2r, then minrmi(x)-t>
1, and that if > max mi;(x)+ 1 -, then max-mi(x)-t <= 1 + 1/r. Since

maxmii(x)+ 1
1 1 1 1

----< +1---=1----
r -r r 2r’

our observation follows from Lemma 3.5.
Next observe that if =< 0, Theorem 2.3 implies that there exists a smallest positive

number ,(t) such that (3.1) has a solution uK{0}. If t=t*, no such number exists.
We now define a function f: (- ,t*] [0, ) by

provided (t) exists,f(t)=
0 otherwise.

Suppose now <t’ =<t* and there exists (t’)> 0 and uK{0} such that

u=X(t’)(L+X(t’))-I(M-t’ + 1)u.
Since 0 < m;- t’ + 1 < m- + 1 for 1,. ., r, we have

u<=X(t’)(L+X(t’))-l(M-t+ 1)u.

It follows that X(t) exists and X(t) =< X (t’). Furthermore, if f(t’) 0, f(t) 0 for
[t’,t*]. Hence f is a monotonic nonincreasing function and, as such, can have at

most a countable number of discontinuities.
.Suppose now that 0> 0, o < t*, and u K{0} such that

Lemma 3.1 implies that uintK. It follows from Lemma 3.3 that 1 is a simple
eigenvalue of 0(L+ ,0)-l(M to+ 1) and that r(ho(L + h0)-l(M o- 1)) 1. Since
r((L + ,)- I(M_ + 1)) depends continuously on and t, a perturbation theory
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argument will show that if a(),t)=r()(L + ))-X(M-t + 1)), a is an analytic function
of (),t) in a neighborhood of()o, t0). Furthermore, one may choose an eigenfunction
u(),t) corresponding to a(),t) so that u(),t) is analytic in (), t) also. (The perturba-
tion theory argument necessary can be adapted from [17, pp. 57-64]. We note only that
the simplicity of the eigenvalue 1 of )o(L+)o)-l(M-to+l) is essential to the
argument.) Let us now consider the equation

(3.2) olu--X(t-3t-x)-l(M-t3f 1)u.

Differentiating (3.2) with respect to and evaluating at ()o, to) we obtain

ott(,o,to)U(Xo,to)+Ut(Xo,to)
(3.3)

,o(L +)0)-X(M- to+ 1)ut()o,to) X o (t -I-. )k 0) -1U()ko,to).

Let Ao,t be the Banach space adjoint of Axo to. The Krein-Rutman Theorem implies
that there is a continuous linear functional f* (with f*(intK)c(0, c)) such that
f *A xo, to A* =f *. to (3.3) yieldsXo, tof * Applying f*

(3.4) Olt()ko,to)f *( /2(O,tO)) --of*[(td-o)-lu(
Since u()o, to)intK, at()o, to)4:0. The Implicit Function Theorem implies the ex-
istence of 8 > 0 and a smooth function g: () o , ) 0 + 8) R such that g(o) t0 and

Since f is nonincreasing, if <t2 and f(tl)=f(t:z)>O then f(t)=f(q) 1/(t)
for t[tx, tz]. So a(h(tx),t)=l for t[t,t2] by Lemma 3.3. But for any to(tx, t2),
the preceding argument shows that the solution set to a(),t)= 1 is expressible as a
function of ) in a neighborhood of (h(tl),to), a contradiction. Hence f is strictly
decreasing so long as it remains positive.

Let t**(O,l-1/2r) be given by t**=inf(t<=t*" f(t)=O) and also let 3,

lim f(t) and 0 =< 0 inf( f(t)" f(t) > 0). Since f is strictly decreasing, it has an
inverse h defined from a subset of (0, ,/) into (- , t**). We claim that this function h
is extendable to a continuous function h: (O,/)(-,t**) such that if s(O,-),
a(l/s,h(s))=l.

Let us now establish this claim. Let o < t** and let

Lo= lim f(t)> lim f(t)=R >0
tt --tt 0

It follows from [13] that

(1)a o,tO =1 and

The minimality of X(to) implies that Lo=f(to). Notice that if t=< -1/2r, Theorem 3.4
implies that Lo=Ro. So if L0>Ro, to(-1/2r, t** ). Furthermore, the Implicit
Function Theorem may be applied as before at (1/Lo, to) and (1/Ro, to), giving
functions gl and g2 respectively. Notice that: if )[1/Lo,1/Ro] and g())is defined,
then Theorem 3.4 and the minimality of ,(t) for > o implies that gl()k) [-1/2r, to],
and similarly for g2(,). By [13], gx()) and g()) can be extended on [1/Lo,1/Ro].
Since AX, is monotonic in for fixed , so must r(Ax, t) be. Hence if gl()k)4: g2()k) for
some h[1/Lo,1/Ro], a(h,t)= 1 for between gl()X) and g2()), a contradiction to
the Implicit Function Theorem. Hence h may be defined on [Ro, L0] by h(s)=gl(1/s ).
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We have now shown the existence of on (co, y). If co- 0, there is nothing more to
do. If co>0, then a(1/co, t**)=l and the Implicit Function Theorem guarantees the
existence of a g as before with g(X)[-1/2r, t**] and ct(X,g(X))= 1. Since g(?)
[-1/2r, t**], it again follows from the continuity of the spectral radius [13] that g is
extendable to (1/co, ). Defining (s)= g,(1/s) for s (0, co) completes the verification
of the claim.

Now assume that L-1M=ML-x. Suppose there is a to(-1/2r, t**) such that
L0> R o. Now 1/Lo=X(to)< 1/Ro<(t) for t> 0. Lemma 3.6 implies there exists a
(0,1) such that the Leray-Schauder indices indLs(I-(l+)(t0)L-l(M-t0))
and indLs(I-(1-)(to)L-l(M to)) are defined and unequal. We may also assume
that >0 is sufficiently small so that ((1 +8)X(t0)< 1/R o. The homotopy invariance
property of the Leray-Schauder degree guarantees that

ind as(I- (1 +8)X(to)L-(M-t))4inds(I-(1-8)(to)L-(M-t))
for t(to, to+e) for e>0 and sufficiently small. Hence for t(to, to+e) there exist
0< <(t) with N(I-kL-(M-t))4 (0}, a contradiction. Hence L0-R0 and so f is
continuous on (-, t**). A similar argument gives limt t**f(t)= 0 in this case.

The uniqueness assertion of the theorem is now evident from the Implicit Function
Theorem and the monotonicity of r(A,,) in t.

COROLLARY 3.10. Suppose M satisfies (i) and (ii) of Theorem 3.8 and (M+ I)(xo)
is irreducible for some Xo. Then if , A, t, and / are as in theproof of Theorem 3.8,
then the set ((X,t)(0,) (-, t**]" u=Ax, tu for some uK(0))= ((,h(-)):

The requirement that (M+/)(x0) be irreducible for some x02 represents a
rather strong coupling in the equations of the system. The other extreme is an uncou-
pled system, i.e. mij--0 on [2 if 4:j. Both, however, may be viewed as special cases of
the following.

Condition 3.11. There is a finite sequence of row and column interchanges under
which M is equivalent to a matrix of the form

where Mi is an rir matrix, with r+... +rl=r. Furthermore, (2.1) is equivalent
(under an appropriate relabelling of the ui’s) to the collection of systems

(3.6) Livi =XMivi, i=1,’",

where

has the property that v OK and vi a solution of (3.6) implies v--0.
As is evident, not all systems of the form (1.1) satisfy Condition 3.11. However,

there are sufficient conditions other than the above special cases under which Condi-
tion 3.11 holds. We will not dwell on these here.



858 ROBERT STEPHEN CANTRELL AND KLAUS SCHMITT

Suppose now Condition 3.11 is satisfied. Let ki, i= 1,.-., be defined as follows:
k 0, ki 2j. < irj, i= 2,.-., I. Then (1.3) can be equivalently expressed as

(3.7) "..
Lki+r Uki+ri

ki+l .. I mki+l’ki+l: mk+l,k+rllUk+lkki+r mki+ri,ki+l mki+ri,ki+r Uki-t-r

i= 1,..., 1. Let F denote the function of Theorem 2.5 relative to (3.6) (i). We have the
following result, which is similar in spirit to the results of [6].

THEOREM 3.12. Suppose Condition 3.11 holds and that for each i= 1,..., l, there
exists d(i) {1,.. ",ri} such that (mki+d(i),k+d(i))+4:0. Assume also that (ii) of Theo-
rem 2.5 holds for {(’ki+x,’’’,ki+ri,"ri" k,+,--" "Oiki+’+ I(’ I=1}. Then the set

{(kl,’’’,kr)R_: (3.6) has nontrioial solution inel) i=1--.,, where T=(R+)’;
im(F/)(+)r-’;+r). Furthermore, the geometric multiplicity of (,,...,,) is pre-
cisely the number of sets T of which (21,. ., 2 r) is a member.

Proof. The result follows easily from Theorem 2.5, the results of 3, and the
definition of Condition 3.11.

We conclude this section with a brief examination of the system

(3.8) =X(u+),
(3.8) is a typical example of a system for which Condition 3.11 fails to hold. Multiplic-
ity results for more general upper-triangular nonsymmetric matrices M may be ob-
tained in a manner analogous to that which follows. To this end, consider

(3.9) Lu=X(u+o), Lo=lo.
Let ? and ,2 represent the first eigenvalues for L and L2, respectively. If (3.8) has a
nontrivial cone solution, either o 0 or / 2- In the first case, , ?. If ? 2,

however, it follows from the results of [12] that a nontrivial solution (ou) with u > 0 and
o > 0 (note that u=0 implies v=0) is possible only in case ? <,. In particular, it
follows that if 1=2, then ,== is a characteristic value of (3.8) which is
geometrically but not algebraically simple.

4. Bilurcation results. In [11], Hess combined the result of Theorem 2.3 with the
methods of [3] to obtain a bifurcation result for the nonlinear eigenvalue problem

(4.1) Lu=,A(u).
Here A" K C0(f;) is the Nemytskii operator associated with a continuous func-

tion a" ( +) . He assumed that a satisfies the following conditions"

(4.2) a(x,0) =0, xf.

(4.3) There exists an rr matrix m of functions mkt C(f; ) such that

a(x,o)=m(x)o+
as 1o 0, o (R +) (uniformly for x 2).
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(4.4) There exists a number a >__ 0 such that

for (x,o)(R+)r.
Under the above conditions, Hess showed that if Z += {(,,u)R C00(0,r):

2 > O, U K, Lu= ,_A(u__)}, 2 + contains an unbounded component Z0 emanating from
(h*, 0), where ,*>= 3 (? as in Theorem 2.3). He also identified certain cases when
,* , (namely rn kt>= 0 for k, l= 1,. ., r or rn ,t= 0 if k 4: l).

Our results show that if (M+ Ix)(x0) is irreducible for some x02, then, at least
locally, if (?, u) Y0 and u 4: 0, then u int K. Furthermore, if a is independent of x
and L Lj for i,j 1,..., r, Theorem 3.8 implies that also in this case ,* X.

We now establish some results on the multidimensionality of the nontrivial bifur-
cating solutions for nonlinear analogues of (1.3). The principal techniques for establish-
ing such are the theorems of Alexander and Antman [1] and Fitzpatrick, Massabo, and
Pejsachowitz [9]. Both results require that one work in an open subset of’E, E an
appropriate Banach space. (In this case, [C,a(,)] is suitable, where 0<a<l,
provided the coefficients of Lk and the mkz are in C(f, ). A precise definition of the
spaces is found in [10].) A formulation based on [3] is not immediate. We therefore
consider

(4.5) Lu= ".. Mu+H(,I,. ",Xr,U),
?

where H: R R R is continuous, cone-preserving and H(,a,. ., ?r, wa," ", Wr)=
o(l(Wx,’’-, Wr)]) (uniformly for (,1,"" ", r) in compact subsets of Rr). It follows from
[5] that the techniques of [1] are applicable to (4.5) provided (1,"" ", ?r) is an algebrai-
cally simple characteristic value of (1.3).

THEOREM 4.1. Suppose there is k (1,..., r } such that m-k 4:0 and that for IX>= 0
and sufficiently large (M+ ix)(xo) is nonnegative irreducible for some xo 2. (If ix >= 0 is
required, assume that the conditions of Theorem 3.8 also hold.) Suppose that
H(?I,. ", r, u) H(I,’" ", , u) and that F is as in Theorem 2.5. Then there
emanates from imF {0} N(R +) E a connected set S of solutions to (4.5) such that

(i) (21," ", r, U ) S implies either u int or ( a, ? r, U )
(ii) S\(imF (0}) is of topological dimension at least r at every point.
Remark 4.2. (i) For a precise definition of topology dimension, see [1] and its

references.
(ii) If (ha,..., ?r) is restricted to a ray emanating from the origin of , the global

bifurcation alternatives of Rabinowitz [15] hold. (See also [9].) It then follows that S is
unbounded in the sense that SnO((+) Co(, r)) 4:

(iii) The oddness condition on H is a representative condition guaranteeing the
existence of "small" positive solutions. Certainly, other such conditions are possible.

COROLLARY’ 4.3. Suppose Condition 3.11 holds with > 1. Consider (4.5) and assume
H of (4.5) has the form

rl(Ul,
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Consider the problem

(4.6)
Z u

Ur

Ul

rl
U

rl

H*(u1,

kr
where

n*(ul,..., Url)=

Suppose that if (kl,’’’,rl, Ul,’’’,Urx) is a solution of (4.6) then (kl,...,krl,
k

rl + 17 , k r, U1,’" ", Url O, ", O) iS a solution of (4.5) for any choice of ra + 1, ", r.
Then ifM1, H* and F satisfy the hypotheses of Theorem 4.1 with respect to (4.6), there
emanates from JimF (R + )r- rl (0 ) C (R + )r C’’(, )] rl (0) a connected set of
cone solutions to (4.5) such that (;kl,-.-, kr, Ul,’’’, Url, O,’’’, O)S and (Ul,..-, Urn)4:0
implies (Ul,. -, Url) intK1. Furthermore, S\([imF ( +)r-r1] (0) has a topologi-
cal dimension at least r at every point.

Proof. If (.rl+l"’" kr) are considered fixed, Theorem 4.1 guarantees the ex-
istence of a set S of solutions to (4.6) as above with topological dimension at least ri.
Then S ( +)-r.

Corollary 4.3 raises the obvious question: do there exist other "small" positive
solutions with (Ur/,’’’, U not identically zero) bifurcating from [imF1 ( +)r--ra]
(0}? The answer is no, provided (kl,"" ", k) is algebraically simple (with respect to all
of M) and H is sufficiently well behaved. More precisely, we have the following result.

COROLLARY 4.4. Suppose (kx,... kr)imF(+)r-rl is as in Corollary 4.3 and
that

dimN I- . L-1M dimN 1- .
r r

2

Suppose also that there exists a continuous monotonic function G: + + such that
G(0)= 0 andfor all o,wE [Q,"(, n)]

I[/( Vl,"" ", Vr)--(Wl"’’’ Wr)I1

Z G( II( Vl,’’’, Vr)I1+ II(Wl,""", Wr)I1)II(v,’", Vr)--(WI,""" Wr)liE"

Then near ( x,. ",
, , 0,..., O) in ( +) E, the solution set of (4.5) is as described by

Corollary 4.3.
Proof. The result follows from the generalization [1, Thm. 3.12] to several parame-

ters of the global bifurcation theorem of Rabinowitz [16, Thm. 1.19].
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We conclude this article by demonstrating the applicability of Corollaries 4.3 and
4.4 to the question of stable coexistence states in the Volterra-Lotka competition
model with diffusion, recently studied by Cosner and Lazer [8], among others. The
model in question is as follows:

(4.7) Au au- bu 2__ CUl),

Av= dv- euv-fv2,

with u(x) and o(x) the population densities of the competing species at x2, an open
bounded smooth domain in R", subject to u-= 0--o on 3f. a and d, b and f and c and
e are assumed to be positive constants, representing growth rates, self-regularization
and competition, respectively, with positive diffusion coefficients normalized to 1. The
only solutions to (4.7) with physical significance are those with u >= 0, o >= 0.

We will now consider (4.7) as a bifurcation problem with a and d acting as
parameters and b, c, e, f considered fixed. Let 1 be the first eigenvalue of -A
(relative to 2 and zero boundary conditions). Then if F and F2 are as in Theorem 3.8
relative to

(4.8) -hu=au, -hv=bv,

then im(F1)R=((a,d )" a--)kl) and Rim(F2)= ((a,d):
Consider the problem

(4.9) Au au- bu 2 in 2,
u=0 on

As noted in [8], (4.9) has a unique positive solution for all a> 1- In fact, one may
realize these positive solutions as one of the two branches guaranteed by [16, Thm.
1.19]. To see this, note that the nonlinearity in the problem

(4.10)
Au au- bul u I, in ,
u--0 on f,

is odd. Since the eigenfunction corresponding to t is of one sign and since f(x)= xlxl
is continuously differentiable at x 0, a positive branch for (4.10) is guaranteed at least
locally. This branch coincides with solutions to (4.9). One may then use the uniqueness
of the positive solutions, upper and lower solution techniques, the maximum principle,
and global Rabinowitz bifurcation theory [15] to guarantee the continuation of the
branch. Corollary 4.3 and Corollary 4.4 may now be applied. As a result, the only cone
solution to (4.7) possible in a sufficiently small neighborhood of (’1, d, 0, 0), d 4: kl, or
of (a, k, 0, 0), a 4: k 1, are of the form (a, d, u, 0) or (a, d, 0, ), respectively. Thus a > k1,

d> ’1 does not give a sufficient condition for stable coexistence states if a 4: d. This
result strongly suggests stable coexistence states should be in general viewed as a
secondary bifurcation phenomenon, as is the case in [4] and [7].

Note. It has been observed by one of the referees for this paper that the use of
irreducibility in Lemma 3.1 is similar to that in the paper, G. J. Habeitler and M. A.
Martino, Existence theorems and spectral theory for the multigroup diffusion model, Proc.
Symposia in Applied Mathematics XI. Nuclear Reactor Theory, American Mathemati-
cal Society, Providence, RI, 1961, pp. 127-139.
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A DENSITY DEPENDENT DIFFUSION EQUATION IN POPULATION
DYNAMICS: STABILIZATION TO EQUILIBRIUM*

M. BERTSCHf AND D. HILHORST

Abstract. We study an evolution problem corresponding to the nonlinear diffusion equation ut= Atp(u)
+ div(u grad v) with no flux boundary conditions. This problem has a continuum of stationary solutions. We
prove the existence and uniqueness of the solution of the evolution problem and construct a Lyapunov
functional in order to show that the solution stabilizes as t- o.

Key words, nonlinear degenerate diffusion equation, large time behavior, Lyapunov functional, popula-
tion dynamics
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1. Introduction. Let fl be a bounded domain in R N(N__>__ 1) with smooth boundary
Of. We consider the nonlinear evolution problem

(P)

U t--" m(] ( u ) - div( u grad v) in fR +,
on Ofl +,
in f.

Here , denotes the outward normal at x Of, the function is a smooth function such
that (0)=0, ’(s)>O for s>O and ’(0)=0, the initial function uoL(2) is non-
negative and wl,(fl) is a given function (for the precise assumptions we refer to
3).

In 2, we show how Problem P arises in the theory of population dynamics in the
case that (s)= 1/2s 2 and interpret some of our results in terms of the geographical
location of two biological populations.

This paper is divided into two main parts. In Part I (4-6) we discuss the large
time behaviour of the solution of Problem P. In Part II (7-9) we collect the basic
results about Problem P" existence, uniqueness and regularity of the solution.

In Part I we prove that the solution u(t; u0) of Problem P stabilizes to equilibrium.
Let E denote the set of equilibrium solutions; then there exists a function q E such
that

u(t; Uo)--* q in C() as t--> c

where q satisfies

fu qdx= fe uo dx.

*Received by the editors May 3, 1983, and in revised form March 21, 1985.
t* University of Leiden, Leiden, The Netherlands.
*Present address: CNRS, Laboratoire d’Analyse Num6rique, Universit6 de Paris-Sud, 91405 Orsay,

France.
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In addition we give a characterization of E" we show that E coincides with the set

(1.1)
S= { wC()" w>=O in 2, and for every x2 either w(x) =0

or (w) + o constant in a neighbourhood of x }.
Here

(1.2) (s)= f’ qo’(r)
dr,

a0

The proof of these results is given in {}{}4 and 5. In {}4 we show that solutions of
Problem P satisfy a contraction property in L(2). In {}5 we follow an idea of Osher
and Ralston [18] and exploit this contraction property, combined with the structure of
the set S, to construct a Lyapunov functional. A remarkable detail of the proof is that
we do not study the elliptic problem to prove that E S. Also this fact follows from the
contraction property and the structure of the set S.

In {}6 we extend the above results to the case when the natural boundary condition
is replaced by a homogeneous Dirichlet condition.

In Part II, we show that Problem P has a unique solution in some generalized
sense. In {}7 we construct a solution u(t; Uo) of Problem P as the limit of solutions of
related uniformly parabolic problems. It turns out that the set (u(t;Uo);t>l } is
precompact in C(f), thanks to a regularity result of DiBenedetto [7].

In order to show that the solution of Problem P is unique, we are led to use
another sequence of regularized problems, following closely a method of Kalashnikov
[12], [13]. This is done in {}8.

Finally, in {}9, we give the corresponding results about the Dirichlet problem.
Studies concerning the existence and uniqueness of the solution of problems

related to Problem P have also been done by Aronson, Crandall and Peletier [3], Diaz
and Kersner [6], Gagneux [10], Madaune [17] and Tour6 [21].

There exists an extensive literature about the large time behaviour of solutions of
degenerate parabolic equations. However there are not many articles where one con-
structs a Lyapunov functional in order to establish the stabilization to equilibrium. We
have already mentioned the work of Osher and Ralston [18]. Such a method is also used
by Aronson, Crandall and Peletier [3], Schatzman [20] and Alikakos and Rostamian [1],
[21.

2. Biological context. Problem P arises in the theory of population dynamics.
Consider a population in a finite habitat 2 which consists of two different groups, for
instance age groups. Let u(x,t) and o(x,t) denote the density of these groups. In order
to model their evolution with time, Gurtin and Pipkin [11] propose the following
system of equations:

Ut div( u grad( u + o)) in f +,
ot=kdiv(ograd(u+o)) in 2R/,

where k is some positive constant. The flow of the populations is described by the
dispersal velocities: grad(u + v) for the u-individuals and k grad(u + ) for the o-indi-
viduals. In particular, when the parameter k is small, the o-individuals disperse much
slower than the u-individuals.

In this article, we study the problem in the limit k 0. The second equation yields
at once that is constant in time; there remains the equation in u which coincides with
the differential equation in Problem P if we set q0(s)= 1/2s 2. The boundary condition
expresses the fact that no individuals can leave or enter the habitat.
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An interesting consequence of our results is the following. It follows from (1.1)
that, for any nonconstant function o(x), the set E= S contains a nontrivial function
q(x) such that

q=0 in f0cf, q>0 in f\fo

for some nonempty subset 0- If Uo<=q in f, then u(t;Uo)<=q in for all t>0. In
particular

u(t;Uo)=O infofort>0.

From a biological point of view this phenomenon of localization is interesting: the
o-individuals can stop the spread of the u-individuals.

A detailed analysis of this model in one space dimension was given in [4].

3. Preliminaries. Let us first state the precise hypotheses on q, u0 and v and give
a definition of a solution of Problem P.

H1. q C3(R+)NCI(R +), q(0)= q’(0)= 0, f "r-lq0’(’r)d’r < , q’(s)> 0 for s>0,
q"(s)>__ 0 for s(O, so) for some s0>0.

H2a. v WI’(() for some smooth domain (3, and Av>=-M in ( in the
sense of distributions for some M> 0.

H2b. If N >= 2, v W2,p(() for some p > N.
H2c. v has finitely many local strict minima.
H3. If N= 1 either (s)= S 2 or v" L(2).
H4. uo L(fl), u0> 0 a.e. in f.
We use the notation Q fl (0, for > 0 and Q fl R +.
DEFINITION 3.1. We say that a function u: [0, z) Ll(f) is a generalized solution

of Problem P if it satisfies"
(i) u C([O,t];L(f))NL(Qt) for all t>0,
(ii) fu u(t)k(t)= fu u0k(0)+ fro., ( (u)Aq + uqt- ugrad ogradq } for all t> 0 and

all q C2’X() such that q >_ 0 in Q and Oq/), 0 on Off R +.
A generalized subsolution (resp. supersolution) of Problem P is defined by (i) and

(ii) with equality replaced by __< (resp. >=).
In the sequel we shall often omit the word generalized.
In Part II, we shall prove the following results. We suppose that the hypotheses

H1, H2a and and H4 are satisfied.
PROPOSITION 3.2. There exists a unique solution of Problem P.
PROPOSITION 3.3. (regularity). Let u be the solution of Problem P. Then u C(f

(0, )) and the set (u(t); > 1 } is bounded and equicontinuous. Furthermore if uo
C(), then uC(f[0, o)).

PROPOSITION 3.4. (comparison principle). Let u(t) and (t) be respectively a
subsolution and a supersolution of Problem P with initial functions uo and fto such that

Uo<=fio. Then u(t)<=ft(t) in for t>=O.
Part I

4. Contraction in Ll(fl). In this section we prove a contraction theorem which
turns out to be our main tool when studying the asymptotic behaviour of u(t) as

----) ot.

THEOREM 4.1. Let u(t) and u2(t) be the solutions of Problem P with initial

functions Uol and u02 respectively and suppose that the hypotheses H1, H2a and H4 are

satisfied.
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(i) Then

[[u(t)-u(t) II.(. zlluo -Uo ll, a(.> for any t>0.

(ii) Let v satisfy in addition the hypotheses H2b and H3. If uol and Uo2 C(f) and

if there exists a connected subdomain Uc f such that

(4.1) and um >0’ Uo2 > O in U

u01- Uo2 changes sign in U,

then

Ilul (t) u2 (t) I[L(a) < U01 U02 L(f) fol" any > O.

Remark 4.2. Condition (4.1) is necessary because the parabolic equation in Prob-
lem P is degenerate at points where u 0.

Due to the degeneracy of the equation and the fact that v is not smooth, the proof
of Theorem 4.1 is fairly technical. The idea of the proof is due to Osher and Ralston
[181.

Proof of (i). In Part II of this article we show that we can approximate u(i 1, 2)
by solutions of uniformly parabolic problems: let ugh(e> O) be the classical solution of
the problem

Ut--- me( u ) -- div( u grad G)} }v
in 2 x II +,

where

Ze(x,t)=Ule(X,t)--U2e(x,t),
Then z is the solution of the linear problem

zt A (az ) + div( z grad G)

Z(X, 0) Z0e(X) U0le(X) U02e(X)

where % is a smooth function such that q/(s)>=c(e)>O for s0 and %(s)q(s)
uniformly on compact subsets of [0, ) and where v and u0i are smooth functions
such that vv in HI() and UoieUo in L2(fl) as e $0. In part II we show that
(u) is uniformly bounded and equicontinuous in compact subsets of f (0, ).
Using in addition the uniqueness of the solution ui(i= 1,2), we conclude that

(4.2)
We define

ui(t)ui(t ) inC()ase0fort>0, i=1,2.

ae(x,t)= fol q:(Ou(x,t)+(1-O)u2 (x,t))dO.

For smooth initial functions z0 which satisfy the compatibility conditions at
8f (0), the existence of a unique solution z C2a() of Problem L is proved in
[16, Thm. 5.3, p. 320]. Below we shall need an existence and uniqueness result if z0 is

xfl, t>O.

in fxNt +,

on 3flx +

on OfxN +,
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merely continuous in f. To obtain this result we can proceed in the same way as we
sketched above (and as we shall prove in [}7) for the more difficult nonlinear and
degenerate Problem P: we approximate z0 uniformly by smooth initial functions Zo
(n 1, 2,. ). Then the corresponding solutions z, are uniformly bounded and
equicontinuous in [0,t] for t>0 and z. converges uniformly to a generalized
solution z C(f [0,t]) of Problem L as n. By standard regularity results [16],
[8], z C2a(f (0,t]). In addition these solutions satisfy the comparison principle; in
particular they are uniquely determined by the initial function. The proof rests on the
same test function argument which is used in [}8 for the nonlinear problem and which is
.extremely easy in this linear case.

For any initial function z0 C(), we denote the unique solution of Problem L
by z(t)= T(t)zo. We set a+=max{a,0} and a-= max{-a,0}. Then for any t>0

-2fa min+, T(t)Zodx fa {T(t)z+ T(t)zff-zff-zff} dx

since

-2fe min+, T(t)zdx=-2f min+, T(t)zffdx,

It follows from the comparison principle that T(t)z >= O. Thus for any e >0

(4.3) [lUa(t)-u2(t)[la)-lluox-Uo2[[x)<=o.
Clearly Theorem 4.1 (i) follows from (4.2) and (4.3).

Proof of Theorem 4.1(ii). Let ui(i=l,2) and z be defined as above. Since

Uoi C(f) we may assume that u0i,= u0. Let 8> 0, and write

z(t)=T(t)z(8) for t>__8.

Then, by the proof of (i),

and it is enough to prove that, for sufficiently small values of 8, there exists a

tl ( ) )" such that

fu min+, (T(t)z?(8))>=rt(t,8)>O for (i3, 1)

for all small e > 0.
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Consider the Cauchy-Dirichlet problem

zt A (az ) + div( z grad G)
z=0

in/ (3, oo),
on O/X (3,
in ,

where Oc U is such that dist(O, 3U)> 0 and z0t= U01 U02 changes sign in . We
denote the solution of Problem L by

(t)= f(t)z(3) in// (3, o).

Then, by the maximum principle,

d(t)z?(3)<=Td(t)z?(3) in/x (3, oo).

Thus, it is enough to prove that

(4.4) f# min+,_ (’f(t)z?(3))>=q(t,3)>O for t(3,tx)

for every e (0, e0) for some e0 > 0.
This will be done by means of the following lemma, which is an immediate

consequence of Harnack’s inequality [16, p. 209-210].
LEMMA 4.3. Let eo > 0 and > > 0 be constants, and let the following assumptions

be satisfiedfor all e (0, eo)"
(a) II"Z (t)z(8)llt=(O)>=lo>O for t[3, t],
(b) when N= 1, then IlallL(,tl.H(U)) <= C and ]lvllwl.(u) <= C,
(c) when N>= 2, then_ Ilall,(,.w.v)) <__ C and IIvlIw=.,(v) <__ c,
(d) at>=ao>O in U[6,tl], forsome constants #o>O, C>O, ao>O andp>N.
Then, for all e (0, eo)

f(t)z?(3)>_#(x,t;3)>O in /.)X(3, tx]

for somefunction # which does not depend on e.
Assuming that (a), (b), (c) and (d) are satisfied for small > 0, (4.4) follows. Thus,

to complete the proof we need to verify these conditions.
In view of Proposition 3.3 and the assumption u0iC(2), we have uiC(2

[0, )). Hence there exists a t0>0 such that ui>O in U[0,t0] and z(t)=ul(t)-u2(t )
changes sign in for t[0,t0]. Since uitu and ztz in C([0,to]) there exist
positive numbers/o, Vo and e0 such that for all e(0,eo)

(4.5) t/it>____Vo in X [0,to], i=1,2,

and

for t [0,to].

By (4.5) and the definition of a t, condition (d) is satisfied on U [0, to].
Let 8 (0, to) be fixed.
When N 1, Lemma 7.7 below, combined with (4.5), implies that u it is uniformly

bounded in L(8,to; Hi(u)). Hence it follows from the definition of a that condition
(b) is satisfied for all tl (3, to] (the hypothesis H3 is necessary in the proof of Lemma
7.7).
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When N>__ 2 we may assume that v is uniformly bounded in W’P(f). It follows
from (4.5) and [16, Thm. 3.1, p. 437] that ui is uniformly bounded in
L(8,to, W’(U)). Thus condition (c) is satisfied for all (,t0].

It remains to show that for some t (i, to] condition (a) is satisfied. In view of the
conditions (b) and (c), which we proved to be satisfied for (__,to] we deduce from
[16, Thm. 7.1, p. 181] that "T (t)z(8) is uniformly bounded in [8,t0]. In addition,
(4.5) and [16, Thm. 1.1, p. 419] imply that u(i) is uniformly HiSlder continuous in/).
Finally it follows from [16, Thm. 10.1., p. 204] that Tf(t)z(8) is H61der continuous in
r [i, to], uniformly with respect to e (0, Co). Hence, by (4.6), there exists a (, to]
such that condition (a) of Lemma 4.3 is satisfied for all e (0, e0).

This completes the proof of Theorem 4.1.

5. Stabilization to equilibrium. In the present section we prove the main result of
this paper, namely that u stabilizes to equilibrium as ---, oe.

Let the set E be defined by

E={qC()" q>=O and fa (p(q)Al-qgradvgradl)=O
}for all / C () with 0 on 3a

It follows from the definition of a solution of Problem P (Definition 3.1) that

E=(q-C()" q>__Oandu(t;q)=qfort>_O).
Let S be defined by (1.1).

THEOREM 5.1. If the hypotheses H1, H2abc, H3 and H4 are satisfied, then:
(i) E S.
(ii) There exists a function q E such that

u(t;uo)q inC() astoe

where q satisfies

(5.2) qdx=fauodx.
Remark 5.2. For some functions v and initial functions u0, condition (5.2) char-

acterizes q completely (see [4]).
The main tools in the proof of Theorem 5.1 are the contraction property which we

proved in 4, and the following lemma about the structure of the set S.
LEMMA 5.3. Let qC() be nonnegative. Then either qS, or there exists a

function w S such that w-q changes sign in a connected subdomain Uc f such that w,
q>0 in U.

Thus S is a continuum in the space of nonnegative continuous functions on
Proof ofLemma 5.3. Suppose that there is no w S such that w-q changes sign in

some connected subdomain Uc such that w, q > 0 in U. We shall prove that q S.
If q---0 in f, then qS. So let q(xl)>0 for some xl f]. We set C=Cb(q(x))+

V(Xl), where the function is defined by (1.2). Let P1 c f] be the connected component
of the set {x f" v(x)< C} which contains x. We claim that

(5.3) dP(q(x))=Cl-V(x ) in P1-
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Suppose that P1 contains a point where tp(q) < C1-o. Then

tb(q(Yc))+v(Yc)=Cx-eo and q()>0

for some P1 and e0 > 0. Let c PI(0 < e < e0) be the connected component of the
set (x" v(x)< Cl-e) which contains . We fix e(0,e0) so small, that/ contains
xx. Define w by

C-e-v(x) forx L,
(w(x))=

0 for x\.
Then w S. Let F be a curve in /5 which connects )2 and xx. Since w > 0 on F, and
since, by construction, w-q changes sign on F, there exists a connected closed subset
Fo c F such that

w, q > 0 on F0 and w-q changes sign on F0.

Hence there exists a neighbourhood of Fo in /b, where w, q > 0 and w-q changes
sign. Thus we have a contradiction and P1 does not contain points where (q)< C-v.

A similar, but easier proof yields that P does not contain points where (q)>
C1- v, and (5.3) follows.

If P1 =f or if q-=0 in f\P1, then qS. So suppose that q(x_)>0 in f\P. Set
C_=(q(x))+v(x2) and let Pc be the connected component of the set

C- v(x)> 0} which contains xg_. Then again we conclude that

dP(q(x))=C2-v(x ) in P
and clearly P P_ .

Continuing this process, we construct sets, Pi, i=1,2,.... Since v has a local
strict minimum in each connected P and since the number of local strict minima of v
in 2 is finite, this process is finite. Thus q S.

Proof of Theorem 5.10). We first show that S c E. Let w S. Since v has a finite
number of local strict mimima, it follows from (1.1) that there exist a finite number of
continuous functions (x) (i 1,..., i0) with connected and mutually disjoint support
such that

io

(5.4) (w(x))= E ,(x)
i=1

and

,(x)=C-v(x) forxsupp

for some constants Ci. Since v W1’(2) it follows (see for instance [14, Thm. A1,
p. 50]) that (w(.)) W’(2) and

-gradv in(x" w(x)>0),grad (w)
0 elsewhere.

Then, by standard theory, (w(.)) W1’(2) and

-wgradv in(x" w(x)>0),(5.5) grad p (w)
0 elsewhere.
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Let n C2() with DrI/O,= 0 on Of. Then, by (5.5),

fe (tp(w)Ar/- wgradograd) fe (gradq(w)+wgradv)gradl=O.
Thus w E.

Next we show that E c S. Let q E and suppose that q S. Then, by Lemma 5.3,
there exists a w S such that w-q changes sign in a connected subdomain Uc fl in
which w, q> 0. Since qE and w S E, it follows from (5.1) and Theorem 4.1(ii)
that

t>0.

Thus we have obtained a contradiction and q S.
Remark 5.4. When N= 1, Theorem 5.1(i) follows at once by integrating the

differential equation (see [4]).
Proof of Theorem 5.1(ii). We define the 0-limit set

(u0) (w L’(fl)" there exists a sequence t,

such that u (t,) w in zl() as ).
By Proposition 3.3, the set {u(t; u0); t>= 1) is precompact in C(2) (and hence in

Ll(f)). Thus (u0) is nonempty and (u0)c C().
Let q W(Uo). We show first that q satisfies (5.2), then that q E, and finally that

0(Uo)= {q}.
Setting +(x, t)= 1 in Definition 3.1, we find that

fu(t; Uo) =fu for all > 0u0

and (5.2) follows.
In order to show that q E, we argue by contradiction" suppose that q E. Then,

by Theorem 5.1(i), q S. Thus, by Lemma 5.3, there exists a function w S such that
q-w changes sign in a connected subdomain Uc fl in which q, w > 0. We use w to
define the functional V: L(f) [0, ):

Since w E, it follows from Theorem 4.1(i) that the solution u(t) of Problem P satisfies

V(U(tl))<= V(u(t2)) foralltx>__t:>=0.

Thus V is a Lyapunov functional for Problem P. Since u C([0, ); LI()) and V is
continuous, it follows from [5, Prop. 2.1 and 2.2] that u(t; q)(Uo) and that V is
constant on (u0). Hence

(5.6) V(u(t;q))= V(q) for all t>_0.

On the other hand, since q and w C(), it follows from the choice of w and Theorem
4.1(ii) that

V(u(t;q))<V(q) forallt>0

which contradicts (5.6). Thus q E.
Finally we show that O(Uo)--- { q }.
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Suppose that lW(Uo) and that u(t,;Uo) q as t,o and u(s,;uo)?t as
s, o where the sequences { t, } and ( s, ) are chosen such that s, < t, for all n >__ 1.
Then, using Theorem 4.1(i), we find that

q- 0 ]IL(a) lim u(t.; u0)- {ILl(a)

__< lira Ilu(s,,;Uo)-OllL<)=O.

Thus g/= q, which completes the proof of Theorem 5.1.

6. The Dirichlet problem. In this section we show how the results about Problem P
can be extended to the case of homogeneous Dirichlet boundary conditions. We
consider the problem

u,= aq(u) + div( u grad v) in [2 +,
(PD) U=0 on OFX +,

u(x,O)=uo(X ) inf,.

We define a (generalized) solution u(t;Uo) of Problem PD in a similar way as for
Problem P, taking test functions k C2’1() such that q,=0 on 32x +. The Proposi-
tions 3.2, 3.3 and 3.4 as well as Theorem 4.1 remain valid in the case of Problem PD- In
particular

(6.1) u(t; u0) C() and u(t; u0) =0 on 3f for t> 0.

Let the set of steady-state solutions, ED, be defined by

Eo= { qC()" q>=O and fa (q(q)Art-qgradvgradl)=O
for all C2() such that /= 0 on 3 }.

LFMMA 6.1. Let E be defined as in 5. Then EDc E.
Proof. Let q ED. Then

(6.2) u(t;q)=q fort>O.

Let (t; q) denote the solution of Problem P with initial function q. Since, by (6.1) and
(6.2),

(t;q)>=u(t;q)=q=O on

fi(t; q) is a supersolution of Problem Po. Hence, by (6.2),

(6.3) ft(t;q)>=q in f]n +.
On the other hand we have that

fu(t;q)dx=fqdx, t>=O.

Combined with (6.3) this yields fi(t; q)=q for >= 0. Thus q E. We define So by

So { q S, such that q 0 on 3 },

where S is defined by (1.1). In what follows we prove the following theorem.
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THEOREM 6.2. Let the hypotheses H1, H2abc, H3 and H4 be satisfied. Then:
(i) Eo= So.
(ii) Eo contains a maximal element qmax, i.e. q <_qmaxin for any qEo.
(iii) There exists a function qEo such that u(t;Uo) q in C(2) as t

If in addition uo <= qmax, then q satisfies fa q dx fa uodx.
Proof. (i) By Lemma 6.1 and Theorem 5.1(i), Eo c S. Hence Eo c So. The proof of

the inclusion So Eo is identical to the proof of S c E, given in 5. Thus Eo= So.
(ii) Let C>IIVlILXe) be constant and let wS be defined by Op(w(x))=C-o(x),

x . Then w > 0 in f and it follows from the definition of the set S
for any q So. Hence, by (i),

(6.4) q =< w in 2 for any q Eo.

Since wS=E,w is a supersolution of Problem Po- Hence the solution u(t;w) of
Problem Po is nonincreasing in and we may define

0_<p(x)= lim u(x,t; w), x.
By (6.4) and the comparison principle

(6.5) q=<p in f for any qED.

Below we prove that p Eo. Then the result follows at once from (6.5), with qm=p.
Let (x)>=0 be a smooth test function on 2 such that 7=0 on Of. Then u=u(. ;w)

satisfies

Thus

(6.6)

u(t)/=fa wrl+ffO (q)(u)Al-ugradvgradrl).

d- u(t)r/= (p(u(t))A-u(t)gradvgrad).

Since u(t; w) decreases to p as oe, the left-hand side of (6.6) is nonpositive and
there exists a sequence oe such that

(6.7) - u(t,)lO as t, .
On the other hand, the right-hand side of (6.6) converges to

fe (q(p)A-pgradvgrad) as t, .
Hence, by (6.6) and (6.7),

fa ( p ( p ) AT p grad v grad ) 0

limsup u( x,t; Uo) <= qmax(X ),
t--

and thus p Eo.
(iii) Given an initial function u 0, one can find a function w S such that u0__< w in

f. Using the above argument and the comparison principle, we find that
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Hence

(6.8) qo(Uo) implies that q<--qmax"

In order to prove that u(t; Uo) stabilizes to equilibrium, we use the same arguments as
for the proof of Theorem 5.1(ii), but now based on the fact that Sz is a continuum
between zero and qmax, on (6.8), and on the contraction property of u. If furthermore
Uo<=qmax, then the solution fi(t; Uo) of Problem P satisfies fi(t; Uo)<=qmax for t>__0 and
in particular fi(t, u0)=0 on )2 +. Thus t(t; u0) coincides with the solution u(t; Uo)
of Problem Pz (see Lemma 9.3 below). Then, if q=limt_ou(t;Uo), we have, by
Theorem 5.1(ii)

qdx=f uodx.

Part II

7. Existence and regularity. In this section we prove the existence of a solution of
Problem P which satisfies this problem in a somewhat stronger sense than that of
Definition 3.1. We first recall some usual definitions and then give an alternative
definition of a solution, involving the gradient of q0(u). The existence proof itself is
based on the study of uniformly parabolic problems which are related to Problem P.

We denote by L2(0, T; Hl(fl)) the Hilbert space with inner product

( U, O ) Lz(O,T; HX(ft))-- fr

uo + fQ( gradugradv

and by V(Qr) the Banach space with norm

I"1 ffV2(QT) ess sup u2(t)+ (grad u
O<t<T Qr

DEFINITION 7.1. We say that u: [0, o)LX() is a weak solution of Problem P if it
satisfies

(i) u C([O,t];Ll(f))c3L(Qt) for all t(0, o);
(ii) p(u) Vz(Q, ) for all t(0, o);
(iii) fau(t)q(t)=fauoq(O)+fdfa (u+t-(gradcp(u)+ugradv)gradq } for all q

C1() and all t (0, o).
LEMMA 7.2. A weak solution of Problem P is a generalized solution as well.
Proof. Take q C2’1() with )q/), 0 on 2 N + and integrate by parts.
In what follows, we show that Problem P has a weak solution. To that purpose, we

consider the problems

U m(e( U ) -- div( u grad re) in QT,

on a x (0, T],

in

where

%(0)=0,p:(s)>=C(e)>0 fors[0,K],

(l-l(s))t
_
(-l(s))t for s [O, tp(ZK)]
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where K is the uniform L-bound of u that we find in Lemma 7.4 below and % and

’ converge to q9 and ’ on all compact subsets of R / as e $ 0, where

for some constant C>0,

IIv llc( )__<lloll  (.> and as e$0,

and where

0_-<u0 z Ilu011   . ,

Uo satisfies the compatibility condition

v o on

and Ilu0- uoll=<)0 as e$0.
Since it is standard that one can construct the approximations % of the function q

having the properties indicated above, we do not do it here. On the other hand we
construct explicitly in an appendix approximations v and u0 of the functions v and
U 0

To begin with, we give a comparison principle, which turns out to be basic in the
study of Problems P and P.

LEMMA 7.3. Let u and u c’l(Or) be two solutions of Problem P with initial

functions Uol <= Uo2. Then ux(t)=< u2(t ).
Proof. Let z u -u2. Then z satisfies the linear problem L which we discussed

in 4 and Lemma 7.3 follows from the comparison principle for that problem.
Before proving the existence of a solution of Problem P, we first give some a priori

estimates.
LEMMA 7.4. Letu C2’I(T) be a solution of Problem P. Then

(7.1) O <_ u<=K in Qr

where the constant K does not depend on T.
The lower bound in (7.1) is obvious. The upper bound follows from the construc-

tion of time-dependent supersolutions, which are uniformly bounded with respect to e.
We leave the details to the reader.

LEMMA 7.5. Problem P has a unique classical solution uC2+(r) for each
a (0,1).

Proof. See [16, Thm. 7.4, p. 491].
In what follows we give some more a priori estimates for u.
LEMMA 7.6. Let 0 <= < < T. Then there exists C( r ) > 0 such that

ftt-’r (grad %(u))-< C()"

In particular the constant C( ’) does not depend on T or on e.
The proof is immediate if we multiply the differential equation by %(u) and

integrate by parts over f] (t, + ’).
Next we give an estimate which is useful for the proof of Theorem 4.1(ii); we adapt

a proof from Gagneux [10].
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LEMMA 7.7. We suppose that either w(s)=slsl/2 or AvLI(). Then

(7.2)

The constant C( ) does not depend on T.
Proof. We first show that for 0 _< t- < t_< T, the following estimate holds

(7.3) f’_, fa:(u)(gradu)<_ C(r ).

For that purpose we multiply the differential equation by u and integrate by parts; we
obtain- u(t)- u(t-,)+ ;(u)(gradu)a= gradvgrad u

When (i): (s)=s2/2, we have

f fa 1 )=Cll ngradograd, u < (u)ll(,_,.

by Lemma 7.4; and when (ii): Av L(fl), then

grad v grad u vffN C(r)
t-z 2 e

which completes the proof of (7.3).
For the rest of the proof we refer to [10].
We shall need a result of DiBenedetto [7, Thm. 6.2] to deduce a strong estimate,

namely the equicontinuity of u.
LZMMa 7.8(0. For every > 0 there exists a continuous nondecreasingfunction ,(.),

,(0)=0 such that

for all ( x ) arX T], 1, 2. The function , does not depend on T and e.
(ii) If uo C(a), then { u} is equicontinuous on a x[0, T].
We are now in a position to prove the existence theorem.
THeOreM 7.9. We suppose that H1 and H4 are satisfied and that v W’(a).

Then there exists a weak solution of Problem P which satisfies
ONuNC on Qr

and is continuous in any set x[r, T] with >0. The constant C and the modulus of
continuity do not depend on T.

Proof. From the estimates above we deduce that there exist a function u L(Qr)
C(a x (0, r]) and a subsequence of { u } which we denote again by { u } such that

(i) u u uniformly on all sets of the form x , T] with r > 0 (by Lemma 7.8),
(ii) u u strongly in L2(Qr) and a.e. (this is a consequence of (i) and the

uniform bound of u in L()),
(iii) %(u)(u) weakly in L(O,T;HX()) (this follows from Lemma 7.6; one

checks that the lit is (u) by observing that by (ii) and Lebesgue’s dominated
convergence theorem %(u)(u) strongly in L2(Qr)),

(iv) ugradv ugradv strongly in L(Qr).
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It remains to check that u is a solution of Problem P. It is easy to deduce from
(i)-(iv) that u satisfies the integral equation in Definition 3.1 since u satisfies a similar
equation. Also u C((0, T]; LX(f)). In order to show that ]lu(t)l[Ll() is continuous at
zero we use the contraction Theorem 4.1(i). Let fi be a solution of Problem P with
initial function Uo obtained as a limit of solutions of Problem P. Then

Let > 0 be arbitrary. Since Uo converges to u 0 in LX(), one can fix e such that
I]Uo- Uol] L,(U)__< /3. Then by Theorem 4.1 Ilu(t)--fi(t)l]LlU)< //3. Finally we deduce
from Lemma 7.8 (ii) that one can find o such that ]lfi(t)-UollLl)__< r//3 for all =< 0.

Remark 7.10. If the function (p is defined on R with (p’(s)>0 for s<0, the
condition uo >__ 0 is not necessary to obtain the results of 7.

$. Uniqueness of the solution. In order to show that the solution of Problem P is
unique, we apply a method due to Kalashnikov [13] which consists of comparing an
arbitrary solution of Problem P with a solution obtained as the limit of a sequence of
classical solutions of the parabolic equation in Problem P. We do so below and for
technical reasons which will appear later we impose the condition Ao >__-M in the
sense of distributions.

We approximate Problem P in two steps, first by the problem

u,= Aq(u) + div( u grad

---e

in QT,

on 3f x (0, T ],

which in turn we approximate by the problem

Ut"- A( u ) -- div( u grad vj)
Mt(p.j) -3- (p (u) + u-- n

in Qr,

on Off X (0, T l,

where

c1
Aoj >= M and vj- v o

for some constant C > 0,

as j--,

where the constant A is such that A > C and

UoC2+(), O<=uo<=C for some constant C2>0,

Uoj satisfies the compatibility condition

q),( +l)3Uoj 3vj l(3VjuJ

and is such that
We show in the appendix that one can construct such functions v and u0j.
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We first give uniform upper and lower bounds for the solution u,j. of Problem P,j.;
the fact that u,j. turns out to be bounded away from zero ensures that Problem P,j is
uniformly parabolic.

LEMMA 8.1. Let unjC)"l(-r) be a solution of Problem P,j. Then, for n large
enough,

_le-ut< ,(x t)<C forall(x t)rUnjn

where the constant C does not depend on time.
The main tool of the proof is the following comparison principle which is an

immediate generalization of Lemma 7.3.
LEMMA 8.2. Let u and u2 C2’1(r) and assume that Ul and u)_ are positive on -r.

if

in

Then

u <= u 2 in QT"

Proof ofLemma 8.1. One easily checks that s-(x,t)’= (1/n)e-Mt is a subsolution
of Problem P,, and hence, by Lemma 8.2, u,>=(1/n)e-Mr.

On the other hand, one can construct a supersolution of the form

s+ (x,t) =d#-X(C- vj- e-Mth(x)),
where h is a smooth function such that 1 _< h =< 2, and where the constant C is chosen
large enough. Omitting the details here we find that u,<=s+ <= -1(C).

By the method of {}7 one can obtain further a priori estimates for solutions of the
Problems P,j. and Pn and use them to show that a subsequence { u,j.} of solutions of
Problems P,j. converge to a generalized solution of Problem P, as j and then that
a subsequence ( u } of solutions of Problems P converge to a solution of Problem P. In
addition, following DiBenedetto again, we find that the sequence (un9 } is equicontinu-
ous. In particular one can show that there exists a solution u of Problem P and a
subsequence of the solutions u, of Problems P, (which we denote again by { un )) which
converge to u as n o. Below we use this construction to prove the following result.

THEOREM 8.3. We suppose that the hypotheses H1, H2a and H4 are satisfied. Let u
be the solution of Problem P obtained above and let u ( resp. ) be a subsolution ( resp.
supersolution) of P with initial function uo (resp. Fro). Then for every (0, T] we have
that

(8.1) f. (u(t)-u(t))+-<f. (u0- u0) +

and
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COROLLARY 8.4. If the hypotheses H1, H2a and H4 are satisfied, Problem P has a
unique solution.

COROLLARY 8.5. Let u_(t) and fi(t) be respectively a subsolution and a supersolution
of Problem P with initialfunctions u_ o and rio such that u_ o <__ rio. Then u_( ) <= ft( ) for every
t(0, T].

Proof of Theorem 8.3. The proof follows closely that of Diaz and Kersner [6]. Let q+
be a test function. Then

f. (u- f. (u0- u0.)+(0)

<-- fo’ fa ((u-u.)(t)#+(p(u)-p(u.))A+-(u-u,,)gradgrad# }

where

=< ( u u,) ( q+t + A,A+ grad v grad

A,(x,t)= fol q/(Ou(x,t)+(1-O)u,(x,t))dO.
Since u,>=(1/n)e -tt, there exists e(n)>0 such that A,>e(n)>O. We now define a
sequence of smooth functions A,j. >__ e(n) such that

Anj-’)A stronglyin L2(Qr) as j

Let q,j be the solution of the problem

qt+A,/Aq-gradvjgradq=O in f(0,t),

(Lnj) O----V- 0 on 0f [0, t),

k(x,t)=x(x ) in

where X is a smooth function such that 0 =< X < 1. As a consequence of the maximum
principle we have that 0 =< q,/=< 1. We set q qn. Then

<8.3) f. (u-..)x__<f. (Uo-Uo.) +

+ fotfa (U-Un)((An-Anj)A+nj-(gradv-grad+)grad+nj}
In what follows we first keep n fixed. In order to show that the second term of the
right-hand side of (8.3) vanishes as j o, it is sufficient to prove that there exists a
constant C(n, t) such that

<8.4) fo (gradq./)2=< C(n,t) and fotfa (Aq+,j.):_< C(n,t).
These estimates follow from multiplying the differential equation in Problem L,j. by
Aq,/ and integrating it on f(0,t). For details we refer to Aronson, Crandall and
Peletier [3] where a similar calculation is made. Inequality (8.3) together with (8.4)
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yields

for all smooth X such that O__<X__<I and hence, since UoUo in C(f) and u,u in
C(Qr), we have

(8.53 (u0-.0) +

Next we consider a sequence of smooth functions X such that X converges in
L() to a limit defined by

1 in (xl(x,t)u(x,t)},(x)=
0 elsewhere.

Taking X=X in (8.5) and letting m yield (8.1). Finally one can show (8.2) in a
similar way.

9. Some remarks about the Dirichlet problem. In this section we give results about
the existence, uniqueness and regularity of solutions of Problem Po, wch we intro-
duced in 6. Because the proofs are quite similar to those given in 8, we ot them
here.

THEOREM 9.1 (existence+ regularity). Let H1 and H4 be satisfied and let v
W’(fl). Then Problem Po possesses a solution u which is uniformly bounded in Q and
which is continuous in any set x[, T] with > O. The modulus of continuity does not
depend on T.

THEOREM 9.2 (uniqueness + comparison principle). Let H1, H2a and H4 be satis-

fied. Then"
(i) Problem Po possesses at most one solution.
(ii) Let ( ) and fi(t) be respectively a subsolution and a supersolution of Problem Po

with respect to the initial functions o and rio- If o rio in , then g( ) fi( ) in for
tO.

Finally we give a lemma which relates solutions of the Neumann problem which
vanish on Ofl to solutions of the Dirichlet problem.

LEMMA 9.3. If the solution u(t; Uo) of Problem P satisfies u(t; u0)=0 on for any
O, then u(t; Uo) is a solution of Problem Po.
Proof. Let + cEa() with +=0 on 8XR+. Then u(t;Uo) satisfies the integral

equality (iii) of Definition 7.1. Integrating by parts yields

+ {p(u)Aq,,+uq,,t-ugradvgradq,, }

Since tp(u)=O on 3fR +, the second term at the right-hand side vanishes. Thus
u(t; Uo) is a solution of Problem Pz-

Appendix. In this appendix we collect various approximation results which are
used in this article.

A1. Approximation of v.
LEMMA A1. Let v WX’(f). Then there exists a sequence (G} c C() such that

[[G[[c(__< C, [[G[[c(r) <__[[v[[oo() and JIG-v[[()O as e SO.
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Proof. Let (2 with dist(f,O))>O. Then one can extend v by a function
WI’() such that =v in f and IIIIL=)<=IIVIIL=<a). We define the function

p(x)=
exp

1
if ]xl<l,

Ixl=-I
where C is a constant such that fn" p(x)dx-- 1. Let

f. ( x-Y )(y)dy for/(Oe(X)= E
U

)
E

In particular note that IIollcm)__<lloll<.). Let us suppose that e < dist(, 0). Then it
is a standard result (see for instance Kufner et al. [15]) that

fa (x-Y)gradv(y)dy forx.(A.1) grado(x)=e N
O e

Then Ilgradvllc()NllgradvlJ() and live- vllwl.,,(a0 as e 0 for every p[1, m).
LEMMA A2. Let v Wt’(fl) be such that Av -M in the sense of distributions in
with dist(fl, )> 0. Then there exists a sequence ( v} c C() such that IIllc()

C, Av -Min and Ilv-vllHa()O as e$O.
Proof. In view of the proof of Lemma A1, it remains to show that hv-M.

From (A.1) we deduce that

( (x-Y)) forxAc(x)=e N Ao(y),o

where (.,.) denotes the duality pairing between H() and H-(). In particular,
since Ao 2 M we have that for x

Av(x)>-e= NM p(xsy)e dy=-e NM p

which yields the result.

A2. Approximation of uo.
LEMM A3. Let uoL() with uoO a.e. and &t v, ogC() be such that

IIllc(>, Ilollc) C. Then
(i) There exists a sequence (Uo)C C() such that 0Uolluoll), Uo satis-

fies the compatibility condition

’(Uo) Ou+ u 0 on and IlUo-Uoll=(.0 as e 0a o
(ii) There exists a sequence (Uoj } c C() such that 0 Uoj C, Uoj satisfies the

compatibility condition

,(Uoj+ l ) Uoj Vj ( vj )In+o+ -a =0

where A is a given constant and IlUoi- uol L) 0 asj .
Proof. Since (i) is practically a special case of (ii) we only prove (ii). We define

fioj(X) =j"fa P(j(x-y))uo(y)dy
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and note that 0 =< ojllUollL(). Let B be a positive_ constant. It follows from Fried-
man [9, p. 39] that one can find a function wj C(f) such that

=B and 3wJ --l(OJ()OJ))+ -g;B + -0-;-A

Also, since gradvj is bounded in C(f) uniformly in j we have that [Iwj[[:(n)=< C. Since
B>0, there exists jcf with dist(Oj, O2)>0 such that wj>0 on 2\fj. Fin.ally we
choose fxjc22j.2, such that dist(2j.,Of)>0, dist(21j, O22j)>0, 21j2J. and
meas(f\flj)__< 1/j. We define

w (x)

if x

if x 2jlj,
if x

where j is a C function such that

I 1

.(x) [0,1]
0

if x ’lj,
if x 2jlj,
if x f\12j.

We have that u0j C(fl). Also

IIoj-uollL2(S) can be made arbitrarily small by choosing j large enough. The term

Iluoj-ojll:() is bounded by (1/j)(lluollz:o()/llwjll()), which tends to zero as
j "--) O(.
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THE WELL-POSEDNESS OF THE KURAMOTO-SIVASHINSKY
EQUATION*

EITAN TADMOR

Abstract. The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are
modeling reaction-diffusion systems, flame-propagation and viscous flow problems. It is considered here, as a
prototype to the larger class of generalized Burgers equations: those consist of quadratic nonlinearity and
arbitrary linear parabolic part. We show that such equations are well-posed, thus admitting a unique smooth
solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods,
existence and stability are derived in this case, by "patching" in the large short time solutions without "loss
of derivatives".

Key words. Kuramoto-Sivashinsky equation, fixed point iterations, existence, uniqueness, stability
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1. Introduction. The equation referred to in the title is of the form

oq,
-7+ Iv+ + a,t,+ ,=o.

This equation was independently advocated by Kuramoto [2], in connection with
reaction-diffusion systems, and by Sivashinsky [4], modeling flame propagation; it also
arises in the context of viscous film flow [5] and bifurcating solutions of the
Navier-Stokes equations.

In this paper we study the well-posedness question associated with the one-dimen-
sional version of the Kuramoto-Sivashinsky equation (abbreviated hereafter as the K-S
equation)

(1.1) O
Ot

2 02,/, 0%+ -x ++=0.)X 2 0X 4

It is shown that the Cauchy problem connected with (1.1) is well-posed: the K-S
equation admits a unique smooth solution, continuously dependent on its initial data.
In fact, all the results quoted below equally apply to the more general equation

o-Z x =P x ,=0,

with a linear part, strongly parabolic of arbitrary order

(1.2b) ReP(i5) >_ Const. I I1.
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Existence and stability results given here, are obtained by modifying Taylor’s recipe, [6,
p. 96], for treating the existence question in the special case of Burgers equation,
/b(i)=2. According to that recipe, roughly speaking, dissipation is used to com-
pensate nonlinearity, so that short time solutions can be constructed without running
into the familiar phenomenon of "loss of derivatives". Coupled with an L2-decay
estimate, short time solutions are then "patched" together, in the large. A study along
these lines is carried out in 2 below, where existence and stability questions are treated
in connection with the K-S equation. Existence and uniqueness in this case were
previously proved by energy methods, see e.g., Aimar and Penel [1], Nicolaenko and
Scheurer [3]. The technical details are avoided in 2: these are postponed to 4, all
proved by virtue of a single standard estimate on the linear dissipative part of the
equation, given in 3.

The above study thus suggests itself, with handling arbitrary linear dissipative
parts. In 5 we conclude by quoting the corresponding results to such generalized
Burgers equations.

2. Existence and stability. We start by putting the K-S equation in a conservative
form" we differentiate (1.1), obtaining that the new decayed variable u=u(x,t; 7)
e-ntJdp/x, /> O, satisfies

(2.1a) 3u
Ot
+ent(u2) +llu+ o2u+Ox Ox 2 Ox 4

a solution for the initial value problem (2.1a) is sought, u(t), t_>_0, subject to initial
condition

(2.1b) u(x,t=O) =f(x).
Both the pure Cauchy problem, < x < , and the periodic problem, say -r/2 =< x
=< r/2, are discussed. We explicitly treat the first infinite case by means of Fourier
expansion; the somewhat simpler periodic case can be likewise handled, using Fourier
series instead.

If we let ’(i)=/’(i; ’)--’0--2--4 denote the sym.bol associated with the
spatial linear part of (2.1a) and let O(,t)=O(,t; ’l)=e -tP(i;n) be its transformed
solution operator, then by Duhammel’s principle (2.1) admits the following integral
representation

n" 2(2.2) u(t)=Q(t; rl), f+ e .Q(t-r; ), -x (U (-))d-.

Abbreviate the right-hand side of (2.2) by ,In[u; f]; to simplify notation, we will
occasionally suppress the explicit dependence on the initial data, thus writing

(2.3) ,In[u an[u, f] Q(t; l). f+ fot n,
)

e .Q(t-r; l)*-x(U2(r)) dr.

The question of existence of a solution for (2.1) is now transformed into that of a fixed
point solution for ,In[u ]. Fixing T, T>0, we seek a fixed point solution for ,In[u in
L([0, T], L2), equipped with the standard norm Ilull--supo<_t<_rlu(’; t)1.2 The ex-
istence of such a fixed point solution is guaranteed, at least for a short time, as a
consequence of

2We adopt the notation of single bars to denote spatial norming; for example, Iwl#,.
(f (1 / 1412 )"1v(4)12 d)1/2. Similarly, double bars are reserved to space-time norming’ for example, Ilwll.
supo _<,_< rlw(., t)l#,.. In particular, Iwl-lwljo-(f w2(x)dx)1/2, Ilwll-llwllo.
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LEMMA 2.1 (short time contraction). Given v, w in L([0, T], L2) and ,In[. ]= ,In[. ;f]
as in (2.3). Then, there exists a constant rio>= O, such that for ri >= rio we have,

(2.4a) [[J[oI-J[wl[I<-M(T; )’(]lvil+liwl])’ilv-wl[.
Here, M(T; ri ) is given by,

(2.48) M(T; ri) 2e "r- T1/s.

By virtue of Lemma 2.1 we find
COROLLARY 2.2 (short time boundedness). Set T= T1, T > O, such that

4M(T1; ri)" If ]<1-(2.5a)
Then, for ri >= rio we have,

(2.5b) [la " [flll<=21f I,
Thus, the fixed point iterations, 3"l[f] remain inside the origin centered ball of

radius 2[/]. Hence--since by Lemma 2.1 Jn[’] contracts inside that ball, having a
Lipschitz constant 4M(T1; ri).< 1--the existence of a fixed point solution for 3n[u
follows, at least for a short time interval, 0 < < T1. Furthermore, the length of that
existence interval, T1, depends on no higher than the initial L2-norm. This latter fact
plays a central role in the foregoing analysis; in particular, it enables the local solution
just constructed, to be continued to a global one, with the help of

LEMMA 2.3 (large time decay). Let u(t; ri)= u(x,t; ri) be a solution of (2.1). Then,
there exists a constant rio>__ O, such that for ri >= rio we have

(2.6) [u(t2; ri)l<=e-(n-n)(t-tl)’lu(tl; ri)l, O<=t<=t2<=T"
Verification of Lemma 2.3 is straightforward" multiplying (2.1a) by u(x,t; ri),

integrating by parts while noting the vanishing contribution of the nonlinear term, we
find

d 2 2 3u 12 3:u(t )1/2 lu(t)l ---lu(t)l + -a-x(t) 8x 2

invoking the Parseval relation, the last equality yields

m ax(a/2 lu(/)l <- ))-Iu(t)l =

and integration finally leads us to (2.6) with rl0 1/4. We remark that in the periodic
case, ,r/2 =< x <_ ,r/2, one can invoke instead Poincarr’s inequality,

-’/1 3x

leading, in a similar way, to (2.6) with ri0 0. Observe that in genera] the exponential
growth bound, rio, may depend on the period.

To conclude the existence of solution in the large, we now fix ri, ri >_-ri0, with
appropriately chosen rio in either the finite or infinite case; then, short time

3With the infinite pure Cauchy problem, u(x,t) is required to vanish at x= + oe, indeed, lu(t)l., < c
according to Theorem 2.6 below.
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solutionswconstructed according to Lemma 2.1mcan be successively "patched" to-
gether, over time intervals which--according to Lemma 2.3Bare of a fixed (non-
shrinking) length T1. Integrating, we obtain a global solution for the K-S equation,
=q,(x,t); the solution so obtained ismup to integration factorwunique. Thus we
finally arrive at

THEOREM 2.4 (existence). The K-S equation (1.1), with prescribed initial data
k( O) in Hl, admits a unique solution, k ok(x, ), which satisfies,

(2.7) <= e noT. O<t<T<.

In fact, q,(t), t>0, belongs to HI: a further L2 estimate needed here, is discussed
in 4 below.

The global solution referred to in Theorem 2.4, is constructed by patching together
short time solutions, using a single L2 a priori estimate. Such a patching procedure
differs from existence proofs via standard energy methods, e.g., [1], [3], where higher a
priori estimates are called for. Instead, we rely here on having a derivative-free Lipschitz
contraction factor, so that short time solutions can be constructed, without running
into the familiar phenomenon of "loss of derivatives". We note that solving the
integrodifferential equation (2.2) by fixed point iterations results in the existence of a
solution satisfying the original differential equation (2.1), in a weak sense. Concerning
the existence of such a solution under a stronger topology, one observes that (2.1a)
contains two destabilizing sources: the focusing effect ("loss of derivatives") caused by
the nonlinear term, and the exponential divergence of the second order dissipative term.
It is the balance of these two terms by the fourth-order dissipation, which leads us to
the important derivative-free Lipschitz contraction factor in this case. Making a finer
study of that balance, we are able to conclude that the solution constructed above is, in
fact, smooth enough to be interpreted as a classical one. To this end, we sharpen
Lemma 2.1, stating

LEMMA 2.5 (short time contraction). Given v, w in L([0, T], Hs) s>_O, and
Jn[.]=Jn[.; f] as in (2.3). Then, there exists a constant ,lo>=O, such that for l>=,lo we
have,

(2.8)

Thus, each fixed point iteration gives us a smoother correction. In particular,
setting s to be zero, we find on account of Corollary 2.2 that (Jnl[f]}n>_0 form a
Cauchy sequence in the L([0, Tx], H2)Borigin centered ball of radius 2. ence, the
fixed point iterations Jnt"l[f] converge to a unique, short time solution, u=u(x,t) in
L([0, T1], H2). Thanks to the L2-decay estimate in Lemma 2.3, such short time
solutions can be patched in the large as before, integrated once and yielding

THEOREM 2.6 (existence). The K-S equation (1.1), with prescribed initial data
q(t =0) in n3, admits a unique solution, q=q(x, t), which satisfies,

(2.9) <
H2 -’ e O<t<T<.

Finally, we turn to examine the question of stability: allowing the initial data to
vary as well, we have the final extension to the short time contraction lemma, which
now reads
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LEMMA 2.7 (short time contraction). Given v, w in L([0, T], H) with f=v(t=O),
g= w(t=0) in H+-. Then, there exists a constant rio>=O such that for ri >-_o we have,

(2.10) II .[o;fl-J.[w; glll +=
<=lf-gln’+2+ZS’M(t;  )’(lloll /llwlls)’llo-wll .

Now let v( )= Jn[ o( ); v(t=0)], w( )= Jn[w( ); w(t=0)] be two different fixed
point solutions of (2.1a), whose initial data f= t)(t= 0) and g= w(t= 0) are assumed to
be in H2; according to Theorem 2.6, u(t) and t)(t) belong to H2 later on, >= 0, and as
a consequence of Lemma 2.7 with s 0, we have short time stability

1}v(t)-w(t) In2<= Iv(t=O)-w(t=O) Io O<=t<= Z.1-M(T,; n)’(If [+

Successive application of the last inequality yields the desired stability result, which we
state as our final

THEOREM 2.8 (stability). Let , be two different solutions of the K-S equation
(1.1), with initial data q(t=0), p(t=0) lying in n 3. Then, there exist constants C and

fl >= O (both may depend on [(Ob/Ox)(t- O) + l(OP/Ox)(t= O) l), such that the following
estimate holds:

(2.11) -x (t)---x (t) < C.e
H2

0)g(t= --aYx (t=0) O<t<T<.

3. An estimate on the dissipative kernel. The following classical estimate is in the
heart of the matter.

LV.MM. 3.1. Git)en oa(x) in Wm, 1 <=p <_ 2, and real r, r >= 1/p. Then, there exist
constants, C Ct,,r and rio >= O, such that for ri >= rio we hat)e,

(3.1) IQ(t; ri)*bOlH,.+r<=C’e--(l--no)t’l--(r--1/2+l/p)/4"lbOlW

Remark. We adopt here the standard notation, Wm, to denote the Le-type Sobolev
space of order m, consisting of those functions whose derivatives up to order m belong
to L ’. (Although not specifically referred to, a fractional Sobolev space with nonin-
tegral m should be interpreted as a Besov space: to comply with notation, we therefore
restrict attention to integral orders, with the understanding that final results can be
interpolated into Besov space.)

For completeness, we include here a short calculation verifying (3.1): setting
t,=p/(2-p) and letting/,’ be its conjugate, 1//, + 1//,’ 1; then the H61der inequality
yields

(3.2) IQ(t," )* eOlH-+r< 1 / = /*re_

Since by the Hausdorff-Young inequality the Fourier transform is of type
(2/,’, (2/,’)’=p), the second factor on the right of (3.2), Ilw,, does not exceed

(3.3)
m 1/2/,’

f_ o(1 "-[ [2)/*’ml (,d()[2/* d <_ (2,.tr ) l/2-1/P oa w,
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Next, we split the first factor on the fight of (3.2),

e -2tt( )d et /lq_ 112]r ,4_,2 -Bte

the first of the two integrals admits a pessimistic bound of

e- 2t(ti dl < 2v/3,re
Iz2

while the second one is estimated by

e )di>v(1 + 112)/zr --2p,’(4-

_<2.r+ t2.re_.t.d__2.r_lF 2r+ 1 -(.+/4

=0 4 (t)

Added together, we find that the first factor on the fight of (3.2), does not exceed

(3.4) (1 +
1e-(rl-)t" t-(2tr+l)/8t TO

with Stirling’s formula giving us a bound of

1 ) r-1/2+l/pBp,r= (4e)l/23r/2 r +

Recalling that (2/’)’=p, (3.2), (3.3) and (3.4) yield the required estimate (3.1) with
Cp,r (2,rt" ) /2 -1/Pep, r.

Remark 1. In the infinite case under consideration, an exponential growth bound,
To-- 1/4, was found. In general, T0 may depend on the period, in the spirit of an earlier
remark; for example, 10 0, in the r-periodic case.

Remark 2. For future reference, we quote here the constants Cp, in two special
cases: as can be readily verified, C2,0--1 (indeed, such an estimate also follows by a
straightforward integration by parts, essentially contained in the verification of Lemma
2.3 above); also, by sharpening the above pessimistic bounds, one finds C1, < 8.

4. Proof of main results. We first study the operator Jn[.; introduced in (2.3),
whose fixed point solutions are sought. Equipped with Lemma 3.1, we are able to
derive the following summary stability estimate

(S) [Jn[v(t); f]-J,[w(t); g]

+2s+l’ent’tl/8" sup [v(r)+w(r)l/s. sup Io()-w()l,.
0<’r<t 0<’r<t

To verify (S)--assuming the quantities on the right are finite and >= 0--we consider
the difference

J,[v(t); f]-Jn[w(t); g]=Q(t; rl)*(f-g)

+ ten’.Q(t-,; ),-x(V2(z)-w2(,))d,,
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so that after taking norms on both sides we have

IJn[v(t); f]-Jn[w(t); g] In/=<lQ(t;
0 2( 2Q(t-r; rt),-x (V z)-w (1)

HS+

Now applying Lemma 3.1 with respect to both terms on the right of the last inequality:
the first term with (r,p,m)=(O,2,s+ 2), and the second one with (r,p,m)=(3,1,s-1);
recalling the earlier quoted constants C)_,0 1 and C1, < 8, we find

IJn[v(t); f]-Jn[w(t); g]

nr e-(n-no)(t-r) (t )-7/84-8. e
0 2( 2 d’r.

The last integral bounds the interaction between the linear dissipative part of the
equation, and the nonlinear differentiated quadratic term; the loss of derivative due to
the latter is compensated here by dissipation, weighted with the L topology. In order
to return to the usual L2 setup, we apply the Leibniz rule and Cauchy-Schwarz
inequality to find

0 2 -<2’+l"lv(*)+w(*)lH,’tv(*)-w(*) Ins.

Inserted into the last integral and carrying out the integration, we end up with the
required estimate (S).

We now turn to prove the results in [}2, starting with:
Short time contractions (Lemma 2.1, Lemma 2.5, Lemma 2.7). Taking supremum

over both sides of the (S) estimate with varying t, 0 =< =< T, and equipped with the
notation of

M(T; 1) 2enr" Ti/8

in (2.4b), we find

f]-,IT[w; glll+).zlf-gl.+=+2’M(T;  ).(llolls/ltwll ).llo-wll ,

so that Lemma 2.7 follows. Taking the special case f=g proves Lemma 2.5, and further
setting s =0, yields Lemma 2.1,

(Observe that in the case of Lemma 2.1, where no gain of derivatives is involved, one
can in fact improve the contraction factor M(T; 1) to be enrT7/8.)

An immediate consequence of Lemma 2.1 is the following:
Short time boundedness (Corollary 2.2). Setting o--Jn-1][f] and w=0 in Lemma

2.1, we find

lln, [n,"-:’q)] IIJ,[v; f]-J,[w--o; f] + IlJ, tw--o; f]

<=M(T; n).llJ t.-l [f]ll + IIQ(,;  ),lli.
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We now consider a temporal interval of length T such that 4M(Tx; ,l).[/q < 1" assum-
ing IIJtn-ll[f]ll__< 20q in that interval, then together with Lemma 3.1 taking (r,p,m)=
(0, 2, 0), we obtain

)lf l.lf [+[f l<-_21f l,

and Corollary 2.2 follows by induction.
Owing to the last two results in the small, one may construct fixed point solutions,

u(t), as local solutions over time intervals [TN, TN+x] N=0,1,2,-.., such that
4M(TN+ TN; rt)’lU(ZN)l< 1. Thanks to the large L2-estimate in Lemma 2.3, the local
solutions just constructed can be patched in the large, over fixed length time intervals,
TN- NT1, N 0,1,. ., obtaining

Existence. (Theorem 2.4, Theorem 2.6). Given the initial data q(t=0) in H1, we
set f=(3q/3x)(t=O) for the initial value problem (2.1); let u(t), t>=O, be its global
solution, constructed according to the above recipe. Integrated once, we obtain a
solution for the K-S equation, (x, t)= f u(, t) d, which satisfies--choosing
in Lemma 2.3--

-x (t) <_enr. -x(t=0) O<=t<=T.

This proves Theorem 2.4. In order to show that u O/Ox possesses a certain degree of
smoothness, at least that of the initial data, we appeal to the short time contraction
estimate in Lemma 2.5 with s 0"

IlJ,[ol-J, tw] II,_-<M(T; )" (11oll / Ilwll).llo-wll
Consider first the time interval [0, T= T1] and let u=J[u] the fixed point solution
there; choosing v u and w= 0, we find

Ilull,-=lla,[ulll=<=M(Z ; n)llu[12+ IIO*
Using Lemma 2.3 and Lemma 3.1 with (r,p,m)=(0,2,2), we end up with

IlulIz<M(T l)lf
)- )_ 5+ If [2=< [f 12.

Successive application of the last inequality over the accumulated patching intervals,
implies

(5) ’/rl +
Ju(t; r/)I,=__< - If [/.

Choosing ,/= r/o, Theorem 2.6 now follows with a */o + ln(),

< (t=0) O<_t<_T<oo.-x ( )
H2 -e -x ,H

Remark. We note that the above solution =(x,t) lies, in fact, in the same
Sobolev space the initial data belong to, Hs, 0 __< s __< 2. This follows from a complement-
ing L2-estimate which we now derive" multiplying (1.1) by and integrating by parts,
we find

2 dt I,(t)l _-< (t)  (t)0x2
+ -a-Yx (t)
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We interpolate in a somewhat nonstandard way, Iq[ L =< elqbl + C. e- . Ixl, so that by
appropriately choosing e ,. 1(3ck/3x)( t)l- 2, the last inequality implies

1 d 2 12 -K
2 dt [(t)l Zv’l(t) +v

with K= K(l(8/Ox)(t)l). Thanks to Lemma 2.3, we can control

and L-boundedness now follows

I,(t)lse ,t. I,(t=0) l+ -l-g (t=0)
with arbitrarily small exponential growth factor 7, 7 > 0. Regarding the periodic case,
-w/2 x w/2, one may subtract the average

/2 X, ) &,

so that by invong Poincar6’s inequality for (t)-6(t) rather than inteolating, we
find

I,(t)-(t)lsl,(t=o)-(t=o)[+K (t=o)"t1/2.

5. A generalized Burgers equation. The results of the last sections were so
organized, in order to emphasize that the only a priori estimate required for the proofs,
concerns the linear dissipative part of the equation, see Lemma 3.1. Hence, the follow-
ing generalization can be easily worked out.

We consider the generalized Burgers equation

(5.1a)
u 3 (2) (3)3t

-P -x u=0

whose linear part, 3/3t + P(3/3x), is assumed strongly parabolic of order v,

(5.1b) Re(i6) Const. Il" 161.
Regarding the corresponding kernel, O(t; )=e-t(n+k(if)), we have, in analogy with
Lemma 3.1,

(5.2) [O(/; )*]Hm+rZC’e-(n-)t’t-(r-1/2+l/P)/’l]W.
In particular, considering Q(t; ) operating from L to H+s, it is found to have an
operator norm with an integrable singularity, -(s+3/2)/, provided s<u-. Argu-
ments similar to those introduced in 2, then lead us to

THOgM 5.1. Let u, v be two different solutions of the genera#zed Burgers equation
(5.1), with initial data lying in H, s<u-3/2. Then, there exist constants, C and0
(both may depend on [u(t= 0)1 + [v(t 0)1), such that the following estimate holds"

lu(t)-o(t) I.sz C’e u(t= 0)-o(t=
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We end up noting that the above recipe suggests itself, in studying the all im-
portant question regarding the long-time behavior of solutions for (5.1).

Remark. The special case P(/)x)--(-)2/x2)/2 can be considered as a one-
dimensional degenerate case of the formal d-dimensional Navier-Stokes equations;
global regularity in the latter case follows with dissipativity of order , > 1 + d/2, (see,
e.g., Rose and Sulem, J. de Physique, 39 (1978), pp. 441-484). In either way, one finds
, as the critical order of dissipativity which guarantees regularity in the one-dimen-
sional case, d= 1.

REFERENCES

[1] M. T. AIMAR AND P. PENEL, Rsuitats d’ existence et d’ unicitk du modkle de diffusion nonlineaire de G. I.
Sivashinsky, Universit6 de TOULON et du VAR,Preprint, 1982.

[2] Y. KURAMOI"O, Instability and turbulence of wavefronts in reaction-diffusion systems, Progr. Theoret. Phys.,
63 (1980), pp. 1885-1903.

[3] B. NICOLAENKO AND B. SCHEURER, Remarks on the Kuramoto-Sivashinsky equation, Proc. Conference on
Fronts, Interfaces and Patterns, Physica D, 12D (1984), pp. 391-395.

[4] G. SIVASHINSKY, Nonlinear analysis of hydrodynamic instability in laminar flames, Part I, Derivation of
basic equations, Acta Astronaut., 4 (1977), pp. 1117-1206.

[5] T. SHLANG AND G. SIVAI-ISIISKY, Irregular flow of a liquidfilm down a vertical column, J. de Physique, 43
(1982), pp. 459-466.

[6] M. TAYLOR, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981.



SIAM J. MATH. ANAL.
Vol. 17, No. 4, July 1986

(C) 1986 Society for Industrial and Applied Mathematics
010

HOPF BIFURCATION IN TWO-COMPONENT FLOW*

M. RENARDY" aND D. D. JOSEPH:

Abstract. The stability of viscosity-stratifed bicomponent flow has been studied by long wave asymp-
totics, by short wave asymptotics and numerically. These studies have shown that interracial instabilities arise
from the viscosity difference between the two fluids. If the surface tension between the fluids is nonzero, then
Hopf type bifurcatinos leading to traveling interfacial waves are expected. In this paper, we prove a rigorous
theorem establishing the existence of bifurcating solutions of this nature.

Key words, two-component flow, Hopf bifurcation
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1. Introduction. The stability of two-component parallel shear flows has been
analyzed by long-wave asymptotics [5], [16], short-wave asymptotics [6], [13] and
numerically [11], [13]. These studies show that, if the fluids have different viscosities,
then instabilities can arise at all Reynolds numbers.

This raises the question of possible alternative flow patterns which might be stable.
Yih [16] has conjectured that wavy interfaces might develop. The analysis of Hooper
and Boyd [6] reveals a crucial difference between the cases of zero and nonzero surface
tension between the fluids. If the surface tension is zero, then sufficiently short waves
are always unstable, i.e., there is an infinite number of unstable modes. This situation is
very much unlike the usual problems of bifurcation theory, and we believe it is possible
that no smooth interface, steady or unsteady, would be stable in this situation. (In
reality, of course, the surface tension is not zero, but there will be instability for very
short waves when the surface tension is small and the Reynolds number is large. We
think that this instability mechanism may be relevant in the formation of emulsions.)

In the case of nonzero surface tension, however, one can establish a bifurcation
theorem. If the bifurcation turns out supercritical, this provides a basis for Yih’s
conjecture. Whether or not the bifurcation is supercritical will in general have to be
decided by a numerical calculation. To our knowledge, such calculations have not yet
been done. The computations referred to above concern only the eigenvalues of the
linearized problems. For the sake of simplicity, we confine attention to plane Couette
flow, but it is clear that similar techniques can be applied to more complicated
geometries such as concentric flow in pipes or between rotating cylinders. We consider
plane Couette flow of two fluids with equal density, but different viscosities, and an
interface parallel to the plates. Periodic boundary conditions are imposed in the
streamwise direction. Evidently, this configuration is stable at rest. If there is a flow,
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however, then instabilities can develop [6], [16]. Since, however, surface tension will
damp short waves, there can be only a finite number of unstable modes. Generically, as
the flow rate is increased, one specific mode will be the first to become unstable. Since
the eigenvalues are complex, one expects a bifurcation of the Hopf type [7], leading to
traveling interfacial waves.

The Hopf bifurcation thoerem in infinite dimensions [4], [8]-[10], [14] relies on
coercive estimates for the linearized equations. For one-component free surface flows
such estimates were derived by Beale [2], [3], and we shall, in {}3, derive analogous
estimates for two-component flow. Our proof differs from Beale’s and is slightly
simpler. Using these coercive estimates, we can then establish a bifurcation theorem in
{}4. In {}{}5-8, we outline an algorithm for the computation of bifurcating solutions.

2. Formulation of the problem. We consider two-dimensional flow of two fluids
with different viscosities and equal densities between parallel plates; see Fig. 1. The
motion in each fluid is described by the Navier-Stokes equations:

(2.1) P( + (u" V )u) rlAu- VP’ } O<y<h(x)
7 .u=O,

(2.2) P (i’ + (v" V )v) /2Av- Vq’ } h(x)<y<l.
7 .v=O,

r y h(x)

FIG.

We have no slip conditions at the walls:

(2.3) u=0 at y=0,

(2.4) v (V0, 0) at y 1.

Across the interface, there must be continuity of velocity,

(2.5) u=v aty=h(x),
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continuity of shear stress

(2.6) r/ (1-h’2) ---x+-y +2h’ y

=/2 (1-h’) --x +-y +2h’
by

at y--h(x),

and balance of the normal stress difference by surface tension

(2.7) ( U2 OUl)( )2rl p 2h rl + + h 2l---x-p

02 (02 O1) [O1)2r/2-y q- 2h’/2 ---x + ---y

+ T at y=h(x).
(1 + h’2) 1/2

Here T is the surface tension parameter. Finally, we have the kinematic boundary
condition

(2.8) h+uh’=u.
We are interested in solutions to (2.1)-(2.8) which have a given period L in the
x-direction and are periodic in t. We denote by 1 the set {(x,y)I 0 <=xl L, 0 <=y =< h(x)},
by 2 the set {(x,y)lO<=x<=L,h(x)<=y<=l} and by F the interface {(x,Y)lO<=x<=L,y
=h(x)}. The spaces Hk(l), Hk(2), H(F) consist of those functions which have
k square integrable derivatives and satisfy periodic boundary conditions in the x-
direction.

3. The linearized problem. In this chapter, we obtain coercive estimates on the
linear problem, which we shall need later. We put V0= 0 and linearize (2.1)-(2.8) at the
rest state u= v =0, with a flat interface h= h 0. We include inhomogeneous terms in
(2.1), (2.2), (2.6) and (2.7). The goal of this section is to derive estimates for a resolvent
operator, i.e. the time dependence is assumed to be exponential, and 8/St can be
replaced by a constant factor ,. This leads to the problem:
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We seek solutions periodic in x with period L, and of course the same periodicity is
assumed for fl, f:, f3 and f4. Our goal is the following estimate:

THEOREM 3.1. Let >0. For REX>= , the following estimate holds for solutions of
(3.1)-(3.8)"

(3.9)

(Here C can depend on but not on X.)
Proof. We multiply (3.1) by fi (the complex conjugate of u), and (3.2) by , add

them and integrate over the domain. Integrating by parts, and using the boundary and
interface conditions, we find

xp(llull =+ Ilvll = 1 1(3.10)

f3 Lf42 0(Ix,S) : + (f,) : + l(Y=ho)dx+ (y=h)dx.

Here u,u> f (Vu+(Vu)r) (V+ (Vfi)r).
Since u is divergence free, u has a trace on the interface whose H-/-norm can

be bounded by Ilu [151, hence the last term on the right side can be bounded by
IIf411,=<>ll u The trd term is bounded by

We assume that the right side of (3.9) is bounded by a constant of order one, and we
wish to bound the left side. From (3.10), we immediately obtain bounds for [IU[IH,
IlVll n,, llhll n (we have used Korn’s inequality here).

In the following, we make repeated use of the following estimates

(.) II. + I.+ p II. + q I.

(3.12)
/3 1/3

Estimate (3.11) follows from (3.1)-(3.6) and (3.8), which form an elliptic system in the
sense of Agmon, Douglis and Nirenberg [1]. This can be seen as follows: We can
formally regard (3.1), (3.2) as being posed in the same domain by mapping the strip
occupied by fluid 2 onto the strip occupied by fluid 1. We do this in such a way that the
interface is mapped onto itself and the solid boundaries are mapped onto each other.
This yields a system for the six unknowns (u,u,p,v,v,q), which are now defined on
the same domain. That the Stokes equations are an elliptic system is well known. The
same holds of course for two sets of Stokes equations. It is also well known that
Dirichlet boundary conditions satisfy the complementing condition. Showing the com-
plementing nature of the interface condition is a straightforward calculation, which we
omit. Equation (3.12) is a trivial consequence of (3.7) and the trace theorem, and (3.13)
follows from the convexity property of Sobolev norms.
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In the following, we start from the energy equation and then use (3.11)-(3.13) in
an iterative fashion to obtain better and better estimates. This will lead to the following
preliminary result.

Lemma 3.2. For any e > O, the following quantities can be estimated by the right-hand
side of (3.9) (with constants allowed to depend on e):

Proof. We prove by induction that

(3.14) h II, __< ClXl=/3"- x,
(3.5) Ilull=, Ilvll=z ClXl=/-,
(3.16) u II-, v liB Z ClXl1/(V3-,
(3.17) u I1-= + p II... v I1- + q I1. z El x [1/= +v3

(IIIIH2/ Ilql[H1)]] -1/2-e.

Obviously the lemma follows by letting n o. We already have (3.14)-(3.16) for n 0.
By combining (3.11)-(3.13), we obtain

(3.18) u n + IIp I1,, / v I1,,= / q rt

2/3 ].+ Ix IIIh I1,’ (llu I1,,-+ v I1,,=+ P I1,, + q I1,, +

With/3 =llull= / Ilplln +llvlln+ Ilqll,, we find, using (3.14)-(3.16)n

(3.19) fl<__C(I+lXI:Z"/3"/I,I:Zn/I/3"/I+a/3(fl/C’)I/3).
From this, (3.17)n follows easily.

Next, we wish to show that (3.14)+1-(3.16),+1 follow from (3.17),. Using (3.8),
the trace theorem and the convexity property of Sobolev norms, we find

C(3.20) IlhlI-’_-< i- IIx/Un=vlull Hi.

Moreover (3.10) implies

1/2(3.21) Ilvll,,/llull,,__<c(llull=/llvll=/lXl vallull/=llull,, )
and

(3.22)
i/?i/2

With x=llulln+llvllm, y=llull+llvll= and using (3.17),, we find that (3.21),
(3.22) take the following form

(3.23) x<= f(yl/2/lkl-1/zx1/4yl/4),
(3.24) y<=C(lXl2"-t/3"-3/axa/2+lxl-1/2yl/-/lx1-5/8y1/4X1/4 ).
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From (3.23) it follows that x <= Cy1/2 or x CIXl-1/6y1/3, depending on whether the
first or second term on the right is bigger. In the first case, (3.24) yields

(3.25) y<= C(lk12"-l/3"-3/4yX/4d_ [N1-1/2 1/2 -5/8y3/8)y d-IXl
From this (3.15)n / is immediate. In the second case, we get

(3.26) y< f(lk12"-l/3"-3/4-x/X2yx/6d-Ikl-X/2yX/2d-[Xl-5/8-1/24yX/3).
From this, (3.15)n+1 is also immediate. From (3.15)++1 and (3.21) follows (3.16)n+1
and using (3.20) and (3.17)+ we find (3.14)++ 1- This concludes the proof of the lemma.

We now return to the proof of Theorem 3.1.
To proceed further, we take difference quotients in the x-direction. These satisfy

the same equations (3.1)-(3.8) with the f’s replaced by their difference quotients. From
(3.10), we then see that the Hi-norms of all x-derivatives of u and v can be estimated
by terms of order 1. The divergence condition now yields

Equation (3.8) and the trace theorem imply that Ilhll /-< C/l,l, and from (3.11),
and Lemma 3.2 we conclude that

u I1,,= / v II,,= / P II,, / q I[-’ =< CI X .
Using this in (3.20), we get IlhllH =< CIX1-5/4+, and by inserting this in (3.21), (3.22),
we find Ilull = / Ilvll ,=_-< C/l,l. By using (3.11) again, we obtain the theorem.

Remarks. We have so far only given estimates for a solution that was assumed to
exist and have the regularity implied by the left-hand side of (3.9). Such estimates show
that (3.1)-(3.8) for Re?>__3,>0 is solvable for a closed set of f’s (in the topology
indicated by the right side of (3.9)). Solvability for a dense set of f’s can be shown in a
straightforward manner by separation of variables. (Separation of variables leads to a
system of ODE’s, and it is easy to show that a Fredholm alternative holds for these
ODE’s. The absence of eigenfunctions follows from the energy equation.) From this we
see that in fact, for any X with ReX >0, (3.1)-(3.8) has a unique solution. Inequality
(3.9) holds uniformly in any closed subset of any right half-plane, if this subset contains
no eigenvalues. Moreover, by compactness, the number of eigenvalues is countable, and
there can be only finitely many in any bounded set. Equation (3.10) implies that all
eigenvalues have negative real parts.

4. Bifurcation to travelling waves. It is convenient to use a domain mapping which
takes the domain occupied by each fluid to a fixed one. The most straightforward way
to construct such a mapping is to stretch or contract vertical lines. We shall in addition
transform the velocity fields in such a way that the divergence condition is preserved
and (2.8) reduces to the linearized form even in the nonlinear case. In doing this, we
essentially follow Beale [2].

Let y h 0 be the flat interface of the rest state, and let y h(x, t) be the actual
interface, which we assume periodic in x with period L.

Let P be any linear extension operator that maps functions h(’)H’(F), into
functions h(’,r/) such that h(’,h0)=h(" ) and t HS+l/2(f) (P exist according to the
trace theorem). For simplicity, we also assume that P takes h h 0 to h h 0. Let then
fo(r/) be a C-function of r/ such that f0=l near r/=h 0 and f0=0 near ,/=0 and
rt 1. Define -(,rl, t)=h(,l,t).fo()+ho(1-fo(,t)).
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We now define

(4.1) 0(’,r/, t) ’,/ ;
Evidently, maps the strip 0 __< h 0 to , and the strip h o /- 1 to f2. The
velocities are transformed as follows:

(4.2) u ( O (, ) ) -j j/J,

where J is the Jacobian of 0. Of course, v in fl is transformed in the same way.
Explicitly, (4.2) reads

(4.3) u= o +’Oo ft"r/--ofi + +’Oo fi-

Formula (4.2) is set up in such a way that u, v are divergence-free in the x, y-plane, if ,
are divergence-free in the ’, rl-plane. Moreover, (2.8) now assumes the simple form

(4.4) h(,t) 2(,h0,t).

It is also clear that (2.5)does not change its form, i.e. u=v at y=h(x) simply becomes
r at rl h o. The boundary conditions at the walls are also preserved. When these

substitutions are inserted into (2.1)-(2.8), we obtain a new set of equations, which we
do not write down explicitly. We shall refer to these new equations as (2.1)*-(2.8)*. If
we have a flat interface h= h 0, then of course (4.3) reads u= , and (2.1)*-(2.8)* have
the same form as (2.1)-(2.8).

Plane Couette flow is the following solution of (2.1)-(2.8):

h(x)=ho, /1 ’o2V0
1 -[- h0(r/2 11) y’ /2=0’ 1"--

/1VY+ Vh(rl2 1)
n+ho(n2-n)

0=0, =0, 0=0.
We can linearize at this solution, and obtain a set of linearized equations analogous to
(3.1)-(3.8). As usual, we call X an eigenvalue, if the homogeneous linearized problem
has nontrivial solutions. The estimates in {}3 imply that, for Vo=0 (rest), there is a
countable sequence of eigenvalues, all in a sector of the left half plane bounded away
from the imaginary axis. All these eigenvalues have finite multiplicity and Fredholm
index zero. Estimates like those in [}3 can easily be extended to the linearization at
Couette flow with finite V0. If we linearize (2.1)-(2.8) at this flow, then there are a
number of terms perturbing (3.1)-(3.8). All these terms are relatively compact except
the one resulting from Ulh’ in (2.8). This latter term vanishes in a frame moving with
the fluid on the interface. Standard perturbation theory [12] can now be used to show
that estimates like in [}3 hold for X in any closed set that lies in a right half plane and
contains no eigenvalues. However, there can, and as [6], [16] show, there will be a finite
number of eigenvalues with positive real parts if Vo is large enough. Generically, there
will be a critical value Vow, such that, for Vo < V0,., all eigenvalues have negative real
parts, but a pair of simple complex conjugate eigenvalues crosses the imaginary axis
transversally as Vo increases past V0,.. Let us denote these imaginary eigenvalues by
--t-_ itoo.
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We introduce the following substitutions in (2.1)*-(2.8)*:

=ot, u*=-(V0), v*=-$(V0), h*=(h-ho)

We use the following notation for function space" H denotes the space of functions
defined on < " < o, 0 =/h 0, which have period L in " and H*-regularity.
Similarly, we define H. Finally H is the set of k times differentiable periodic
functions depending on " alone.

H*(X) denotes the spaces of all 2-periodic functions defined on -o <<,
taking values in X, and having k square integrable derivatives.

For the analysis of (2.1)*-(2.8)*, we choose the following space V:

Functions in this space have sufficient regularity such that all the nonlinearities in
(2.1)*-(2.8)* are defined. We can now prove a Hopf bifurcation result based on the
implicit function theorem. This relies essentially on an iterative scheme which at each
stage solves the linearized problem with the nonlinear terms as inhomogeneities. It is
important that such an iteration takes the space V into itself, i.e. that by inverting the
linearized operator we gain at least as much regularity as we lose by evaluating the
nonlinear terms. This is guaranteed by the coercive estimate of Theorem 3.1. In this
way, we obtain the following.

THEOREM 4.1. Assume that, at V0= V0., there is a pair of algebraically simple
complex conjugate eigenvalues +_ ioo, Oo:0, and no other eigenvalue is an integral
multiple of oo. Moreover, assume that those eigenvalues cross the imaginary axis trans-
versally, i.e. if ,(Vo) denotes the branch of eigenvalues for which X(Vo,.)=ioo, then
(d/dVo)Reh( Vo) vo= Vo,.: O. Then there is an analytic branch of nontrivial time-periodic
solutions (u*(e),v*(e),p(e),q(e),h*(e))Y(e), such that Y(e)V is a solution of
(2.1)*-(2.8)* for Vo= Vo(e) with temporalfrequency o o(e). For e=O, we have Vo= Voc,
o= oo and Y=O. This branch of periodic solutions is unique except for phase shift or
changes ofparametrization.

If, at Vo Vow., all eigenvalues other than +_ ioo have negative real parts and we
have Re;k(Vo) lvo=Vo,.>O, then the bifurcating periodic solutions are stable if Vo(e)
> Vow. for small e : O, and unstable if Vo(e) < Vow..

Remark. It is easy to show higher regularity of the bifurcating solutions by
choosing function spaces of higher regularity for the bifurcation analysis.

5. Reduction of the bifurcation problem to local form. In the previous two sections,
we have provided the analytical tools and the estimates needed to establish a bifurca-
tion theorem. In the following, we now describe an algorithm for calculating approxi-
mations to this bifurcating solution.
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As before, we study bifurcation from plane Couette flow, and we consider the
velocity of the upper plate as the bifurcation parameter. Plane Couette flow is the
following solution of (2.1)-(2.8):

(5.1)

h(x)=ho,
n2Voy

/1 + h0(/2- /1)
fi2=0, p=0,

rllY + h o ( 12 lx ) Vofil

v2 =0, q=0.

For the bifurcation problem, it is convenient to introduce new variables representing
the perturbation of this solution. We therefore replace u and vl by ux + ha, va + b,
where 1, 1 are given by formula (5.1) in the regions O<=y<=h(x,t) and h(x,t)<=y<= 1,
respectively. Moreover, we set

h(x,t)=ho+8(x,t),

and 6(x, t) has zero mean value as a function of x. With this change of variables, (2.1)
and (2.2) take the form

(5.4) h(x,t)_<y__<l, divv=O.

On the walls, we have

(5.5) u=0 at y=0, v=0 at y=l.

In the normal and shear stress conditions, the terms replaced by hi, b are such that
they cancel. Moreover, h’ =8’, so h can be replaced by 8. Across the interface y= h(x,t),
we thus obtain the following conditions resulting from (2.6) and (2.7)

(5.6)
0U 0U(1-8’2)11 + -y + 2r18’( Ou2

y }Ul)
(  }v2  }vl ) (-3-7x + +2r/2’ 3y

OU2 (OU20Ul) 3,22/1---y --P--2’r/1 -X + - +

=2’02"-y --q--23’r/2 -X + -y + 2/2-X-X -q + T3 (1 +3
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The condition (2.5) is replaced by

Ul Ol f)l ho 4- )- tl ( ho 4- ) (n-n:)Vo

(5.9) U2=U2

Equation (5.8) shows that, for ’015’02 and V04=0, 3(x,t) can be eliminated and
expressed by the jump in the x-component of velocity at y=ho+(x,t). Finally,
equation (2.8) assumes the form

(5.10) + 1(h0)3’+ u,3’+ 1V33’
1+ ho(/2_nl ) =u2"

Our bifurcation problem is now given by (5.1)-(5.10). The null solution corresponds to
plane Couette flow. We consider 8 in (5.6), (5.7) and (5.10) as having been eliminated
from (5.8), and look for solutions (u, v,p, q) which are periodic in x.

6. The spectral problem and its adjoint. The spectral problem for the stability of
the null solution is

(6.1) p hu+hlX-x+exu2ft +Vp-2div=D[u]=0, O<=y<=ho, divu=0,

i0 ,-}-01x +exv201 +Vq-2r/2div=D[v]=0,(6.2) h0=<y=<l, divv 0.

Here D[u] is the symmetric part of V u. ft and b denote derivatives with respect to h,
while h’ and 8’ will continue to denote derivatives with respect to x. On the walls we
have

(6.3) u=0 at y=0, v=0 at y=l.

From (5.8), we have 3=k(u-vx), where k (rt +(rl2-ll)ho)/Vo(ql-q2 ).
By inserting this into the remaining interface conditions and linearizing, we find

the following conditions at y h0:

(6.4)
(6.5)
(6.6)

(6.7)

U 2 02 0

2NID12 [11 22D12 Iv =0,

--p 4- 2r/1D22 [11 4- q- 2/2D22 [v Tk( u;’- O’l’ ) =0,
X + ft(h0)--x k(ul-v)-u2=O.

We turn next to the computation of the spectral problem, which is adjoint to (6.1)-(6.7).
We multiply (6.1) by fi*, (6.2) by *, the complex conjugates of the adjoint velocities,
and integrate the resulting expressions over their domain of definition. We assume
periodicity in x with period L, and integrate by parts using periodicity, solenoidality
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and (6.3) to derive

(6.8) pkl* iO l "X "{- foul Uley 2’01div--D[*] u dx dy

+ OX*-O0--x +OVVle-2ndivD[* .vdxdy

fo/ {(-q+ 2’02D22[v]) ’- (-p + 2’01022 [u])

+ 2’02D12 [v] 2’02VlD12[ * 2’0202D22 [ *

+ 2’01UlD12[I* l-2’01tD12[u] + 2"01u2D22[u* ) dx.

By considering special forms of u, v, p, q, we find that in 0 _<y <_ h 0, we have

0*(6.9) pX*-0ftl--x +OeyU Ul-2/ldivD[fi*]= -Vff*, divfi*=0,

whilst in h o =<Y =< 1,

-*^’ divD[* ’q* divr* 0(6.10) pare* 0 + {)eyrir 2"02

We insert (6.9) and (6.10) back into (6.8), and compute

This term is added to the right-hand side of (6.8), leading to

(6.11) 0 foL {(-q+2’02D22[v])3+(p-2’01D22[li])Ft"

+ (/*-- 2’02022 [* 1)02 + (-fi* + 2’01022 [* l)u2
+ 2’020’D12[v]-Z’013D12[u

+ 2’01UlD12[i*]-Z’0201D12[*]) dx.

We use (6.6) to reduce the first line of (6.11), (6.4) for the second line and (6.5) for the
third line. Thus we find

(6.12)
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We next write

fot" 5", dx fot Fa ’ dx

and set =k(Ul-Vl), u2=(,+ft(ho)/x)k(Ul-Ol).
This leads to

0= (-q+

x-a(ho) 

This yields the following four conditions on y h o:

(6.13)
(6.14)
(6.15)

(6.16)

Thus the adjoint problem is given by the differential equations (6.9), (6.10), the
Dirichlet conditions fi*=0, *=0 on the walls and conditions (6.13)-(6.16) on the
interface.

It is easy to establish a necessary and sufficient condition for the solvability of the
inhomogeneous problem corresponding to (6.1)-(6.7). Suppose that the zeros on the
right of the first equation in (6.1) and (6.2) and on the right of (6.4)-(6.7) are replaced
by

(6.17) ga(x,y), g_(x,y), g3(x), g4(x), gs(x), g6(x),

respectively. This inhomogeneous problem is solvable if and only if the data (6.17) are
orthogonal to the kernel of the adjoint, that is, when (6.17) is such that

(6.18) f gl.Fl*dxdy+ ff g2.{*dxdy

f0L { g3(*-- 2r12D22[{*]) +g4fi

-t- g6( /* 212D22 *]-* + 2r11D22 fi* ]) } dx.

We are interested in the neighborhood of a critical point, where a loss of stability
occurs. There is a critical plate velocity V0= Po such that the real part of , vanishes,
and ioao. We put

Vo l,Yo(1 + R),
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so criticality is when R 0. We get Hopf bifurcation when the loss of stability is strict

X
0.Re

R=0

Let

u in al(y<h0)
v in f2(Y >ho)

be a right eigenvector satisfying (6.1)-(6.7) at criticality. Then 0 is the right eigenvec-
tor belonging to -io0. ;’ and 0" are the left eigenvectors belonging to i00 and -io0.

7. Domain perturbations and Hop| biturcation. We have already demonstrated
that Couette flow can bifurcate into a time-periodic solution in which we have travel-
ling interfacial waves. To compute this solution we would, following Lindstedt, map the
solution into a fixed frequency domain (2r periodic in s)

and replace

odt=ds,

(7.1) v 8)with o --s’ --’ --in (5.3), (5.4) and (5.10). We then map our problem into a fixed spatial domain, using a
one-to-one linear mapping, which takes boundary points into boundary points

yo-1 {h<__y<=l,Y=(h(x,t)-hO) ho_1 +Y0 ho<=Yo<=l
and

( h(x,t)-ho) (O<=y<=h(x,t),(7.2). y= 1+ -o Yo O<=Yo_<ho.

We then change variables, putting x= x0 and y=p(xo,Yo), where )3 is defined by (7.2)
in (5.3)-(5.10). The form of these equations changes under the change of variables.
However, following ideas introduced by Joseph [18], [19] we find many simplifications.
We shall now explain these simplifications.

First we introduce an amplitude parameter which is conveniently set as a projec-
tion

e= [u,z*],
where

[a, b]
def 1 fo2,, (a, b> ds,

and (a, b) are integrals over both regions of the type displayed in (6.8). We are working
in the frame of Iooss-Joseph [17, [}VIII. 3] and

(7.3) z* =eiS,

where ’ is the left eigenvector at criticality which was introduced at the end of the last
section.
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The bifurcating solution may be computed in a series of powers of e. Thus

E2 E4(7.4) (0 () (00 -- -- (02 -[- (04 -[-

E2 E4 )go(e)=l0 1+--12+.. 4+ ....
It follows from the classical theory of Hopf bifurcation that (0 and F0 are even
functions of e. We have assumed this in writing (7.4) and (7.5). Moreover,

(7.6)

u(x,y,s,e)
v(x,y,s,e) o et+l
p(x,y,s,e) =0 (]i)!
q(x,y,s,e)

ut’l(Xo,yo,S)
vt’l(Xo,yo,s)
pttl(xo,Yo,S)
qtll(x,y,s).

The functions of x and y are defined in deformed domains with a wavy interface
h(x,s,e)-ho=8(x,s,e). The functions of x0 and Y0 were defined in the reference
domain with a flat interface at y0 h. The perturbation of the interface 8(x,s, e) can be
eliminated from (5.8); that is,

( X,S, ) k( u Ol) (x,S, )
is an identity for all x, s, e. The square brackets on the left of (7.6) indicate differenti-
ation following the mapping evaluated at e 0. For example,

utnl(xo,Yo,S) de---- 0

--u(xo,Y ( xo,yo,s, e),s, e).

There is a simple differential calculus for domain perturbations. The partial derivatives,
holding xo,yo fixed, at e=0 are also important. For these

(7.8)
e--’--O

The two types of derivatives are related by the chain rule

(7.9)

U[I]-- U(I> +yO) y

ut2]._.U[2]..[_ 2yO> Ou(l>)y + (y(1>)2 )2u(>_ _y(2>
)u(>

)y- )y

ut"l(xo,Yo,S)=U<">(xo,Yo,s)+lower order terms,

where

(7.10)
8<")(x’s) ho- 1 ho<=Yo 1,

Y <"> (x"Y’S)
Yo 0 <=Yo < ho./(">(x’s) h--’
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On the free surface Y0 h 0 of the reference domain, we have

(7.11) y(")(xo,ho,s)=8(")(Xo,S ).
The equations governing the coefficients in (7.6) are very complicated because the
differential operators with derivatives with respect to x and y in the field equations
must be reexpressed by derivatives with respect to x0, Y0 under the change of variables
x, y x0, Yo- Since this mapping is invertible we can continue (7.6) as

u(x,y,s,e)} /0 el+ ut’l(x,Yo(X,y,s,e),s)
(7.12) v(x,y,s,e) (i)! vttl(x,Yo(X,y,s,e), s)

etc. etc.

Fortunately it is never necessary to solve the complicated equations which govern
the derivatives [/] on the fight of (7.6). In fact we need only to do much simpler
calculations for the partial derivatives (l). When the partial derivatives {l) are known
the total derivatives [1] may be computed by the chain rule (7.9). The point of
simplicity of partial derivatives is that they do not perturb the operators which are
defined on region fll and f2, below and above the free surfaces, see [18] and [19]. For
example,

=o,(7.13) divu(")(x’y’s)= x---- + OYo
whereas

divut"l(xo,Yo,S)4O.
The same type of simplification holds for the perturbation equations which arise from
(7.1), (5.3) and (5.4). For example,

OU(2 311(2)
(7.14) O o Os + ll X -!-exU2)/ q- /i(2) )II<O)x

u() ]
The unknowns here are u(2 >, p(>, 2 and .

It is not possible to avoid the total derivatives [/] in (5.6)-(5.10) because these are
defined on a manifold, the interface, and not in a region. The interface conditions are
of the form

(7.15) g( x,y h ( x,s, e),s, e) 0

and the perturbation of y h with e cannot be avoided. In fact the interface conditions
are identities on the interface so that tangential derivatives on them vanish (see [19]).

The following is a recipe for perturbations of the domain in bifurcation problems.
First, we introduce the frequency (e) into (5.3), (5.4) and (5.10) using (7.1). We then
insert the series (7.4), (7.5) and the series

(7.16)
V(xo,yo,s, )
?(xo,yo,s,e)
q(xo,Yo,S,e) q(t)(xo,Yo,S),
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into divu=divv=0, (5.3), (5.4) and (5.5) and identify the perturbation equations.
These equations hold in the reference domain. To get the equations which govern the
interface conditions (5.6)-(5.10) we insert the series (7.6) and identify. Then we express
the derivatives [1] with partial derivatives (l), using the chain rule. The perturbation
equations arising from interface conditions are thus defined on the flat interface y= h 0.

The series on the right of (7.16) may be expressed on the deformed domain by
inverting the mapping, as in (7.12). In fact, the series on the right of (7.16) is equal to
the series on the right of (7.6), though the partial sums of these two series are not equal
(see equations of [18]).

8. Solvability of the perturbation equations. We must solve perturbation problems
of the following form:

(i) All functions of s are 2r periodic in s.
(ii) All functions of x x0 are L periodic in x0.

(iii) In the region 0 =<Yo =< h 0,

(8.1) BXo By =0,

[ Ou> Ou> ](8 2) 0 00i +l’Oxo +exU(2")ft --’OlAU(n)+vp(n)=Ol(6dn,n,XO,S).

(iv) In the region ho=<yoN1 we have the same equations with v{">(xo,Yo,S),
b(yo), q<"> and 02 replacing <">, ft, p<"> and 01.

(v) u<">=O at yo=O, v<">=O at yo=l.
(vi) On the interface y h o + 8, we have by (5.8)

(8.3) k [lull], [lull
def

Ul Ol.

We have eliminated 8 from the interface equations (5.6), (5.7) and (5.10) with (8.3). Of
course

<">=k[tu<xn>]l on y0=h0

(vii) The four interface conditions on Y0 h0 are of the form

/1D12 [u(n)]- /2D12 [ (n)] 04 ( n, XO,S ),
2-P<"> + 2,D=[u<">l+q<">-2D=[v<">l-kT[[u(">]] =Os(#,,Xo,S),

The inhomogeneous terms 0 are linear in the unknown parameters w, and 17, and are
otherwise known from computations at orders < n.

These inhomogeneous problems can be solved uniquely in the space orthogonal to
the null space of the adjoint operator introduced at the begining of 6. This null space
is two-dimensional and is spanned by

z* and Z*
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defined by (7.3) and explained in Iooss and Joseph [17, VIII.3]. There are therefore
two solvability conditions to be used in the determination of the parameters n and ln.
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GLOBAL HOPF BIFURCATION FOR VOLTERRA INTEGRAL
EQUATIONS*

BERNOLD FIEDLER"
Abstract. This paper investigates global bifurcation of time periodic orbits for autonomous systems of

integral equations of convolution type depending on a real parameter X. An easy criterion for global
bifurcation is derived: ifmfor simplicitywthere exists only one stationary, nondegenerate solution for all X,
then it is sufficient that the linear unstable dimensions for h near c resp. + c differ from each other.

The theorem requires the integral kernels to be integrable with some exponential weight. The proof then
relies on approximation by ordinary differential equations.

Applications are given to oscillations in a model for epidemics, and to a model for circular neural nets.

Key words, bifurcation, periodic solutions, integral equations, epidemics, neural nets
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Introduction. Periodic oscillations are a quite common feature of many models in
mathematical biology which take the form of integral equation systems

(0.1) x(t)= ax(s)fx(x(t-s))ds, X(3-:R

see e.g. [10], [11], [16], [22], [33], or of integro-differential systems

(0.2) x’(t) ax(s)fx(x(t-s))ds,

see e.g. [4], [8], [9], [22], [23], [26], [30], [31], [34]. A frequent approach to detect such
oscillations is local Hopf bifurcation theory with respect to a parameter : the sta-
tionary (i.e. t-independent) solutions x are computed first and various conditions on
the linearized equation for some A ’0 yield small amplitude periodic solutions. Such
theorems are available at a considerable level of generality and technical perfection [5],
[8], [12], [16], [20], [21], [26], [32]. However, there are two main drawbacks to this
approach:

the assumptions on the linearization are difficult to check, restricting applicabil-
ity to very special kernels, and
conclusions are obtained only in a small neighborhood of the bifurcation point.

Taking a global point of view we attack both problems simultaneously, concentrat-
ing on integral equation (0.1). We define a global Hopf index H (see Definition 1.6)
which requires only some information on the linearizations at ;k=a and ,=/3. Our
Main Theorem 3.1 states: if

(0.3)
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Universitit Heidelberg, Institut for Angewandte Mathematik, D-6900 Heidelberg, Federal Republic of
Germany.

911



912 BERNOLD FIEDLER

then there is a global continuum Z of pairs (,x) with x a periodic solution of (0.1);
Here "global" means that

Z is unbounded, or
the virtual periods of the nonstationary periodic solutions on Z are unbounded,
or
Z contains (X,x) with x nonstationary periodic, X=ct or ,= ft.

We call q a virtual period of x, if q is the minimal period of a pair (x,y) where y
solves the linearized equation

(0.)’ /oy(t)= ax(s)f(x(t-s))y(t-s)ds,

see Definition 2.1. Note that x may have several virtual periods, but at least the
minimal period of x is always a virtual period. Unlike the set of all periods, the set of
all virtual periods of x is bounded (Lemma 2.3).

We briefly outline the proof to clarify the role of virtual periods. Our starting
point is a corresponding theorem for ordinary differential equations. This theorem
relies heavily on ideas of Alligood, Chow, Mallet-Paret and Yorke [2], [3], [7], [27], who
also introduced a notion of virtual period. A global theorem involving the Hopf index
H was proved by the author [15] in an analytic semigroup setting using generic
approximations--a method where virtual periods seem both natural and indispensable.
To extend our theory to integral equations we avoid flow concepts like [12], [18]
because we were unable to develop a generic theory for equations of the form (0.1).
Rather, in 1 we approximate the kernel ax(s ) by exponential sums. For exponential
sum kernels (0.1) reduces to an ordinary differential equation and [15] applies. Limits
of periodic solutions yield periodic solutions of (0.1). In 2 we establish the crucial fact
that limits of virtual periods are again virtual periods. If we replace "virtual" by
"minimal", this is no longer true. In 3 we piece everything together and comment on
our result.

Of course, there are also some drawbacks to our theorem. In applications, it seems
to be difficult to obtain upper bounds on (minimal) periods, in general. Actually this
difficulty goes back to the original paper by Alexander and Yorke [0] who started
global Hopf bifurcation for ODEs. The problem persists in more recent work [6], [24],
[25] and is only slightly diminished in our approach: there is an example of a bifur-
cation which is global in the sense of [0] but not in ours, see [1]. At present there is one
other method to avoid this difficulty, using Poincar6 return maps of cones and some
fixed point theory, see [4], [19], [20], [30], [31], [34] for example. This method requires
detailed information on the nonlinear flow; it works for scalar equations and a very few
special systems. Another serious drawback, which we hope to overcome soon, is the
following: we cannot allow for stationary bifurcations, because we exclude characteris-
tic value zero of the linearization.

There are many applications of our theorem. For 4, we selected just two to
demonstrate the necessary adaptations of our theory and the comparative ease in
computing the global Hopf index H. We can also treat integro-differential systems
(0.2), but only for kernels which are L with respect to an exponential weight. At
present our results do not include delay equations, or the claims of [6].

1. Approximation by ordinary differential equations. In this section we analyze
approximations of the integral equation (IE)

(1.1) x(t)= ax(s)fx(x(t-s))ds=:(ax,fx(x))(t), kI= [a,fl]
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by ordinary differential equations in R

(1.2), p=g(y),
letting the dimension n tend to infinity. In particular we relate eigenvalues of the
linearization of the ODE (1.2)n to the characteristic roots of the linearization of IE
(1.1). As a consequence we can define a Hopf index H(a,f) of (1.1) as the limit

H(a,f)’= lim H(g"))

of the Hopf indices H(g()) of equations (1.2),. Along our way, we develop the
technical frame and state a compactness result for later reference.

We fix some notation. For kernels ax,b LI(R +,M(m,)), ax depending continu-
ously on h, and for , >= 0, I= a, fl a compact interval, a < fl, we define

Ibl "= Ib(s)lexp(vs)ds, Ila IIv "= sup

as weighted norms with corresponding spaces

LI(R+,M(mZv {be ,n)) Iblv< },
Av(I)’= (a’I+M(m,R)l Ilallv<

We assume that

(1.3)
a Av() with some , > 0 and

fF’= C(I, nCl(m,m)), i.e.,

fx BCI(’,’) depends continuously on k 1.

Here Ck (BC) denotes the space of functions with (uniformly bounded) continuous
derivatives up to order k, endowed with the standard sup-norm. By Co, we will denote
continuous functions with compact support. As a solution space of equation (1.1) we
consider

x X BC(, m).
We call x X periodic if x(t +p)= x(t) for some p > 0 and all real t, including

stationary solutions which admit any real p as a period. By assumption (1.3), all
periodic solutions of (1.1) are in X. It is not necessary to introduce a phase space of
past histories for IE (1.1) if we concentrate on periodic solutions only. Thus, we avoid
the technicalities of defining semiflows for (1.1) but we also lose concepts like
Poincar6-maps and Floquet-multipliers.

Let us state compactness. Using [28] we know the following.
LEMMA 1.1. Lety X ofperiodp satisfy the (not necessarily autonomous) equation

(1.4) y,(t)=b" g"(.,y,)(t)’= [b"(s)g"(t-s,y.(t-s))ds
"0

and assume
(i) b converges to b in LI;
(ii) gn converges to g in BC( xm,m) and gn(.,y) are periodic with periods

independent ofy and uniformly bounded with respect to n;
(iii) p, converges to
Then ( y,) has a subsequence converging in X to y with period Po and y satisfies the

limiting equation

(1.4)o y=b * g(.,y).
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We turn to approximation of kernels by exponential sums. Let ej be the exponen-
tial ej(s) exp(-js), and Pv(I)cAv(I) be the subset of finite sums of functions

(h,s)

with pj. C(I,M(m,R)), jN.
LV.MMA 1.2. Pv(I) is dense in A v( I ).
Proof. Because multiplication by ev is an isomorphism from L to Lv, we prove

only the case 3’ 0. Further we may restrict our attention to m 1. I is compact and we
allow for continuous pj(X), hence, fixing ), we only have to prove: for any b LI(R +, I)
and for any e > 0 there exist real coefficients pj, j 1,..., n such that p := Epjej
satisfies

(1.5) [b-plr(a/,a<e.

To prove (1.5), we note that C0(R+,R) is dense in LI(R+,R); hence we may
assume that b is continuous and has compact support in R +. Let

b*(o)" o-b(-logo) C([0,1], I)
with the obvious definition b*(0)"= 0. By the Stone-WeierstraB approximation theo-
rem, there exists a polynomial p*(o)’ o-Epjoj such that

max Ib*(o)-p*(o)I<e.
o[0,1]

For s log o this implies

Ib(s)-p(s) Iob*(o)-op*(o)l< eexp(-s)
and integration over s + yields (1.5). El

In the next lemma we show that IE (1.1) is equivalent to an ODE, if the kernel a is
an exponential sum (i.e. if a Pv(I)).

LEMMA 1.3. Let ax=Y’.pj(,)ej+vPv(I), j=l,...,n, =(1,’",,), g,=
(gl,X," ", gn,x) with

(1.6) gj,x()’=Pj(X)fx(l +"" +.)- (j+3’)j.

Define the respective transformations

(1.7) x’=Ej, X ). ( , x)).
Then, for each , I, x X is a solution of IE (1.1) iff is a bounded solution of ODE
(1.2),,.

The proof consists of an obvious calculation and is omitted.
Combining Lemmata 1.1-1.3 the following proposition is immediate.
PROPOSITION 1.4. Let a andfsatisfy assumption (1.3). Then, for each , I, there is

a sequence a P(I) of exponential sum kernels, converging to ax in A(I), such that
solutions x X of
(1.1),, x’=a , fx(x" )
correspond by transformation (1.7) to bounded solutions " of

and the stationary (t-independent) solutions of (1.1), and (1.1) are the same.
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In particular, if " are periodic solutions of (1.2), with periods p, converging to

Po ff +, then there is a subsequence of the x" converging in X to a periodic solution x of
(1.1) with periodPoo.

Now we investigate the behavior of eigenvalues resp. characteristic roots under the
approximation from Proposition 1.4. Let x(t)=-Xo be a stationary solution of (1.1),
then the linearized equation is

(1.1)’ y=ax *(f;(xo)’y).
Values/, C, such that (1.1)’ has a nontrivial solution

y(t)=etyo,
are called characteristic roots of (,,x0). Let 3x(/) "= f exp(-ls)ax(s)ds denote the
Laplace transform of ax (defined for Re/, >= y); then characteristic roots (with Re >

3’) are the zeros of the characteristic function

(1.8) X (/*) det(1 3x(/*)"f(x0)).
By analyticity of X(/*), we may assign a multiplicity to each characteristic root . For
ax Px(I), linearization commutes with the equivalence transformation from IE (1.1)
to ODE (1.2), by Lemma 1.3. Hence we may also associate the linearization

(1.2)’ i/= g,(o)
to (X,Xo) and consider the eigenvalues of g,(o), where o corresponds to xo by (1.7).

LEMA 1.5. In the situation described above, the characteristic roots t* of (1.1) at
(X,xo) with Re/>-3’ are exactly the eigenvalues tx’ of (1.2)’ with Re/,’>-, with
equal algebraic multiplicities.

Proof. The considerations above prove the lemma except for the claim that alge-
braic multiplicities are equal. To complete the proof, we directly compute X and the
characteristic polynomial r of g,(/Jo). Absorbing f,(Xo) into ax, we may assume
f[(xo)= id. Further, we may omit the index

With a=pjej+v, q.(/)" (j+ /+ p,)-lpj=pj.Oj+ v we first obtain

det(a
Next we compute r, doing some determinant manipulations"

r()= det(g’(0)-) =det( Pi-(J + 7 + I)Sij) i,j

II (k + 3’ + )" det( qi- 1 "ij) i,jk

+_ II(k+v+/,).det
j

+
k

and the lemma is proved.
Finally, we introduce the Hopf index, using our ODE approximations. First we

need some more notation and assumptions. Let (0,x0) be a stationary solution of IE
(1.1) with corresponding linearization (1.1)’ and characteristic function X; cf. (1.8). We
assume

(1.9) x(O) 4:0 at any stationary solution (Xo,Xo).
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In particular, this excludes secondary bifurcation of stationary solutions; the stationary
solutions are given as branches (X,x(?)), parametrized by with j labeling the
branches. On occasion, we also denote the characteristic function at (,,x()) by
X(/t)- Further we call (h0,x0) a center if X=0 has pure imaginary roots; let CcIX
denote the set of centers of (1.1). We assume

(1.10)

Let

the set C of centers does not contain points (? ,x) with

EJ(X)" number of characteristic roots with positive real part at (?,x(?)),
counting multiplicities.

DEFINITION 1.6. We define the global Hopf index of integral equation (1.1) to be

1 ()(1.11) H=H(I)’= 2.E(-1)
J

Choose an exponential approximation of a by a" v(R) such that

a"a in A (1)

and Proposition 1.4 holds. We define H,(I) by (1.11), corresponding to a ", for n> n o
large enough that assumptions (1.9) and (1.10) above hold for equation (1.1),, too. By
Lemma 1.5 we may equivalently interpret the characteristic roots contributing to EnJ’(X)
for a" as eigenvalues of the associated ODE.

POPOSITIOY 1.7. Under assumptions (1.3), (1.9) and (1.10), the global Hopf index
is well-defined and satisfies

H(I)= lim H,(I).

Proof. By definition, we only have to show

E(X)= lim E,(,),

at any stationary solution (h,x0) of (1.1), OI (by Proposition 1.4, (1.1) has the same
stationary solutions as (1.1),). Suppressing the argument 2,, we note that E is the
number of roots of

X,= det(1 a,(’))
with positive real part, if we put f(x0)= 1 without loss of generality. For any e > 0, by
continuity, there exists no(e) such that for all n>_ no(e)

IX.(/t)-X(/t) <e for Re/t>=0.
Now X4=0 on the imaginary axis, and limlt_oX(/,)=l for Re/_>_0, by the
Riemann-Lebesgue lemma, hence zeros of X in {Re/t>= 0} are in some compact subset
of {Re/t > 0 }. By uniform convergence of the analytic functions X, to X,

for e > 0 small enough and n >= n0(e), and the proof is complete.

2. Virtual periods. We develop a notion of virtual periods for periodic solutions of
integral equations, without referring to flow concepts, Poincar6 maps etc.. Our defini-
tion is consistent with the virtual periods introduced by Alligood, Mallet-Paret and
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Yorke [2], [3], [27] in an ODE setting. We show that virtual periods are well behaved
under limits, i.e. the limit of virtual periods is again a virtual period. Then we prove
that any orbit has only finitely many virtual periods, and finally we analyze the
behavior of virtual periods on branches of stationary solutions, using analyticity.
Throughout this section let assumptions (1.3) on a, f and (1.9): X(0)4:0 be satisfied.

DEFINITION 2.1. Given a periodic solution x(.) of integral equation

(1.1) x=a.f(x)
we call q>0 a virtual period of x if q is the prime (minimal) period p(x,y) of a pair
(x,y), where y is a periodic solution of the linearized equation

y=a,(f’(x(.))y).
Recall that we regard stationary solutions as periodic with "minimal period"

p := 0. Setting y:= 0, the prime period is always a virtual period; however, x(-) may
have several virtual periods (see Proposition 2.2 below). Floquet-theory, along with
Lemma 1.3 on the correspondence between ODEs and IEs, tells us that our definition
of virtual periods coincides with the one given in [2], [3], [27] for ODEs, if a P is an
exponential sum kernel.

In [7], [27] it was shown that a limit of minimal periods is a virtual period. The
most useful property of virtual periods in our approach is a generalization of this
result: we prove that a limit of virtual periods is again a virtual period. Because of the
independent significance of the next proposition, we emphasize that the proof does not
use Assumption (1.9) X(0)4= 0; but this fact is not exploited in the present paper.

PROPOSITION 2.2. Let x be periodic solutions of
(1.1).
with a virtualperiod qn > O. For n -+ assume that

a a in L1,

f f in BC1,
x x in X=BC,
qn q in R

Then q is a virtual period of x, in particular q is positive.
Proof. The proof is rather involved; we give an outline first. We construct two

solutions 1 and 2 of the linearized equation (1.1)’ such that (x, rtl,/2) has minimal
period p(x, rt,rt_)=q>O. This is sufficient because p(/1,_)=p(ar/l+a) for
almost every al, a2 R. In the first step we construct 71, involving limits of xn, such
that

p(x,ll)=p,
where p limpn, Pn := P(Xn). In our second step we construct r/2. This involves limits
of solutions Yn of the linearized equation (1.1)’ with p(x,yn)=qn, lyl-0 or 1. Finally
we prove that indeed

P( X, ll, q2) q > O.

Note that in our proof we may assume that pn>0 eventually; otherwise, for x
stationary, we consider the linearized equations for Yn directly replacing x by Yn in the
proof.
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For later reference we introduce some notation. For periodic q, X we denote

p (q)" the minimal period of q,,
P (q,)" the set of all periods of

S(t) q’= q(. + t), the shift on X,

’- ](S(op,)x-x) Ix>0 for p>0,

X’-- (S(OPn)Xn--Xn)/2,
z’=(x,y),

d "=

Step 1" Construction of . We claim that, after restriction to an appropriate
subsequence,

(2.1) x "= limx
n

exists and satisfies the linearized equation (1.1)’ at x, provided that o Q satisfies
the admissibility condition

(2.2) opP(x).

For admissible o (possibly an empty set) we then show

(2.3) opP(x).

We choose x as a finite linear combination

1 ox

with adssible o, such that p(l)=p(x, o adssible) and we finally show

p(x,l)=p.

Existence of x follows from our compactness Lemma 1.1" by admissibility (2.2)
we have lim, 0 and therefore

(.). +o(),Xn=

which yields convergence and

We prove indirectly that op P(x) choosek such that ko Z and compute

0 lim (S(kop,)x,-

k-1

=lim 2 (S((j+
n j=0

=2s(jop=)xO=x,
if we assume op P(x) in the last equality. This is a contradiction to ]x]x 1. Note
that (2.3) implies p > 0, hence q > 0. Further, x cannot be stationary.
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We show that p(x,ll)=poo. If there is no admissible o, then op P(x) implies
o7/, i.e. Po is the minimal period of x and we may choose /1--0. If there are
admissible o then (2.2), (2.3) imply that

(2.4) 7lpo=P(x) P(x).
o adm

To see that, note that Po is contained in the right-hand side by construction. Vice
versa: Qp contains the right-hand side; but if apP(x)P(x), aQ, then
a 7/, or else a Q\7/is admissible and therefore ap

_
P(x): a contradiction. This

proves (2.4). Now P(x) is discrete for all o, therefore a finite intersection over o is
sufficient in (2.4). The corresponding o provide /1, as desired.

Step 2: Construction of *12. This step is somewhat similar to the last one, replacing
x,, by Yn. We claim that

(2.1)’ y limyn, y limy,

exist, y satisfies (1.1)’, and y" satisfies (1.1)’ if - Q\7/is admissible, i.e.

(2.2)’ qoo 7/ po P( z

where z=(x,y). For admissible - we show

(2.3)’ qo P(Y’)

and choose 2 as a finite linear combination of z" such that finally

P(X,ll,*12)=q.

Convergence of y is trivial. However, some care is needed with y to insure that
y satisfies the linearization (1.1)’; this explains the 7/p in condition (2.2)’ which in
turn made step I indispensable. By rq P(z) the e, go to zero. In addition rq
p > 0 implies that Cq ’ p, eventually. Therefore,

S(’q,)x,=x,, e;=lS(zq,)y,-y,I x,

and we may compute that

y,= a * ( S( q,)(f’( Xn) Yn) --f;( Xn) Yn)/en
a, (f(S(w,,)x,)S("qn) Y,-K(x,) y,

=an

indeed satisfies the linearization (1.1)’.
We prove (2.3)’ as in Step 1, replacing (p,x,i,o) by (q,y, e, -).
Finally we show that p(x,,ll,)= qo- If there is no admissible -, then

qo-ponP(z)

implies - ’ and we may choose /2--Y to obtain p(x,,ll,y)=qo. If there are admissi-
ble -, (2.2)’ and (2.3)’ imply

Zq =Zp ont’(z)n n
adm
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as before. By Poo > 0, there are only finitely many admissible (0,1) anyway. Choos-
ing /2 as an appropriate linear combination of the corresponding y and y completes
the proof, t3

In view of Lemma 1.3 on the correspondence between integral equations and
ordinary differential equations, the virtual period Proposition 2.2 also holds for ODEs,
of course.

In 3 we consider global bifurcation and one alternative will be that arbitrarily
large virtual periods occur. Such a statement is significant only if we show that for any
single orbit the virtual periods are bounded.

LEMMA 2.3. Let x be a periodic or stationary solution of
(1.1) x=a.f(x).
Then the virtual periods of x are a bounded set.

Moreover, suppose x is stationary. Then x has a (positive) virtual period iff x is a
center. More precisely: q is a virtual period of x, iff q is the (positive) least common
multiple of numbers 2r/flk, where (+_ ifl u 1,..., j) are the pure imaginary char-
acteristic roots of x and k ranges over a subset of ( 1,. ., j ). In particular, x has at most
2 j 1 distinct virtualperiods.

Proof. Let y be a periodic solution of the linearized equation

(1.1)’ y=a.f’(x)y

such that p is the period of x and q=p(x,y) is a virtual period of x. The case p 0,
i.e. x stationary, is elementary and well be treated first. For nonstationary x, we use
that (1.1)’ defines a linear evolution system on an exponentially weighted history space,
i.e. we rely on a (linear) flow concept. The evolution will be a-condensing, thus proving
boundedness of the virtual periods.

For stationary x, let

y(t)= Y’ Yrexp(irflt) fl := 2r/q,

be the Fourier series for y. From (1.1)’ we see that

yr--O or x(irfl)=O.

Hence r shows up in the Fourier series, iff rfl= +ilk for some k and the claims are
immediate.

For x with period p > 0, let Y be the set of continuous functions

such that for 3’ as in (1.3)

y0"

Ily0 I1 "= sup lyo(s)lexp(vs)< o,
s=<O

and let Ys be the set of Yo Y such that

Y0(0) =a (f’(S(s)x)y0) (0).

Obviously, Y and Ys are Banach spaces and (1.1)’ defines a solution operator
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see [28]. Because x is p-periodic, T’= U((j + 1)p,jp) is independent of j, maps Y0 into
itself, and

(2.5) y S(q) y Tny,

if n := q/p and y is interpreted, by restriction, as an element of Yo.
We claim that the spectral radius r of the essential spectrum of T is at most

exp(-p,)< 1. Then y lies in the generalized eigenspaces of T for some eigenvalues
which are n th roots of unity. But T has at most finitely many eigenvalues on the unit
circle; hence n and consequently q is bounded.

To prove the claim, we apply Nussbaum’s formula [29] which states

re= lim (a(Tn))1/n

where a(T") is the Hausdorff measure of noncompactness of Tn(Bt). To compute a
we split T into a sum

T"=Sn+ K,,

where Sn is roughly a shift and K, is compact. To be specific, we define

(2.6)
o(t+ np),

(SYo)(t)’= -n+ 1-t/p)yo(O)
O,

- <t<= -np,
for -np<=t <= (-n+ l)p,
(-n+l)p<=t<=O,

(K,yo)(t)’= w(t+np)-(-n+ 1-t/p)yo(O)
w(t+np),

- <t<= -np,
for -np<t <= (-n+ 1)p,
(-n+l)p<=t<__O,

where w is the solution of the Volterra equation

+ h( l,

fo ,(h( l"

Note that w exists in BC(N-) and defines the continuation of Yo Yo as a solution of
(1.1)’, hence S,, + K,,= T ". Unfortunately, S,, and K, map into Y, not necessarily into

Yo. But choosing a projection Po onto Yo (which has codimension 1 in Y), we may write

T"= PoS,, + PoK,,.

By compactness of K, [28], and because codim Y0 1, we may compute

ot( Tn ) ot( Pogn ) ot( gn )
[13], [29]. For S, we estimate

S.y0 Iv= sup I(S.yo)(t)I. exp(t)
t=<0

=< max (1-/p) exp(r)’exp(-’/np)" lyolv
r[0,p]

c exp( lpn )" [Yo Iv,
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this implies a(T") =< c exp( 7pn ), hence

re= lim a(T )l/" <= exp(-P7) < 1,
n

and the proof is complete. []

We conclude this section with a technical lemma on virtual periods of branches of
stationary solutions. Recall that X(t) denotes the characteristic function (1.8) at the
jth stationary branch (, xJ(X)). We assume that

(2.7) for each j, the map

is analytic for (h,xJ(X)) in a neighborhood of the set C of centers and for
Re/> -7.

LEPTA 2.4. Let Assumption (2.7) be satisfied. Then there exists a canstant co such
that the set

J(c0)’= ((X,x)C all virtualperiods of (X,x) are <c0)
is dense in C.

Proof. For simplicity of notation we focus on just one stationary branch (X, 0) and
think of C as a subset of R. In [15, Lemma 4.8] we gave a proof which holds for ODEs,
where

Xx(,)-- det(-f/(0)).
We use Lemma 2.3 to rephrase J(c0) in terms of zeros of X. By the Riemann-Lebesgue
lemma, the imaginary parts of characteristic values are bounded on C. The only
difference to the ODE case is the fact that Xx is not polynomial in / any more. We
remedy this drawback locally by application of the WeierstraB preparation theorem,
leaving the zeros unchanged. Then we use the proof of [15, Lemma 4.8] to complete our
proof. []

3. Global HopI bifurcation. In this section we present our main abstract result, i.e.
we obtain global bifurcation of periodic orbits if the Hopf index H of Definition 1.6 is
nonzero

(3.1) H0.

We discuss our result and indicate some easy generalizations.
MAIN THEOREM 3.1. Let a andfsatisfy the following assumptions:
(1.3) a Av for some positive exponential weight 7 andf F ( differentiability);
(1.9) the stationary branches are parametrized ooer , in the compact interoal

I=[a, fl];
(1.10) there are no centers (X,x) with =a or X=fl;
(2.7) the characteristic function Xx(tt) is analytic in (X,t);

and--the most important assumption--
(3.1) the Hopf index H is nonzero.
Then there exists a continuum Zc I X consisting of stationary centers and nonsta-

tionary periodic solutions , x) of

(1.1) x--ax,fx(x )
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such that Z contains both a center and nonstationary periodic solutions and Z is global,
i. e. Z contains nonstationary periodic solutions (, x) with

(3.2) arbitrarily large norm ofx X, or

(3.3) arbitrarily large oirtualperiod ofx X, or

(3.4) X c, or = fl on the boundary of I.
We postpone the proof to give a discussion first. By Definition 2.1 virtual periods

are some multiples of the minimal period; however, for each (,x) in Z the virtual
periods of (,,x) are a finite bounded set (Lemma 2.3). It seems unlikely that we may
replace "virtual period" by "minimal period" in conclusion (3.3), except for ODEs of
dimension __< 4. Note that we do not require the periods to become unbounded in a
continuous fashion, in contrast to [0], [6], [24], [25]. Actually we have to allow for jumps
of the virtual periods by factors of 2 as becomes clear from the proof for ODEs (see e.g.
[15, Thm. 4.7]). Technically, the advantage of virtual periods is the fact that limits of
virtual periods are again virtual periods (Proposition 2.2).

Using Proposition 2.2 for stationary limiting x only, we could also obtain a global
Hopf bifurcation result in the spirit of Alexander and Yorke [0] by our approximation
process. In contrast to their result, we do not require any detailed analysis at the
centers (e.g. concerning multiplicities of pure imaginary eigenvalues, resonance condi-
tions etc.). All the necessary information sits in the index H. In [0], a bounded
continuum of periodic orbits is also called "global", if it just connects centers. Our
conclusion above is stronger: we do not call such a continuum global.

By Assumption (1.9) we exclude bifurcations within the class of stationary solu-
tions. This severe drawback already shows up in the ODE case. It is connected to the
fact that the index H= H(f) is not homotopy invariant with respect to the families f.
We will analyze this problem in a future paper, concentrating on the ODE situation.

Analyticity of the characteristic function X may be dropped and the proof sim-
plifies, if we assume e.g. that the set C of centers is discrete. In our abstract result,
however, we want to use only minimal information on C.

For technical convenience we require f to be bounded and I to be compact. We
can drop both restrictions, if we replace Assumption (1.10) by

(1.10)’ the set C of centers of f is bounded in X.

We sketch the necessary modifications. Let qnC:(,) be strictly increasing,
q,,(p)=p for Ipl<__n- 1 and n(p)=n for Ipl>=n. Define cut-off approximations fn of
f g g g m by

( x)/.(X,x).=:

By Assumption (1.10)’ the centers C. of f. coincide with C for n large enough.
Applying Theorem 3.1 to f., I.’= [-n, hi, we obtain global periodic continua Z,,c I
X bifurcating from C. C. In the proof of our theorem (Step 2) we will indicate how

to obtain a limiting global continuum Zc X of f from Z. as n o. Here global
means that Z contains both a center and nonstationary periodic solutions (;k,x) with
arbitrarily large
(3.2)’ norm in R X or

(3.3)’ virtual period of x X.
The variants I= itt, o), I= (- o,/3] can be treated similarly.
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Our theorem holds for various other autonomous integral equations of convolution
type as well. Some examples are

x=g(al* fl(x),..., ak * f(x)),
=a*f(x),

and various other combinations. We just have to give a technical frame, where com-
pactness (Lemma 1.1) and an ODE approximation (Proposition 1.4) holds. However, it
is not clear how our results extend to abstract integral equations, e.g. in Hilbert space.

Proof (Main Theorem 3.1). We give an outline first. We approximate the original
equation
(1.1) x=ax*fx(x )
by integral equations with exponential sum kernels

(1.1). x=a, ,fx(x)
which in turn are equivalent to ODEs

(1.2),, P=g,(Y),
as summarized in Proposition 1.4. In Step I we use a global bifurcation result for ODEs
(cf. [15]), to construct large continua Z of periodic solutions of (1.1)n; these continua
are getting more and more "global" as k N increases. In Step 2 we pass to the limit
n c and obtain continua Zk of periodic solutions of the original equation (1.1). Step
3 shows that Zk is not contained in the set of centers C for k large enough. Defining

Z’=Zk

will finish the proof.
Step 1" properties of Z. We consider k >__k0 with k0 large enough that Bo

contains C. Then, by Proposition 1.7, the Hopf index H,(k) of ODE (1.2)n on Bg

satisfies
04:H= lim H(k)=H,(k) forn>=n0(k ),

where, for any k, Bk’= ((h,x)IXI IXlx<=k} with boundary OB’= ((A,x)
I X IX a or X fl or Ix] k ). Consider k_>_ k0 with k0 large enough, such that Bk0
contains all stationary solutions of f and C is contained in the interior Bo-OBo.
Note that k0 exists by Assumptions (1.3) and (1.10). By Proposition 1.7 the Hopf index
H, of ODE (1.2), satisfies

04:H= lim Hv=H for n>=n o.

The approximation leaves the set of stationary solutions unchanged, no eigenvalues
zero occur in Bk for n >_ n 0. From the proof of [15, Thm. 4.7] we conclude that there
exist continua Zc I X of centers and nonstationary periodic solutions of (1.1)n with
the following properties"
(3.5) Zc Bk and the prime periods on Z are =< 2k,
(3.6) Z contains a center z of (1.1),, independently of k,

(3.7) Z is compact and connected,

(3.8)
(i)

(ii)

if ZN OBk is empty, then there is a continuum ZcZ such that
any element of Z" has some virtual period >__ co where co was defined in
Lemma 2.4, and
any interval [,2]c [c0,2k contains a virtual period of an element of Z".
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The Z, Z" correspond to the continua Zk, Z which were constructed in [15]"
any element (h,y)IR of Zk is reinterpreted as an element (X,y(t))IX,
attaching the orbit to it. Properties (3.5), (3.6), (3.8) are read off from properties [15,
(4.9)-(4.12)] of the corresponding snakes. The assumption [15, (1.2)] on C4 differentia-
bility of g" may be dropped for ODEs, using smoothed generic approximations.
Assumption [15, (4.5)] on analyticity was not used in the construction of Zk, Z. Thus
existence of Z is established.

Step 2" construction of Zk "lim" Z. We define

n(’uZ Z
r_->no n>_r

( z z limz, for some sequences nj c, z,,.,Z }.
Obviously, Zk c Bk is closed. By (3.5) and compactness Lemma 1.1, the set Zk consists
of periodic solutions of IE (1.1) with period =< 2k, and Zk is compact. Restricting the
whole approximation process to a subsequence of n N from now on, we may also
assume that the z"Z from (3.6) converge to

z0"= lim z"C,

which implies zo Zk for all k >= k0.

Moreover Zk is connected: otherwise we would have a partition Zk Z’ U Z" into
disjoint, nonempty, compact subsets with z0 Z" and a" 1/2 dist(Z’, Z")> 0. By defi-
nition of Zk there exists r0 such that for all , > ’0 we have

a > dist( Z, Zk) dist( Z, Z’ U Z").
Now z0 Z" implies that z" ZnN(Z") for large , and the open a-neighborhood
N,(Z"). Hence Z,nN(Z’)= , because Z is connected. This is a contradiction to
Z’4= , therefore Zk is connected.

Step 3" centers in Z. We claim that Zk is not contained in the set of centers C.
Analyticity is used only in this step. We consider two cases.

CASE 1. There exists a sequence njo (which may depend on k) such that
Z;n OBk is nonempty.

Then ZknOBk is nonempty and Zk is not contained in Cc Bk-OBk, for k>__ko.
CASE 2. For all n>=no(k ), Z,nOBk is empty.
Then (3.8), (i) and (ii) are satisfied, i.e. the virtual periods are large on a continuum

Z,". Analogously to Zk, we construct a continuum Z, of solutions of (1.1) with large
virtual periods" by (3.8), (ii) there exist z, in Z" with some virtual period in [c0,2c0].
Passing to subsequences we may assume that

zk lim zk

exists. We define

zg= fq Uz "
r>no(k n>u

and zk is an element of the compact connected set Z. Moreover the virtual period
Proposition 2.2 implies that (3.8), (i)-(ii) remains valid if we replace Z" by Zc Z.
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We show that Z: C, by contradiction. If Z c C then Z consists of just one
point zk because, by Lemma 2.4, the set J(co) defined there is dense in C and has
empty intersection with the connected set Z, by (3.8)(i). But then, by (3.8)(ii), the
point zk has at least 2J different virtual periods for k >= k0 if we choose

k0> 2-c0
This is a contradiction to Lemma 2.3, if we choose 2j to be a uniform bound on C for
the number of characteristic roots of X on the imaginary axis" then z C has less than
2J distinct virtual periods.

Step 4" finale for Z. We define the set Z of centers and nonstationary periodic
solutions of IE (1.1) as

Z’=Z.
k>k

By Step 2, the connected sets Z have the center z0 in common, hence Z is connected.
By Step 3, Z is not contained in C. Again by Step 3, Zk contains a nonstationary
periodic solution z wch lies on OBk (Case 1), or has a virtual period between 2-2-1k
and 2k (Case 2). Therefore Z is global, i.e. Z satisfies (3.2) or (3.3), and the proof is
complete.

4. Applications. We indicate applications of our abstract global bifurcation Theo-
rem 3.1 to two problems arising in mathematical biology. We compute the Hopf index
on suitably chosen intervals I of the parameter X. In the first problem we have to adapt
the solution space X to the biological situation. Our results are stated as corollaries to
Theorem 3.1.

The first example is drawn from Diekmann, Montijn [11] and Gripenberg [16], [17]
and was the original motivation of our work. The scalar equation, arising in epidemiol-
ogy, reads [11

(4.1) x(t) ’(1 t ) ftx(s)ds b(t-s)x(s)ds;

and we assume b0 has integral 1 and is in A v for some >0. The parameter X
relates to the total population size, x(s)O counts the individuals which are newly
infected at time s, and b() measures the infective force of an individual, which was
infected r units of time ago, on susceptible individuals (see [11] for more details and
references). Let

l(t). It x(s)ds,
-1

f’ b( - )x(stes,

Use (4.1) to replace x=Xg(,a) in the definition of , to obtain the equivalent
system

(4.2) ha f(), where

I= i f= g a--- lt0,11 0 ).0 b
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Thus (4.1) is put into the general form (1.1) discussed before. As a solution space for
(4.1) we consider the subset

xX’=c(, +)

of the Banach space BC(R,) i.e. we admit positive solutions x only.
Let us analyze the stationary solutions and characteristic equation of (4.1). In X,

the only stationary solution is

x(h) 1- l/h, X>I

(we exclude the branch x(h)= 0 X), with corresponding characteristic function

Xh(/x)=l+()k-1)/x-x’(1-exp(-/z))-(/z).

We discuss the limits X’, 1 and )t o in order to compute the Hopf index along
x(X). The limit Axal is regular, =0 is the only zero of XI() with Re#=>0. This
simple zero continues to tt =/z(h) near h 1 and from

g’(1) (’(0)) -1= sb(s)ds <0

we conclude that

(4.3) limE(X)=0

(the "unstable dimensions" E(X) were introduced just before Definition 1.6). The
limit X o is also easy [11]: with/3 1/(X 1), X 0 is equivalent to

(4.4) r/(/3,g)" =/(1 ()) +/z- (1 exp(-/z)) 0

where l N x 12 C is analytic. Note that (0, ) 0 at the simple zeros
kT]\{0}. By the implicit function theorem, these zeros have continuations (/3) for
small 1/31 with derivative

Itk(O) (Dg(O,lk)) -XDB/(0,/Zk) --/X; 1(1 (/tk))

In the notation of [11], b’= 2 Im(g), we obtain

b

This implies that

(4.5) E(X0)>0 forlarge )to>l,

if at least one of the numbers b is positive.
We check the assumptions of our Main Theorem 3.1 for X I:= [1 +e, X0] and

e > 0 sufficiently small. We get around the boundedness assumption on f as in our
remarks on Theorem 3.1. Obviously, bAr implies a Ar. Assumption (1.9) is satis-
fied: we obtain a stationary branch x(X) with Xx(0)= X- 1 g: 0. The set C of centers is
discrete. To see that we write/ i, and solve equation (4.4) for/3, obtaining
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with (r)" -(1-exp(-ir)).(ir(1-)(i,))) -t. The curve is analytic for ,>0 and
Im0 because (2rrk)=0, Im’(2rk)0 provided that bk40. Together with
(-) 0 for oo this proves C is discrete. Hence we may pick )t o large enough such
that (4.5) is valid and no centers occur on 0I, i.e. Assumption (1.10) holds. By
Definition 1.6 of the Hopf index, (4.3) and (4.5) imply

1 1) (E(ho)-E(1+ )=E(Xo)>O,H=-,- 1, E(l+ e)

i.e. Assumption (3.1) holds. Analyticity of Xx(/z) (cf. (2.7)) is trivial. Applying Theorem
3.1 we obtain the following.

COROLLARY 4.1. Let the kernel b in equation (4.1) be nonnegative with integral
normalized to one, b A for some positive ,, and

bk’= 2 b(s) sin(2crks) ds > 0

for some k iN.
Then one of the following holds:

(4.6) For any large enough X o which does not occur in the discrete set C of centers there
exists a nonstationary periodic solution x X= BC(N, N +) of equation (4.1); or

(4.7) there exists a X0>l and a continuum Zc(1,X0)X consisting of centers and
nonstationary periodic solutions of (4.1) such that Z is global, i.e. Z contains

nonstationary periodic solutions ( X, x) with
arbitrarily large norms of x, or
arbitrarily large virtual periods.

Proof. Our previous remarks prove that a global continuum Z,c[1 +e, X0]xX
exists, if we can exclude the possibility that Z, terminates at a periodic orbit in
[1 + e, Xolx 0X. From Gripenberg [17] it is immediate that 0 is the only periodic orbit in
0X.

If (X, 0) is in Z, with virtual periods staying bounded on Z, then (X, 0) is a center,
X 4= 1 and there is a periodic solution y >= 0, lyl- 1 of the linearized equation

y=Xb, y.

Taking averages over a period, we obtain a contradiction to )t4:1, ]b= 1. Thus
(X,0)$ Z and Theorem 3.1 applies on [1 + e, X0]xX.

Letting e0, we can in fact obtain a global continuum Z="lim" Z, in [1,X0]xX
as was indicated in our remarks following Theorem 3.1; cf. also Step 2 in the proof of
Theorem 3.1.

Note that (4.1) cannot have nontrivial periodic orbits at X 1, to complete the
proof of the corollary, rn

Under the stronger but epidemiologically reasonable assumption that there is a

constant C such that b __< C. li0al it is easy to see that all periodic solutions in X have
norm at most X.C. Then Corollary 4.1 holds even if we drop the alternative "Z is
unbounded" in (4.7).

Our second example concerns a model for circular neural nets, cf. an der Heiden
[22]. The system reads

(4.8) xj=Xhj* f(xj_l), j=l,...,m
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with Xo:= x,,. We assume

(4.9) the kernels hj>=0 have integral normalized to 1, and hjAy for some 7>0
and all j; the Cl-nonlinearities f satisfy .(()4:0 for 4:0, fj(0)=0 and
c := rI.f/(0) < 0.

Systems (4.8) with > 0 > c are called "repressible" in [22]. We give a general discus-
sion of the Hopf index H first and specify kernels hj later. Our result shows how delays
in the kernels cause global Hopf bifurcation.

This time we work directly in the setting of equation (1.1), I=[0,0]. The only
stationary solution of system (4.8) is the zero solution (by Assumption 4.9), and the
characteristic equation reads

Xx(lx ) l Xm. cH hj(l ) O.

Obviously, Xx(0) 1 "c 4: 0.
For X =0 we trivially obtain X() 1, hence

(4.10) E(X=0)=0.
Obviously, nonstationary periodic solutions do not exist for 0.

Analysis for =ho>0 is much more involved. Introducing/3:= -m, /=i" and
(r)" c-IIhj(ir), the characteristic equation reads

(4.11) ()=/3.
As before, is analytic. Therefore (0)=c, IMP’(0)4:0 implies that Im0 and the
set C of centers is discrete, by real analyticity of r--, ImP(r). However, C may be
unbounded.

In our first example, we have discussed the case that has a real zero. This time,
let us assume (r)4:0 for all real . To compute

e(Xo)
we may perturb slightly, such that ’()4:0 whenever ()R +. In that case, all
imaginary characteristic roots i are simple and (4.11) may be solved for/ =/(/3),
locally, with

(4.12) sgn Re’(/3 ) sgn Im,r’(/3 ) sgn Im q’(,r).
This equality tells us how E() relates to the winding number n(, 0) around 0 of

the complex valued curve R \{0}. For (0, 0) C and/30 let % > 0 be
maximal (Riemann-Lebesgue lemma) such that (ro) [/30, )- Then all imaginary
characteristic roots t=i on Cn([0,Xo]{0})satisfy I1__<0 and contribute to the
left-hand side of (4.12) for some [-o, r0], adding up to E(Xo). The right-hand sides
add up almost to the winding number n(([-o,%]), 0)with a possible difference of at
most one. Thus we have proved

(4.13) IE(Xo)-n (([-0,o]), 0)IZa-
We apply our Main Theorem 3.1 with X I=[0,Xo] just as with our first example.

By (4.10), we know that on [0,ho]X
1

H=-E(Xo),
and (4.13) helps us to compute this quantity.
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Before we specify particular kernels we summarize our result as follows.
COROLLARY 4.2. Let Assumption (4.9) be satisfied for the repressible system (4.8).

In addition suppose that for X ?t o > 0 the winding number n(, O) satisfies

(4.14) In(([-o,o]), O) I> 1.

Then the conclusion of Theorem 3.1 holds for system (4.8) on [0,Xo]X. Obviously,
(3.4) X a--0 is impossible, i.e. nonstationary periodic orbits do not exist at ? O.

As a simple example we specify the following delaying kernels

0 for 0__< s <
(4.15) hg.(S)= bj(s-j) for j<=s<

bj ( s & ( s ) exp( Os )

with 39 > 0, ’ >= 0, E ’ > 0 and nonzero polynomials p >__ 0 on [0, o). We check Assump-
tion (4.14) on the winding number of . We compute

J

c. l-I B( ir).expi
J J

=c.I!. b(y+ir).exp
J J

=c. IIq,(1/(j+ir)).exp(-ir),
j

where q./are polynomials related to p. Thus

(r)=cq(r) exp -ir_fa),.
J

with arg(q(r)) being uniformly bounded for r R (we take arg(q(r)) continuous as a
function of r). By equation (4.11), the set C of centers is therefore unbounded and

lim n(([-o,o]), 0)= .
,to oo

Hence Corollary 4.2 applies for all sufficiently large X 0 > 0. This result is not affected
by a possible finite number of real zeros of .

Following our previous analysis we could treat other kernels (e.g. step functions) as
well. Also, small self-inhibition or self-excitation in (4.8) does not change our results.

Finally, we note that Gripenberg’s example [16], [17] can be treated along the lines
of our second example. With regard to (), (4.1) is rather special because it yields
infinitely many zeros of .

Acknowledgments. The author is indebted to W. Jger, K. Schumacher and H.
Thieme for teaching him some integral equations with patience and enthusiasm, to O.
Diekmann who initiated this research by his questions, and to the referees for their
constructive criticism.
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Note added in proof. Above we announce a result on global Hopf bifurcation if
Assumption (1.9) is violated. This accounts for degenerate stationary solutions and
their bifurcations. The corresponding ODE theory is developed in B. Fiedler, Global
Hopf bifurcation of two parameter flows, Arch. Rational Mech. Anal., to appear. By
ODE-approximation, this theory carries over to Volterra integral equations as con-
sidered in the present paper.
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KINETIC EQUATIONS WITH REFLECTING BOUNDARY
CONDITIONS*
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Abstract. A general abstract model of time-independent kinetic equations on the half-line is presented.
The existence and uniqueness of the solution is proved under specified incoming flux and nonmultiplying
boundary reflection processes. An iterative method is formulated for computing in principle the solution by
using the solution of the analogous problem without reflection. In many concrete cases (e.g. neutron
transport, BGK model in rarefied gas dynamics, etc.) the available explicit expression for the latter provides
the actual solution of the general problem. Possible generalizations and open problems are briefly discussed.

Key words, kinetic theory, transport equation, reflection
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1. Introduction. In recent years substantial progress has been reported on the
existence and uniqueness theory for the solution of boundary value problems of the
type

(1.2)
(1.3)

r+’(x) -A,(x), xen +,

Q++(O)=JQ_4,(O)++,
II (x) II-- o(1)

where T is an injective self-adjoint operator, Q+ and Q_ the orthogonal projections
onto the maximal positive and negative T-invariant subspaces and A a positive self-ad-
joint (bounded or unbounded) Fredholm operator. The operators 9 and J as well as
the precise meaning of the norm in (1.3) will be specified later. This boundary value
problem models a variety of time-independent transport phenomena in semi-infinite
media with boundary conditions appropriate to incoming flux specification and, if is
nonzero, to a (partial) reflection at the boundary. In most instances, however, it has
been assumed that 9=0 (absence of reflection), and in this case the solution +,
whenever unique, is represented in the form

(1.4) + ( x ) e-Xr- a’4Eq +, x l +.

In this direction we note the important contributions of Hangelbroek [14], Lekker-
kerker [16], Beals [1, 2], van der Mee [19] and Greenberg et al. [13]. Only recently such
a theory has been developed with full account of boundary reflection processes (R 0).
Namely, Beals and Protopopescu [3], [4] obtained an existence and uniqueness theory
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for the Fokker-Planck equation

o)+ f o a+,

(1.7) lim ((x,v)/x } =b.

For general o’s the existence proof required a condition which will turn out to be
automatically satisfied. Maslova [17], [18] published related results on the linearized
Boltzmann equation with a sufficiently regular intermolecular potential. Greenberg and
van der Mee [12] formulated a related radiative transfer problem in an abstract setting,
but their result deals with (1.1) on a finite interval. The abstract approach was recently
followed by van der Mee [20], who announced some results on this problem.

The paper is organized as follows. For the reader’s convenience in 2 we provide a
brief but fairly complete review of the existence and uniqueness theory for the solution
of (1.1)-(1.3). Section 3 contains the procedure of computing the solution of the
problem with reflection from the solution of the same problem without reflection
(= 0). This iterative scheme can be implemented whenever the albedo operator E in
(1.4) is known explicitly, wch is actually the case for a large class ofproblems.
Namely, if A is a compact perturbation of the identity, an expression for E in terms of
generalized Chandrasear H-functions [9] has been given by van der Mee [21], thereby
generalizing a plethora of results obtained before for specific models (neutron trans-
port, radiative transfer, BGK models, etc.). In some cases the iterative procedure can
also be derived from a half-range completeness result involving H-functions (cf. [7], for
instance). At present, no explicit representation is known for the albedo operator E in
the case of the Fokker-Planck model (1.5)-(1.7) and more general Sturm-Liouville
problems.

2. Existence and uniqueness theol. In the present section we provide a brief but
fairly complete review of the existence and uniqueness theory for the solution of
(1.1)-(1.3). In order to explain the later introduction of a number of concepts, we
present the overall flavor of the theory by first considering T bounded and A strictly
positive and neglecting reflection processes, which is relevant to radiative transfer in
absorbing atmospheres [9] and neutron transport in submultiplying reactors [7]. Using
semigroup theory, one may naturally write solutions to (1.1) in the form

(x)=e-xT-aA(o), 0ZX<
where (0) must be chosen in the subspace corresponding to the nonnegative part of
the spectrum of the evolution operator T-A in order that the above segroup
expression makes sense and condition (1.3) is fulfilled. On fitting the boundary condi-
tion (1.2) where =0, one must require Q+(0)=+. If one would formulate an
analogous boundary value problem for x (+ , 0), one should require that (0) be
chosen in the subspace corresponding to the nonpositive part of the spectrum of T-1A
and Q_(0)= _. In a natural way one may thus express the unique solvability of both
half-space problems, for x (0, ) and for x (- , 0), in terms of the invertibility of
the operator V, which maps the nonnegative (resp. nonpositive) spectral subspace of
T-1A into the ranges of the projections Q onto forward (resp. backward) "fluxes". As
a matter of fact, V(0)=+, E V-1 is called the albedo operator and formula (1.4)
arises as the obvious result. Below we shall review the existence and uniqueness theory
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along the above set up (which originates from Hangelbroek [14]) in some detail, since
the unboundedness of T, the appearance of a nonzero null space of ‘4 and the absence
of compactness assumptions on .4 cause technical difficulties and necessitate the
introduction of some novel notions.

Let us now drop the above restrictions on T and .4. Let T be an injective
self-adjoint operator and .4 a positive self-adjoint operator with closed range Ran.4
and null space Ker.4 of finite dimension, both defined on the complex Hilbert space H.
For the sake of convenience we assume .4 to be bounded, but at the end of this work
we shall discuss how to remove this restriction. We then define the zero root subspace

(2.1) Zo= (hH/Zln "(T-A)"h=O},
and assume ZoC D(T). It can then be proved (cf. [13]; the result there extends to
unbounded T) that Zo has a finite dimension and Zo=Ker(T-XA) 2. Here we also
assume that Zo is nondegenerate in the following sense:

( h Zo/(Th, k ) 0 for all k Z0 } (0 }.
In fact, this assumption is automatically satisfied. (If T is bounded, see [13]).

PROPOSITION 2.1. We have the following decompositions:

(2.2) Zo (r[Zo]) 
(2.3) r[zol Zo

(2.4) Zd=T{(T[Zo])X}=A{(T[Zo])’}.
Moreover, Zo and (T[Zo]) +/- are T-XA-invariant subspaces and there exists a unique
operator S on (T[ Zo]) +/- such that

(2.5) T-A=( T-’AIzo)S-’.
The operator S is self-adjoint with respect to the positioe definite inner product on
(T[Zo]) +/- gioen by

(2.6) ( h,k ), ( Ah,k ).
For isotropic neutron transport in a conservative medium, where Z0 can be

constructed explicitly, this Proposition 2.1 is due to Lekkerkerker [16]. It later appeared
in more abstract form in [19], [13], [2].

Let us introduce Hr as the Hilbert space obtained by completing D(T) with
respect to the inner product

(h,k)T=(ITIh,k).
Let us assume that there exists a unitary and self-adjoint operator J on H, which leaves
invariant D(T) and satisfies

TJ JT, AJ JA

Then J extends from D(T) to a unitary and self-adjoint operator on Hr, as also do the
orthogonal projections Q/ and Q_ of H onto the maximal positive and negative
T-invariant subspaces, respectively. We shall require the reflection operator to be a
bounded operator on Q/[H], which leaves invariant D(T), and satisfies the identity

(2.7) T=tT
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for some bounded operator N?+ on H. Putting
def

h JJh hQ_[H],

we extend to a bounded operator on H, which automatically commutes with J,
leaves invariant D(T) and extends from D(T) to a bounded operator on Hr. In order
that the operator models a nonmultiplying reflection process at the boundary, we
also assume that extends to a contraction on Hr:

(IT[th, th)<=([T[h, h), hD(T).
For later use we include the following result, derived by Beals [1] for injective and

certain noninjective A, and generalized by Greenberg et al. [13].
THF.OREM 2.2. For every q + Q +[Hr] there exists at least one continuous function

q: [0,)Hr, which is continuously differentiable on (0, ) and satisfies the equations

(2.8) T+’(x) -A+(x), xn +,

(2.9) Q+ (0) q+,

(2.10) q(x)lit= O(1) (x ).
The number of linearly independent solutions of the homogeneous (q+=0) problem
coincides with the maximal number of linearly independent vectors h x,..., h k KerA
satisfying (Zhi, hj)-’O for i4=j and (Zhi, hi)<O for i= 1,2,..-, k.

In fact, it is possible to construct at least one "albedo operator" E, which is a
bounded strictly positive self-adjoint operator on Hr, such that

(2.11) tk(x) e-Xr-PE++ (I- P )E+

is a solution of (2.8)-(2.10). Here P is the continuous extension from D(T) to HT of
the projection of H onto (T[Z0]) - along Z0 (cf. (2.1)), while

(2.12) III-EII,<I
(cf. [13], where it is shown that o(E)c (0,2)). Evidently we must then have (I-P)E+
KerA for all q+ Q+[Hr].
The solution of the existence problem for (1.1)-(1.3) is provided by the following
THF.ORF.M 2.3. For every q+ Q +[Hr] there exists at least one continuous function

k: [0, oz) Hr, which is continuously differentiable on (0, ) and satisfies the equations

(2.13) T’(x) -A(x), xl +,

(2.14) Q++ (0) JQ_tk (0) +ok +,
(2.a5) q (x)II-o(1) (x--, ).

Proof. Consider the operator

S=I+J(I-E).
Because of the estimate

the operator S is bounded and invertible on Hr. Consider the function

q(x)=e-r-’PESXq,/ + (-P)ES,/, O__<x < .
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Then q is a continuous function from [0, o) into Hv, which is bounded and continu-
ously differentiable on (0, o) and satisfies (2.13), since (I-P)ES g,+ KerA. Notice
that S maps Q+[Hr] onto itself. We now have

( Q+-JQ_) q (O) (Q+-JQ_ )ES1k +
(Q+-.JQ_)EQ+S1, += (Q+-.JQ_EQ+)S lq +

(Q++.JQ_(I-E)Q+)S 1,+= Q+SQ+slq,+=q+,
and therefore (2.14) is satisfied, t

Remark. As far as one considers only operators A which do not have negative
definite parts and whose kernel is finite-dimensional, the most general boundary condi-
tion to be imposed at infinity reads

(2.17) :in>=0"
This is the case for conservative neutron transport [16] and for the Fokker-Planck
equation [4], where the root subspace as defined by (2.1) is two-dimensional and n 1.
This implies that for large x the solution behaves as fl +f2x. (Here the vectors fl and

f2 are functions depending on the angular (for neutron transport) or velocity (for the
Fokker-Planck equation) variable, but in more general cases they may contain some
other variables as well, depending on the complexity of the operators T and A.) For the
kinetic (transport) problems usually occurring in physical situations the solution fl +f2x
is called normal (or Chapman-Enskog) and the vectors in the root subspace are related
to the (reduced) hydrodynamical description, valid far from the boundary. Because the
boundary condition (2.17) is more general than (2.15), existence of solutions is clear.
For the two types of boundary condition at infinity the number of linearly independent
solutions might be different if normal solutions occur.

Let us now define P as the projection onto (T[Z0])" along Z0 and PP/ (resp.
PP_) as the projection onto the maximal positive (resp. negative) S-invariant subspace
along the direct sum of Z0 and the maximal negative (resp. positive) S-invariant
subspace. Here positivity and negativity relate to the inner product (2.6) and essential
use has been made of the Spectral Theorem for S (cf. Proposition 2.1). As a conse-
quence,

(2.18) (TPP+h,h)=(SPP+h,h)A>_ O (TPP_k,k)=(SPP_k,k)A <=O,

where strict positivity and negativity hold for h RanPP+ and k RanPP_. Then
PP/ and PP_ extend to bounded projections on Hr (cf. [1],[13]). Next put

(2.19) M:, [RanPP+/- Ker(Q +_-JQ;)] qZo

for the notions concerning indefinite inner product spaces we are going to use we refer
to [5].

LEMMA 2.4. We have

(Th,h)<=O, hM_,.
< 1, or under the weaker assumption

Ker(Q+-JO_) Cq Zo= {O }
we have

(Th,h)<O, 04=hM_,.
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Proof. For h M_, we first determine g RanPP+ and k Ker(Q+-JQ_)
such that h =g+ k. Since h Z0 and g(T[Z0]) ", we have (Th,g)=O. Hence,

(Th h)+(Tg g)=(Tk,k)=l[Q+kl[
) 2

Since (Tg, g) (Sg, g)A 0 (cf. (2.18)), we have (Th, h) O. Moreover, if (Th, h) O,
then g=0 and either IIllh 1 or Q_k=0; the latter would imply k=JQ_k+ Q_k
=0 and h=0. Hence, if IIllm<l, we have (Th,h)<O for OhM_,. The latter
conclusion can also be drawn under the weaker assumption (2.20).

In the same way we can prove that

provided

(2.21)

(Th, h) < 0, h M_,f3 KerA,

Ker(Q+-JQ_)nKerA {0}.
TrIEORtM 2.5. Under the condition (2.21) the number of linearly independent solu-

tions of the homogeneous (+=0) problem (2.13)-(2.15) coincides with the maximal
number of linearly independent vectors hi,..., h k KerA satisfying (Thi, hj)=O for i=/=j
and (Thi, hi)<O fori=l,2,...,k.

Proof. Denoting by * the adjoint of in H, we easily compute

(TtM,,e]) a= [(TRanPP) Ran T-I(o-OJ*)] + (TtZol)

[(Ran,,, Z0) Ran(Q e + OJ(N*)* )-T- + (T[ Zo])

{ [RanPP; Ran(Qe+ Q;J(*)* )] z0} (T[ Z0]) s

Here we have used the intertwining property T=tT and the fact that the operator
Q + Q;J(*)* is a bounded projection on H and therefore has closed range. For
gRanPP_ and k=(Q++ Q_J(*)*)I we obtain

(Th h)+(Zg, g)=(Zk,k)=[I a kll
2 : = *Zll+  -IIa- lt =llO+Zll -llP-J( *)

because (*)* is a contraction in Hr:
Q_)h) <ll ll%dlhll  llhll

We now obtain

(Th,h)zO, h(T[M_,])*Zo.
Since Zo is nondegenerate with respect to the indefinite inner product

(2.22) [h,k]=(Th,k),

M_, is negative and (T[M_,]) sZ0 is positive, the subspace M_, is maximal
negative with respect to this inner product. Under the condition (2.21) the subspace
M_, KerA then is strictly negative and maximal in this respect among the subspaces
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of KerA. Because the linear span of the vectors hi,..., h in the statement of this
theorem is also a maximal strictly negative subspace of KerA and the dimension of
such a subspace does not depend on its specific choice, we must have dim(M_,rq
KerA)=k. Finally, if q is a solution of (2.13)-(2.15) with +=0, then necessarily
(I- P)(O) M_,9fq KerA.

Under the condition (2.21) we find the same existence and uniqueness result as for
9=0, which we easily see on comparing Theorems 2.2 and 2.5. If one would drop
condition (2.21), the homogeneous (+=0) problem (2.13)-(2.15) in general has more
linearly independent solutions than is to be expected from the above theorem. As an
example, consider the case 9t= I, which describes purely specular reflection. First we
observe that every k Hr, which satisfies Q 4k-9JQ_k for= I, has the property

(Tk k)=llO kll
2

Q k I1== Ja k =
+ r-IIa-kll-O,

since J is a unitary operator on Hr. If such a vector k would belong to the space
RanPP4 KerA, as it should be if it were the initial value of a solution q, then
k g + h for some g RanPP+ and h KerA. Since Q +k JQ_k implies

Jk=JQ4k +JQ_k=J(JQ_k ) + Q4k= k,

and therefore Jg g and Jh h, the property g Jg RanPP_ would give rise to g 0
and thus k KerA, whence k KerA r3 Ker(I- J). Conversely, every such k would
fulfill the condition JQ_k= Q4Jk= Q4k and therefore be an initial value of some
solution q. Thus the constant functions q (x) k, where k Jk KerA, are the solu-
tions of the homogeneous (4 0) problem (2.13)-(2.15) with = I.

Remark. The analogue of Theorem 2.5 for the kinetic equation (2.13) with boundary
conditions (2.14) and (2.17) can easily be obtained by repeating the arguments with Z0

instead of KerA. It then appears that under the assumption (2.20) the number of
linearly independent solutions of the homogeneous (q4 0) problem coincides with the
maximal number of linearly independent vectors h 1,--., h Z0 satisfying (Th i, h.)= 0
for g:j and (Th i, h) < 0 for 1, 2,. -, k, which is the same result as for = 0. In the
case of purely specular reflection (= I) this number generally is larger and in fact
equals the dimension of the subspace Z0 n Ker(I-J) of "even" root subspace vectors.
In general, for Z0 KerA one will find a larger measure of nonuniqueness of the
solution than for the problem (2.13)-(2.15), which can be accounted for by considering
the normal solutions f +f2x.

3. An iteration procedure. Let us consider a suitable bounded strictly positive
albedo operator E on Hr, such that q(0)=E+ yields a solution of (2.8)-(2.10). Such
an operator always exists and satisfies (2.12). It is unique, if and only if (Th,h)>=O for
all h KerA (cf. Theorem 2.2). Using the norm estimate (2.16), we may write a
solution of (2.13)-(2.15) as follows:

O/(x)=e-r-PEg++(I-P)Eg+, xl+,

(3.1) g+=Sgqb+ E (-1)n[j(I-E)]no+;
n=0

the series is absolutely convergent in the norm of Hr, uniformly in + on bounded
subsets of Q 4[ Hr]- We may therefore compute g4 by iterating the vector equation

(3.2) g++ J(I- E)g+=O+

where
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on Q+[Hr]. Depending on the choice of the albedo operator Emunique if and only if
(Th,h)>_O for hKerAm, different solutions are generated. In order to find all
solutions, especially in the cases where they are nonunique, one should still solve the
homogeneous (q+=0) problem (2.13)-(2.15). For instance, if KerA 4: {0} and Jh=h
for all h KerA, which occurs for the Fokker-Planck example (1.5)-(1.7) (disregard-
ing for the moment that this model does not satisfy the boundedness assumption on
A), we would have (Th,h)=(TJh,Jh)=-(JTh,Jh)=-(Th,h)=O for all hKerA.
This would imply existence of a unique albedo operator and therefore the generation by
iteration of one solution only. Nevertheless the problem is nonuniquely solvable and
the homogeneous problem should be solved as well. A similar remark applies to the
solution of (2.13) with boundary conditions (2.14) and (2.17).

Let us consider the case when A is a compact perturbation of the identity
satisfying

(3.3) :10<a <1 "Ran(I-A)RanlTI’, ZoCD(ITIg+’),
which occurs in one-speed and symmetric multigroup neutron transport (cf. [19]), and
several BGK models in rarefied gas dynamics. If we choose a closed subspace
Ran(l-A), which may be chosen finite-dimensional if I-A has finite rank, and
operators r H B and j B H such that rrj is the identity on and jr the
orthogonal projection of H onto B, a representation for E can be found in terms of
generalized Chandrasekhar H-functions. More precisely, if o(.) denotes the resolution
of the identity of the self-adjoint operator T, we have (see [21])

(3.4) -- p__

where Hz(-/) and H,(v) are solutions of the nonlinear integral equations

(3.5) HI(z) -1 I zf(z’+’t) -1H,(t)ro(dt)(I-A)j,
ao

(3.6) Hr(z)-l=I-zfo(Z + t)-l’tro(-dt)(I-A)jHt(t).

The solutions and their inverses must be analytic for Rez >0 and continuous for
Rez _>_ 0. If KerA 4: {0}, the continuity of Hz and H at infinity must be replaced by a
weaker requirement. (The precise description of such requirements was not given in
[21].) Equation (3.2) then has the form

fo fo(3.7) g+-
-o v-/
() (v)

On solving the H-equations (3.5)-(3.6) we may compute g4 by iteration. It should be
noted that the above expression (3.4) for E was formulated for q4 Q4[ H], but allows
continuous extension to q 4 Q 4[ Hr].

Let us consider the specific example of the scalar BGK model. The existence and
uniqueness theory for this example without reflection is immediate from [1], and has
also been published by Kaper [15]. For a combination of specular and diffuse reflection
(no absorption) solutions were obtained before by Cercignani [8], using expansion with
respect to increasing powers of the accommodation coefficient a. Let L_(R)n be the
Hilbert space of complex measurable functions on R with inner product

(h,l)= fh(_ o)I(v) d(o), dS( v ) =,tr-1/2e-V2 dv,
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and define T, Q /, Q_, A, and J as follows:

(Th)(v)=vh(o),

(Q+h)()={h!)’0
(Jh)(v)=h(-v),

(Ah)(o)=h(o)-r-1/2f h(v’)e-’)2dv’,

v>0, (Q_h)(v)=lO, v>0,
v<O, h(v), v<O,

(h1(v) =cth(v) + 2flr-1/2fv’h( v’le-’)2dv’,
"0

where is defined on Ran Q+ and ct, fl>__ 0 with a + fl__< 1. This model satisfies the
assumptions of the previous section and existence is assured. First we solve the H-
equation (i.e., (3.5)-(3.6) with Hi= H and B (constant functions})

Z f0H(z)-I 1--- (z+t)-IH(t)e dt,

requiring a solution such that H and H- are analytic for Re z > 0, continuous for
Re z >= 0 and satisfying H(z)= O(z) for z with Rez _>_ 0. We find

O+(v,
v>O,

(Eck+)(v)= 1 v’
b’-’v H(-v)H(v’)+(v’)e-(’):dv’’ v<O.

Therefore, we write (3.2) in the form

a fo v’ ,,H(v)H(v,)g+(v,)e_(O,)_dv,g+(v)-w
2 fo fo vv’ H(v)H(v,)g+(v,)e_t,+o,)ldv, dv=+(v)
"a" V’ + V

which has to be solved by iteration. The initial value of the solution is then given by
(0, v ) g +(v) for v > 0 and by

(O,v)=--- v’ v
H(-v)H(v’)g+(v’)e-(’)-dv’

for o<0.
For the isotropic Lorentz gas (neutron transport) the calculation has been carried

out for various combinations of selective, specular and diffuse boundary conditions (cf.
[10], [11]) yielding interesting and sometimes striking conclusions about their influence
on the boundary layer structure, density profile at the wall, validity of Fick’s law, etc.
For instance, the selective reflection of slow particles and absorption of fast ones leads
to an accumulation of particles near the wall and a reversal of the density gradient
(interpreted in terms of Fick’s law, as equivalent to a negative diffusion coefficient
[11]). For the Fokker-Planck equation such selective boundary conditions have been
investigated numerically by Burschka and Titulaer [6]. We remark that in general (e.g.
for so-called selective boundary conditions [6], [11]) the operator is not self-adjoint
in Hr. Since only the contraction property of plays a role in all derivations and not
whether it is self-adjoint, our existence, uniqueness and iteration results also apply to
selective boundary conditions.
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4. Discussion.
4.1. Generalization to unbounded A. Hitherto we have assumed that A is a

bounded operator. For many applications, especially the ones involving BGK models
in rarefied gas dynamics, this is sufficient. The Fokker-Planck model (1.5)-(1.7),
however, does not satisfy these assumptions. We shall therefore point out what type of
hypotheses on T and A, with A unbounded, would entail a repetition of the previous
arguments.

Let us assume that T is (bounded or unbounded) injective self-adjoint on H, and
let us define Q +, Q_ and Hr as before. Suppose A is a positive self-adjoint operator
with closed range and finite-dimensional kernel, possibly unbounded, such that D(T)
D(A) is dense in H. On defining Z0 as before and repeating the previous hypotheses
on Zo, we may derive Proposition 2.1. It should be noted that T-1A, with D(T-
( h D(A)/Ah Ran T }, is closable, but not necessarily closed. Still we may derive the
decompositions (2.2) and (2.3) where T-Alzo is closed (and even bounded) and T-1A
and S-1 should be replaced by their respective closures. As a result, S will be a closed
symmetric operator with respect to the inner product (2.6). We shall assume that S is,
in fact, self-adjoint on the completion of (T[Z0]) +/- fD(A) (which is dense in H, due to
the density of D(T)fD(A)) with respect to (2.6). By Ha we shall denote the direct sum
of this completion and Z0. Since A has a closed range and a finite-dimensional kernel,
Ha is densely imbedded in H. We define HK as the direct sum of Z0 and the
completion of D(T)fH,( D D(T)D(A)) with respect to the inner product

(h,k)K=(lSlh,k),

where the absolute value of S is taken in HA. As before, we define the projections P,
PP/ and PP_ on HA (and not on H) and extend them continuously to projections on
HK (and not on Hr).

If A is bounded, we may identify HA and H (which is a trivial observation) as well
as HK and Hr (see [1]; cf. [13] for a different proof). The existence and uniqueness
theory has then been developed in 2. For a large class of models on L2(a, b), where T
is a multiplication by an indefinite weight function and A is a Sturm-Liouville type
differential operator, it has been proved by Beals [2] that the Hilbert spaces HT and HK
are completions of D(T)D(A) with respect to equivalent inner products and can be
identified. Moreover, for the models Beals considered the previous assumptions on T
and A, including the self-adjointness assumption on S, are satisfied. As for bounded A,
we may then develop the theory of 2 and the first paragraph of 3 for these indefinite
Sturm-Liouville problems and essentially the same results are found. Moreover, for
these cases the operator S is bounded self-adjoint on H,4(T[Zo]) - (which is due to
more specific assumptions on T and A) and even compact. A specific example of such
a model is the Fokker-Planck equation (1.5)-(1.7). For this example the equivalence
proof of HT and HK is contained in [3]. It should be noticed that Theorem 2.3 answers
in the affirmative the existence issue raised in [4], thereby making redundant the
condition imposed there to enforce existence of solutions (namely, the condition BI
cls( Bu,, n > 0} in [4]).

4.2. The albedo operator for indefinite Sturm-Liouville problems. It is by no means
clear how to proceed finding the albedo operator E for (1.5)-(1.7) and other
Sturm-Liouville type models. One way, suggested by the approach in [4], is to use the
completeness of the eigenfunctions (Un)0,n z of T-1A at the nonzero eigenvalues
() n) 0, z, where we order these by __< )x_ 2 _-< )x_ < 0 < )xl =< )x 2 _-< and take



A MODEL OF TIME-INDEPENDENT KINETIC EQUATIONS 943

account of multiplicities. (It should be noted that under weak oscillation conditions on
A these eigenvalues are simple). We add an orthogonal basis u0,1,.-., u0,1 of a given
maximal positive subspace N4 of KerA (i.e., (Tuo, i, Uo, i)> 0). The full-range complete-
ness property implies that every vector h PP+[HK]N+ can be expanded as the
series

(4.1) h= E o, iUo, -" E nbln
i=1 n=l

Half-range completeness (for the problem without reflection) amounts to the possibility
of expanding every vector g4 Q4[Hr] (where HK= Hr) as

i=1 n=l

here Q + is the restriction to the interval I+ where the indefinite weight is positive. (For
(1.5)-(1.7) we have I4 R 4)- Assuming the existence of a nonnegative weight function
H on 14 satisfying

(4.2) Uo, i(V)Uo, j(t)H(o)do=i,jOo, 00, i> 0

(4.3) f Un(O)Um(O)H(o)do=n,mOn, On>O

(4.4) Uo,(v)u(v)H(v)dv=O,

we can easily evaluate the (unique) albedo operator E such that

EQ+[Hr]=PP+[H]*N+.
Indeed, on expanding h= Eg+ with g+ Q+[Hr] as the series (4.1) we obtain

(4.5) g+=Q+Eg+= E o, iQ+uo, + E .Q+u..
i=1 n=l

Using (4.2)-(4.4), we then easily derive

Eg+= EO i(o)g+(o)H(o)do Uo,
i=

+ E 02 v)g+(v)H(v)dv u,.
=1

If the weight function H on I+ is known, the boundary value problem with reflection
can again be solved by iterating (3.2), using (4.6). At present even the existence (let
alone the computation) of such a weight function is an open problem.
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ON A PROBLEM IN THE POLYMER INDUSTRY:
THEORETICAL AND NUMERICAL INVESTIGATION OF SWELLING*

A. FASANO", G. H. MEYER: AND M. PRIMICERIO"
Abstract. A recent model for the penetration of solvents into polymers leads to a parabolic free boundary

problem with unusual boundary conditions. It is shown that the model equations are well posed, and some
qualitative features of the free boundary are established. A numerical method for the free boundary problem
is suggested and its convergence is proved. A numerical calculation is included to illustrate the theoretical
results.

1. Introduction. This paper deals with a mathematical model proposed in [2] for
the penetration of solvents into polymers. Further comments on this model may be
found in [1], [3] and [4]. A related but more involved and mathematically unresolved
model for swelling may be found in [10] where multiple phases are allowed.

While we confine our analysis to the particular case of constant solvent concentra-
tion at the polymer surface, the one-dimensional theory presented here is comprehen-
sive and includes existence, uniqueness, regularity and other qualitative properties of
the solution, asymptotic estimates and a convergent numerical algorithm. These ana-
lytic results may prove useful for model verification.

Let us sketch the physical problem.
Consider a slab of a glassy polymer (e.g., poly (methyl methacrylate)) in contact

with a solvent (n-alkyl alcohol). It is observed that if the solvent concentration exceeds
some threshold value, then the solvent moves into the polymer, creating a swollen layer
in which the solvent diffuses according to Fick’s law. The boundary between the
swollen region and the glassy region obeys an empirical penetration law, relating its
velocity with the (unknown) value assumed on it by the solvent concentration. An
additional condition on the free boundary is obtained imposing mass conservation, i.e.,
equating the mass density current to the product of the solvent concentration and the
velocity of the free boundary.

Assuming that the swelling process occurs instantaneously at the penetration
surface and choosing a frame of reference in which the swollen region is at rest, the
above scheme leads to the following statement.

Problem (P). Find a triple (T,s,c) such that T>0, sCI[O,T], cC2J(Dr)O
C(Dr), Dr= ((x,t)’O<x <s(t), 0<t < T}, c continuous up to x=s(t), andsuch that

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

Cxx-ct=O, (x,t)Dr,
=0,

c(O,t)=l, 0<t<T,

(t)--f[c(s(t),t)], 0<t<T,

Cx(S(t),t)= -(t)[c(s(t),t)+q], 0<t<T.
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supported by USA-ERO under contract DAJA 45-83-C-0053 and the National Science Foundation under
grant MCS 8302548.
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In (1.1)-(1.5) nondimensional variables are used and physical constants are nor-
malized to 1. In (1.5) q is a given nonnegative constant, representing the threshold
concentration for penetration. By c(x,t) we denote the excess concentration, nor-
malized to 1 at x-0, so that the normalized solvent concentration is represented by
c + q. Condition (1.4) describes the penetration law. Throughout the paper the function

f will be supposed to satisfy the following assumptions:

(F) fcl(0,1], f’(c)>0 for c(0,1], f(O)=O.
(Indeed the form for f(c) proposed in [21 is acm, m > 0.)

As a consequence, (1.4) can be written as

(1.4’) c(s(t),t) =((,)),
where =f- also satisfies (F).

The plan of the paper is the following. In 2 a priori estimates are obtained for a
class of auxiliary problems. Such estimates are used in 3 to prove local existence of a
smooth solution. A general uniqueness theorem is then proved in the same section. In
4 it is proved that the solution can be continued over an arbitrarily large time interval,
that it depends continuously on the data f,q, and that the free boundary is a C2

convex curve. The asymptotic behavior of the free boundary is investigated in 5,
showing its crucial dependence on q and on the modulus of continuity of f(c) near
c 0. Section 6 is devoted to setting up a numerical scheme based on the sweep method
introduced in [8] for a time discretization of (1.1)-(1.5). Numerical results are presented
in 7.

Of course, it makes sense to consider different boundary conditions for the model
studied here and also to investigate different models which have been proposed for the
same phenomenon. This will be the objective of further research.

2. An auxiliary problem. Let r(t) C[0, T]OC2(0, T) be such that

(2.1) r(0) =0,
(2.2) /’(0) =f(1),
(2.3) 0=</’(t)__<f(1) in [0, T],
(2.4) I’(t)l<=K in (0, T),
and consider the problem of finding c C2’I(D)OC()), c continuous up to x=r(t),

(0, T), such that

(2.5)
(2.6)
(2.7)

Cxx-ct=O inD ((x,t)" O<x<r(t),O<t<T},
c(0, t)=l, 0<t<T,

We have immediately
PROPOSITION 2.1. Problem (2.5)-(2.7) has a unique solution.

Proof. See, e.g. [5]. []

Next, we prove
PROPOSITION 2.2. Under assumptions (2.1)-(2.4), the solution of (2.5)-(2.7) is such

that

(2.8)
(2.9)

l>c(x,t), O<x<=r(t),
O>cx(X,t)> -f(1)[q+l]

0<t__<T,

inD\(O,O}.
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Proof. To prove (2.8), it suffices to recall the maximum principle and the sign of
Cx(r(t),t ). Since c(x,t) attains its maximum on x-0, we have cx(0,t)<0 and the first
inequality (2.8) follows from the maximum principle. Moreover, cxx(0, t)= 0. Thus c
attains its minimal value on x r(t), and this proves (2.9). D

At this point we note i(t)>=f(1)-KT, we fix /0<f(1) and we reduce T, if
necessary, in order to have

(2.10) k( ) >= i,o, O <= <= T.
We prove

PROPOSITION 2.3. Under assumptions (2.1)-(2.4) cC2’X(), cx,C(\(0,0)),
and there exists a constant M depending on f, and on K such that

(2.11) Ic,(x,t) I< Mt in D.

Proof. Note that c, coincides with the solution w(x,t) of the heat equation in D
with boundary conditions

(2.12)
(2.13)

w(0, t) =0, 0<t<T,

[w+ i’(t)w] r,) (t)[ q+ (/(t))+’(/’(t))/ (t)] r(t),

We have that w C(D) and that

(2.14) min[0, o<t<r

But this implies

(2.15)
and finally

inf F(t)/ko] <_ w(x,t)=< max[O, 0<t<rsupF(t)/ko] in D.

w(r(t), t)IN supl F(t)I+f(1)supl F(t)I/i’o

0<t<T.

ki(t)>i’o, t [O,T], i= 1,2.

Moreover we reduce, if necessary, T in order to have

D*= {(x,t)" O<x<)(t),O<t<T}.

and

(2.16) Iw(x,t)l<=r(t)<=,lgf(1)t in D.

This proves (2.11). D
Now, we investigate how the solution of (2.5)-(2.7) depends on r(t). Let rl(t ),

r2(t ) satisfy (2.1)-(2.4) and let q(x,t), c2(x,t ) be the corresponding solutions of
(2.5)-(2.7). We have

PROPOSITION 2.4. Under the assumptions abooe, constants To > 0 and N > 0 can be
found such that for any T (0, To)

(2.17) [Cl(q(t),t)-c2(rz(t),t)l<=Nllrl-r2llcl{o,r)T, 0<t<T.

Proof. Let

? (t)= inf( rl ( ), r2 ( )),
/x(t) sup(r (t), r2(t))
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The absolute value of the difference v(x,t)=Cl(X,t)-c2(tx, ) is dominated in D*
by the solution V(x, t) of the heat equation with boundary data

V(O,t)=O, 0<t<T,

V ()k (t), t) CII r r2 Ilco,r)+ Mtll r r2 II t0,  , 0 < < T,

where C= q + maxyteo,fO)l’(y ). This implies

(2.18) Io()(t),t)]<=(f+Mt)llra-r]lcao,).f(1)t, 0<t<T.

As a consequence of (2.18) we have in ((, T)

[C ( rl(t ) t)-- c2( r2(t),t ) 1<= (C+ Mt)f(1)1} r r c(0,r)+f(1) (1 + q)llq-

thus proving (2.17). t3

3. Local existence. Uniqueness. Let "t(t) be a positive nonincreasing function
defined for > 0 and possibly diverging for 0/. Denote by X(K, T, /) the set of
functions r(t) satisfying (2.1)-(2.4) and such that, for some a (0,1]

(3.1) [Y’(ta)-J;’(t2)l<=’y(’r)(tl-t2) a/2, 0<’r</2<t1==<T.
Note that the set X is closed in C1(0, T).

For any r X let c be the solution of (2.5)-(2.7). Then, define the transformation
?= r as follows

(3.2) (0)=0, (t)=f(c(r(t),t)), 0<t< T.

Note that the domain of f is [0,1]. Thus, (3.2) makes sense only when c(r(t),t)>O
(remember c < 1 by (2.8)). But from (2.9) and (2.3) we have

c(r(t),t) >= 1 [f(1)]2(q+ 1)t.
This means that we can reduce T, if necessary, in order to have

(3.3) c(r(t),t)>=Co, 0<t<T

for some co > 0.
Now we prove
THEOREM 3.1. There exist K, T, / such that the transformation Cr is a contractive

mapping of X(K, T, y)c C1(0, T) into itself.
Proof. Since (2.1)-(2.3) are satisfied by construction, to prove that maps X into

itself, we only need to prove that satisfies (2.4) and (3.1) for suitable K, T,
We have

(3.4) (t)=[cx(r(t),t)k(t)+ct(r(t),t)]f’(c(r(t),t)), 0<t<T.

Using (2.9) and (2.11), we find

(3.5) I(t)l<= ([f(1)](q+)+Mt}C1, 0<t<T,

where Cl=maxt,.oalf’(c). Take e.g. K=2Cl[f(1)](q+ 1) and T such that

MTz[f(1)12(q+I).
Then (3.4) yields

I(t) I_<_g, 0<t<Z.
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To estimate the HOlder norm of (t) we need to estimate the norm of cx(x,t) in the
space C1+% This is accomplished as follows. Define z(x,t)=cx(x,t)+/*(t)[q + (/’(t))],
which solves

z-zt -i(t)[q+(i’(t))+’(i’(t))i’(t)] in D,
(3.6) z(0,t)=0, 0<t<T,

z(r(t),t)=O, 0<t<T.

For any ’(0, T) transform the domain O<x<r(t), z/2<t<T into the rectangle
(0,1)(-/2, T) by the transformation y=x/r(t) and apply the standard Schauder
estimates (e.g. [7, Thm. 5.2, p. 561]) to the transformed function (y,t), in the rectangle
(1/2,1) (/2, T). We find

(3.7) Ilzllc<r/(), in (1/2,1) (’r, T),
where depends on K, on f, on T, and on (and a). Thus, defining y(t) as suggested
by (3.7), will satisfy (3.1). The final step in proving Theorem 3.1 is to prove the
contractive character of (g. But this is an immediate consequence of (2.17) and of (3.2)
because

]11- ’2 IIc’(o,r) <= CINTIIrl r2 IIc’(o,r)
and it suffices to reduce T, if necessary, to conclude the proof, t

Hence a TO > 0 can be found such that the following theorem holds.
THEOREM 3.2. Problem (P) admits a solution for T<To. Moreover, cC2’l(r),

CxtC(T{O,O}), sC2[O,Z].
Proof. This is a straightforward consequence of Theorem 3.1 and of Banach’s fixed

point theorem. The regularity properties of c and s follow from Proposition 2.3 and the
definition of X. [3

A monotone dependence lemma will be useful in proving the uniqueness theorem.
Let ci, si, 1, 2, solve the problems

(3.8) Cixx--Cit--’O O<x<si(t), ti<t<T
with initial conditions s(t)=0 and satisfying boundary conditions (1.3)-(1.5) in the
time intervals (t, T). We have

LEMMA 3.3. If t < 2, then

(3.9) s(t)>s2(t), t2<t<T.

Proof. Note that the transformation

(3.10) u(x,t)= fft) [c(y,t)+q] dy,

carries (1.1)-(1.5) into the following Stefan-like problem"

(3.11) Uxx- ut=O in D.,
(3.12) s(0) =0,
(3.13) u(0,t) 1 +q, 0<t<T,

(3.14) u(s(t),t)=O, 0 < < T,
(3.15) Ux(S(t),t)=d#((t))+ q, 0<t<T.
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Consider the function ui(x,t ) obtained from ci(x,t) by means of (3.10). Assume
that there exists a first time o such that sl(to)=S2(to) and hence

(3.16) kl(to) _-< 2(to).

Standard use of the maximum principle applied to the difference u U 2 leads to a
contradiction of (3.16). rq

Now we can prove uniqueness.
THEOREM 3.4. Problem (P) cannot have two distinct solutions with the same T.
Proof. Let (T, s, c) and (T, o, 3’) be two solutions and consider

cn+-(X,t)=c(x,t+l/n).
+Note that s+n c,+ and s- c- are solutions corresponding to initial data s (--l/n)=0

and s-(1/n ) 0, respectively. According to Lemma 3.3

+ 1/n<t<T-1/n.

Letting n tend to infinity concludes the proof to the theorem. []

Remark 3.5. As a consequence of Theorems 3.2 and 3.4, we have that for any, C(TLTo\solution of problem (P) a TO can be found such that c C (DTo), c),
{0, 0}), s C2[0, To].

4. Regularity, convexity, global existence, continuous dependence. Before proving
global existence, let us perform an a priori analysis on the solutions of problem (P).

PRO’OSTON 4.1. Assume s, c solve problem (P) for a given T< + . Then, there
exists Co=Co(T)>O such that

(4.1) Co<C(X,t)<l, O<x<=s(t), 0<t< T,
(4.2) O<f(co)=i’o<=(t)<_f(1), O<_t<T,
(4.3) O>cx(x,t)> -f(1)[q+l], in Dr

Proof. If c(x,t) attains the value 0 (necessarily at x=s(t)) for the first time at
some point (S(to),to), one would have cx(s(to),to)=O, contradicting the boundary
point principle. This yields c => Co, >= 0- The last inequalities in (4.1), (4.2) follow as in
the proof of Proposition 2.2. The same is true for inequality (4.3).

Now we prove
THEOREM 4.2. Let (T,s,c) be a solution to problem (P). Then s C2[0, T]. More-

over, iff Coo(O, 1] then s C(O, T).
Proof. This result can be proved either directly, or by applying the iterative

technique introduced in [9] to the equivalent problem (3.11)-(3.15), with (3.15) written
more conveniently as k(t)=f[Ux(S(t),t)-q]. Following the second way, start from

o (0, T) and conclude step by step that the derivatives up to Uxt are HOlder continu-
ous on x--s(t) for (t0, T)]. At this point the continuity of f’ ensures the continuity
of g. If fCoo(0,1] the same procedure can be iterated indefinitely, thus con-
cluding that s Coo(0, T]. The continuity of g(t) at t=0 is already known (see Remark
3.5).

At this point, we can prove the convexity of the free boundary.
THEOREM 4.3. Assume (T,s,c) solve Problem (P). Then

(4.4) g(t)<0, O<=t<=T.
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Proof. Theorem 4.2 yields the continuity of c in Dr and the continuity of cxt in
Dr\(0,0}. Hence the function

v(x,t)=[ln(c+q)]xx
is continuous in Dr and vx is continuous in Dr\(O, 0}. Note that

OxxW2[ln(c+q)]xOx+2O2-ot=O in Dro(4.5)
and that

v(0, t) -[c/(c+ q)]2[= 0 <0,

v( s( ),t ) g( t)tb’(k )/( q + dp(k )).
Owing to the continuity of g(t) for 0, we can assert that g(t), and consequently

o(s(t),t), is negative in some interval [0, t0) (recall that g(0)= -fx(1)f2(1)(1 + q)< 0).
The maximum principle (e.g in the form of [6, Thm. 5, p. 39]) applied with some

care to (4.5) implies that if o(s(t),t) vanishes for the first time at some t0>0, then
o(x, t) < 0 in Dto. Therefore equation (4.5) is such that the boundary point principle (see
e.g. [6, Thm. 14, p. 49]) can be applied, yielding v(s(to),to)>O. However, v(s(t),t)=
(t)dp’()g(t)/(q+Op()), contradicting g(to)=0, rq

COROLLARY 4.4. Under the same assumptions

(4.6) ct(x,t)>O, O<xs(t), 0<t<To,

(4.7) Cxt(O,t)>O, O<t<Z0

Proof. Indeed, as in the proof of Proposition 2.3, we write the problem solved by
w=__c for which we have the estimate (2.14). But, (4.4) implies F(t)>=O, whence ct>=O
in Dr. At this point (4.6) follows by the strong maximum principle. Since ct(O,t)--O
(4.7) follows by the boundary point principle. D

COROLLARY 4.5. Under the same assumptions

(4.8) g(t)>=-[f(1)]2.[q+l] max f’(,/), 0<t<T0.
/[Co,1]

Proof. Since

(4.9) g(t)=f’(c(s(t),t))[ck+ct]x=s(t) 0<t< T0,

(4.8) follows from (4.2), (4.3), (4.6).
Remark 4.6. Estimate (4.6) can be obtained independently of (4.4), by simply

noting that the use of both the free boundary conditions enables us to write the
boundary problem for w= c replacing (2.13) by

d
W"- Wx]x=s(t)’-" - f( c)( q + c)] s=s(t),

i.e.

[w + ( +f+ (1 + c)f’)w] =,{/)= [Cxk { f+ (q + c)f’} x=s(t).

Since the r.h.s, is nonnegative, (4.6) follows from the maximum principle.
THEOREM 4.7. Problem (P) admits a solution for arbitrary T> O.
Proof. Assume there exists a T*> 0 such that the solution (whose local existence

was proved in Theorem 3.2) cannot be continued beyond T*. We have that

lim s(t), lim (t)
t T* t T*
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both exist, because of the monotonicity of s and (see Proposition 4.1 and Theorems
4.2, 4.3). Consider the free boundary problem

U,x-ut=O, O<x<s(t), T*<t<J,
with boundary data given by (3.13)-(3.15) (in the time interval (T*, ib)) and "initial"
data given by the limits for t T*- of s(t) and of f;" [c(l,t)+q]d. This problem
has a unique solution (for suitable 1> T*), provided ’((T*))4= 0 (see [5]). This fact is
guaranteed by (4.2) and by assumption (F). Hence the theorem. []

Finally, we want to investigate the dependence of the solution on the data. Assume
fl, f2 (both satisfying assumption (F)) and ql, q2 (both satisfying 0 < qi<= Q) are data
for problem (1.1)-(1.5) and let si(t ), ci(x,t) be the corresponding solutions in a given
interval (0, T). We know that s and s_ are the fixed points of operators ffl and ga

2

mapping the same set X(K, T, ) into itself.
Now, the contractive character of operator cg(f, q) does not depend on the pair fi,

q; but only on Q,/’0-
Moreover, depends continuously on [ql qz[ + IIf-f2llc(0,y) Beyond T, the

continuous dependence follows from the results of [5], applied to the problem solved by
u(x,t) defined according to (4.15). Thus we have proved:

THEOREM 4.8. The solution ofproblem (P) depends continuously upon the data q,f

5. Asymptotic estimates. Let s(t), c(x, t) solve problem (P) for any T> 0. Then,
Green’s identity

t>0,

gives

(5.1) 12 fos(t) fotqs (t)-t+ x(x,t)dx+ c(s(r),)dr=O, t>O.

Moreover we have
PROPOSITION 5.1. The following estimates hoM in Dr, VT> 0.

(5.2) c(x,t)<=l +x[((t))-l]/s(t),
(5.3) c(x,t) >= t)) + q] ( x-s( t)).

Proof. Both inequalities follow from the convexity of the curve, representing
c(x, t) as a function of x, for any > 0 (see Theorem 4.3).

Now, we prove
THEOREM 5.2.

(5.4) lim s(t)= +

(5.5) lim (t) =0.

Proof. The existence of both limits is a consequence of the monotonicity of s,k.
Also c(s(t),t) and c(x,t) have limits for t--+ + re(c,> O, dc(s(t),t)/dt < 0).

Let (5.4) be false; then -t and possibly f e(s(r),’)dr are the only terms in (5.1)
going to infinity as + m. But c(s(t),t) tends monotonically to zero like k(t), and
hence the two terms are of different order. This proves (5.4).
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To prove (5.5), just note that the compatibility of (5.2) and (5.3) in x 0 requires

(5.6) (I) ((t)) [1 +s(t)(t)] +qs(t)(t)<=l.
Note that this argument applies also when q= 0. vq

THEOREM 5.3. If q > O, then

(5.7) s(t)< ast-- +m.
q

/jr q >__ 0, then

2(5.8) s(t)> [1 e2
q+1/3 (t)],

where lim + oo e2(t) 0.
Proof. To prove (5.7), it suffices to use the positivity of c and (5.1). To prove (5.8),

we note that (5.2) implies

(t) xc(x’t)dx <= 2 + 3 [(I)((t))-l].

Hence, from (5.1) we have

(5.9) -(())+gq+- s (t)>=t 1- 7 (())d

But ((t)) and (1/t)fd ((r))dr tend to zero as + m; hence (5.8) follows, rn
Now, we want to investigate the case q-0. To this aim, we need to know the

behaviour of (z) near z- 0. To be specific, we will assume that

(5.10) d(z)=otz1/m for some a, m>O.

We can prove
THEOREM 5.4. Let q=0 and (5.10) hoM. Then

(5.11) s(t)<
a m+l

Proof. From (5.1) we have

foS(t) xc( x, ) dx- < O.

Since c(x,t)> ((t)), this implies

(((t))s2(t) <=2t.(5.12)
Using (5.9), we have

otms2m( )( ) 2mt m,

t(m+l)/(2m+l).

(5.13) ( t) <__ min[ ( qs( )) -1, (as(t))-m/(1 +re)I,

whence (5.11) follows by integration. D
Numerical calculations (see next section) show that the right-hand side of (5.8) is a

good approximation of s(t) for sufficiently large. In this respect it is of some interest
to estimate the term e2(t) in (5.8). To this end we can utilize the inequality
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following from (5.6), (5.10). From (5.9) it follows that

2 1(5.14) s(t)> 1- d#(())d-2d((t))/(3q+l)
q+l/3 7

For some fixed o > 0 the quantity in braces is less than 1 and approaches 1 for to large.
Let us write it 1- 8 and use the consequent estimate in (5.13) to get upper bounds for
k(t). Now use such bounds in turn in (5.14) to conclude the following

(i) If q 0, then

m + 2 1/2(1 + m)e2(t)=a2m+l[6a2(1-)t
(ii) If q > 0, then

( m 1 )1/m(q+l/3) 1/2m

e2(t)=a 2m--i-1 + 3q+l
q- 2(1-8 t-’/2m’ m>1/2,

for m= 1/2, e2(t) behaves like (logt)/t and for m < 1/2 like 1/t.
6. The numerical method. In this section will be shown the convergence of a

numerical scheme based on the method introduced in [8] for one-dimensional parabolic
free boundary problems with arbitrary implicit or explicit free boundary conditions.

In this method the continuous problem is time discretized and solved at successive
time levels as a sequence of free boundary problems for ordinary differential equations.
Specifically, at the time level t=t with t-t_=At the solution (C(x),S} is
computed as the exact solution of the discretized equations

(6.1)

(6.2)

(6.3)

(6.4)

1c."- s;(c.- c._x) 0, 0<x<S ,

C,(0) 1,

S"-S"-I =f(C.(S.)) So= S(0) 0,At

C(Sn)= sn- gn-l (q+Cn(gn))At

In (6.1) the function C,_(x) is supposed to be defined over [0, + ), and S,_ is
supposed to be known as well. The free boundary problem (6.1)-(6.4) is conveniently
solved with the method of invariant imbedding (sweep method). We write (6.1) as a
first order system over (0, S,)

(6.5) C’= V.,
1(6.6) V’ -- (Cn Cn_ )

and exploit the observation that Cn and V are related through the Riccati transforma-
tion

(6.7)
where

C.(x)=R(x)V.(x)+ W.(x),

l---R2 R(0) =0,(6.8) R’=I At

(6.9) W,= R(x) (W,-C, l(X)) wo(0)=a.
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The functions R and W are solutions of well defined initial value problems and may be
considered available. The free boundary Sn is determined such that the triple Cn, Vn, S
simultaneously satisfies (6.3), (6.4), and (6.7). Elimination of C and V from (6.4) and
(6.7) shows that S must be a root of the scalar equation

(6.10) On(X ) (x- Sn_x)/At

-f[(Wn(x)-qR(x)(x-Sn_x)/At)(1 +R(x)(x-Sn_)/At) -1] =0
(extend f as an odd function). Given Sn, we set

(6 11) Cn(Sn)
Wn(Sn)-R(Sn)Snq

I+R(Sn)
so that

(6.12) --Sn-Sn-l=f(Cn(Sn))At
and

(6.13) C,(Sn)-- Vn(Sn) Sn(Wn(Sn)+q)
l+R(Sn)n

Thus, the triple (Cn(S,), Vn(S),Sn} is an exact solution of (6.3), (6.4) and (6.7). We
remark that depending on At and q the functional on(x ) may have a root smaller than
Sn_ 1. Such a root would correspond to a negative concentration Cn(Sn) and is not
admissible. We shall therefore agree to choose for S the smallest root of on(x)= 0 on
(Sn-1, o). Such a root will be shown to exist.

Once S has been determined, one can find V by integrating backward over
[0, Sn) the reverse sweep equation

1(6.14) V---[R(x)Vn+ Wn(x)-Cn_x(X)]

with V,(Sn) given by (6.13). The concentration Cn(x ) at time level T is obtained from
(6.7). Finally, C,(x) is extended over [Sn, oo) as C linear function. For the initial
concentration we shall use

C0(x)= 1 + C)x= 1 -f(1)(q + 1)x.
Assuming f satisfies (F), {}1, we will derive some estimates of the solution { Cn, Sn }

to (6.1)-(6.4). Such estimates correspond to the bounds obtained in previous sections
for the solution of the continuous problem.

LEMMA 6.1. There exists a solution S of (6.10) on (Sn_l, oQ) and C satisfies
0 < Cn< 1 on [0, Sn] and C, <0 on [0, o).

Proof. We note that C0(S0)=l and C<0. Assume next that Cn_l(Sn_l)>O and
C’n-1 < 0. We observe from R(x)> 0 on (0, o) and

(Wn-C 1) R(x)(Wn-Cn 1)-CAt

(Wn- Cn_x)(0)=0 that W>Cn_ on (0, oo) and W’__<0 on [0, oo). Moreover %(Sn_x)
-f(Wn(Sn_l))<= -f(Cn_x(Sn_x))<O and

lim On(X )
x oo
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Thus there must be a point S,> an_ where o,(S,)=0, Cn(S,)> 0 and C,’(Sn)< 0. The
linear equation (6.14) now assures that V, < 0 and that 0 < C,_< 1 on [0, S,]. Hence the
lemma is true for all n. D

We remark that the monotonicity of R(x) and W,(x) assures that o,’ > 0 (S,_1, ).
We also note that

(6.15) O<Sn-S,_a=f(Cn(S,))At<=f(1)At.
LEMMA 6.2. --f(1)(q+ 1)=< C,’(x)< 0 on [0, c).
Proof. The upper bound is guaranteed by Lemma 6.1. The lower bound is obtained

by applying the maximum principle to

1 1 C’(c.’)-$7c.’=
C"(0) 0, C,’(S,) -f(C,(S,))(q+ C,(S))

from which it follows that

min C, > min ( min C’ C(Sn) )n-l

Since C(S,)> -f(1)(q+ 1) and C= -f(1)(q + 1) the lemma is proved. []

LEMMA 6.3.0 =< C-C_1 =<f(1)2(q + 1)At on [0, S] for n= 1,2, .
Proof. We observe from Lemma 6.2 that (C Co)’ >0 so that C C0>=0. Let us

assume that C,_ 1- C,_2 >= 0 and consider the problem satisfied by C,-C_ on (0, Sn):

),, 1 so_ l

o,

(Cn-Cn_l)(O)--O,
(Cn-C--a)’(S,) -f(Cn)(q+ Cn)ls.+f(Cn-1)(q+ Cn-1) IS._"

The maximum principle assures that its solution has no negative minimum on the half
open interval [0,s,) and no positive maximum on (S,_ 1, S,). At a positive maximum on
(0, S,_ 1] the maximum principle yields C,-C,_ =< max[C,_ 1-C,_]. Let us now con-
sider the remaining case when C,-C,_1 has an extremum at S,. The boundary
condition can be rewritten with the mean value theorem as

(Cn-Cn_l)t(Sn)= -[f’()(q+) +/(/J)]
[(Cn-Cn_l)(gn)-+-Cn_l(gn)-Cn_l(gn_l)]

for some > 0. Since C,_ 1(S,)- C,_ l(Sn- 1) < 0 by Lemma 6.2 this boundary condition
rules out a negative minimum at S,. Hence C, C,_ >= 0 on [0, S,]. Suppose finally that
C,,-C,_I assumes its maximum at S,. Then (C, C,_ )’( S,) >= O so that the boundary
condition implies that

O<(Cn-C 1)(Sn)<Cn l(Sn 1)--Cn l(Sn)---Cn-l()(gn_l Sn)

_<f(1)(q+l)At for some (S_a,S).

Since this argument already applies to C -Co on [0, $1] the lemma follows by induc-
tion. t3
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that

so that

(6.16)

We note from

Cn ( Sn ) Cn_ ( Sn_ ) Cn ( gn ) Cn_ ( Sn ) -t- Cn_ ( gn ) Cn_ Sn_ )

Cn_l(gn)-Cn_l(gn_l) Cn(gn)--Cn-l(gn-1) Cn(gn)-Cn_l(gn)

C. (S.) C._ (S._ 1)I=<f(1)2( q + 1) At.

LEMMA 6.4. I(C. C._ x)’]--< KAt for n 1, 2,....
Proof. Let Q.=C, then it follows from Lemma 6.3 and f(1)2(q+1)>

(Q,,-Q._I)’=(1/At)(C.-C._I)>O on [s._l,s.) that Q.-Q._I is increasing on
[S,,_ 1, S. ]. We also note that as in Lemma 6.3

(Q.-Q._I)(S.)= -[f’(l)(q+t)+f(l)](C(S.)-C_l(S._l))
so that by (6.16)

and

[(Q. f’q+l)At max ()(q+)+f()] glAt
/j[O, 11

I(Q. q+ 1)At KAt.

These estimates imply in particular that

Finally, we apply the maximum principle to

1 1(Q.- Q.-1)"---(Q.- Q.-1) -(O.-1- O.-2)

(O.- Q._I)’(O) 0

on (0, Sn_l),

to conclude IQ.- Q.-I_-< max(l(Q.- Q.-x)(s.-)l, maxlQ.- Q.-_I} and hence that
IQ.- Q.- 11 _-< KAt for all n. [3

We observe that it is a consequence of these lemmas that

Ic.-c._l

for some K> 0 on compact subsets of [0, ). In fact, suppose 2 > S. then

Cn(. ) Cn_l(.) Cn( gn) Cn_l( gn) q- C(Sn)-C

_
l(Sn)]() Sn).

The desired inequality now follows from Lemmas 6.3 and 6.4. For arbitrary but fixed T
let us define the interpolating functions SN(t ) on [0, T] and CN(X,t ) on [0,f(1)] [0, T]
given by

SN(t)_.. gn_l..I_ Sn-- gn-1 (t_tn_) t[tn-,t,)At
Cn(x)-Cn_l(X )CN(X’t)=Cn-(x)+ At (t--tn-)’ t[tn-’tn)
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where At= T/N. It follows from (6.15) and from Lemmas 6.2, 6.3 and 6.4 that both SN,
CN and OCN/OX are uniformly bounded and Lipschitz continuous on [0, T] and
[0,f(1)T][0, T]. By the Ascoli-Arzela theorem a subsequence of (SN, CN) will con-
verge uniformly to Lipschitz continuous limit functions (s(t), c(x, t)) defined for
O<=tT and O<=x<=f(1)T. Moreover, (O/Ox)(x,t) is Lipschitz continuous and the
uniform limit of 3CN/OX.

LEMMA 6.5. The limit function s( has a Lipschitz continuous derivative.

Proof. Let (0, T] be arbitrary and set At t/N. Define

=f0’ f(
then dQ/dt is Lipschitz continuous because f is continuously differentiable and c and
s themselves are Lipschitz continuous. Let { C,, SN) denote a convergent subsequence.
Then by construction

N N N

SN(t)=At (Si-Si_l)--At f(ci(gi))--At f(CN(SN(ti),ti))
i=1 i=1 i=1

It now follows from

o_(t)-&(,)=
i=1

N

+t f(c(s(ti),ti))--f(CN(SN(ti),ti))]
i=1

that limN [Q(t)- SN(t)] 0. Indeed, the first bracket on the right is the difference
between the integral and its emann sum approximation and hence vanishes as
t 0. The second bracket vanishes because CN and SN converge uniformly to Lipschitz
continuous limit functions.

We have thus shown that the limit functions s and c satisfy

(t)=f(c(s(t),t)).
It also is readily seen that

8c
o(s(t),t) -f(c(s(t),t))(q+ c(s(t),t))

since

OCN
i)x (SN(t)’t)= --f(CN(SN(t)’t))(q+ CN(SN(t)’t))

at each point of the partition (t ) associated with N. Since these points are dense in
[0, T] as N o and the convergence of OCN/OX, Cu and Su is uniform, it follows
immediately that the limit functions c,s also satisfy the second boundary condition
(1.5).

To conclude that the whole sequence of interpolating functions converges, it is
enough to recall the uniqueness of the solution to problem (P), see Theorem 3.4.

7. A numerical example. The algorithm of the preceding section is used to ex-
amine numerically the asymptotic estimates (5.7), (5.8) for the special case of m 2 and
q= 1. All calculations are carried out with the research code of [8] as follows. For a
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given interval [0,X] a variable but time independent mesh with grid points (xk)=0 is
imposed with xi= X(i/N)2 so that the mesh points cluster near the origin where the
free boundary moves fast. The time step At is variable and increases with time. For the
Riccati equation (6.8) the analytic solution

R (x, At ) vt tanh

is used, while the linear equation (6.9) is integrated with the trapezoidal rule. The
function on(x ) is evaluated at successive mesh points of the grid beyond S until it
changes sign between, say, x and xl+ 1- The free boundary Sn is now determined as the
root of the quadratic interpolant through O(Xl_I) O(Xl) and O(X/+l). The equation
(6.14) is also integrated with the trapezoidal rule, first from S, to x and then backward
over the fixed mesh. The numerical methods for these equations are known to converge
as Ax 0. The results obtained are reasonably stable with respect to changes in the
mesh. However, if run times are to be minimized, then a Crank-Nicolson time discreti-
zation and a higher order Adams-Moulton space integration are suggested.

FREE BOUNDARY
0.00 25.00 50.00 75.00 125.00

0.00 5.00 50.00 "5.00 lbO.O0
S(T)/SORT(T), 100

100.00

125.00

FIG. 1. Plot of the free boundary and its asymptotic behavior for q= 1, m= 2. X= 140, N=6000 with 100
equal time steps for each of the interoals [0,1], [1,10], [10,100], [100,10000], and [1000,10000]. Total execution
time on the Cyber 855 was 200s.

Figure 1 shows a plot of the free boundary s(t)
q,(t)= s(t)/. The computed values satisfy the inequalities

for t[0,10000] and

(1 -e2(10000)) _< -.5 1.225 < q(10000)= 1.24 _< 7c-= 1.41,
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as well as q(10000)--4.18.10 -6 and s’(10000)-- 6.62.10 -3. Thus the lower bound (5.8)
appears to be quite good.
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ON FUNCTIONS REPRESENTABLE AS A SUPREMUM
OF A FAMILY OF SMOOTH FUNCTIONS II*

Y. YOMDIN

Abstracl. The classes S,,q, of functions f(x), representable as supt h(x, t), where is an m-dimensional
parameter and h is a Cq-smooth function of x and t, are studied. Considering the "massiveness" of the sets

S,,’. in appropriate functional spaces, we show that these classes really differ for different q and m.

Studying geometric invariants of maximum functions, related to the critical values of smooth mappings
involved, we give explicit examples of functions in S,,’ which are not representable as the maximum of k
times differentiable families when k is sufficiently large.

1. Introduction. Functions, represented as a supremum of families of a certain
type, arise naturally in many questions of analysis and optimization (see e.g. [1], [5], [6],
[13] and many others). In [7], [9], [12] the class H(D) has been considered of functions

f on the domain DcR", representable as f(x)=sup,Qh(X), xD, where Q is a
bounded in a C2-norm family of twice differentiable functions on D. The functions

f H(D) have many nice properties, both geometric and analytic. One important point
is that the consideration of families of C’-smooth functions, bounded in C’-norm, for
k > 2, does not restrict the class H. In fact, it is shown in [7], [9] that H(D) can be
described as the class of all f, representable as f(x) sup eP(X), where P is a
bounded subset in the space of all the quadratic polynomials on R".

Another important class of maximum functions appears when we assume that the
family Q is smoothly parametrized.

Let Smq (D) denote the set of functions r, representable as f(x) max r h (x, t),
where Tm is a compact m-dimensional smooth manifold and h: D x TmR is a
q-times continuously differentiable function, q > 2. Clearly, Smq(D)c H(D).

Precise information on the local structure of "generic" functions in Smq(D) has
been obtained by methods of Singularities theory (see e.g. [1], [5], [12], [13]).

However, the following important question seems to be untouched: Do the classes
S,q, really depend on q and m? This question is especially interesting in view of the
independence of the class H above of the smoothness of functions involved.

In the present paper we answer this question, showing in many cases noncoinci-
dence of S,,q, for different q and m, although our results are not strong enough to
separate these classes completely.

Two different approaches are used: first we study the "massiveness" of the sets Smq
in appropriate functional spaces, in a way similar to that used in [4], [10] for the
problem of representability and approximations by means of compositions. This method
allows us to separate classes s,,q,q, but does not give explicit examples.

Another approach is based on the study of geometric invariants of maximum
functions. These invariants are related to the structure of the set of critical values of the
smooth family that defines the maximum function. In this way we obtain explicit
examples of functions in Sqm\Sqm’,.

TO give the flavor of these examples, we state here the following theorem which
will be proved in 4 below.
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THEOREM 4.4. Let f(x) be a conoex piecewise linear function of the single oariable
x [0,1], with the countable number of "edges". Let i < 2 < < i < be the
slopes of these edges, and let a + . Then f can be represented in a form

f(x)= max a(t)x+b(t), x[0,1],
t[0, 11

with a(t) and b(t) k times continuously differentiable functions on [0,1], if and only if
i=l,,i

There are many open questions, concerning the structure of maximum functions,
some of which we discuss in the last section.

2. e-entropy of sets of maximum functions. Let D c R" be a bounded closed
domain. For q=p + a, p >= 1 -an integer, 0 < a =< 1, we denote by Cq(D) the space of p
times continuously differentiable functions g on D, whose derivatives of order p satisfy
the HOlder condition

IldPg(x)-dPg(y) [l<=tllx-yll,
with some constant L.

Let

Mi ( g ) max d ’g Y )
.V- D

Mq(g)=infL in (,).

i=0,...,p,

(We consider all the Euclidean spaces R and the spaces of their linear and multilinear
mappings with the usual Euclidean norms.)

For c>0 denote by Cq(D,c) the set of all g in Cq(D) with M(g)=<c, i=
O,...,p,q.

Let F be a relatively compact set in a metric space X. For some e > 0 a set F* X
is called an e-net of F if for any zF there exists z*F* with d(z,z*)<=e, where d
denotes the distance in X.

Denote by N(F) the number of elements in a minimal e-net of F. The number
H(F)=logN(F) is called the e-entropy of the set F. It is convenient also to define
the number fd(F) as lim 0 log 2 H(F)/log2(1/e).

The notion of entropy arises in a natural way in connection with various problems
of analysis (see e.g. [4], [10], [14], [16]).

In this section the metric space X is the space C(D) of continuous functions on D
with the uniform norm. Now we turn back to maximum functions. Without loss of
generality we can assume that the parameter manifold T is the unit m-dimensional
cube Im. For c>0 denote by Sqm(D,c) the set of functions f on D, representable as
f(x)=maxth(x,t ), with hCq(D)<Im, c). Clearly, for any c>0, Sqm(D,c) is a com-
pact subset in C(D).

THEOREM 2.1. For any c > O,

n+m n+m
q+2m/n

<fd(Smq(D c))< q
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Proof. Consider the mapping/," C(DIm)C(D), defined by/,(h)=f, f(x)=
max - h (x, t). Clearly, /, does not increase the distance. From the definition of
e-entropy we obtain that for any relatively compact set Fc C(DIm), H(I(F))<=
H(F).

Since sq(D,c)=Ix(Cq(DIm, c)) and since according to [10, Thm. 2.2.1],
fd(Cq(D Im, c))= (n / m)/q, we obtain the right-hand side inequality.

To obtain the lower bound for fd(Sqm(D,c)) it is sufficient to find in this set a
suitable number of functions, any two of which differ at least by 2e in C-norm.

Let us fix some 8 > 0 and let 8’ 1/281 / m/n. Let Zc R denote the net of points of
the form z=(k8,k28,. ., kn8), ki Z.

Consider also the points z’a_R of the form (klS’," .,k8’), l<_ki<=[/’], in-
dexed in some fixed way, 1 <_a __< [8/i’] . Finitely, let za Im be the points of the form
(kl,--- km), O<=ki<=[1/8 ], indexed in some fixed way, 1 __</3 =< [1/8]’.

Since 8/8’=2(1/8) ’’/’, [8/’]"-- 2n(1/)m>[1/] for 8 sufficiently small, we
can fix some one-to-one mapping from the set of indices fl into the set of indices a.

Now consider in R"I the net of points y of the form y=(z+z#),z’’),
zZ, 1 <_fl<=[1/8] m, and let y, l__<__<K(8), denote those from the points y, whose
projections x on R" belong to D. Since D has a nonempty interior, K(8)>__
K’(1/8)"+’, with some K’ >0, not depending on 8.

We shall use below only the following property of points y" they form a net in
D I with the distance at least 8 between any two points, while their projections x
form a net in D with the distance at least 8’ between any two points.

Let 4: R R be a C-smooth even function with the following properties:
i. q,(s)= 1-s 2 for Isl__< 1/2;

ii. q,(s)=0 for Isl>__ 1;
iii. q(s) is a decreasing function of Isl for 1/2 =< Isl _-< 1.
Let " Rn+R be defined by k(y)--(llyll)- Denote by M 2q.maxMi(q ),

i=l,---,p+l.
Now for any subset c {1,..., K(8)} define the function q" D Im ...+ R as

follows" for y (x, t) D I

c (2lpg ( y ) -’ a q li.. p - ( Y Yi )

Clearly, p is a C function, and since the supports of p ((2/8)(y-y)) are
disjoint for different by property ii of q, we see that q Cq(D Im, c).

Now consider the corresponding maximum function f= (q), which by defini-
tion belongs to Smq(D, c).

LEMMA 2.2. For x=/=x ’, Ilf-fllc>=(c/M)6q+2m/.
Proof. Since the supports of O/ ((2/8 )( y y)) are disjoint, we have:

f(x)= Sqmax max (Y-Yc;) q [Ix-x ll
t, 8 maxq,

by construction of function .
Now assume that x\’ =/= q and fix some rl x\x’. Then

L(x.)=
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by property of q. On the other hand, for any g= r/,

since Ilxn- xll ’ for ,/. Hence

f,( xn) <= -q- -sq4 -ff =f(xn)--q+m/.
Therefore IIf-f’llc>=llf(xn)-f’(xn)ll >= (c/M)q+m/. This completes the

proof of Lemma 2.2. We now return to the proof of Theorem 2.1.
Given e>0 let i=(3Me/c)/(q+m/. Then (c/M)iq+"/=3e and by Lemma

2.2 all the functions f form the 3e-separated net in Sqm(D,c). Since the number of
elements in this net is equal to

2r()> 2K’(1/8)"+" 2K"(1/e)("+")/(q+2"/"),

we have

H( Sqm( D, c)) >__ K"(1/e)(n+m)/(q+ 2m/n).

Theorem 2.1 is proved.
As an immediate consequence of Theorem 2.1 we obtain the main result of this

section:
THEOREM 2.3. Let D be a compact domain in Rn. Then for any m, q and m’, q’, such

that (n+m)/(q+2m/n)>(n+m’)/q’, the. set of functions in Sqm(D) C(D) not be-
longing to Smq;(D), is a set of second category. In particular, this set is everywhere dense
in sq,q,(D).

Proof. Clearly, sq;(D)=U=sq;(D,N). By Theorem 2.1 for any ball a in C(D),
fd(Sqm(D)Ca)>_(n+m)/(q+2m/n). But by the same theorem, fd(Sqm;(D,N))<=
(n + m’)/q’ <(n+ m)/(q+ 2m/n). Since sq,,;(D,N)Sq(D) is closed, it is therefore a
nowhere dense subset in Sq.

Now we give some corollaries, showing what classes S,,q can be separated by means
of Theorem 2.3.

COROLLARY 2.4. For given D R" and m and for any q and q’ > q + 2m/n, Sqm’(D)
Sqm(D). In particular, if n > 2m, then for any q’ > q, Sqm’(D) Sqm(D).

Proof. For q’>q+2m/n, (n+m)/q’ <(n+m)/(q+2m/n).
COROLLARY 2.5. For given D c R, q and m, and for any m’ <m-

2n(n + m)/(2n + qm), Sqm,(D) Sqm(D). In particular, for q > (2n 2 1)/m + 2n,
sq,(D)Sq(D) for any m’<m, and for q>2n2+2n-1, sq,(D)Sq,,(D) for any
m’ < m".

Proof. For m’ <m-2n(n+m)/(2n+qm), (n+m’)/q<(n+m)/(q+2m/n). For
q>(2n--1)/m+2n, 2n(n+m)/(2n+qm)<l. Finitely, for q>2nZ+2n-1, the last
inequality is satisfied for any m.

We can use the result of Theorem 2.1 also to compare sq(D) with Ck(D). Indeed,
by [10, Thm. 2.2.1], fd Ck(D) n/k, and repeating the proof of Theorem 2.3 we obtain
the following:

COROLLARY 2.6. For (n + m)/q < n/k, the set of k times continuously differentiable
functions on D not belonging to sq(D ), is a set of the second category and, in particular,
is everywhere dense in the uniform topology.
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Notice that Corollaries 2.4, 2.5 and 2.6 do not give explicit examples of functions,
not representable as a maximum of a suitably smooth family. Below we give such
examples for any situation, covered by Corollary 2.6.

3. Critical values o| maximum Iunctions. Let f: D R be a continuous mapping.
The point x b is called a critical point of f, if the first differential df(x) exists and is
equal to zero. Let Z(f) be the set of all the critical points of f and let A(f)=f(Z(f))
c R* be the set of critical values of f. (Actually, Z(f) is the set of critical points of
rank zero of f, in the usual terminology).

A well-known and widely used property of critical values of differentiable map-
pings is given by the Morse-Sard theorem (see [3], [8]): if the mapping is sufficiently
smooth, the set of its critical values has the Lebesgue measure (or, more precisely, the
Hausdorff measure of an appropriate dimension) zero.

In [14] the stronger property of critical values has been established: let A be a
bounded subset in Rs. The entropy dimension of A, dim A is defined as

dimeA=inf{fl. 3K, V>O, e.<=l, N(A)<K(1)
where N,(A), as above, is the number of elements in a minimal e-net of A in R.

For "nice" sets the entropy dimension coincides with the Hausdorff dimension

dim and with the topological dimension. For any A dimeA >__ dimA, and the im-
portant advantage of the entropy dimension, which we shall use below, is that it allows
us to distinguish countable sets, while the Hausdorff dimension of any countable set is
zero.

The following result has been obtained in [14]:
THEOREM 5.4. [14]. Let D cR" be a compact domain and let f: DR be a

Cq-mapping. Then

n
dimeA(f) =< -.q

(The Morse-Sard theorem, in its general form, proved in [3], gives the same bound
for the Hausdorff dimension of A(f).)

It turns out that also the critical values of the function, representable as a maxi-
mum of a smooth family, cannot form a set which is too large. More precisely, we have:

THEOREM 3.1. Let D c Rn be a compact domain. For any f sq(D),
n+m

dimeA(f) <_
q

Proof. Let f(x)=maxttmh(x,t), hCq(DIm).
Before proving Theorem 3.1 we state and prove a lemma.
LEMMA 3.2. Let xo D be a critical point off and let o I be such that f(x0)=

h (xo, o). Then (xo, o) D I is a critical point of h.
Proof. Since h(xo, ) attains its maximum with respect to at 0, we have

dth(xo, to)=O.
By the definition of critical points, f is differentiable at x0 and df(xo)=O. But

then from the expression of the generalized differential of maximum functions (see [2])
it follows immediately that dxh (xo, to)= 0.

Proof of Theorem 3.1. By Lemma 3.2 any critical value f(xo) of f is a critical value
h(xo, to) of h, i.e., A(f) A(h). But by Theorem 5.4 [14], dimeA(h)<=(n + m)/q.
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Now to obtain examples of functions, nonrepresentable as maximum, we note that
for any {<n/k, by [14, Thm. 5.6], the function gCk(D) can be built, with
dimeA(g)>__ . By Theorem 3.1, g does not belong to any sq(D), with (n+m)/q</;
and therefore, we get explicit examples of nonrepresentable functions in any situation,
covered by Corollary 2.6.

In particular, let g,: I"-0 R, gn Cn-a(I n) be the Whitney function with A(g)=
[0,1]. (See [11].)

Since dim el0,1]= 1, we have proved:
COROLLARY 3.3. gn ti S(In) for q > n + m.
Notice that in all the constructions above it is sufficient to use the Hausdorff

dimension of the sets of critical values. However, using the specific properties of the
entropy dimension we can give examples of very simple functions, not representable as
maximum:

Let k: [0,1]-R be defined as q(x)=xcos(1/x). C[/21-([0,1]) and the
critical values of q k form the sequence

tO---- tO t0 (__1)i 1 ’
rr i-- "’"

where 0: [-1,1][-1,1] is a Lipschitzian homeomorphism. Hence dimeA(q,)=
1/(k + 1) (see e.g. [15]). This proves:

COROLLARY 3.4. Smq ([0,1]) for q > k + 1)(rn + 1).

4. Maxima of smooth families of linear functions. In this section we give simple
examples of convex functions nonrepresentable as a maximum of a sufficiently smooth
family of linear functions. Once more we reduce the question of representability to the
properties of critical values of some differentiable mappings. But here, in constrast to
section 3, the arising sets of critical values are a priori at most countable. Thus the
Morse-Sard theorem gives no information in this case and the use of the entropy
dimension and the stronger [14, Thm. 5.4] becomes essential. In fact, this theorem was
found in the attempt to give criteria for representability of convex functions as the
maximum of linear ones.

Let D be a convex compact domain in Rn. We consider a cone Q(D) of convex
functions f on D, which are extendable to convex functions on R and whose graphs
F(f) over D are polyhedra with possibly countable number of faces.

We study the representability of fQ(D) as f=maxtt.,lt, where for x=
(Xl,...,x,,)R"

l,(x)=ax(t)x+ +a,(t)x,+b(t), with aa,...,an, bCq(Im).

Denote the set of functions in Q(D), representable in this form, by Qqm(D).
Let L be a hyperplane in RnR with a nondegenerate projection on Rn. L is a

graph of the linear function la(x)=ax(L)x + +a,(L)xn+ b(L). Denote the point
(ax(L),. ., an(L))R by 8(L).

For a given f Q(D) let 8(F) R be the set of i(y), where y runs through all
the faces of F(f). 6(f) is at most countable bounded subset in Rn.

THEOREM 4.1. For anyf Qq,,,(D), dim6(F)<_ (m/q).
Proof. Write f as max/t, lt(x)=a(t)x + +an(t)x,+b(t), and for each face, of F(f) find some tv Im, such that 7 is a graph of l,.
LEMMA 4.2. For any face of I’(f), v is a critical point of each of functions

al, , an, b.
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Proof. Let X0, X1, ",X n be the vertices of some nondegenerate simplex in the
projection of 3’ on R". Since at each x i, f(xi)=lt(xi)=maxtlt(xi), we have
dtlt(xi) t=tv=O, or

+dtb(tv)=O,i+ +dtan (tv)Xdtal(tv)xx

But since x, x" are the vertices of a nondegenerated simplex, this linear system has
only the zero solution. This proves the lemma.

Thus if we define the mapping " I R by (t)=(al(t),’", a,(t)), any point
ty is a critical point of and 8(y)=(ty) is a critical value of . Hence i(f)c A(),
and since by Theorem 5.4 [14] dimeA(d#)<=m/q Theorem 4.1 is proved.

Now consider, for instance, the set A c R", consisting of points of the form

1 1 1) k 12.--
k’ k2

a>0. We have dimeA=n/(a+ 1) (see e.g. [15]). One can easily find functions f
Q(I") with 6(f)= A s. We obtain the following:

COROLLARY 4.3. f Qq,,(I) for m/q<n/(a+ 1).
Using the metric invariant , defined in [15], one can give a more precise version

of Theorem 4.1. We shall consider only one special case, where the question of
representability can be answered completely. This is the case of Theorem 4.4 which was
stated in the introduction. We repeat that statement here.

Let f Q([0,1]) be a function, for which 8(f) is a sequence 8 < 8: < < 8 <
and let a i+ i"

THEOREM 4.4. The function f can be represented as f(x)=maxtto,la(t)x + b(t),
x [0,1], with a and b k times continuously differentiab& functions on [0,1],= 1/ <

Proof. If f has a required representation, then, by Lemma 4.2, 8(f)= { 8,82,
l/kcA(a). But then by [15, Thin. 4.1],

Now assume that Z= l/k < In the proof of [15, Thm. 4.1] it is shown that we_1i

can find the function a: [0,1] R with the following properties:
(i) a C([0,1)) and all the derivatives of a up to order k at t [0,1) tend to

zero as tends to 1 (and, in particular, a is k times continuously differentiable on
[0,1].)

(ii) a increases on [0,1].
(iii) There is a sequence of points t, t2,.., in [0,1), converging to 1, such that

a(ti)=8 and all the derivatives of a at t vanish, i= 1,2,- ...
Using a(t) and f, we define b(t) as follows: b(t) is the constant term in the

equation of the support line to the graph F(f) with the slope a(t).
Clearly, f(x)=maxta(t)x+b(t ). It remains to prove that b is k times continu-

ously differentiable on [0,1].
Let (xi,y) be the coordinates of the vertex of F(f), belonging to the edges of

F(f) with the slopes 8 and 8+, i=1,2,..-. Then for 8a(t)8+1, i.e. for tt
t+, b(t)=y-a(t)x. Hence b(t) is C-smooth on each segment [t,t+l], and its
derivatives coincide with the derivatives of a(t) up to a coefficient -x. But by the
condition (iii), all the derivatives of a vanish at i. Hence b C([0,1]). Since by i, all
the derivatives of a(t) up to order k tend to zero as tends to 1, the same is true for
b(t) and hence b is a k times continuously differentiable function on [0,1].
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5. Some open questions. Of course, the results above are far from being complete.
However, they show that there is a rich variety of interesting phenomena concerning
the maxima of smooth families, as well as various connections with the deep properties
of smooth mappings.

Theorem 2.1 gives bounds for the functional dimension fd of the sets of maximum
functions. What is the precise value of fd(S,q,q(D, c))?

Notice also that the invariants obtained in 2 and 3 involve both the smoothness
q and the dimension of the parameter space m. Can one find invariants of maximum
functions, separating the influence of these factors?

There is a similarity between the study of maximum functions above and the study
of functions, representable by means of compositions of functions of some fixed class
(see [10], [16]). In both cases the consideration of the e-entropy allows us to prove the
existence of nonrepresentable functions, while the study of some invariants, related to
critical values, gives explicit examples of such functions. Are there direct connections
between these two problems?

The necessary condition for the representability of a polyhedral convex function as
a maximum of a smooth family of linear functions, given by Theorem 4.1, is very close
to a sufficient one (see Theorem 4.4). However, for an arbitary convex function (not
necessarily polyhedral), the method used here breaks down. Can one define invariants
of a general convex function, responsible for the representability of this function as a
maximum of a smooth family of linear functions?

The maximum functions of smooth families have nice differentiability properties,
which can be formulated, in particular, in terms of their generalized derivatives (both in
sense of distributions--see [12], and in sense of optimization theory--see [2], [6], [7],
[9]). Can one give criteria of representability in these terms? In particular, can one find
function spaces appropriate for the treatment of maximum functions?

We focus on one question, in particular concerning the differentiability properties
of maximum functions. A continuous function f: R n---, R is said to have the k th
differential at x0, if there exists a polynomial P" RnR of degree k, such that
Ilf(x)-P(x)ll--o(llx-x011). Convex functions are known to have the second differen-
tial almost everywhere. Is it true that functions in Sm(D) have the k th differential
almost everywhere in D? Some variant of this question (for finite families) is consid-
ered in [17]. 2
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POSITIVITY OF THE POISSON KERNEL FOR THE
CONTINUOUSq-JACOBI POLYNOMIALS AND SOME

QUADRATIC TRANSFORMATION FORMULAS FOR BASIC
HYPERGEOMETRIC SERIES*

GEORGE GASPER* AND MIZAN RAHMAN :i:

Abstract. A nonterminating extension of the Sears-Carlitz quadratic transformation formula for a
well-posed 32 series with an arbitrary argument is obtained as a sum of two balanced 5ff4 series. This is then
extended to a very well-poised 54 series with arbitrary argument. These results are used to derive some
generating functions for the q-Wilson polynomials p,,(x; a,b,c,d; q) when ad= bc and an expression for
the Poisson kernel Kt(x,y" a, b, c, b/a; q) as a sum of three sums of very well-poised 10+9 series which
clearly demonstrates its positivity for 0<_t < 1, 0=<q< in the continuous q-Jacobi case when a=q’/2+ 1/4,
b= q,/2 + 3/4,

__
qB/2+ 1/4 and a, fl> 1. Additional quadratic transformation formulas are derived,

along with q-analogues of Watson’s and Whipple’s summation formulas.

Key words, q-Wilson polynomials, continuous q-Jacobi polynomials, Sears-Carlitz formula, quadratic
transformations of basic hypergeometric series, q-analogues of Watson’s and Whipple’s summation theorems,
Bailey’s transformation formulas, generating functions, Poisson kernel

AMS(MOS) subject classifications. Primary 33A65, 33A70; secondary 33A30

1. Introduction. Recently we showed [9] how Rogers’ linearization formula for the
continuous q-ultraspherical polynomials C,,(x; fllq), defined below, could be used to
derive an 87 basic hypergeometric series representation for the Poisson kernel Pt(x,y;
fllq) for these polynomials from which one could easily see that this kernel is positive
for 1 =< x,y <_ 1, 0 __< t, q < 1 when 0 =< fl < 1. In analogy with the limiting ultraspherical
polynomial case we conjectured that Pt(x,y; fllq) should also be positive when 1 < fl <
q-1/2. It was in trying to prove this conjecture and to give conditions under which the
Poisson kernel for the continuous q-Jacobi polynomials P’’)(xlq) is positive that we
were led to consider the quadratic transformations and generating functions derived in
this paper.

In particular, after first introducing our notation in [}2, we shall prove in 3, that
the Sears-Carlitz formula [14, (4.1)1, [8, (2.4)],

(1.1) a, , c aqx
32 aq/b aq/c q’ -c

( ax q ) [ v/d, V/d, 7r rd- aq/bc
(x; q)o 54 aq/b, aq/c, ax, q/x

;q’ q]
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author was supported in part by the National Science Foundation under grant MCS-8002507 A01.
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where a q-n, n 0,1,..., has a nonterminating extension of the form

a, , c aqx]3b2 aq/b aq/c ;q’

( ax; q) [ x/d, v/d, f-a, f-a- aq/bc
(x; q) 5t4 aq/b, aq/c, ax, q/x

;q’ q]
(a; q)(aq/bc; q)(aqx/b; q)(aqx/c; q)
(aq/b; q)(aq/c; q)(aqx/bc; q)(x-1; q)

[xv/-, xv/-d, x/aq, xx/, aqx/bc

aqx/b, aqx/c, xq, ax 2

An analogous quadratic transformation formula, (3.5) below, is derived for the
series

[ a, qTr-d,-qv/-,b,c tf](1.3) 4 vr, v/d, aq/b, aq/c
q’ bc

which plays a crucial role in our derivation in 6 of a representation for the Poisson
kernel for the continuous q-Jacobi polynomials as a sum of three sums of balanced 10q’9
series from which its positivity for 0 =< t,q < 1 is obvious when et, fl>- 1; thus, also
proving the above-mentioned conjecture for the continuous q-ultraspherical poly-
nomials.

We shall also derive quadratic transformations of the type that transform series
with base q2 to series with base q, such as

21[ a2 b2 2q2] ,q)oo(X2q/b2" q)oo
a2q,2/b2 q2 x ( aq/b2"

b4 (q/b2; q)oo(ax2q/b2; q)oo

( a2x2q/b2; q2 )o (q/bE; q2

where laq/b2l < 1, and give q-analogues of the well-known quadratic summation for-
mulas of Watson [5, p. 16].

(1.5)
a, b, c ] r(})r(1/2+c)r(l++)r(l_+,.)

3F2 1 1
la lb)-(a+b+l),2c’ c)

and Whipple [5, p. 16]

(1.6) 3F2 a, l-a, b "1] F(c)F(2b+ 1-c)21-2b
a+l 1+c, 2b+l- c r(;7 --i -[---) ?(g:+ 1--)
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The open square root symbol used in (1.4) and elsewhere is an abbreviation for the
square root of the top left-hand member of the series, with the understanding that the
same square root is used throughout.

2. Notation. Let Iql < 1. As usual, a r+ ltr basic hypergeometric series with base q
is defined by

al,a2,.
., ar+l

(2.1) r+l*r b,. ] (al; q)! a2; q)n’’’(ar+l; q)
;q,z (-; t,, :(i i "zn’

n=0 (q; q

whenever the series converges (e.g., if Izl < 1) where the q-shifted factorials are defined
by

(a" q) =(1’ n=0,
(l_a)(l_aq)...(l_aq-l), n=1,2,....

We also let (a; q)oo=(1-a)(1-aq)(1-aq2) To simplify the notation we will also
write (a) and (a)oo in place of (a; q)n and (a; q)oo, respectively, and omit the base q
symbol in the r/ lqr series when the base is q, so that only the z term appears after the
semicolon.

As in Askey and Wilson [4] we define the continuous q-ultraspherical polynomials
C(x; fllq) by

(2.2) C(x" fllq)=(fl2)"fl-"/2 [q-’’ q’fl’ fll/ze’ fll/e-’
(q),, 43 flql/, .flql/2; fl

;q

and the continuous q-Jacobi polynomials P,’a)(xlq) by

(2.3) p,,(,,t)(xlq)=(q’+l)n 43 [ n+a+#+l a/2+l/4ei qa/:z+l/4e-iO ]q q q
(-) - q,+l, qa/2+B/2+ 1/2, q,/+t/2+

q

where, as elsewhere, x=cosO. It should be noted that C,,(x; q’+l/lq) is a constant
multiple of P,,(’")(xlq) and that the polynomial

(2.4)

P"’I(x; q)=
(q,+l) (_qt+l) [ n+a+,8+11/2eiO -iO l(q) (q) 43

q-’’ q q ql/ze
_

;q,
q+l, _q+l, _q

which was considered in Rahman [13] and Gasper [11], is a constant multiple of
P,"’a)(xlq2), as Askey and Wilson showed in [4, 4].

Since the above polynomials are constant multiples of the q-Wilson polynomials
[41

(2.5) p,,(x; a,b,c,d; q)=4dP3Iq-n’ abcdqn-l’ aei’ ae-’ ]ab, ac, ad
q

we shall initially consider these polynomials. Askey and Wilson [4, Thm. 2.2] proved for
-1 < q < 1 that if a, b, c, d are real (or if cornplex, appear in conjugate pairs) and
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max(la[, [b[, Ic[, [d[)< 1 then these polynomials satisfy the orthogonality relation

(2.6) fx p,(x; a,b,c,d; q)pm(X; a,b,c,d; q)w(x" a b c d; q)dx =m’n
-1 hn

where

(2.7) w(x; a,b,c,d; q)

( e 2i) ( e-i)cscO
(aeiO)(ae-io) ( beiO)o ( be-iO). ( ceio) ( ce-iO) (deiO) ( de-iO)

and

(2.8) =h (a b c d" q)tl

( abcdq-1 )n (1 abcdq 2n-1 )( ab )n ( aC)n ( ad ) a

(1 abcdq--1 )( bc) ( bd ),, ( cd ) ( q ),,

( ab)(ac) ( ad) (bc) bd) ( cd) q)
2r ( abcd )

-2n

They also gave the orthogonality relation for cases when a> 1, 0 < q < 1, and some
positive discrete masses have to be added to the weight function (see [4, Thm. (2.4)]).

From (2.8) the Poisson kernel

(2.9) Pt(x,y; a,b,c,d; q)

E t"h,(a,b,c,d; q)p,(x; a,b,c,d; q)p,(y; a,b,c,d; q)
n 0

is a positive multiple of the sum

(2.10) K,(x,y; a,b,c,d; q)

, (abcdq 1)n (1 abcdq2n 1)
n=0 (q)n(1-abcdq-1)
(ab),,(ac),,(ad),,
(bc),,(bd)n(cd)n

a-2"t’p,(x; a,b,c,d; q)p,(y; a,b,c,d; q),

when a, b, c, d are real and their pairwise products have absolute value less than one,
which is the case we consider in this paper.

Another notation that we shall use is that of a q-integral defined by

(2.11)

where

fabf(u)dqu--- fobf(u)dqu-ff(u)dqu,

ff(u)dqu=a(1-q)
_

f(aqn)q n

n----0

whenever the series converges, which will simplify our proofs in4 to 6.
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3. Quadratic transformations. To derive formula (1.2) we first observe that from a
transformation formula due to Bailey [6, (1)] it follows that

(3.1)

a, b, c, dq", q-" ]5ff4 aq/b, aq/c, aql-n/d, bZcEd:Zq"-2/a 2 q

( aqZ-n/bcd ) ( a3q3- Z"/b:ZcZd g- )
( aq:Z-"/bcd ) ( aq3-2"/bcd )

aEql-,,/bcd, q7. q/7. aq-,,/cd,
"1211 -", fi-’, aq/b,

aqX-"/bd, aq/bc, 7r-d, -v/d, 7r-,
aq/c, aq -"/d, a3/:q2- n/bcd, a3/2q:-’/bcd, a3/2q3/:2-’/bcd,

/, a3q3-’/b:Zc2d, q-,,
-a3/:q3/:Z-n/bcd, bcd/aq, a2q2/bcd

Letting n c we get

a, b, c d] (bcd/aq)oo
lim x2xl["" ].(3.2) 3qz aq/b, aq/c ;-d (bcd/a2q) ,--,

To find the limit on the right side of (3.2) we follow the procedure in Bailey [5, p. 28] of
first assuming n to be an odd integer, splitting up the 121I series into two halves,
reversing the second series, and then letting n---, c. This yields

(3.3)

v/-d, v/d, /, fa-, aq/bc ]lira 12t11[ ]--5t4
aq/b, aq/c, bcd/aq, a2q2/bcd

q

bcd ( bcd/a2 )oo ( cd/a)o ( bd/a), ( aq/bc) ( a
aq (d/a) ( aq/b) (aq/c) ( bcd/aq)o ( a2q2/bcd)

d/a, bcd/qa 3/2, bcd/qa 3/2, bcd/ql/2a 3/2, bcd/ql/2a 3/2

5qb4
cd/a, bd/a, bcd/a 2, b2cZd2/a3q 2

Replacing d by aExq/bc in (3.2) and (3.3) we immediately get (1.2). With Bailey’s
formula (3.1) known for over 40 years (his paper was accepted for Proceedings of
London Mathematical Society in 1943) it is surprising how such a simple derivation of
(1.2) could have escaped notice for so long.
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Bailey even had a formula [6, (2)] which gives an analogue of (3.1) in the form

(3.4)

[ a’qvr’-qVrd’b’c’dq"’q-" ]76 v/- v/, aq/b, aq/c, aql-"/d, b2c2d2q"/a 2
q

( a3q 2-"/bc2d ) ,-x(aq-"/bcd), (1 a3q/bc-d )
( a2q2-"/bcd ) (a2ql-"/bcd2 )

a2ql-,/bcd, q/T. _qx/T. aqX-,/cd, aql-,/bd, aq/bc,
"12q11

x/-7. f5. aq/b, aq/c,

1/ 1/ qf qf-d
a3/q3/2-,/bcd, a3/-q3/--,/bcd, a3/-ql-n/bcd, aa/Zql-n/bcd,

aaql-n/bc2d, q-n ]bcdq/a, aq,/bcd
q

Taking the limit n m as described above and replacing d by a3/aql/2t/bc we obtain
for the s4 in (1.3) that

(3.5)

[ a, qv/-d,-q/-d,b,c .tf]eP4 v v/- aq/b aq/c bc

(1- tE)(tqr)
(t/f-a-)

f-, V/-d--, qf-d, qfd, aq/bc
5ff4

aq/b, aq/c, t-lql/, tqf-
;q

( aq )oo ( aq/bc)oo ( t/b) (V/t/c)
( aq/b)o ( aq/c)o ( f-a-t/bc)o (t- lra)o

It should be noted that by replacing a, b, c in (3.5) by q, qb, q,. and letting q 1-
we obtain the quadratic transformation [5, Ex. 6, p. 97]. Similarly, it can be shown that
the quadratic transformation [5, Ex. 4(iv) p. 97] is a limit of (1.2).

In terms of the q-integral notation formula (1.2) is equivalent to

(3.6) a,b,c aqx]3k2 aq/b, aq/c’ b----
(a)oo(aq/bc)o

s (1 q )( q) ( aq/b ) ( aq/c)o ( q/x )oo ( x)

fx (qu/xs)o (qu/s)o (aqu/bs)o (aqu/cs) (axu/s)
dqu(v/-du/s )o ( Vrdu/s )o (gru/s )o ( u/s) ( aqu/bcs )o
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and (3.5) is equivalent to

(3.7)

a, qVC, -qv/-d, b, c
5t4 r,_ V, aq/b, aq/c

1-t 2 (aq)(aq/bc)
s(1-q) (q)(aq/b)(aq/c)(t/f)(t-lq)

(qfu/st) (qu/s) (aqu/bs) (aqu/cs) (tqf-a-u/s )o
dqu

where s is arbitrary.
It should also be observed that by replacing c by cq in (3.1) and (3.4), letting

n ---> c, and then setting d aq/cx, we obtain the quadratic transformations

(3.8)

a,b .qx]2tl aq/b,b2

and

(3.9)

(qx/b)o(aqx2/b2)o
(aqx/b)o(qxV/b2)o

ax/b, q.,- qf7., x, v/d,- x/d, f,-
"87 ,, ,, aq/b, v/-dqx/b, vrqx/b, /rx/b, 7rx/b

a, qv/-d, qv/S, b x ]43 V/d, -f-d, aq/b bq

(ax2/b2)o(x/bq)oo
(aqx/b)o(xE/b2q)o

axlb, q/7-.,_ qvC-., x, r-,_ x/, qfd,- qv/-d
"8t7 ", ", aq/b, 1/x/b, 1/x/b, v/-x/b, fdx/b

provided that Iqx/b2l < 1 in (3.8) and Ix/b2ql< 1 in (3.9) whenever the series do not
terminate.

Our derivation of (1.4) and a more general transformation depends on the use of
the Sears [14] summation formula

(3.10) (a)(b)(c)3d? e, f ;q

q(q2/e)(fq/e) [aq/e, bq/e, cq/e]e (aq/e)o (bq/e) oo (cq/e)oo
3dp q/e, fq/e

q

(e) (q/e) (f/a) (f/b) (f/c)
(a) (b) (c) (aq/e) (bq/e) ( cq/e)
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where abcq ef. Set e q, b c, replace a by aq", r O, 1, 2,- ., multiply both
sides of (3.10) by

(x2; q2)r (y2; q2)r b2rq ",
(--q; q)r(X2y2b2; q2)r

use (a-; q2)=(a; q)r(-a; q)r, and sum over r from 0 to o to get

(3.1a)

(-1)(-q)(-ab)(ab)(b2) [ aZ, x2, y2 2 ](a)o(b)(-b)(-a)(b)(-b) 3q2
a2b2, x2y2b

;q qb2

q_J,x_,y_ ](-q)(ab2) jo (a)j(b)j(-b)j
qJ3q’2

x2yb2, -2q2-2j
;qZ, q2

(-q)(-ab2)
j o

(-a)j(-b)j(b)j
qJ3*2 b: ;q2 q2+ (-a)o(-b)(b)oo .= (q)(-q)j(-ab2) x ,b

Since the 3q_ series on the r.h.s, can be summed by using [16; (IV.4)]

(3.12) [ a, b, q-" ] (c/a; q),,(c/b; q),,
3t2tC ab/cq "-1

;q’ q
(c; q:i/-i q)

with the base q replaced by q2, it follows from (3.11) that

(3.13)

a 2, x 2, y2
3t2 2b2 2 2

;q2,
a x y2/b

qb2

(-a; q)(ab2; q)oo(b2; q2) [a, bx,-bx, by,-by ](-1; q)oo(b2; q)oo(a2b2; q2)o 54 -q, ab2, bxy,-bxy
;q’ q

(-1; q)oo(b2; q)oo(a2b2; q2)oo
5q4

-q, -ab2 -bxy, bxy
;q’ q

Setting y ab, this reduces to

(3.14)

a x 2
q22tl a2b4x 2

qb2

(-a; q)oo(ab2; q)(b; q2)o [a, bx, -bx, -ab

(-1; q)o(b2; q)o(a2b2; q2)
4q3

_q, ab2x, _ab2x ;q,q]
(a; q)o(-ab2; q)(bZ; q2) [-a,-bx, bx, ab2 ]( 1; q )oo (b2; q)oo (a2b2; q2)oo 4t3

q’ abZx, ab2x q’ q
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Using Bailey’s [5, p. 69] transformation formula, namely,

(3.15)

a, qV/--d, -qx/-d, b, c, d, e, f a Zq 2 ]8q7
f-, -v/S, aq/b, aq/c, aq/d, aq/e, aq/f’ bcdef

( aq) (aq/de) (aq/df) (aq/ef) [ aq/bc, d, e, f ]( aq/d )o ( aq/e )oo ( aq/f )o ( aq/def )o 43 aq/b, aq/c, def/a
q

(aq)(aq/bc)oo(d)(e)(f)(aZq2/cdef )(a:q2/bdef)
( aq/b) (aq/c)(aq/d) ( aq/e), (aq/f) (a:Zq:/bcdef) (def/aq)

aq/de, aq/df, aq/ef, a2q:/bcdef
"43 aq:/def a:Zq:Z/bdef, a:q2/cdef

we obtain

(3.16)
a2b4x 2

;qZ, qb:

(b2x2; q)(abx; q)(-abx; q)(ab2; q)(b2; q2)
(abx2; q)(bx; q)o(-bx; q)(b:; q)(a-b2; q)o

[ab:x :q- , q/-7., q/7-., a, x, x, bx, bx
8UP7 fS-. . bx 2, abx, abZx, abx, abx

;q, ab2].
By Heine’s second transformation [2],

(3.17) :z’x[ a:z’ x:z ]aZb4x2
qZ qb

(abq; q)o(b4x; q)o [a,qb--(bZq; q)oo(a:q4x; q) z a:bq
;q, b4x:Z

and hence by using (3.17) and (3.16) and replacing b by X//b we get formula (1.4). If
a= + q-n, n=0,1,..., then one of the terms on the r.h.s, of (3.14) drops out and, by
(3.17), we get a formula equivalent with Verma’s formula (2.5) in [17].

The only tools that we need to derive q-analogues of Watson’s (1.5) and Whipple’s
(1.6) summation formulas are the q-analogue of Dixon’s formula [16, (IV.6)]

A,_qvr_,B, C .qVr](3.18) 43 --, Aq/B, Aq/C’ BC

( Aq) (qv/C) (qv/B)o ( Aq/BC)
(Aq/B)o (Aq/C) (q-) (qf/BC)
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and the following limit case of Jackson’s transformation formula [16, (3.4.2.4)]

(3.19)

[ A’qVC-’-qvC-’B’C’D’E’F AZq 2 ]8,/,7 v-J-, -v/Y, Aq/, Aq/C, Aq/D, Aq/E, Aq/F’ BCDEF

( Aq )oo ( Aq/EF)o ( A2q2/BCDE) (AZq2/BCDF
( Aq/E )o ( Aq/F)o ( A2q2/BCD )o (A2q/BCDEF

A2q/BCD, qx/-7. -q., Aq/CD, Aq/BD, Aq/BC, E, F Aq]"8q7 vU., _/7-., Aq/B, Aq/C, Aq/D, A-q/BCDE, Aq2/BCDF E---ff

provided that [A2q2/BCDEF[<I and IAq/EF[<I whenever the series do not
terminate.

If we now set A F= a, B C= b, and D E , then the 1.h.s. of (3.19)
reduces to the 4q3 series

43
-a, aEqE/b, a2q2/c2

q c2

which, by (3.18), sums to

( a2q2; q2) ( aq2/c2; q2) ( aqE/b2; q2) ( ag.qE/b2c2; q2)
( aEq2/b2; q2) ( aEq2/c2; q2) ( aq2; q2) ( aq2/b2c2; q2

Hence it follows from (3.19) that

a-q/b2c, q. q7fT. aq/bc, aq/bc, aq/b9-, c, a q ](3.20) 8q7
x/7-., ., _aq/b, aq/b, -aq/c, a2q2/b2c2, -aq2/b2c

;q’
c

( aq/c; q)o ( q; q)o ( a2q2/b2c; q)o ( aq2/b2c2; q)
( aq; q)o ( q/c; q) (a2q2/b2c2; q) ( aq2/b2c; q

(a2q2; q2)o ( aq2/b; q2) ( aq2/c2; q2 )o ( a2q2/b2c2; q2)
( a2q2/b:Z; q2 )o ( a2q2/c2; q2 )o ( aq2; q2) ( aq2/b2c2; q2)

Replacing aq/b-, aq/bc, and c by b, c, and /c, respectively, we obtain the
following q-analogue of (1.5):

[ /,c/ab/q qx/-7 qx/-5-" a, b, c, c, c- c___ ]87 x/-y. cx/bq/a cx/aq/b ,, c2
q,

(cv/aq/b q)oo(-q; q)o(-cf--; q)(c2/a; q)o
(-aq; q)o(cv/q/ab; q)o(c; q)oo(-cx/bq/a ;q)o

(a2q2; q2 )o ( bq; q2) ( qc2/b2; q2 )o (c2; q2)
( abq; q2) ( ac2q/b2; q2 )oo ( aq2; q2)o ( c2/a; q2 )o’

c2q
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To obtain a q-analogue of Whipple’s summation formula (1.6) we apply (3.19) to
the aq7 in (3.20) by identifying .4, B, C, D, E, and F with -a2q/b2c, -aq/bc,
aq/b2, a, aq/bc and -c, respectively. This yields a summation formula for an
which on replacing a, b, c by bc/q, a, c/b, respectively, gives the desired formula

(3.22)
b, qx/-7" q" a, q/a, b, bq/c, c/b

87 xfi-. x-5. bq/a, ab, q, c, bZq/e ;q,b]
(-c; q)o(-bq; q)(ab; q)(b2q/ac; q)
(b; q)o(b2q/c; q)o(-ac; q)o(-bq/a; q)o

( a2c2; q2) (cq/a; q2) (ab2q/c; q)_) (b2; q2)
(c2; q2) (a2b:,_; q2) (acq; q2) (b2q/ac; q2)

Additional summation formulas for 87 series follow by applying the transformation
formula (3.19) to formulas (3.21) and (3.22).

It should be noted that if we set a or b in (3.21) equal to q-", n =0,1,- ., then we
obtain Theorem 1 in Andrews [3] by means of Watson’s [16, (3.4.1.5)] transformation
formula

a, qf, -qvr-d, b, c, d, e, q-" aq,,+2](3.23) 8q7
x/, -vr, aq/b, aq/c, aq/d, aq/e, aq n+l bcde

(aq),,(aq/de),,
(aq/d),,(aq/e),,

aq/bc, d, e, q-" ]de/aq", aq/b, aq/c
q

Similarly, Theorem 2 in Andrews [3] follows by applying (3.23) to the case a=q-" of
(3.22).

In the next section we will need to use the fact that Sears’ summation formula
(3.10) is equivalent to the formula

3.24) fb ( qu/a)(qu/b) (cu)( (du)(eu)(fu) dqu

b(1 q )( q) (bq/a) (a/b) ( c/d) ( c/e) ( c/f)
(ad)(ae)(af)(bd)(be)(bf)

where c-abdef, which is also equivalent to the q-beta formula (1.3) in A1-Salam and
Verma [1]. Likewise, Bailey’s transformation formula (3.15) is equivalent to

(3.25) fabdqu (qu/a)(qu/b)(cu)(du)(eu) (fu) ( gu) ( hu)

b(1 q)( q)oo ( bq/a) (a/b) ( cd/eh )o ( cd/fh) ( cd/gh) (bc) ( bd)
(ae) ( af ), ( ag) ( be ), ( bf) ( bg) ( bh) ( bcd/h)

[ bcd/hq, q. qfS-. be, bf, bg, c/h, d/h
"8q7[ .,- 727, cd/eh, cd/fh, cd/gh, bd, bc cd/befg]
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where cd= abefgh. It should also be observed that formula (IV.15) in [16] for the sum
of two 8q7 series is equivalent to

(3.26)

fb ( qu/a )o ( qu/b)o ( u/v/--)o ( u//-d) ( qu/c) ( qu/d) ( qu/e) ( qu/f )o
dqu

( u )o ( qu/v)oo ( qu/vC-d)o ( bu/a)o ( cu/a )o ( du/a )o ( eu/a )o ( fu/a

a(q- 1)(q)o ( aqlb)o (b/a) ( aq/cd)
(b)o(c)o(d)(e)oo(f)

( aq/ce) (aq/de )o ( ae/cf) (aq/df) (aqlef)
( bc/a) ( bd/a) ( be/a)o ( bf/a)

where a2q= bcdef, which has (3.24) as a limit case.
As usual, in (3.26) and other formulas it is assumed that no zero factors appear in

the denominator.

4. Some generating functions for q-Wilson polynomials. Here, as an introduction
to the method that we will apply to the Poisson kernel, we first consider the simpler
sum

(4.1) ()nGt(X a,b,c,d; q)= Z (abcd/q),(ad),
n=O (’--(ff- - p,,(x; a,b,c,d; q),

which, by the asymptotic formula for the q-Wilson polynomials in Ismail and Wilson
[12, (1.13)], converges for Itl < 1 when -1 <x < 1. Unfortunately, if the 43 series
representation for p,(x; a,b,c,d; q) in (2.5) is used in (4.1), then we cannot change the
order of summation and sum over n since, due to the term q-n in the numerator of the
43 series, this leads to a divergent series when 4: 0. This divergence problem also
keeps us from applying the product formulas in Gasper and Rahman [10] to the
Poisson kernel (2.9). To overcome this difficulty in (4.1) we can either use (3.23) to
write the q-Wilson polynomial in terms of a 8q’7 in which q-n also appears in the
denominator or write it as an appropriate sum of 4t3 or 8t7 series. Here we shall
employ the q-integral representation

(4.2)

p,,(x; a,b,c,d; q)

(bc),, fqe-/d (abcdu/q)o(duei)o(due-iO)(q/U)n (.adu )’=A(O) ( ad ) ,,’ qeO/ ( cdu/q) ( bdu/q) (adu/q) ( abcdu/q ) -- dqu,

where

A(0)=
2id

q(1-q)(q)o(ab)o(ac)(bc)o(dei)(de-i)w(x; a,b,c,d; q)

with x=cos0, which follows from formula (3.3) in A1-Salam and Verma [1] and is
equivalent to a representation as a sum of two ,,q’3 series.
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After substituting (4.2) into (4.1) we can now sum over n to obtain

(4.3) fqe-’O/d ( abcdu/q) ( duei) ( due-Gt(x; a,b,c,d; q)=A(O).qeiO/d ( adu/q) ( bdu/q) ( cdu/q)

[abcd/q, q/u dtU ] dqu"21 abcdu/q --From (3.6),

abcd/q, q/u
(4.4) 21 abcdu/q

(abcd/q)(au/q)
(1 q )( q) ( abcdu/q) (a) ( aq/dt) (dt/a)

( aqv/dt) ( qv ) ( abcduv/q) ( adtv/q)
dqU

/ ( av/V/-) (-av/V/-) (-av) (auv/q)

with a=(abcd)/2. Using (4.4) in (4.3) and changing the order of integration gives

Gt(x; a,b,c,d; q)= A(O)(abcd/q)o
(1 q )( q ) (a) ( aq/dt ) ( dt/a

f d o
(aqv/dt)(qv)(adtv/q)

Jdt/a q (OIU/F-) (-- OlU/r-)o (-- Oll))o

fqe-i/ad u
(au/q)(abcduo/q) (duei)(due-,o)

Jqeia/d q (adu/q)(bdu/q)(cdu/q)(auv/q)

At this point if in addition to the assumption that -1 <a, b, c, d< 1, we assume
ad= bc then the last integral in (4.5) can be evaluated via (3.24) to give

(4.6) at(x; a,b,c, bc/a; q)

( b2c2/q) (aei) (ae-i)
(1 q)(q) (bc) ( aq/t) ( t/a) ( ab) (ac)

1 d v
(aqv/t) (qv) (b2c2tv/aq) (abv) (acv)

"Jt/a q ( bcv/v/)oo ( bco/v/) ( bco)o ( ave)o (ave-)o

(bc2t/aq) [bc/v/-, -bc/v/-, -bc, aei, ae- ](t/a) 5t4
ab, ac, aq/t, b2c2t/aq

;q

( bct/a) ( b2c2/q) ( bt) ( ct) ( aei) ( ae-i)+
(a/t) ( bc)o ab) (ac) tei) ( te-i)

54 (bct/a/- bct/a/- bct/a’ tei’ te- i

2

_
bt, ct, tq/a, b c /a q

q
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Since

(4.7) p,},,,t)(x q)
(qa+l)n
(q). pn(x; qa/2+l/4, qa/2+3/4, _qB/2+l/4, _q/2+3/4., q)

by (2.3), for the continuous q-Jacobi polynomials the sum of two 5b4 series in (4.6)
reduces to a sum of two 4b3 series and it then follows from (3.15) that

(4.8)

Gt(x; a,b,c,d; q)=
bt/gr)o (bct/f-d) (- bctei/f-) (- bcte-i/f-d)

(- ct) (- b2ct/q) ( te’) ( te-i)

b2ct/q2, q(-7. qf7. ct/v/,
"87 ., _--., b2//-, bc2t//--,

b/c/-, bc/f-, be’/T/--, be-i/f-.
bt/V/’-, bcte-io/7t-, bcteio/

with

(4.9) a=qa/2+1/4, b=qa/:z+3/4, c= -qfl/2+l/4, d= -qfl/2+3/4.

If c fl, then the r.h.s, of (4.8) degenerates to

(teiOqO+ 1/2) (te-,Oq+ 1/2)
(teia)(te-i)

giving a well-known generating function for the continuous q-ultraspherical polynomi-
als.

Now consider

(4.10) (abcd/q) (1 abcdq ’’-1)gt(x; a,b,c,d; q)=
n=0 (q)n(l -abcdq-1)

(ab),,(ac).(ad),,
(bc).(bd).(cd),, a-"t"p.(x; a,b,c,d; q),

which is the kernel (2.10) with p,(y; a,b,c,d; q) replaced by 1, and converges for
Itl <lal when -1 <x < 1. By employing the above method with (3.7) replaced by (3.6)
and using the fact that (via [15, (8.3)])

p,,(x; a b c,d; q)= (bd),,(cd),, ( a )"(ab).(ac). - p.(x, d,c,b,a, q)
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we find that

(4.11) K,(x; a,b,ad/b,d; q)

(1-t2)(adqt) [advf, -adf-, -ad, dei, de -iO ](i?/: 5t4
bd, ad2/b, adqt, adq/t

;q

) (bt/a) ( dt/b) ( a2d 2) (dei) ( de-i)o
( ad/t) ( ad) ( bd) ( ad2/b) (tei/a) (te-i/a

.st4[tl/r, --tTr-, --t, tei/a, te-i/a ]bt/a, dt/b, qt/ad, qt 2
q

As above, for the continuous q-Jacobi polynomials it follows from (4.11) and
(3.15) that

(4.12)

K,(x; a,b,c,d; q)= (1 2 )(adqt )o ( dt/a )o ( dtei)o ( dte-i)o
( t) ( d 2t)o (teia/a)oo (te-i/a

d 2t/q, qx/-y" qxfi-. tf- d/aq, ad, dei, de-
"8tOY x/7-. -x/-y. d2/--, adqt, dt/a, -dte-i, -dtei tql/2]

when (4.9) holds. The transformation formula (3.19) can be applied to the 8q7 series in
(4.8) and (4.12) to give cases in which these generating functions are positive, but we
shall not do so here, since we are primarily concerned with the positivity of the Poisson
kernel.

5. The kernel Kt(x y; a, b, c, d; q). Let x cos 0, y cos q, 0 =< < 1, 0 =< q < 1, and
let a, b, c, d be real. Since, by (4.2),

(5.1)

p.(x; a,b,e,d; q)p.(y; a,b,c,d; q)

( cd ), ( bd ), fqe-’O/bd U
( abcdu/q)o ( buei) ( bue-io

B ( O,) (-b i-. (-a-ci -. JqeiO/b q ( abu/q) (bcu/q) ( bdu/q)

fqe-’*/’dqV ( abcdv/q) ( cvei )oo ( cve-i
qeiq,/c ( acv/q)oo ( bcv/q)o ( cdv/q

(q/u).(q/v). (aZbcuv)"( abcdu/q ) - (abcdv/q). q2

with

(.2)

B(O,)=B(O,; a,b,c,d; q)

-4bc[w(x; a,b,c,d; q)w(y; a,b,c,d; q)]-x
2

[q(1 q)(q) (ad )o 2( ab)o ( ac)o ( bd) ( cd )ol( bei)o ( ceiq’)
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it follows from (2.10) that

(5.3) Kt(x,y; a,b,c,d; q)

B ( O, dp ) (qe-’/bd u
( abcdu/q) ( buei) ( bue-i)

JqeiO/b q ( abu/q ) oo ( bcu/q )oo (bdu/q) oo

fqe-’*/dqo ( abcdv/q)oo ( cve" )oo ( cve-,
qei’l’/c (acv/q) oo (bcv/q) oo (cdv/q) oo

abcd/q, qfT. qx/7-. q/u, q/v, ad
"6t5 " --’, abcdu/q, abcdv/q, bc bcUVtq2 ]"

At this point we have to assume that

(5.4) ad= bc,

so that the above 6@5 reduces to a 54 to which we can apply formula (3.5) or (3.7).
Here we shall apply formula (3.5) since, as we shall see, the first 54 on the r.h.s, of
(3.5) leads to a single sum of a terminating 10(9 series. This yields

Kt(x,y; a,b,c, bc/a; q)

( bcqt )=B(0,O; a,b,c, bc/a; q)(1-t 2) (t/bc)

_, (b2c2)2kqk fqe-i/bd
k=0 (q)k(bcqt)k(bcq/t)k Jqei/b qU

( b2c2uq-1)oo ( bueia)oo ( bue-i)oo
( abu/q )oo ( bcu/q ) oo ( b2cu/aq )

fqe-’/Cdqo ( b2cvq-) (cvei) ( cve-iq’) ( bcuv/q)
"qei’/c (acv/q)o(bcv/q)(bc2v/aq)o(b2c2uvqk-)o

(b2c2) (t2)kq+B(0,; a,b,c,bc/a; q)Z(bc/t) -o ( q ) k ( qt/bc ) k ( qt 2 ) k

( bcutq-1) ( buei) ( bue-i

( abu/q)oo ( bcu/q)oo ( b2cu/aq)oo

k tk tck 2 2 2fqe-i*/Cdqv(bcvtq )oo(cve )oo(cve- )oo(b c uv/q )oo
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From (3.15),

(5.6)

qe-i/cd
(b2c2vq-l)oo (cvei’t’)oo (cve-i’t’)o (b2c2uv/q2)oo

eiq’//c
qV (aco/q)oo(bco/q)oo(bc2o/aq)(b2c2uoq,_2)

q (1 q )( q )oo ( b2c/a ) ( ab) (bc) ( e 2ik ) ( e 2ik

2ci sinq(b2ce -’*) ( ae q’) (be ’t’) ( bce’’/a) ( bce- "t’/a)

( b2ce-i’t’q k) ( b2cue-iq’/q)
( ae-i’t’) ( be-i’t’) ( b2cue-iq’q,-1)

2ce-i,t,/q, q(7-. _q(-7. bce-ie,,/a, be-iq,, q/u, ae -i’t’, q-" ]"8th7
vc7. -. ab, bc, b2cue-q’/q, b2c/a, b2ce-’t’q "

;b:Zcueq’q-i

q(1-q) (q) (ab) (bc) (b2c/a) (ceiq’)(ce-q’)w(y" a b c bc/a" q)2ci ’

q/u, ae i’I’, ae -i’t’ ](b2cu/aq),
4t3( b2c/a) , ab, bc, a/b2cuq ’-2

q

by (3.23). Hence

k (q)k(aeiq,)j(ae-iq,)j (b2c)J(q)i(q)k-(ab)j(bc)(b:c/a), -q

[qe-’/bd u
(b:c:uq’-)(buei)(bue-i)(q/u)uJ

Jqe’e/b q ( abu/q) ( bcu/q) ( a- lb:cuq’-J- )

[q(1 q)(q)(be)o :Z(ab)o (ac) (b-c/a)o (bcZ/a)
4bc( bc) , ( b2c/a) k ( bc/a) k

I(bei)(cei’t’)(bca-tei),12w(x; a,b,c, bc/a; q)w(y; a,b,c,bc/a; q)
2

k (q-k)(a/bc:qk-,)l(aei,)l21 q.E
g’=O (q)j(ab)jl(aeiO/bcqk-1)j

q-j b2c2qk-1 ceO, ce
4t3

ac bc bc2a xq k-
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by using (3.15) and (3.23) as in (5.6). Consequently, the first term on the r.h.s, of (5.5)
gives

(bcqt) (- bc)k (bcv/) (- bcf) ,[(bca-lei)k 12 q(5.8) (1-t2)(t/bc) (q)k (b2c/a)k,=o (bc/a) (bcqt) (bcq/t)

2’ (q-k)(a/bc2qk-1)l(aei) q
=0 (q)(ab)[(aeO/bcq-X)[

2

q-J, b2c2q k-l, ce iO, ce-0
4(])3

ac, bc, bc2a-lqk-j

Transforming the above 43 via [15, (8.3)], the sum over j in (5.8) becomes

(q-k)y(b-lc-lq,-k)l(aei,)jlZqZ 2=o (q)2(bc)2l(aeia/bcqk-1)j 43[q-J, b2c2qk-1 aei, ae -iO

ab, ac, bcq- q

iq,
.2

’ (q-k)l(ae )j[ q
j=o (q)(bc)

a2/bcq,, qf?-. q. a/b2cq,-1,
8q7

f /-7. ab

a/bc2q-1, ae, ae -io, q-2
ac, ae-i/bcqk- 1, aeiO/bcqk- 1, a2/bcqk-a-

bcq

=E (a2/bcqk)m (q’) ( q" )m (a/b2cq-1) (a/bc2qk-l) m[(aei)m 12
m=O ( q ) (()m " ) (ab) m (ac) (bc) (a2/bcq- 1)2m] (aei/bcq-1) [2

( 1) mq m(m + 1)/2(bc) (q-’)ml(aei)

[ ]3q2
q’- ’ ae idpq ae-iq,q

bcq m, a2/bcqk-2m-1
q

I(bce’*/a)l
(bc)k(bc/a2)k

[ a2/bcq, q!fi-’, qfT., a/b2cqk 1, a/bc2qk- 1,
109 l " vC" ab, ac,

aeiO io aei,l,, q- kae ae iq

ae-i/bcq-1, aei/bcq-1, ae-iq’/bcq-1, aei’/bcq-1 a2q/bc

by (3.23) and (3.12).
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Hence, the first term on the r.h.s, of (5.5) equals

a2/bcq, qvU, qvr-7. a/bcq-, a/bc2q-, aei,
"109 " x-7" ab, ac, ae-i/bcq k-t,

ae- io, aei, ae- i,, q- k

ae,/bcq-, ae-*/bcq-t, aeiq’/bcq-, aq/bc
q

Let us now compute the second term on the r.h.s, of (5.5). From (3.15),

(5.11)

fqqe-i’l’/Cdqo ( bcvtqk-1)o ( cveiq’)o ( cve-iq’) ( b2c2uo/q2 )o
ei’t’/c ( acv/q )oo ( bcv/q)o ( bc2v/aq )o ( bcuvtq- 2)

q(1- q)(q)o(ab)o(bc)(bc/a)ol(ce,)ol-
2ci

w(y; a,b,c,bc/a; q)

(btqke-iq,) o ( b2cuq Xe-iq’ )oo
( butq’- le-i’l’ )o ( b2ce-i’

b2ce-i,t,/q, qfT-. _q. bce-i,/a, be-iq,, q/u, bct-Xq-k, ae -i"
"8q7

VrS" -VC-" ab, bc, b2cue-iq’/q, btq’e -i’l’, b2c/a

Unfortunately, since this 8q’7 does not terminate we cannot apply formula (3.23) to it as
in (5.6). However, we can still apply (3.15) to it to obtain

fqqe- i’l’/cdqO

q(1 q)(q) (bc) ( b2cu/aq) ( abutq ) ( tbqk/a)l( bei) ( cei’l’)o 12
2ci ( b/a )o ( butqk- leiq’ )o ( butq k- le-i’ )o

tq k, bcu/q, aeiq’, ae -i’t" ]w(y; a, b, c,be/a; q) 4t3
bc, aq/b, abutq- q

q(1 q )( q) ( bcu/q) ( b2c/a) ( tq ) ( b2utqk-1)[( aei’) ( ce iq’ )o 12
2ci ( a/b) ( butq-ei’ )o ( butq- Xe- i,t,)

k/a, b2cu/aq, be iq’, be-i ]w(y; a,b,c,bc/a; q) 4(])3
bq/a, bc/a, b2utq-1

;q
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Therefore,

(5.12)

e-’O/bd
( bcutqk-1 ) ( buei)oo ( bue-io

ei/b
qU (au/qji-q) (bacu/aq) ’lqei/c

q(1-- q)(q)
(bc) (btq/a) [(bei) (ce*)lw(y; a b c, bc/a" q)

2ci(b/a)

q(1-q)(q)
2ci(a/b) (b2c/a)(tqk)l(aeiq’)(ceiq’)12w(y; a,b,c,bc/a; q)

o (btqk/a)rl(beiO)rlqr

fqe-’/b (bcutqk-1)(buei)(bue-i)(b2utqk+r-1)
qe’e/b ( abu/q) ( butq-lei’) ( butq- ae-i,)oo ( b2cuq 1/a)"

Since, by (3.15) and (3.19),

-iO/bd U
(bcutqk-) (buei) (bue-io) ( abutq +r- 1)o

eia/b
q ( abu/q ) ( -b-c-dt ;-- i-)---b-u- -- e T, i: (utq d-- FeCF)

q(1-q) (q)(acqr)ool(ei)i2( atqke’*)oo(ctq+e i’)
2bi sin O ( actqk +reiq,_io )ozl( tqkeiO+ie)o ( aeiO) ( cqreiO) 12

(ctqe-i)(atq+re-iO)(tqei_io) 8*7 [ actq+r-ei*-i’, q<’, -q’acqr tqei-i’

aqre*, cqre- ce* ae-o ]tqkeiO-i
ctqe-, atqe*, atq+e-o, ctq+e*

=q(1--qw(x" a b c bc/a" q)(q) (ac)(tq) (be) (bca-e)2hi

I( atqei’t’)oo ( ctqeia)o ( cei),I
2

I( tqei+i’) ( tqei-i*) l( actq ) ( ac)( tq )

]" . -., acq, ctqe-, ctqe, atqe-q", atqeiq
;tq+r
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the first term on the r.h.s, of (5.12) equals

(5.13)

[q(1-q)(q)] -4bc w(x; a,b,c,bc/a; q)w(y; a,b,c,bc/a; q)(ac)o(bc)o

( tq )oo ( btq/a)o!( beiq’) ( ceiq’) ( be’)o ( bceia/a)o ( atqkei )o ( ctqei )o
( b/a)o ( actq t’ )ol( tq ke,+ i)o ( tq ke,-i)o 12

2 [(ae)(ceO)r[q
r=O (q)r(aC)r(bc)r(aq/b)

q/-7. qv/-7. tqk-,, aeiO, ae-iO, ceiq,, ce-iq, ]"87 . _. acq ctq%_o ctq%O, atq%_, atq%,
tq+

Similarly, since

qe-i#/bd U
(bcutqk-)(buei)(bue-i)(b2utqk+r-)

ei/b
q (abu/q)oo(butqk-Xeiq’)(butqk-Xe-iq’)o(b2cuqr-/a)o

q(1-q) (q)(bcqr)l(eZi)o I2(btqk+re-i)o
2bi sin 0 ( bctq, + ei, io) ( tq%iq,-io)

( ctqke-iO )ot ( atq keie) ( bca- tq +reidp

2
I(aei)oo(bca-lqrei)o(tqkei+i*)o

bctq’+r-lei’-i q. -qx/7-. bqei bca-Xqe -io tq%i,-io
"8th7 . . ctqle-i atqCei, bcq

ae- io ce id? ]bca-ltqk+rei;, btq+re-o
;tqke iO-i

q(1-q) (q)oo(bcqr)oo(ba-tqk+r)ol(e2’)o (atq ’ei’)oo (ctqkei)o
2bisinO (actqk)o](aeiO)o(bca_lqeiO)(tq%iO+iq,)o(tqkeiO_iq,)o

actq k-x, q. -q. ab-tq k-r, ae i, ae -i, eel’S, ce-i,
87 [ ., --., bcq r, ctqge -iO, ctqke iO, atqke -i, atqkei ;ba-ltqk+r],
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the second term on the r.h.s, of (5.12) equals

(5.14)

[q(1-q)(q)]
4bc w(x; a,b,c,bc/a; q)w(y; a,b,c,bc/a; q)(bc)o(b-c/a)

( tq ’) ( ba- ltq’) ( aei’) ( bei) ( cei) ( cei’) ( atq keiq’) ( ctqkei) 19‘
( a/b) ( actq )l( tq keiO+ iq,) ( tqkeiO-iq,) 12

I(be,,)(bca-Xe,a)rl2qr"r=O (q)r(bc)r(bq/a)r(b2c/a)r

qx/-7. _q/7. ab-ltqk -r, ae io, ae -io, ceil, ce-*
"7 . . bcqr ctqe_O, ctqeiO, atqe_q,, atqkeiq,

ba- ltqg +

At this stage it is possible to apply (3.19) to the 8q’7 series in (5.13) and (5.14) to get
a representation for Kt(x,y; a,b,c, bc/a; q) as the sum (5.10) plus two double sums of
8q’7 series which shows that this kernel is nonnegative in the continuous q-Jacobi case
(4.9) for ct, fl > 1 when 0 __< < ql/2. But in order to handle the full range 0 __< < 1 we
need to use the deeper procedure in the next section.

6. Positivity of Pt(x,y; a, b, c, bc/a; q). The above-mentioned procedure involves
first using (3.15) to see that the 87 series in (5.13) equals

(actq*)(atqk/c)l(aqrei)[
2

[ctq*/a, tq*-r, cei’, ce-i ](acqr)(aqr/c)l(atqke,,)l
2 4t3 c/aqr-, ctqke iO, ctqke-i

;q

2

( actqk )oo ( ctqk/a) ( tqk-r)l( ceiq’)o ( atqk+rei)
(acqr) ( tq I +r)ot ( c/aqr)l( ctqkeiO) ( atq Iei’t’)o 19‘

atqk/c, tq ’+r, aqre iq’, aqre-iq ]"43 -lqr+l, k+ iO k+ -io
;q

ac atq re atq re

and the 8’/’7 series in (5.14) equals

ol
2 [ctqk/a, ab-ltqk-r, ceiO, ce-i ](actq’) (atqk/c)l(bqre iq’)

12
4t3 ;q

(bcqr)(bqr/c)l(atqkeiq’) [ c/bqr-, ctqeiO, ctqke -iO

( actq’) ( ctqk/a )o ( ab- ’tqk-r)l( cei’) ( btq+rei) 12
( bcqr) (ba-ltqk+r)o ( c/bqr)ol( ctqkei)oo ( atqkei’t’)

atqk/c, ba-ltq k+r, bqreiq’, bqre-iq’, ]"43 bc_lqr+ 1, btqk+reiO, btqk+re_iO
q
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Using the above in (5.13) and (5.14) and writing

V(x,y)= [q(1-q)(q)
4bc w(x; a,b,c, bc/a; q)w(y; a,b,c,bc/a; q)

it follows by regrouping that we can write the r.h.s, of (5.12) in the form Gl(X,y)+
G:(x,y) with

(6.1)

Gx(x,y) V(x’y)(b2c/a)l(aei’)(bei’t’)(cei’t’)(beiO)(ceiO)(ctqei)
(b/c)o(a/b)l(tqkeiO+io)o(tqeiO_i)o [z

( btqk/a )o (atqk/c) (tq ) ( b/c)rl( bcei/a )r lg-q

ctqk/a, ab-ltq k-r, ceiq,, ce-i
"4(3

c/bqr-1, ctqkeiO, ctqke-iO
q

V(x,y)(bc)l(aei)oo(bei)(cei)oo(beiO)o(bcei/a)o(ctqei)o+

and

(6.2)

G(x,y)= V( x,y) ( b2c/a)l ( ae,,) ( cei,)o ( ceiO)o ( be,O) ( ce,O)o ( btqkeO) {2
( c/b) ( a/b) l( tqkei+iq’)o ( tqkei-i’t’)

( ctqk/a)oo (atqg/b) (tq ) , (btqk/a )r +sl( beiO )r+s
r=Os=O (q)r(q)sl(btqkeiO)r+sl

2

(atqk/C)sl(bcei/a)12(b/atqk-X)
(bq/c)+(’bq/a)r(b2c/a)r r( ac-atq +) q

V( x,y )( bc) 1( beiq’ )o ( cei’l’) ( ceiq’) ( bei) ( bceiO/a)o ( atqei) 12
(b/a)o(c/a)l(tqke’O+’*)(tqe.’-) 1-

(tqk)+l(aei)+12( btqk/a) (ctqk/a) (tq ’ )o -, ,
r=O s=O (q)r(q)sl(atqkeiO)r+sl

2

( atqk/c) ( t-lql-k )rl ( cei)
(aq/c) + (aq/b ) ( bc) ( ac- ltq, + ) q.
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By changing the orders of summation in both parts of Gl(X,y) and using (3.15) it
follows that

(6.3)

Gl(X,y)= V(x’y)(bc2/a)o[(aei’l’)o(bei’)(ceiq’)(bei)(bei)(ctqkei)m 12
2

( a/c)o ( b/c)l( tqke,+i) ( tqkeiO-i, )o

12(btq/a)o(atqk/c)o(tqk) E (ctqk/a)jl(ceiO)j(qb-le’)J
j=o (q)j(cq/b)(aq/b2c)jl(ctqkeiO)[

(atqk/b)j
(cq/a)

+ x, qx/-7. q. bctq k-x, bca-ei,k 87 .,_ ., b/atqk+j_l, be_iOq_j,

bca-le -i, b/cqJ, q-J
beiq-, bc/a, bZc/a

By using (3.23) to write the above 8q’7 as a multiple of the series

43[q-J, c/atqk-l, bca-lei, bca-le-i ]bc2/a, cq/a, b/atq +- q

and then using it again to write this 4t3 as a multiple of the series

bc2a Xtqk- 1, q-., qv(-., tqk, bctq- 1, bca- leiO,
8t7 I/-" --Vr7" bc2/a, cq/a, ctqke -iO,

bca- le- io, q-j ]ctqke i, bc2a-ltqk+J
cb-lqj+

we find that the sum over j in (6.3) equals

(6.4)

_, (ctq/a)l(cei’) q (bc2a-tqk-)r(qV" )r(--q" )r
j=o (q)./(cq/b)(bcEtq/a)y r=O (q)(" )r(--" )r

( tqk ) ( bctqk-1) rl ( bca- lei ) l2( q ) j ( 1) ( cq/b )

( bc2/a ) ( cq/a ) rl ( ctqkei ) i2( bc2a- ltqk +j ) ( q ) j-r
qr(r-1)/2

_, ( bc2a ltqk 1)r(q.)r(-q.)r(tqk)r(bctqk 1)r(ctqk/a)r[(Ceiq’)rl2
r=0 (q)(. ) (_ fT.)(bc/a)r(cq/a)r(cq/b)rl(ctqreiO) 19-

I(bca-leiO)rl2 ( )r [cq qr(r+l)/2
ca-ltq k+r, cq req’, cq re-iq’

( 1) -- 32
cb- lq bc2a- tq + 2r(bc2tqk/a)2r +
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Fortunately, we can now apply (3.10) to the above 3q2 to show that it equals

( b/cq) ( bcqr)l( bca- ltqk + rei) 12
( btq’/a) ( bc2a-tq’+ 2r)ol (bei’t’) 12

2

+ bc-q-r
(ca-Xtq k+) (b/cqr-X)o ( bzca- tq +r)l(cqei,)

( cb- Xqr+X) ( bc2a -Xtqk +2r) ( btqk/a) I( bei*)
2

[ btqk/a’ be i’, be-J4
3t2 [b/cqr- 1, bEca ltqk +r

q

Using this in (6.4) we obtain that the sum over j in (6.3) equals

(6.5)
( b/c)o ( bc)o I( boa -ltq ke iq’)

(btq/a) (bctq/a)i(bei’) 12
bc-a- ltq- q. q. tq

"10t9 . V-. bc2/a,
bctq- 1, bca- le, bca- le- o, ce *, ce- *, ctq/a

cq/a, ctqe-, ctqe, bca-ltqe-*, bca-ltqe*, bc
2

( b/c) (ctq/a) ( b2ctq/a)l( cei’)
(c/b)(bc2tq/a)(btq/a)l(bei)

;q]

v (btq/a)l(be’)12
j=O (q)j(bq/c)j(b2ctqk/a)j

qJ

bc2a-Xtq-1, q" -q" tq, bctq-1, bca-lei, bca-le-i, c/bqj qj+l]"8th7 f" -" bc2/a, cq/a, ctqke -iO, ctqke iO, bZca-ltq k+j

by a change in order of summation.
Let us now consider G2(x,y ). From (6.2)

(6.6)

G2(x,Y)=
V(x’y)(b2c/a)l(ae*)(ce’*)(ce’*)(be)(ce

2

( c/b) ( a/b)l( tqkei+’t’) ( tqe-’l’)
io) ( btqeiO )

2

( ctqk/a) ( atqk/b) (tq k)
2

E (btqk/a)(atqk/c)l(be’*i] qj=O (q)j(bq/c)jl(btqkeiO)j

.43[q-J,b/atq-1 bca-leiO bca-le-‘
bq/a, bc/a, c/atq +- q
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2
V( x,y )(bc) ( be i’)oo ( cei’)oo ( ceil’ )oo ( bei)o ( bca- lei)o ( atqkei)

( b/a)oo ( c/a)[( tqgei+,’) ( tqgei-,’)

(btqk/a)(ctqk/a)oo(tqk)o
(tqk)j(atqk/c)jl(aei*)Jl

j=O (q)j(aq/c)Jl(atqkei) [2
q2

43 [ q-J, t-q k, cei ce- i

bc, aq/b, c/atq +- q

Using (3.23), the first 4t3 on the r.h.s, of (6.6) equals

(6.7)

](btq’eia)j]
2

( atq/c)(b2ctq/a)
b2ca ltqk- 1, qvC-., x/U., bctqk- , tqk,

87 , --(7-., bq/a, b2c/a,

bca-e io, bca-e-io, q-J
bc-lqJ+1]btq%-, btqe, b2ca-tqk+

2
( b2ca- ltq +J)o (ac-ltqk+J)o (b-a-qJ+ei)o

2
( bc-Xq+)o ( b3ca--q+1)l(btqk+ei)

b3ca-2qj, qx/T, -qfY. b2cqJ/a, ba-qJ+, b/atq-1,
"87 " X-7" bq/a, bc/a, b2ca- tq k +j,

bca- le io, bca- le- io ]b2a-q+e-iO, b2a-lq+iteiO
ac-tq k

by (3.19). Our reason for choosing the above 8qv from among all the other possibilities
will be clear from (6.12) and (6.11) below. Since the second 4t3 on the r.h.s, of (6.6)
equals

(6.8)
(aq/c)j(b/atqk+j-) -j -tqt-g io be-iO
( aq/b ) j( c/atq +J--ii - 4(3 ;q

be, aq/c, b/atq+-

2
( aq/c) l( atqkei) 1

( aq/b ) j( atqk/c) j( abtqk )

abtq-, qv/jdot qx/-7. atqk/c, bctq-"87 .,- /S-., bc, aq/c,

bei, be -go, q- ]atqke -i, atqke, abtqk+J
;ab-lqj+l
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the second sum over j on the r.h.s, of (6.6) equals

ot

(6.9) E (abtq-X)r(q/7)r(--q" )(atq/c)(bctqk-)(tqk)(--1) q(+)/2

r--O (q)r(" )r(- x/S-" )r(bc)r(aq/c)r(aq/b)r(abtq’)2r

tqk+r, aqrei, aqre-i

[(atq’ei)r [2
3(/)2

ab lqr+ 1, abtq,+ 2r
q

by a change in order of summation. We can apply (3.10) to the above 3q’2 to find that it
equals

( b/aqr)o ( abqr)l( btq+rei*)o 12
2

( abtq +2r) ( btq/a)l( bei’t’)

(tqk+r)oo(b/aqr)o(b2tqk+r)l(aqrei’)o 12 [ btqk/a, be q’, be-iq

(aqr/b)o(btqg/a)(abtqg+2)ol(bei*)
2 3t2 b/aqr-1, b2tq k+r ;q].

Hence, from (6.9), the second sum over j on the r.h.s, of (6.6) equals

(6.10)
(ab)(b/a)ol(btqkei’t’) 12

( abtq )o ( btqk/a)l( bei)oo

abtq-1, qvr-7. -qx/-7. atqk/c, bctq k-l, bei, be-iO a/bqY
"87 fS-. _. bc, aq/c, atqe -i, atqei, b2tq ’+j

Gx(x,y)+G2(x,y)=

(6.11)

by a change in order of summation.
Combining (6.3), (6.5), (6.6), (6.7) and (6.10) we obtain that
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(ab) (ctqk/a) ](cei,) (bca_ei) (atqke iO) (btqkei’) [2(c/a)(abtq)

abtqk-, q. -q. atqk/c, bctq-, tq, bei, be
tk9 ., -., bc, aq/c, ab, atqke -iO, atqe iO,

-io

btqke-i", btqei
q

2
V(x,y)(tqk)(ctqk/a)l(aei’t’)(ceie)(cei*)(bei)

I(tq keiO+ itb) ( tqkeiO-i,) 12
( (bc/a)(atqk/c)(b2ctqk/a)(atqk/b) [(ceiO)o(bga-qeiO ) 12( a/b) ( c/b) (b/c) ( b3cq/a )o o

2

E (btqk/a)j(b3cq/a2)jl(bei*)Jl qJ
2

j=o (q)2(b2ctqk/a)2l(bZa-lqeiO)2[
b3ca 2qj, q/7. q(7.

8*7[ -., /7-.,

b2cq/a, ba-lq+1, b/atq-, bca-le iO, bca-le -iO ]bq/a, b2c/a, bEca-tqk+j, b:Za-lqj+le -iO, b:Za-lqj+e iO
;ac-ltq

(bc) (b-tq)o (tq)o
(a/b) ( c/a) ( abtq ) I(bca- lei ) ( atq ke iO )

Z (btq/a)J I(bei*)jl2
=o (q)(bq/c) (bctq/a)

qJ

bc:a ltqk- 1, q7. qx/7-. bctqk- 1, c/bqJ,
8(/)7 /7-., X/7-., cq/a, b2ca tq+j,

tqk’bca-ei’bca-e-i
bc/a, ctqe-, ctqe ;q+X
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Now, we need but observe that, by Bailey [6, (5.1)], the last 8(/)7 in (6.11) equals

(6.12)

( a/c) (b2c/a) ( atqk/b) ( bc2tqk/a)l(ce’) ( b2a 1qj+ leiO) 12
( a/b) ( bc2/a) ( bc- 1qj+ 1)l(be,0) ( ctqke,O)

b3ca-V-qJ, q(-7. _q. b-cqJ/a, ba-lqj+l, b/atqk-1
"8(/)7 . S-. bq/a, bc/a, bca-ltqk+,

bca- ei bca- le- o ]baa-lqj+ le-O, ba-lqj+ eiO
ac-tq k

( bc) (a/c) tq k) ( ba- ’q+ ) bc:tqk/a) ( b:tqk+j)o
( c/a) ( bc2/a) ( abtq k) ( atqk/c)o ( bc- lqj+) b2c- latqk +j)

I(atqkei) ( bca lei)

I(bei) (ctqkeiO) - (c/b)(bq/c)
(a/b)(bq/a)

abtqk-, q. -qx/S-. atq/c, bctq k-x, a/bq, bei, be -io
"8q’7

vr7" -x-7" bc, aq/c, b2tq k+, atqke -iO, atqke iO
qj+ 1]

from which it fortunately follows that the second expression in braces on the r.h.s, of
(6.11) equals zero.

Hence, combining (5.5), (5.10), and (6.11) with the above observation we finally
get our desired formula.

(6.13)
(bcqt)K,(x,y; a,b,c, bc/a; q)=(1-t) (t/bc)

_, (-bc)k (bcf)k(--bcf-)kl(bca eiO)k( bca Xei’)k[:qk
,=o (q)k (bc2/a)k(b2c/a)k(bc)k(bca-2)(bcqt)k(bcq/t)k

a2/bcqk,
q. _q. a/bcqk-1, a/bcqk-1, q-k,

lOt9 -’, --f’, ab, ac, a2q/bc, ab-Xc-ql-ke -iO,

ae io, ae- io aei, ae- i ]ab- 1- lql k eiO, ab- 1-’1ql ke- iq,, ab- c- lql keih
q

(t)(at/c)(b:c2)l(aei’)(bei)(ctei)(bca-ltei’) 12
( ab)o ( ac)o (bc) (a/c) (b2c/a) (bc2t/a) (bc/t)[( te iO+iq’) (te iO-i4’)

2 (-t)k(tg/-)k(-t/)k(bc2t/a)kl(te+i+)(tei-)l12qkk=O (q)k(qt/bC)k(qt2)k(at/c)k[(cteiO)k(bca-itei’l’)
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bc2a- ltq k-l, qx/-7, qvC-. tq k bctq-1 ca- ltq bca- e io

10t9 ’, --V/T" bc2/a, cq/a, bc, ctqe-iO,

bca- e-i ceil,, ce-’ ]ctqe io, bca-tq’e-iq’, bca-tqei,
q

2
(t)(ct/a)(b2c2)l(cei’)(bca-lei)(atei)(bteiq’)+

(ac)(bc)(bcZ/a)(bZc/a)(c/a)(abt)(bc/t)[(tei+iq’)(tei-i’)
2

y’ (-t)k(tf-)l,(-tv/-)k(abt)kl(tei+i’l’)k(tei-i),
q

k=0 (q)k(qt/bc)(qt2)k(ct/a)kl(atei)(bteiq’)k[

[ abtq-, q. -q. tq, bctq-, ac-tq, be, be-, aeq,, ae-q,
"09 . -., ab, aq/c, bc, atqe-, atqe, btqe -iq’, btqke iq’

q

By inspection it is obvious from (6.13) that if 0 __< < 1, 0 < q < 1, and (4.9) holds
with ,B>-1, then K(x,y; a,b,c, bc/a; q) and hence the Poisson kernel P(x,y;
a, b, c, bc/a; q) for the continuous q-Jacobi polynomials are positive when 1 _< x,y <= 1.
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(x) where x(x) is aAbstract. We improve previous results concerning the monotonicity in of f(?)x,, ,,:
positive zero of the ultraspherical polynomial P,X)(x), and f(h) is a suitably chosen positive increasing

_<A<3function. The range of validity is extended to 5 5 rather than 0__< A__< 1. In a certain sense the results
are the best obtainable by the methods used. Some new elementary bounds for the zeros are obtained and
compared with known results. An inequality for 0(log- x.) 0hx,,, )/ is also derived.

Key words, ultraspherical polynomials, zeros, inequalities, monotonicity, Sturm comparison theorem
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1. Introduction. The study of zeros of special functions is of interest not only
because of its mathematical aspects but also due to its many applications. The zeros of
classical orthogonal polynomials may be interpreted as equilibrium configurations of
certain one-dimensional systems [3], [12]. For instance the x-zeros x,X), k= 1,2,..., n,
of the ultraspherical polynomial P,CX)(x) can be thought of as the positions of equi-
librium of n( >= 2) unit electrical charges in the interval (- 1,1) in the field generated by
two identical charges of magnitude ,/2 + 1/4 placed at 1 and -1 [12, pp. 140-142].
Thus, the study of the variation of xx) with X and of bounds for xx) corresponds tonk nk
the physical problem of how the position of equilibrium of the n unit charges varies
with X and how much they can be displaced by changing . The physical interpretation
makes it clear that the positive zeros move to the left when is increased; this agrees
with a theorem of Stieltjes [9], [12, p. 121].

In this paper we use Sturmian methods to improve some previously known results
[2], [7], [8] concerning the monotonicity of f(hxx) From this we are able to derive] nk"

some new elementary bounds for the zeros. In many cases these bounds are sharper
than existing elementary bounds and, in some cases, generally for the smallest positive
zero, they are sharper than existing bounds involving zeros of Bessel functions.

2. A preliminary theorem. Although the Sturm comparison theorem [10] is almost
150 years old, its value in providing information about zeros of special functions has
not always been appreciated fully; see, for example, the remarks in Watson’s treatise
[13, p. 517]. It is largely to G. Szeg6 that we owe the obervation that Sturm methods
can provide quite sharp results; see [12, Chap. 6] and R. Askey’s notes following [11] in
Szeg6’s collected papers.

<x. ofAn old result, due to Stieltjes [9], [12, p. 121] asserts that each positive zero xn
P,CX(x) decreases as k increases, for n, k fixed. On the other hand, R. Spigler [8]
proved essentially the following theorem.
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THEOREM 2.1. The function f(X)x] increases with ),X I, where I is some interval,
for every function f( X ) which satisfies f( X ) > O, f ’( X ) > O, f ’( X ) continuous for X I and

(2.1) (f2-x-)[2(n+X)zf’-(2n+l)f]f+2x-(n+)(f--x2)
+if’(1 +2X-2X2)(f:+xZ)+xZff’>=O, 0 <x<f(X).

In [8] only the case I=(0,1) was considered. However, an examination of the
proof reveals that we may take I to be any interval included in [--}, ] possibly
including one or both of its endpoints.

Theorem 2.1 was proved in [8] by applying a version of the Sturm comparison
theorem [4] to the differential equation obtained by applying the scaling x x/f(X) to
the equation satisfied by

ux(x) (1 x) x/2 + 1/4pn(X) (x).
The coefficient qx(x) in the scaled equation

(2.2) u’x’+qx(x)ux=O

was shown to be a monotonically decreasing function of k using the condition (2.1).
Spigler [8] called a function f(,) "acceptable" if it satisfies the hypotheses placed on f
in Theorem 2.1 (in the special case where I=(0,1)). He then used (2.1) to derive the
sufficient condition

f’(X) > O<h<a,(2.3) 2n+l
f(x) 2(+x)2’

for the increase of f(Xxx) on 0<< 1 for an acceptable f. The results [8]! nk

(X) ,((2.4)
)(logx )

< O<X<l, f(X)’
and

x (,,x f ( X + e)(2.5) 1 < < O<X<X+e<I,
x(X+O f(X)nk

valid for every acceptable f showed that the most desirable f is one which minimizes
the ratio f ’( 3, )/f( X ). Correspondingly, the best results of the type (2.4) and (2.5) in [8]
were obtained by taking the equality sign in (2.3). This leads, apart from a multiplica-
tive constant, to

(2.6) f(X) exp{ (2n+l)X }2n(n+X)
The inequality

x (x) e(2.7) "’ <l+--
Xnk

obtained in [7] corresponds to (2.5) with f()=. However the right-hand side here
becomes infinite as X 0. Following a suggestion of R. Askey, S. Ahmed [2] considered
functions of the form (X + rn)l/2. Our results generalize those of [2].
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In [8], use was made of the sufficient condition (2.3) for a function satisfying the
other hypotheses in Theorem 2.1 to satisfy (2.1) also. Here we use instead (3.7) below
which is, in a certain sense, both necessary and sufficient. In this way, we obtain
inequalities of the type (2.4) and (2.5) which are the "best" that can be obtained by
"the Sturm method plus scaling" in the sense that we discover the "acceptable" f’s for
which f’(X)/f(X) is smallest on 1/2 _< )t =< -}. (Here we use the word "acceptable" in a
wider sense than Spigler [8] who considered only 0 < h < 1.)

3. The best acceptable function. Our main goal here is to prove the following
result.

(x) denote the kth x-zero in decreasing order of PX)(x).THEOREM 3.1. For n >__ 2 let xnk
Then, for k 1,.-., [n/2],

[2n 2 + 1 + 2X (2n + 1)] /2,.x),
increases as increases, 1/2 <_ <= .

Proof. It is simply a matter of checking that the condition (2.1), with equality sign,
is satisfied for 0 <_ x <_f(), 1/2 =< X =< -, where
(3.1) f(h)= [2n2+ 1 + 2h(2n + 1)] 1/2.

To see this, we divide (2.1) by If(X)] 4 and obtain, after some algebraic manipulation,

(3.2) f’(X) > F 0<x <f(h)s(x) 77,
where

(3.3) F(u)= (1-u)[2(n+l)-2u(n+X)]
2(n + X.)2(1- u) + (1 + 2.- 2/X2)(1 +u)+u

It is clear that the denominator here is positive for 0 < u < 1, 1/2 =< h =< -.
In order that (3.2) hold for every x in (0,f(X)) it is necessary and sufficient that

(3.4) f’(X)/f()t)>= sup F(u).
0<u<l

However we can show that

sup F(u)= F(0).
0<u<l

To prove (3.5) we note that it is equivalent to

(3.6) a-(a+b)u+bu2 a

A-Bu
<_ -, 0<u<l

where a 2n + 1, b 2(n + X),

A=2(n+X)2+I+2X-2)t2, B= -2[I+X-X2-(n+X)2]
and it is easy to see that a necessary and sufficient condition for this is that A >_ B or
that 1/2 =< h _< -. Thus for these values of X, (3.4) is equivalent to

(3.7) f’()t) >
2n+l

f(X) 2(n+X)2+l+2)t_2X2
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and it is easy to see that this holds with the equality sign when f(X) is given by (3.1).
This completes the proof of Theorem 3.1.

The method of proof shows that the choice (3.1) for f(X) is, apart from constant
factors, the one which minimizes f’(X)/f(X) subject to the hypotheses of Theorem 2.1
applied to the interval I= [-1/2, ] and so it is the best "acceptable" function for this
interval.

From Theorem 3.1 we get
COROLLARY 3.1. If n >= 2, 1/2 <= < + e < -, k 1, 2,... n/2], we have

k < 1+1 <
-,"{x+O X + (2n 2 + 1)/[2(2n + 1)]

We also have, as in [8], from (2.4) and (3.7):
COROLLARY 3.2. A "best" estimate for the derivative ofxX is given by

) (logx( ) 2n+1

2(2n+1)+2n2+ 1

where 1/2 =< X__< -, k 1, 2,-.., [n/2].

4. Numerical bounds Ior .tx) 0<X < 1. The decreasing character of xx"’nk nk as a
function of X, enables us to provide upper and lower bounds for this quantity whenever
the zeros of two other ultraspherical polynomials P(Xl)(x) and P(X2)(x), with 1 < X <
h :, are known. When hi=0, h:= 1 we have the Chebyshev polynomials; in this way
Stieltjes was able to show that

krr (2k- 1)rr(4.1) cos <x(X)< cos
n+l nk 2n

for 0 < X < 1 [9], [12, p. 122].
The monotonic increasing character of f()x(Xk), where f(X) is given by (3.1),

enables us to get sharper results. In fact we have

(4.2) f()kl) ,"(x)<x(X)< f(X2)
x

where 1/2 =< , < X <: =< -, k 1, 2,.. -, n/2]. In particular with X1 0, ,: 1 we get
the following result.

THEOREM 4.1. For 0 < X < 1 and k 1, 2,..., n/2] we haoe

[ 2n2 + 4n + 311/Z kr(4.3) x{,X)< cos
2n 2 + 1 + 2X(2n + 1) n + 1

and

(4.4) 2n2+ 1 ]1/2 (2k- 1)rr
cos

2n:+ 1 +2X(2n+ 1) 2n

G. Szeg6 [12, {}6.6] summarizes the various known elementary bounds for x(X),
including some obtained by Sturm methods. The best such upper bound, among those
available in [12] is

cos[ k- (1 X)/2(4 5) X(nk < [ O<X<I,
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and the best such lower bounds are

krr 1(4.6) x(X)> cos,nk n+l 2 =<h<l,

and

(k +;h- 1/2)rr } 1(4.7) x,Xk)> COS 0 < X <n+2X

In the special case X= 1/2 (Legendre polynomials) some calculations which we
performed in the range n= 2 to 15 indicate that our lower bound (4.4) is quite sharp
and generally better than (4.6) and (4.7) for all except the first (largest) one or two
zeros, while our upper bound (4.3) is better than (4.5) for at most the last (smallest)
zero. Thus, for example, our bounds lead to

(4.8) 0.20111 < x(1/2) < 0.2012615,7

while (4.5) and (4.6) lead to

0.19509 < X (1/2) < 0.20130.15,7

We note that (4.1) would have given only

0.195090 < X (1/2) < 0.20791215,7

Calculations for other values of (0< < 1) confirm the pattern; our lower
bounds are better than (4.6) and (4.7) for most zeros except the largest while our upper
bounds are better than (4.5) only for the smallest zeros. There does not appear to be
any easy way to decide a priori on the relative sharpness of these elementary bounds. In
Table 1 we provide some further numerical comparison of our bounds with (4.5) to
(4.7).

TABLE 1

n k L L U U
2 1 0.56695* 0.50000 0.58248* 0.58779
3 0.74032* 0.70711 0.79663 0.78183
4 0.81893* 0.80902 0.89149 0.86603
4 2 0.33921* 0.30902 0.34052* 0.34202
5 0.86257 0.86603 0.93972 0.90963
5 2 0.53310* 0.50000 0.54254 0.54064
6 1 0.88993 0.90100 0.96667 0.93502
6 2 0.65147* 0.62349 0.66896 0.66312
6 3 0.23846* 0.22252 0.23875* 0.23932

The columns headed L and U give the (lower and upper) bounds for x(nlk/2) obtained using our formulas (4.3)
and (4.4). The columns headed Ls and U give the bounds obtained by using (4.5) and (4.6) (or (4.7)). An
asterisk indicates the cases where our bounds are better.

We can hardly expect our bounds to compare as well with those involving nonele-
mentary functions. Szegi5 [11] showed that for 0 <X < 1, k= 1,2,-..,[n/2],

(4.9) Jx-1/2,k
x (x) < cos

)2 (1 4/’/r 2
,,k

[(n +, + )X(1-X)] /2
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where Jh-1/2,k is the kth positive zero of the Bessel function Jx_l/2(x), while L.
Gatteschi [5] provided the lower bound

(4.10) x)> cos
Jx-1/2,k

[(n + ,)2+ )k(1 ))/3] 1/2

for the same range. Some calculations indicate that our elementary bounds (4.3), (4.4)
are sometimes sharper than (4.9), (4.10) but only in the case of the smallest zeros. Thus,
for example, (4.3) and (4.4) give

0.14885 < x0/2) < 0.1488910,5

while (4.9) and (4.10) give

0 148788 < x0/2< 0.149204.10,5

5. Bounds outside the range 0 < k < 1. It is clear from (4.2) that we also have, for
1<,_<-,

(5.1) nk 2n
2n 2 + 4n + 3 ]1/2 krr

2+1 +2X(2n+l) ] cs
n+l

and for 1 __< ) <

2n2+6n+4 ](5.2) x])< (3/2)

2n 2 + 1 + 2X (2n + 1) x’k

The corresponding inequalities for 1/2 __< __< 0 are

(5.3) ,,(x)> [ 2n2-2n ]1/2-1/2) 1,,,
2n2+1 +2X(2n+l)

x,
2 <X=<0

and

2n 2 + 1 ]1/2 (2k 1) rr 1(5.4) x (,,]) < ] cos
2n+ 1 +2X(2n+l) 2n 2 =<X<0.

All of the above inequalities hold for k= 1,2,...,[n/2]. It is noteworthy that (5.1) and
(5.4) are reversed forms of (4.3) and (4.4). Laforgia [6] has shown that inequalities (4.9)
and (4.10), which become equalities for X= 1, are reversed for , > 1 so it is of interest
to compare the elementary lower bound (5.1) with the reversed form of (4.10) in the
range 1 < X__< . Some calculations which we have performed in the case n= 10 and
various values of X indicate that the elementary bound (5.1) is sharper only in the case
of the smallest zero (k 5 in this example). The upper bound (5.2) is not elementary
but it involves the zeros of P3/)(x) which are the same as those of the derivative
P,+ x(x) of the Legendre polynomial and some of these have been tabulated [1, p. 920].

In particular, the inequality (5.3) and, more especially the elementary inequality
(5.4), are noteworthy in that they provide simple bounds corresponding to negative
values of . There do not appear to be many such bounds in the literature.

6. Concluding remarks. 1. Since Laforgia’s reversed forms of (4.9), (4.10) are valid
for all k > 1, the question arises as to whether some of our monotonicity properties or
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elementary bounds can be extended to all values of X > 1. We have seen that our
method of proof cannot furnish such an extension since inequality (3.6) fails to hold for
X > 3/2. However the example

X(21h)= [2(k-I- 1)]-1/2
shows that, for e > 0, (h + 1 e)1/2x(21 increases on the interval 1 + e < X < m. Ex-
amining the proof in {}3 we see that if we take X > the inequality (2.1) breaks down
for x close to f(X). The condition 0<x<f(,) arises from the fact that the positive
zeros lie in (0,1). If we have a better upper bound for a zero say 0 < xX< x0 < 1 then
we would need the condition (2.1) only for O<x<xof(X) with a corresponding en-
largement of the set of values of X for which our results hold. Since we have many such
upper bounds including those proved here, our results can in fact be improved in this
way though it does not seem to be possible to get them for all positive X.

2. In the case of x21x}, not only do our methods not give the whole X-interval, they
do not in fact give the factor () + 1- e)/2 for small e > 0. Using our method we need
(2.1) to hold as x0+ i.e., we need

(6.1) [(2n+l)(n+2X)-(n-1)]f’(X)>=(2n+l)f(a).
If we let f(X)= (X + 13)/2, we see that (6.1) requires us to have 13 =< .

3. In [8] it was shown that x{x} increases with X, 0 < X < 1 providednk

2n+l 3
a> max

n>l 8n 8"

Actually, since only the cases n >= 2 arise, it could be deduced from the work in [8] that
this holds for

2n+l 5
a> max .

n>__2 8n 16

However the results of the present paper, in particular the condition (3.7), show that it
is sufficient to have

2n+l 5
a >__ max

2(2n + 1) + 2n 2 + 1 1-"
4. P4(X)(x) is a constant multiple of

4(X + 2)(X + 3)x4-12(X + 2)x 2 + 3.

Hence x(x)]- and [x (x)12
41 421 are givenby

[3+ 9-3(X+ 3)/(X+2)]/[2(X+ 3)].
From this it follows that (+ 3)1/214x) increases while (X+ 3)x/21x)42 decreases on
(-3/2, oo). Thus, it would be of interest to obtain monotonicity results like Theorem
3.1 in which the square root factor depends on k as well as on n. Such results would
lead to elementary bounds of the form (4.3), (4.4) in which the square root factors as
well as the arguments of the cosine terms depend on k.
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Abstract. We give a simplified proof of a theorem proved in [Inequalities and numerical bounds for zeros

of uitrasphericai polynomials, this Journal, 17 (1986) pp. 1000-1007].

Key words, zeros of ultraspherical polynomials, Sturm comparison theorem

AMS(MOS) subject classifications. Primary 33A45" secondary 34C10

S. Ahmed, M. E. Muldoon and R. Spigler proved the following result [2].
THEOREM. For n>2 let xX, denote the kth x-zero in decreasing order of PX)(x).

Then for k= 1,2,...,In/2]

[2n2+ 1 + 2(2n + 1)] a/2x’x).k
increases as increases, 1/2 <= <= -.

The proof of the theorem given in [2] was based on a result due to Spigler, proved
as a consequence of a version of the Sturm comparison theorem given in [1].

The aim of this note is to provide a shorter and easier proof of the theorem above.
Proof. The function u(x)-’(1-x2)X/2+J’/4Pn(X)(x ) satisfies the differential equa-

tion [3, p. 81]

d2u +p(X,x)u=O,
dx

where

1/2 + X- X2 + x2/4
1 -x 2 (l--x2)2

Let t=f(X)x, where

f(h)= [2n2+ 1 + 2X(2n + 1)] 1/2.

Then the function U(t)= u(x) satisfies the differential equation

+/,(x,t)v=0,
dt

with

(X,t)=[f(X)]-2p X,
f()k)
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The authors in [2] have this result. Making the substitution

t2=o, f2= q0 2n 2 + 1 + 2(2n + 1)
we get

(n q- X)2 (1/2 + h 2) + o/4+q0

As in [2] we intend to apply the version of the Sturm comparison theorem proved
in [1]. To this end we need to show that the function P(h, q0, o) defined above decreases
as X increases, 1/2 __< X __< . Since

dP OP
dX X

we get

(1)

where

A =2(n+X),

)P
_q-s__ q0’, 0 __< o < q)
o02

)3 dP(-o - =Ao+Bo+C,

B= -(4n+2h+
C (2n + 1) <p + [)t X 1/2 (n+X)

The quadratic polynomial (1) is strictly convex.
Therefore, in order to show that dP/dh <=0 we have to check the sign of this

polynomial only at o=0 and o=tp. By the definition of o we obtain C=O. At o =tp
the polynomial assumes the value

q(2n + 1)(4h2- 4X 3) q0(2n + 1)(2X + 1)(2h- 3)
which is clearly negative if 1/2 < X < -.

The proof of the theorem is complete.

Acknowledgment. We are indebted to Professor Richard A. Askey for the careful
reading of the manuscript.
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A NEW PROOF OF WATSON’S PRODUCT FORMULA FOR
LAGUERRE POLYNOMIALS VIA A
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DIFFERENTIAL OPERATOR*
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Abstract. Watson’s product formula for Laguerre polynomials L, for a > 5 as well as its limiting case
for a have served for defining a generalized translation operator [1]. In this paper we proceed just the
other way. The Laguerre translation operator will be introduced as the solution of an associated Cauchy
problem for each a >=- 5. A main task consists in finding the corresponding Riemann function explicitly.
The Laguerre product formula then follows as a corollary. The paper concludes with a comparison between
the translation operators associated with the Laguerre series and the Hankel transform.

Key words. Bessel function, Cauchy problem, generalized translation operator, Hankel transform,
Laguerre polynomial, product formula, Kiemann function, Sturm-Liouville differential equation
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1. Introduction, survey of approach. Let for a>-l, x>__0, and nP=
{0,1, 2,-.. } the Laguerre polynomials, Laguerre functions, and the Bessel functions be
defined by

k=0
n-k k!

y(x ) e-X2/2L’ ( x 2 )/L (0),

j.(x)=2r(+ 1)x-%(x)= F r(+ 1)(-1)k(x/2)2

=0 k!F(k+a+l)
respectively. The product formula for Laguerre polynomials due to Watson [32] can be
written in the form

r(a+l) f0Y’(x)Y"(t)= F(a+ 1/2) F(1/2) y([x
(1.1)

"J- 1/2 xt sin/9 ) sin20d0

The limiting formula for a tending to ,

(1.2)

2 + 2 + 2xtcosO]l/2)

(a> -1/2, x,t>=0).

1 /2 1/2Y-I/2(x)yVl/2(t)=-(Y- (Ix-tl)/y- (x+t)}

x2 fo"Y /’- ([x2 2+ + 2xtcos o 1/2) ,(xsinO)dO,
was first proved by Boersma, cf. [23] for his proof and another proof by the author.
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Watson proved the identity (1.1) by special function arguments using the generat-
ing functions of the Laguerre polynomials and their products as well as an integral
representation of Bessel functions due to Gegenbauer. Later, a group theoretical proof
for aP was given by Peetre [24]: If one associates the Weyl transform with the
k-dimensional Heisenberg group, the so-called twisted convolution of two functions is
introduced in such a way that the convolution is mapped by the Weyl transform onto
an ordinary product of the Weyl transforms of the functions. Peetre showed that the
restriction of the Weyl transform to rotation invariant functions is the Laguerre trans-
form with a=k-1, and the restriction of the twisted convolution is the Laguerre
convolution. This immediately yields the product formula.

Another proof is due to Koornwinder [20] who deduces the product formula for
a > 0 from his Laguerre addition formula by integration. The assertion for -1/2 < a =< 0
then follows by analytic continuation with respect to a. Koornwinder obtains his
addition formula as a limit of the addition formula for the so-called disk polynomials
which for its part was found in case a 1 independently by apiro [28] and Koorn-
winder [16] by interpreting the disk polynomials as spherical functions on the homoge-
neous spaces SU(a + 2)/SU(a + 1). Again, analytic continuation leads to the general
formula. Thus one may say that Koornwinder’s proof of (1.1) also has a group
theoretical source.

Each of these proofs is of its own interest since each illustrates a different aspect of
special function theory. The main purpose of the present paper is to give another
analytic proof for the Laguerre product formula which works for each a >= -1/2 at once.
Our starting point is the fact that the Laguerre functions yn are the eigenfunctions of
the Sturm-Liouville differential equation (S.-L. DE)

d[ 2+1d )] 2a+1 2a+3(1.3) -x x -xU(X +(hx -x )u(x)=0 (0=<x<)

for the eigenvalues ,,= 4n + 2a + 2, satisfying the boundary conditions

2 2a+U(0) 1, lu(x) x ldx < :.

DE(1.3) follows from the more familiar S.-L. DE for the Laguerre polynomials [30]

( eP)

by an appropriate transformation. In operational notation it can also be written as

d 2 2a+1 d(1.4) Oq, (u x)+Xu(x)=O, Dq,
dx 2

q
x dx

q(x)

with the potential function given by q(x)=x 2 The Laguerre translation T (f,x) of aL,t
sufficiently smooth function fix) can then be introduced as the solution u(x, t) of the
Cauchy problem

(1.5)
(Dq,x-Oq,t)u(x,t)=O (O<t=<x),

Ou(x,t)u(x, 0) =f(x), ut(x, O)= - t=0
=0

where q(x) x 2, and where u(x, t) is extended symmetrically in x and to 0 < x < t.
By solving this problem we will establish the following kernel representation of the
Laguerre translation (see also [1] and [12] with a slight change of notation).
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THEOREM 1. For a>=-1/2 the solution u(x,t)=T.t(f;x) of the Cauchy problem
(1.5) is given by

1f(z)K(x’t’z)zg-"+ldz’ > 2’
T (f; x)=L,t 1-(f(lx-tl)+f(x+t)}+ Jo f(z)Kl/2(x’t’z)dz’ 1

where the kernelfunctionsK are

r(+ 1)

(1.6) KZ(x,t,z)= r(a-i)-(1/2)txt )-2"p2’-’j,_1/2(O ),

1-xtzJl ( P ), a
2

for Ix- tl<z <x + t, and K(x,t,z)=O elsewhere, with the notation

(1.7)

1 2/,2 2 2Z2 4 4 4)1/2O(x,t,z)= (2[x +x2z +t ]-x -t -z

1 )2 2 2-z ][z
The proof will be given in [}5. For a > 0 the domain of the translation operator

can be extended to the weighted Lebesgue space

(Llw(:: f(x)lx << +ldx < oo+1)-- f;

(cf. [12]). Applying Theorem 1 to the Laguerre functions y, n P, one obtains

y(x)y(t)=T ".L,t(Y, x ) ( 1)x,t>O,a>= -which provides the desired proof of the product formulas (1.1), (1.2).
The foregoing way of introducing generalized translation operators goes back to

Delsarte [7], [8], who studied the Cauchy problem (1.5) in case q(x)=O. Many authors
have continued and extended his work. For example, Levitan [22] and Povzner [25]
considered the particular case a -1/2 of (1.5), imposing certain growth conditions on
the potential q. Other generalizations were made by Leblanc, Hutson and Pym, as well
as by Ch6bli; cf. [4] for references. For example, Ch6bli [5] proceeds from the partly
more general differential operator

1 3 [ 3 ] (O<x<oo)Dff A(x) 3x A(x)-x
where, apart from a convexity property for A(x), he assumes that A
A(0)=0, A(x)>0 for x>0, and A’(x)/A(x)=a/x+B(x), B being continuous at 0.

In order to solve a Cauchy problem of the form (1.5), Riemann’s method can be
used provided the corresponding Riemann function can be determined explicitly (cf.
2). Of course, the latter task is the main obstacle here. The interesting feature of this
approach to a translation operator is that it can also cover variants of the classical
translations which arise from slight variations of the potential function q in (1.5). In
fact, once the Riemann function of a differential equation (1.5) is found for some fixed
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potential q0, it may be possible to handle the solutions of (1.5) for other q without
knowing their Riemann functions explicitly, e.g., by estimating the Riemann functions
in terms of the old one.

Braaksma and de Snoo [4] have proceeded this way, starting from the Cauchy
problem (1.5) with q0--0 (el. also [3]). Its solution defines the well-known "Hankel
translation"

f0 f(z)KTq(x’t’z)zZ+*dz’ > 2’
(1.8) TTt,,(f; x)= 1 1{f(lx-tl)+f(x+t)}’ = 2’

where

K(x, t,z) F(a + 1/2) F(1/2) (xtz) ( p(x, t,z)

if [x-t[<z<x+t, and Kh(x,t,z)=O elsewhere, with 0 given by (1.7). See [2], [6],
[13], [15], also for applications in harmonic analysis of the Hankel transform. By
varying the potential and the corresponding Riemann function (el. (4.7), (4.9)) Braaksma
and de Snoo derived estimates of the kernels of a class of generalized translations. This
class does not contain the Laguerre translation whose potential is q(x)=x 2 since,
among other conditions, the potentials q admitted in [4] have to vanish at infinity. So
our final purpose is to determine the Riemann function associated with the Laguerre
translation (cf. {}4, in particular, (4.11), (4.13)) and thus to provide a new starting point
(qo(x) x 2 instead of qo(x)=-O) for the same procedure. In a forthcoming paper it will
be shown that in this way one can indeed obtain norm estimates for a class of
translations in some neighborhood of the Laguerre case.

At this point let us make some further remarks concerning product formulas for
orthogonal systems and their relation to other important formulas in the field as, e.g.,
to addition formulas and Laplace type integral representations. In particular, we will
take the Jacobi polynomial systems as examples which have been extensively studied.
While product and addition formulas for the ultraspherical polynomials are well known
for quite a time, the respective formulas for the Jacobi polynomials were found by
Koornwinder within the last decade. See, e.g., [18], [19], and, for the historical back-
ground, also the introductory survey paper of Koornwinder’s thesis [17]. He gave
several different proofs, some of which are group theoretic in nature, while others are
analytic. It turns out that, for Jacobi polynomials, one of the four properties" Laplace
representation, product formula, degenerate and ordinary addition formula implies the
three others [19]. This may be a general feature, also for other orthogonal systems. Let
us mention only one analytic proof of the product formula [18]. It also proceeds from a
partial differential equation, but now of elliptic type, i.e., from the biaxially symmetric
potential equation

(1.9) ( Dx+D )F(x,t)=O,0,t

where the same differential operators appear as in the Hankel case (cf. (1.4)). Solving
(1.9) in two different ways leads, after some transformations, to Bateman’s bilinear sum
which expresses the product of the Jacobi polynomials P’,(x)P,(t) as a linear
combination of the terms (x + t)P’t((1 + xt)/(x + t)). An application to the Laplace
type integral representations of the Jacobi polynomials (which can be derived from the
corresponding formula for the ultraspherical polynomials by means of fractional in-
tegration) then yields the Jacobi product formula immediately.
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2. Translation and Riemann function. We begin with a brief review of Riemann’s
method (cf. [27] and, e.g., [4], [10]). The Cauchy problem (1.5) can be reformulated so
as to have homogeneous initial conditions. To this end we set v(x, t)= u(x, t) -f(x), so
that, with the notation Dq,x,t Dq, Dq,t,

(2.1)
Dq,x,tV(x,t ) -Oq,x,tf(x ) (0 < t_<x),
(x,O)=O, o,(x,O)=O (x>O).

Denote by Aq(, ; x, t) the Riemann function associated with the operator

2 3 - 2a+l 2a+l 3
Dqa,,= )2 D,r2 3 "r 3"r

[q()-q()]’

i.e., Aq(, -; x, t) v*(f, q’; x, t) where v* solves the characteristic boundary value prob-
lem

(2.2)

( Oqa,t,, ) *v*(, "r )

* (2a:lv*)+(2a+lv*) [q(j)q(’)]v* 0

, ( 1}{1 1)v+G= + +- v* if-,=x-t,

v*(x,; x,t)= .
Applying Green’s theorem to

v*D,,,v v Dq,,rv v ( D" *q,,z

and choosing for the region of integration the triangle ht, with vertices R(x,t) and
P(x + e, e), Q(x + e, e) for some e > 0, one obtains

vV*,r d+ v*v-vv+ vv* d’r

(*) + (o*)-(*) + *- * .
-t+e T

Here (vv*)p denotes the value of vv* at the vertex P, etc. Under the assumption that
v* and ((2a + 1)/)v*-G* remain continuous on At, for e tending to 0 +, this leads
in the limit to

1
v*D,,,vdd a>o(x,t)= $

in view of the initial data of v. As will be shown in 4 and 5, the two continuity
conditions are satisfied if q(x)=x 2. In view of (2.1), one can replace v(,) by -f()
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in the last integral, so that a second application of Green’s theorem yields
1 fv*D,,,fdldr(x,)=

_1 llom+fx+t-(2a+lv*-v*)l fd.-{(:.*)o+(:.*)o)-(:.*).+ - -,+

Since (v*) R I, and (v*) ?o (v*) Qo 0 if a > , and 1 if a (cf. (4.12),
(4.13)), one finally derives

.(.)=,(.)+f()

f+ 1

x+ 1
((x-l+(x+l) + ’(l(x,,le, =

for 0 < N x, where

(2.3) w;(x,t,)= 7,+ Aq(,,; x,t)-Oy q("; x t)

=-,1+{,+ __A(.x,t)l
For 0<x <t, set u(x,t)=u(t,x). If w(x,t,) is symmetric with respect to x and for
each x t < < x + t, the kernel of the corresponding generalized translation is then
given by

(.4) (,,)= " 2(,,).
This relation will be the basis of the proof of Theorem 1 in 5.

In view of the importance of emann’s method [27] for various problems concern-
ing partial differential equations, many authors have tried to determine as many
emann functions as possible in closed form. For example, there are contributions by
Chaundy, Cohn, Copson, Henrici, Vekua, and, particularly in recent years, by Bauer,
Florian, Lanckau, Pngel, Wahlberg, and Wallner, cf. e.g. [21], [26], [31] and the
literature cited there. Here, one essential step is to introduce appropriate auxiliary
variables for representing the emann function, the number of which increases with
the generality of the underlying PDE. For example, let us take the boundary value
problem, which will be of particular interest in the following (cf. 4),

-[co+c(-n-]=0, co, c=cost.,
(,no; 0,no) v(f0,n; fo,no)=l.

Its solution follows at once from a result of Henrici [14] by changing the variable into

-. With the two auxiliary variables

(.a) 0= (f-f0)(n-n0), =0[(f-n)(f0-no)] -the solution is given as the confluent hypergeometric function

(f)(l-e)
k=O
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where Iwl < 1, w0 is arbitrary, and p(1-p)= C1. This can also be derived from more
general results of Lanckau [21], Pingel [26], and Wallner [31]. Let us mention that
Pingel gave his Riemann function in a somewhat different form, namely as a power
series expansion in powers of w0 with coefficients being polynomials of several vari-
ables. When applied to our example (2.5), his result reduces to

(Wo) w
V(,/; o,/o) ’ Qk(v), v=--,

k=O k!2 Wo

which coincides with (2.6b).

3. Auxiliary results. We collect some properties of the hypergeometric function to
be used in the sequel. (See, e.g., [9], [29].) The transformations

( z)(3.1a) F(a,b;c;z)=(l_z)-OF a,c_b;c;
z_ 1 (]z]<l’l z )(3.1b) F(a b" c; z)=(1-z)-bF c-a b" c"

’Z--1

F(a,b; c; z)=(1-z)"--bF(c-a,c-b; c; z)(3.c) (Izl<l)

are due to Euler as is the integral representation

F(C) fl c-b-1F(a,b; c; z)= r(b)r(c-b) Jo tt’-l(1-t) (1-tz) adt

for Rec > Reb > 0, largo z)l < r. The Gauss summation theorem reads

F(a b" c" 1)= r(c)r(c-a-b)
r(c-a)r(c-b)

Moreover, one has

(c0,-1,..-;Rec>Re(a+b)).

d F(a b c, z)
ab F(a+ l,b+ l c+l z)dz c

F(a b" c; z)= r(c)r(-a-b)F(a b" a+b+-" 1-)r(c-a)r(c-b)

r(c)r(a+b-c) (l_z),._O_F(c_ a c-b; c-a-b+l" l-z)+
r(c)r(b)

if a+b<c<a+b+ 1, c0,-1,-2,-.., and for a,b:/:O, -1, -2,...,

F(a+b) (a).(b) -log(1-z)](1-z)"F(a,b" a+b; z)= F(a)F(b) 7,i;,i [k.,o

F(a+b+l) -(I-z) r(a+b+l)F(a,b; a+ b+ 1; z)=
F(a+ 1)F(b+ 1) F(a)I’(6)

E (a+l).(b+l).[k. -log(1-z)](1-z)"
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where k,,j=k(n + 1)++(n + 1 +j)-+(a + n +j)-+(b+ n +j) (j=0,1). Hence the be-
havior of F for z 1- can be described by

(3.2a)

IF(a,b; c; z)-F(a,b; c; 1)

<C

abr(c) r(- .- b- 1)
r(c-a)r(c-b) (l-z) ifc>a+b+l,

r(a+b+l) (1-z)log’ 1 ’r(a)r(b) l-z

F(clF(a+b-c) c-a-b

r(a)r() (1-)

if c=a+b+l,

if a+b<c<a+b+l,

(1)F(a+b) log +O(1) (z--,1-).(3.2b) F(a,b; a+b; z)= F(a)F(b) 1-z

The following lemma can be considered as a generalization of Euler’s transformation.
LEMMA 1. For n P, a < 1, 0 <= q <= 1, X >= O, the function

n!(_X) k

S(n,a;q,X) Y’ F(n+a,k; k+n+l; q)kV(k+n)
k=0

satisfies

(3.3)

1
1, a=<,

IS(n a; q,X)l<
X1+

(1-a)(2-a)’
1
-<a<l.
2

Moreover, if a<= 1/2, b>0, c>0, Izl<l, and Iz/(z-1)l<l, there holds

(3.4) Y’ k’(k+n)’ (c-n’n =0 k=0

:

( Z )(a)n(C--b)n(Z)=(l--z) Z S n a" X
,,=o z-l’ (c),,n! z 1

Proof. Concerning (3.3), insert

F(n+a,k; k+n+l;1)= (k+n)!r(1-a)
n!F(k+l-a) (a<l)

to deduce S(n, a; 1, X) =j_a(27c-), from which the assertion for q= 1 follows by means
of the estimate of the Bessel functions [33, 3.31(1), (2)]

1
1, v>__ --,

(35) 12,(x)l< = (x>O)x 1
1+

4(v+1)(v+2)’
-1 <v<

2
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Now let 0 =< 4 < 1. In view of Euler’s integral representation one has

S(n,a; ,X)=I+ !( 1)! g,,q,(t)dt
k=lk k_

where g,,,,(t)= (1- t)"(1-tq,)-"-". Interpreting the inner sum as the derivative of Jo,
summation by parts gives

S(n,a; q),X) =jo(2y/--)(1-)-(.,o fo/O(2f)g,,,(t)dt,
being Kronecker’s symbol. In case a =< 0,

g’,,,,t,(t) In(1 q))-aq)(1 -t)l(1 -t)’-(1 -tdp) -n-a-1

is nonpositive on 0 =< =< 1 for each n P, 0 =< q, < 1, so that, in view of (3.5),

IS(n,a; q,,X)IZ(1-4,) ".,0- g.,.(t) dt=-I (x>=o).

In the remaining cases 0 < a < 1 we use

F(n+a,k; k+n+l; q)=(1-q)X-F(n+l,k-a+l; k+n+l;

(l-q))-" r(k+n+l) f0 (
I’(k-a+l)F(n+a) t-(1-t) "+- 1-t) n-ldt

to deduce

(3.6) S(n,a; ,X) (1-)1-a r(,+l)
r(n+a)r(1-a)

j_a(2/)t-a(1 -t)n+a-l(1 -t) "-Idt.

Applying (3.5) once more, one has

IS(n,a; O,X)l<=(1-ch)X-"F(n+l,l-a; n+l; 0)-=1

for 0 < a =< 1/2 and, for - < a < 1,

[S(n a" ,,X)l<l+(1-)x-" X F(n+l 2-a; n+2" )(n + 1)(2-a)

=<1+ (1-a)(2-a)"

This completes the proof of (3.3). To verify (3.4), we generalize a proof of Euler’s
transformation (3.1a) as given in [29, {}1.7.1]. Setting

(c).n!

n(a)"F(-n c-b" c; 1)= E (a)(c-b)j(j+a)’-(-1)
n’ (c)jj’(n-j)’j 0
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for b > O, c > O, n P, the left-hand side of (3.4) becomes

o (
_

n!(_x)k }( (a)j(c_b)j(j+a)n_j(_l)J}Yo --o k!(k+n)! j=o ,(c)J!(-Si z"- k’(k+n)’ (n-j)!
z"-J (-z)

j=o n=j k=O ( c) jj!

By an index transformation, an interchange of summations and an application of
(3.1a), the term in curly brackets can be written as

y, (j+a),,(n+j)t (
,,=o ,,=o (,,+j-k)!,,! z"

= t(_x)r(j+a,j+l; k+j+l; z)(k+j)k
k=O

o -1 (k+j)k’

which proves (3.4).

4. Te Re fefin ssdate t te Lee aslafim In the char-
acteristic boundary value problem (2.2) we choose the Laguerre potential q(()= and
substitute

1

(4. 1n(,,) (-,), no=n(,).

Dropping the asterisk, we obtain

v+ f_
+ 1/2v if =o,(4.)
+ 1/2v if f=fo,%=- ff_

v(fo,no; fo,no) 1

for , where now

The boundary conditions in (4.2) can also be written as

n if n no or fo.(4.3) v(,n;

We further use the transformation

-n v(,n; o,no)(4.4) v(,; o,o) o-o
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to turn (4.2) into its selfadjoint form

V(’,,/; ’0,0) 1 if n=/0 or ’=’o-
As a pattern for solving this problem we consider the corresponding boundary

value problem for the Riemann function of the Hankel case

a2 1/4(Vt),+ (._?)2 V=O
if

V(’,; ’o,o) 1 if ?=o or ’=’o-
(Throughout the paper the subscripts H and L stand for Hankel and Laguerre,
respectively.) Its solution can be represented using one auxiliary variable only:

(1 1 ) (’- ’o)( /o)V(’,,/; o,lo)=F - +a,--a; 1; w w=
(._,/)(.o_/o)

But while the hypergeometric function F converges in the unit disk only, the argument
w(’,,/; ’o, /o) ranges over the whole negative semiaxis when (’,/) ranges over Aono. To
establish the complete solution by analytic continuation one therefore has to use Euler’s
transformations (3.1a) and (3.1b) according to a =< 0 or a > 0. Hence, setting

(4.6) X=(.o_,)(/_o) +=(.o_r/)(._rto ) q= X__ w
q w-1

and returning to v via (4.4) again, one obtains

(4.7) v(’, r/; ’o, o)

(1 1
1; q))( o-no

Notice that q vanishes on the characteristics /= 70 and " ’o, in accordance with (4.3).
If (’,,/)Aono tends to the initial line ’=,/, q tends to 1-, and the asymptotic
behavior of the hypergeometric function implies that the Riemann function v/is still
continuous on io < " =rl < ’o with

1
0, a>

(4.8) v(’, ’; ’o,n0) 1
1, a=

2"

When substituting (4.1) into (4.7) and (4.8), the Riemann function of the Hankel case
in the sense of (2.2) is finally given for (, r) Axt by

(4.9)
1 )2 1 1 1 2)A(li, r; x,t)=o a(+r "’(--T)2", -(x + t)2, (x-t)
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Returning to problem (4.5), we use the solution (2.6) of (2.5) for the case Co= 1
and Ca 1/4- a2 to get

o { n!(_X), ) (1/2+a),,(1/2_a),,V(’,n; ’o,no) .o= k=o kV(k+n)V nVn,

E J.(21/)(1/2+a)n(1/2-a),,
,,=o

W

W

for those ’, 7 for which the series converges absolutely, i.e., for Iwl < 1. In the particular
cases a 1/2 and a 1/2, the result reduces to

(4.10) V1/2(’, 7; ’o, 7o) =jo (2t/r) Jo(2/(’o- ’)(7 7o)

which is known as the Riemann function of the telegraph equation Vn- V= 0, cf., e.g.
[10, p. 133].

In order to obtain the solution for each w =< 0 by analytic continuation, we now
have to apply (3.4) of Lemma 1. Choosing a= 1/2 + a, b= 1/2-a if -1/2 _<a__<0, and
a 1/2- a, b 1/2 + a if a > 0, as well as c= 1, and inverting the transformation (4.4), it
follows for (’, 7) Aono that

(4.11)
(’,n" ’o n )OL 0

’-n q-/2 S n -a’X a>O
(,o_ 7o)2" n.n!

o

( 1 t (1/2 + a), (1/2 +/)n 1(-n)2+’-"-/’- E stn, +; ,x ,,,, ", __<__<o,

where

( 1 )S n,- +a; q,X Y’ F n+-+_a,k; k+n+l;
k’(k+n)’’k=0

Notice that v(’, 7; ’0, 70) in (4.7) is of the same form as (4.11) except for the factors
S(n,- +_a; +,X)-As in the Hankel case, o depends continuously on the boundary
conditions (4.3). Since S(n,1/2 lal, q,X) tends to jll_l/2(2g-) for each nP if
tends to 1 -, v has a continuous extension to the initial line 7o < " =7 < ’o, and

(4.12)

1
O, a>

v(’, ’; ’o, 70) 2’

After substituting (4.1) into (4.11) and (4.12) one obtains the final version of the
Riemann function in the Laguerre case,

(4.13) .(1 )21 )2, 1 2,1 2)A(,; x,t)=,,, --i(t+,,. ,-g(-. -g(x + t) -g(x- t)

when
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5. The kernel of the Laguerre translation, proof of Theorem 1. In view of (2.3) and
(2.4), the kernel of the Laguerre translation can be derived from the representation of
the Riemann function by

1w,(,,,) om/ (*),

The main purpose of this paragraph is to prove somewhat more than needed for the
proof of Theorem 1, namely an asymptotic expansion of G(r) for r-->0 + (see (5.11)).

Again, let us first consider the Hankel case. Setting

(cf. (4.1), (4.6)) and writing the Riemann function (4.9) in the form

A(,’r; x,t)=al(,’r; x,t).
(

a/(,’r; x,t)=+v-X/F 1 1 )

a>O,
1
2 =<a <0,

(,>=o),

the kernel of the Hankel translation is given by

a>O,

For a 1/2 and a 1/2 one immediately obtains

al/2(,r) 0, a}_//2 (,i-) (x/) -1

In the remaining cases, the asymptotic expansion of G(r) for ->0 + can essentially
be deduced from

LEMMA 2. Let t >= 0 and let 0 (, 0; x, t). Then

1o(), o < < -,
(i) ar(r)= F=’2+1)/2)q,0-1/2+ 1o(-), ,> (-o+),
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(ii)
r(-
r2(1/2-v)

0 O(,r.2"r -1)a,()=
O(lg 1),
o(),

IY-1/2(Xt)2Y,r2-1 + (..0 ( ,’f’ 2),

1
2 <7<1’

y>l (--+0+).

1

Proof. By definition, one has

1-q=-llirxt, ’(r)=6-1[x’(r)-/(r)],
1 r 2 2 2 1 "r 2 2 2 ,r 2x’(,,-)= -ff xt + a-(2+x +t -,r ), q,’(’r)= -xt + - ( + x + ).

The differentiability of q and (3.2) immediately implies the assertion of part (i).
Concerning part (ii), an application of

F ---7,-.-7;1; + -7 F -7,-7;2; .
=F - -7, -7;1;

(3 1 )(1)(3 3 )F -y,-y;1; + -y F -7,-7;2; q

-7 F --7,--7;2; q (l-g,),

(3 1 )(1)(3 3 )F -7,--y;1; --7 F -y,-7;2;

(1)(31 )+7 F -7,--7;2;
for < 1 leads to

0,r a( "r )

1 -3/2’(’r F( 1

1 -3/2{

1 -3/2{

1
r F( 3- 3 ))3’,-- 7; 2;

1 3 F( 3tixt( , ) )-7; 2; 4, (1-4,)

+’(2+x +t-r ) +7 F - ))-7; 2;
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The assertion .then follows by (3.1c) and (3.2). For 0 =< ,/< 1/2, in particular, the first term
in curly brackets gives

(r-0+),

while the second term can be neglected.
An application of Lemma 2 now yields

(5.3) G(z)= F(2a + 1)(xt)_2,,([(x+,)_l[2

F2(a+ 1/2)
1 1

O(r) if a> - or - <a=<0
+

2) 1
o(r ifo<< (-+o+).

_(x_t)2]) a-1/2

In the Laguerre case, we write the Riemann function (4.13) in a form analogous to
(5.2),

-a", >o,
A(j,; x,t)=all(l,; x,t).

(,.)2a+l 1
2 __<a =<0,

a[(,r; x,t)=kv-1/2 S n, -y; q,X

Thus, G(r) in (5.1) can be .expressed by

(5.4)
(Xt) -2a --2a a()+-a,(z

a(,)=
(,r)2a+ 0 -a( 1

ffra r) 2 =<a=<0.

a>O,

When a= -1/2 or a= 1/2, use a/2(r)=jo(2V/--)to get

G1/2( ,F ) -Jl(2V)X’(),
G1L/2(’F) --(xt)-l( jo(2C-)+rjl(2C-)x’(r)}.

Otherwise, the following analogue of Lemma 2 will be needed.
LEMMA 3. Let y 0 and/et ko X o q(, 0; x, t). Then

(i)

a[(’r) r(2v)
r,(v + /2)

O(’/’2Y),
+

o(),

1
0<y<

2
1v>- (-o+),
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(ii)

(1)23, O log-- 3’=0(xt). [,’,F--- 27-1 ’rr(1 23,)
-llt-OYK’J-7-I/2Z/XO )’r 4r-

1
--a}’.(r) r77?/) O(1), 0 < 3’ < 2’

1 (r0+).o(1), v>2

Proof. First we consider the cases 3’ > 1/2 of part (i). By the mean value theorem, for
each n, k g* there exist (q,. 1) such that

(1 )F n+-3’,k; n+k+l; q

1 ) (n+l/2-3’)k=F n+-_ -3’,k" n+k+l’l
2 n+k+l

( ’ )F n+-3’,k+l; n+k+2; 6 (l-if)

r( + + 1)r(v + 1/2)
r(+ )r(k + v+ 1/2)

(n+ l/2-7)kF(n+k+ l)
r(k+ 1)r(n+ 1)

t*(1 -t)"(1 -t6) "-3/2+7dt(1 -q).

So one has

( 1 )S r/, -3’; b,X -J7_l/2(2V/-)

( 1 )f01 . (--xt)kn+ g-, = (_)!! (1 -t)"(1 -t6)-n-3/2+Tdt(1 --)

=< n+--3’ X ]j1(21/@)1 1-t6 (1-t{k)r-3/2dt(1-dP)

<=C n+-3’ X(1-q)

with a constant C depending only on 3’, and consequently

(1 1 )avL(’r)--7-1/2F ---3’, --3’; 1; jT_l/2(2f-)

C’t-1/2X F -3’, -3’; 1; q (1-)=<C(1-q).

For 0<3’< 1/2, we use the representation (3.6) of S(n,a; q,X) with a= 1/2-3’ and the
identity

(5.6) y, (1/2-3,),, [1-tic 1-[1-t] 71’-1/2 1- 7-1/2

,,=o n! 1-tq 1-tq 1 tq
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to obtain

(1 q)) r+1/2 fOr(/-vr(/+vl Jv-/(27r)t’-/(1-t)-/-’(1-t*)-

(1/2-y) [l-t](/) dtY’ n 1 t(/)rtO

(1 _)2r fOF(1/2- y)F(1/2 + y) Jr-/2(2)tr-/2(1-l)-/2-r(1-lq)-l/2-rdt"

Again by the mean value theorem, for each 0 __< =< 1 there exists s(t)(t, 1) such that

jv_ x/_ (2V@) =jv- ,/_ (2V/-) + X
y+ 1/2Jv+l/2(2/XS(t ) )(1- t).

By (3.5) this gives

(1 1 )a.(r)-q’-l/2(1-o)2rF - +7,- +7; 1; 0 .-x/2(2V/-)

(1
F(1/2- ,) F(3/2 + ,)

Lll j+,/2(2v/xS(,))Its-7=(1- t)l/2-r (1 l,)-l/2-rdl

1/2+y (1-q)ZrF +Y’ +Y; 2; q

_< C(1-)2r

In view of the asymptotic expansions

Jr-x/2 (2V/-)=Jr-x/(2Xo)+ 0(),
and

(1-q)2rF +V, +Y;1; q =F - 1 )
r(2v)

r2(v+ 1/2)

0((1 -O):r),
+

0(1 -q,),

1
0<y<

2’
1

for r--, 0 +, the assertion of Lemma 3(i) then follows.
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Concerning part (ii), term by term differentiation for q)< 1 is justified by Lemma
1, (3.3), so that

(5.7)
1

kv_ 3/2,( 1 (1/2--7)n(1/2--7)nck--a()= 7- - ’r) S n, -7; ck,X

n03 (’ 1
"F’Y-1/2 ---S n, --7; q),X

and

-X’(’r) F n+---7,k+l; n+k+2; 4’ k’(k+n+l)"k--0

An index transformation in the second term of (5.7), together with the relation

n+--7 F n+--7,k; n+k+2;, +kF n+---7,k+l; n+k+2; q

=(n+k+l)F n+-.--7,k; n+k+l; q 7+- F n+-7,k; n+k+2; q

then give

--a(’r)

1
k
_

3/k,( 1 (1/2 7). (1/2- ) 2 s .,2-; ,x
n----O

+ -y ’) S n,-y; ,X n!n!

1 1 q.,v-1/2( 1 (1/2 7). (3/2 7).
qb+ 3’- 7+ - .r) S n+l, -’; q,X (ni

-+v-1/X’()o= =o
F n+--7,k+l; n+k+2; q

k’(k+n+l)’.

(1/2-7).(1/2-7).4,"
n!n!

=AI+A2+A3+A4,
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say. When estimating the four terms separately, they turn out to be of the same order if
3’ > 1/2, while for 0_< 3’ < 1/2 the second term turns out to be the main one. Indeed, since

IAl__<pv-3/2 3’_ g,’(r) F --3’,---3’; 1; ,#

I( 1)(1) (1 3 )IA31<-_CvPv-x/2 y- - 3,+ ,’(r)F -y, --y; 2; q

where the constant Cv equals 1 for 0 =< 3’ < 1/2, and

IA4I I.E= foljo(2)I(1-t)"(1-tq)-"-l/2+Vdt
(1/2 3’). (1/2

n!n!

1

3’+ 1/2’
0=<3,<

it follows for 1, 3, 4 that

O log 7=0, (--,0+).(5.8) A,=
0(1), 3,>0

For 3, > 1/2, A 2 is of the same order since, in view of (3.3),

(5.9) 1 ) apv_l/2l

=O(1) (’0+).

It remains to consider A 2 in case .0__<3, < 1/2. Euler’s transformation and integral repre-
sentation give

s n, -; ,/,,x

( 1 )n,(-X)
k

=(1-q’) ’-’/2 E F k+3’---,n+l; k+n+l; ff k(k+n)’

1 + (1 -) r-/2 n
(3/2- 7).F(3/2- 7)

E foltk+’-3/2(1- t)n-’+l/2(1 --td?) -n-ldt
k=l F(k+v-1/2)k!
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Inserting this into A 2 and interchanging the order of summation we have

1 ) +y- 1/2tA= -v

[ (1 3 ) 1 (1_)-1/2g-, g-; 1;, + r(/2-)

y, (1/2-3,)
k=, ,,=0

n! t*+v-3/2(1-t) -v+l/2(1-t+)-n-ldtq)"

(-x)* ]F(k+v-1/2)k!

and, by (5.6), the sum in curly brackets equals

(1 4)) v-1/2follk +’t-3/2(1 t) -v+ 1/2(1 t)-v-1/2dt

=(l_q))v-1/:I’(k+7-1/2)F(3/2-) ( 1 1 )F(k+l)
F 7+,k+7-; k+l;,

Using the transformation

1
-7; 1;,# =(1- F 7+,7-;1;

and applying Euler’s integral representation once more, one obtains

A2-- --7 (r)(1-q)2v k=oEF 7+,k+7-; k+l;
r2(k+l)

Using now (3.2a), 1 -k=6-rxt and ’(r)= -6gXlxt + O(r), r 0+, we arrive at

F(1-2V)
A2= F2(1/2_,/)

(1)O log- 7=0,
13’-1/2(if( r)(1 -(/,)2v-lj_ v_ 1/_ (21/--) + 1O(1), 0<7< --,

(5.10)

F(1-2V)
F2(1/2-V)

(1)O log- 7=0,
av-1/2(xt)2vJ-v-1/2(2)r2v-l+ 1o(a), o<v<g

as 0 +. By (5.8), (5.9), and (5.10), the proof of Lemma 3 is complete.
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Applying Lemma 3 for 7 la] to the right-hand side of (5.4) and observing (5.5),
the desired asymptotic expansions now follow:

r(2+ 1) -2oz(,)=- 1/2)(xt) bo ’/2j_1/2(2o

1
o(), ,,

1O(r2), O<a<
2’

O(’r log 1 ) ot=O
,/.

1O(r"+)’ 2
<a<O (r--,O+),

1
G 1/2(’r) -lxtjl(2o)+O(’r ) (’r--+O+),

where qJo= Xo [(x + t)2-21[2-(x-t)2l In view of (5.1) we thus have found that
(s.:)

F(2a+l) ;(2xt)_2(p(x,t,fg))2a-lj 1/2(p( x )) a>
1

w(x,t,)= F2(a+ 1/2) 2’

1 1
xtjl(O(x,t,)), a= ,

where p is given by (1.7).
Proof of Theorem 1. Using (2.4) and Legendre’s duplication formula, the kernel

representation (1.6) is an immediate consequence of (5.12).. A comparison beeen the Laee an the Hankel anslations. There is a
deep relation between the geometrical interpretations of both translations. In fact the
Laguerre translation plays the same role in the rotation invariant case of the Weyl
transform on a Ngher dimensional Heisenberg group as the Hankel translation does
with respect to the rotation invariant case of the ordinary Fourier transform in several
variables [24].

But while the Hankel translation is a positive operator, the Laguerre translation
obviously is not. Nevertheless, it follows from the estimate (3.5) of the Bessel functions
that, for each a 0, the respective translation kernels are related by

[K(x,t,z) NK(x,t,z) (O<x,t,z < ).
Consequently, the operator norms of the translations satisfy

Lw(2a+,t ,,= .,, =1 (a>0 t>0)
and, in fact, it can be shown that equality holds [12]. To our opinion this is a surprising
result which seems to indicate that even nonpositive translation operators may show a
favourable norm behavior.

In addition to the numerous relations between the Laguerre and Hankel cases
mentioned in the preceding paragraphs, it is to be noted that the emann functions
themselves are closely related to each other by

(6.1) }h(,; x,t) ZA(,z; x,t)
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provided ct>= -1/2 and (,)At. This follows from (4.9), (4.13) by observing that the
factors S(n, 1/2 -Itl; qb, X) are uniformly bounded by I in view of Lemma 1.

We finally mention two different formal representations of the translation kernels
as a "triple product integral" and a "triple product sum", which reflect the formal
difference arising from the continuous and discrete spectrum of the S.-L. DE (1.4) for
q 0 and q(x)= X 2, respectively. These are

.(x,,z) [2r( + a)]

2F(k+a+l)K(x,t,z)= r 1)r(g+k=0 (a+ 1

if Ix--tl < z < x + t. This can also be compared with the kernel representation of the
Jacobi translation given by Gasper [11, (2.2)] as a sum over triple products of Jacobi
polynomials as well as an integral of a triple product of Bessel functions.

Acknowledent. The author would like to thank Professor E. G6rlich for helpful
comments and suggestions.
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Abstracl. In an earlier article [Technique for evaluating indefinite integrals involving products of certain

specialfunctions, Jean C. Piquette and A. L. Van Buren, SIAM J. Math. Anal., 15 (1984), pp. 845-855], a new

analytical technique for evaluating indefinite integrals involving special functions was described. The tech-
nique replaces the integral by an inhomogeneous set of coupled first-order differential equations. This
coupled set does not explicitly contain the special functions of the integrand, and any particular solution of
the set is sufficient to obtain an analytical result for the indefinite integral. The present article gives an

analytical expression for the functional coefficients arising in the coupled set. Thus, the process of obtaining
the coupled set is reduced to evaluation of the analytical expression. This formula is therefore valuable in
creating a general algorithm for analytically evaluating indefinite integrals of special functions. Such an
algorithm could be used to mechanically generate the coupled differential equations, and could be readily
implemented on a digital computer using a symbolic manipulation program.

Key words, antidifferentiation, ordinary differential equations, systems series expansion

AMS(MOS) subject classifications. Primary 34A30, 41A58

1. Introduction. A previous article [1] presented an analytical technique for
evaluating indefinite integrals of the form

(1)

where R(i,)(x) is the th type of special function of order i obeying the set of
recurrence relations

(2a)
(2b)

R(/)+ ( x ) a, x ) R(i) ( x ) / b, ( x ) R(ff) ( x ),

DRi)(x)=c.(x)Rti)(x)4-d(x)R(i)_ (x)

Here a,, b,, %, and d, are known functions corresponding to R(,i). The symbol D
represents d/dx. The function f(x) and the product I-I R(i) are both assumed continu-
ous (or with at most a finite number of discontinuities) over an interval [xl, x_ ],
insuring that the integral I exists in the same interval. The technique is a generalization
of one used by Sonine [2] (described by Watson [3]) to evaluate indefinite integrals
involving products of Bessel functions. Reference [1] extended the technique to include
most of the special functions of physics, including Legendre functions, Hermite func-
tions, Laguerre funtions, etc. The technique replaces the integral which is to be evaluated
by an inhomogeneous set of coupled first-order differential equations. The coupled set
does not explicitly contain any of the special functions R(), and any particular solution
of the set is sufficient to yield an analytical expression for the integral I.

Received by the editors January 22, 1985, and in revised form June 30, 1985.
+Naval Research Laboratory, Orlando, Florida 32856-8337.
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The method of [1] assumes that the integral I of (1) may be represented by the
expression

m

(3) I= Y’ Z E Ap,p p.,(x) I-fiR<i) (x),"’, Ixi +pi
Pl=0 p2=O pm=O

where the 2" coefficients Ap,p2,...,p.,(x ) are functions to be determined. The technique
replaces the integral I with the coupled set of differential equations

(4) f( x 6o,p DAp + EBpqA u,

where 8 is a Kronecker delta defined to be zero unless Pl =P2 pm--O. In (4),
the shorthand notations Ap Ap,,p2,...,p,,,(x) and npq Bp,p2,...,pm,q,q,...,q,,,(x have been
used. Also, the notation E(q} represents the multiple summations

E E...E.
ql 0 q2 0 qm 0

The functions npq are described in [1] as being known functions resulting from re-
peated applications of the relations of (2) and the regrouping of terms in the form
yI;m__IR (’) As of the writing of [1], no general analytical expression for the coeffi-

la, +Pi
cients Bpq was available. However, due to the advent of symbolic manipulation com-
puter programs (such as MACSYMA, SMP, REDUCE, MAPLE, etc.), such a formula
would reduce the problem of generating the coupled set (4) from the indefinite integral
of (1) to a mechanical process (i.e., evaluation of a formula). Since a particular solution
to the coupled set may be easier to obtain than directly performing the indefinite
integral, the availability of a formula to generate the required coupled set in an
algorithmic way is of interest. This formula is obtained in the present article.

2. An analytical expression for the coefficients B,q. Rather than working directly
with the recurrence relations (2), it is more convenient to use the equivalent set

(5a)
(5b)

DR(i)( x ) a’ x ) R(i)( x ) + b[, ( x ) R()+ ( x ),
(x)= ’(x)R(’)(x)+ ’(x)R (’) (x)*’#+ C# d, /x+

where

a,(x) =-c,(x)-
a,(x)d,(x)

6;( x ) a.(x x ),

ct(x)=dt+l(X),

dt(x)=-ct+l(X).

The special case where b,=0 (discussed extensively in [1]) is excluded here.
The desired expression for Bpq is now obtained in the following way: The logarith-

R(’) tx) is first computed and simplified usingmic derivative of the expression 1-I’=x..,,+pi
recurrence relations (5). It is next necessary to express the quantity

m. ApD iI-I R (i) (x)
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in terms of expressions of the form II’=lR(i,)+p,(x). The desired expression for Bpq is
obtained by comparing the result of the above computation with second term on the
right-hand side of [1, eq. (10)]. The result is

(6) npq E a,j(x) qt,Pi
j=l

m

)-[- txj(X) qt,pt+Stj p/,O

where a,, b,, c,, and d, are defined above. Although the number of coefficients Bpq
becomes large even for small values of m (this number being equal to 22m), this
presents no difficulty to the new symbol manipulation computer programs which
routinely evaluate symbolic expressions containing thousands of terms. [1] discusses the
procedure necessary to obtain a series solution (involving a single summation index) for
the unknown integral. This process could also be implemented mechanically using a
symbol manipulation program. In fact, I have recently implemented [1, eq. (10)],
replacing npq with (6) above, using the SMP computer program. This implementation
has enabled generation of the relevant differential equations to occur in a few minutes,
compared with the several hours normally required when implemented using paper and
pencil. Hence, combining the technique of [1] and the formula of (6) above, it should
generally be possible to obtain a simple series representation for integrals of the type
(1). Of course, if a dosed-form particular solution of the coupled set (4) is found, then a
closed-form analytical expression for the integral of (1) results via (3).
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1. Introduction. A function defined in the interval (-1,1) and satisfying the
required conditions (see, e.g., [3, v. 1, 10.19] or [11, v. 1, 8.3]) may be expanded into a
series uniformly convergent in this interval with respect to the Jacobi polynomials (in
short: the Jacobi series):

(1.1) f= ., a’")[f]P’’) (a>-1,fl>-1).
k=O

Here P’’a) is the usual notation for the k th Jacobi polynomial, and

(2k+X)ktF(k+X) fx_(1-x) (l+x) --k(1.2) a’’t)[f]=2XF(k+a+i--k_-fl.-+l ’’<’")(x)f(x)dx

(k=0,1,...)
where

?=a+fl+l.
Some alternative forms for the coefficients (1.2) are available for many elementary

and special functions (see, e.g., [11, v. 2, 9.3]). In particular, if f belongs to the
hypergeometric family, atg’’’)[f] is also of this type and obeys a difference equation of
the form

(1.3) Aj(k)/k+j=B(k),
j=0

in which A and B are rational in k [11, v. 2, 12.4], [10]. In this case, equation (1.3)
serves as the basis for a very efficient numerical procedure for the calculation of
a’’)[f] (see [11, v. 2, 12.5] or [17, Ex. 7.2]).

A simple and universal method for deriving a recurrence relation for the coeffi-
cients ak’/)[f] may be applied in the case where the function f satisfies the linear
differential equation

n

(1.4) _, p,,f(")=q
m=O

Received by the editors April 15, 1985.
Institute of Computer Science, University of Wrodaw, 51-151 Wrodaw, Poland.
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of order n, with suitable initial or boundary conditions. In (1.4) P0, P1,’", Pn are
polynomials, and the coefficients a’)[q] are known. The main idea of this method
should be ascribed to Clenshaw [1]. We restate Clenshaw’s result briefly. We assume the
Chebyshev series expansion for f:

1 o3

(1.5) f=-to[f ]To+ E t[f]T
k=O

and similar expansions for the derivatives, where Tk is the Chebyshev polynomial

kp(k-1/2,-1/2)(X ).(1.6) Tk(x)=(1/2)k
Here we use the Pochhammer symbol

(a)= r(a+ k)/r(a).

The following identities can be deduced from basic difference properties of the
Chebyshev polynomials [1]:

(1.8)

k_l If(m+ 1, tk+l f(rn+ 1)] 2ktk If(m)],

t, [x’f (m)] 2 j t,_,+, [f(m)],
j=0

for nonnegative integers m and s. The above equations are then applied to the
differential equation (1.4) to obtain a system of finite difference equations for the
coefficients {tk[f(m)]} (m=0,1,-. ",n). Many authors (Fox [4], Fox and Parker [5],
Geddes [6], Horner [7], Morris and Horner [13], Olaofe [14], Paszkowski [15]) have
proposed modifications and improvements of Clenshaw’s method, which lead to a
single difference equation or recurrence relation for the principal coefficients { t[f]}.

Paszkowski ([15, {}13]) has raised the problem of constructing the recurrence
relation which has the lowest order among all such relations following from (1.4), (1.7)
and (1.8). The complete solution to this problem, even in the more general case of the
Gegenbauer series expansion

(1.9) f= E g)[flc) (v>-a/2),
k=0

where C") is the Gegenbauer polynomial

C)__ (2V)k e(k 1/2, v-1/2) (p :=/=: 0),
(1.10) (v+ 1/2)k

Ck)= lim v- lC"),
v--0

was given by Lewanowicz [8]. A generalization of Clenshaw’s method, in which (1.6)
was replaced by (1.9), has been given by Elliott [2].

The case of the unsymmetric Jacobi polynomial expansion (1.1), for which a 4= fl,
was discussed in [9]; the proposed optimum algorithm provides a recurrence relation of
minimum order among all such equations which can be obtained from the differential
equation (1.4), using basic difference and differential properties of the Jacobi poly-
nomials (see (3.1), (3.2)).
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In the present paper we describe another method for constructing a recurrence
relation for the coefficients (1.2). The new method, though not optimum in general,
seems to have some important advantages over the algorithms of papers [8] and [9].
First, the recurrence relation and its order are given by explicit formulae. Second, the
components of these formulae are expressed in terms of the coefficients of the differen-
tial equation

(1.11) (qmf )m)=q,
m=O

where

(1.12) qm E (-- 1) J’-" j Pj’(J-")rn
j=m

which is equivalent to (1.4) (see, e.g., [15], p. 231). Last, the new procedure involves
much less computational effort. Also, it could well be programmed in a language for
symbolic computation; in this connection, see [6] and [16].

The main result of the paper is given in 4. The special cases of Gegenbauer and
Chebyshev expansions are discussed in 5. Section 6 contains an illustrative example.

In the sequel we shall use the notation [9]

F(k+a+l) a(,,)[f ]"(1.13) bk[f] b(’B)[/]- F(k + X)(2k + )- 1)3

We call bk[f] the Jaobi coefficients of the function f. It will be convenient to use
coefficients with negative indices. We assume that if a 4: fl, or a fl but 21 + 1 is not
an integral >= 0, then

(1.14) b(Y/,t)[f]=0 for k=l,2,...,

and if a fl and 21 + 1 rn is a nonnegative integer, we define [2]

(1.15) b(_,/,) f { 0b,,)[f] fOrfor k=k>=m.l,2,. ., m- 1,

The quantities

1 ) b(,_ 1/2 1/2)(1.16) ck[f ]=c(")[f ]=2 k+v-- ’" [f]

are called the Gegenbauer coefficients of f. It can be seen that

gk(")[/] (, 4: 0)

---4-t,[f (,=0).

2. Difference operators. The results given in the following sections are expressed
in terms of a certain type of linear operator. Let denote the linear space of all
"doubly infinite" sequences of complex numbers, with addition of sequences and scalar
multiplication defined as usual. Obviously 5 is the space of all complex-valued func-
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tions defined on the set of all integers. Let 6:ra denote the set of all rational functions

Consider the set 6:* of all linear operators mapping 6a into itself. For T6:*
and (zk } 6:, we denote the kth coordinate of the sequence T(z/) 6: by Tz, so
that T( z/< )= (Tz }. The zero operator, the identity operator and the ruth shift operator
in * are denoted by 0, I and E m, respectively. Then we have

(2.1) Iz=z, 0z=0, Emz=Z+m
for every ( zk ). Clearly, E= I.

Let be the set of all operators L* such that

(2.2) L= X(k)E "+J,
j=0

where r g 0 and u are integers, and X0,X,.-.,X. Every nonzero operatorL
can be expressed in the form (2.2) with X00 and X0. The number r=r(L) is
referred to as the order of the operator L, wle Xj are called the coefficients of L. The
elements of the set are known as difference operators.

Let L be defined by (2.2) and let M be such that

M= E ()e+.
j=0

We define the product of L and M to be the operator

= x,() E(+.+)e"+"+’+.
i=0 j=0

It can be seen that under this definition of multiplication, with addition defined in
a natural manner, forms a ring with identity I.

Let L and. The equation Lzk=w(k) is the recurrence relation for the
sequence (zk); the order of the recurrence relation is the order of the difference
operator L.

3. Propeies oI the Jacobi coefficients. The well-known difference properties of
the Jacobi polynomials,

(2k + X- 1)3xP’)(x)= 2(k + a)(k + )(2k+ X + 1)P’:)(x)
+ (-)(2+x)e,"(x)
+ 2(+ 1)(+ x)(2+ X- k+l

d (,")(x)+(-)(+ x- 1)(2 + a- )+1
d

(+-)(+x)’ ()

d _,1. ]-(k+t)(k+fl)(2k+X+l)-xP( (x)

(k + h- 1)(2k +- 1)3Pk(’ a)(x)
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(see, e.g., [3, v. 2, {}10.8] or [11, v. 1, 8]) imply the following basic identities for the
Jacobi coefficients [9]:

(3.1) Xbk[f bk [xf(x)l,
(3.2) Dbk[f’ =bk[f].

Here X and D are difference operators,

2

(3.3) X= E lij(k) Ej-1,
j=0

2

(3.4) D= Y’ j(k)E-1,
j=0

and , ij. are rational functions,

(3.5)
8o(k)=2(k+a)(2k+X-3)/’(k), l(k)=2(ot-fl)(2k+)t)/’Y(k),

2(k) -2(k++l)(2k+X+3)/v(k), v(k) (2k+X- 1)3,

(3.6) lio(k)=ko(k) l(k) 1--- )k
(l(k)2 2(k) (k+X)2(k).

From (3.1) and (3.2) we deduce the more general equations

(3.7) p(X)bk[f]=bk[pf (p a polynomial),

(3.8) Oibk[f (i) bk[f 1.
Powers of the operators X and D may be obtained by the following procedure.

Let A ,e, A E=0X(k)Ej- 1. Then we have

2i

Ai= E hi(k)E-i (i>O),
j 0

where kijrat, X00(k)-- 1, and

Xij(k)=Xo(k)hi_l,j(k-1)+Xl(k)Xi_l,j_l(k)+X2(k)Xi_l,j_2(k+ 1)

(j 0,1, ,2i’,i,, 2=i 1=i,2i+1=i,2i+20)
for >__ 1. Moreover, if A has the symmetry property X(k)= )t 2-j( k X)(j 0,1, 2)
then N also has this property: Xi(k)=Xi,2i_(-k-X)(j=0,1,...,2i). Note that D
and X have the symmetry property.

DEFINITION 3.1. Let

A)= I+ "r(m)( k ) E
Q (m) kI ( k + h + m+ 1)’rm()(k) E,

where e= +1, m=0,1,-.., and

(2k+)k+ 1)3"rm(-X)(k) (2k + )k + m+ 1)2(2k + X- 1)’ ,rmO)(k) k+fl+l
k+ a + 1 rm(-1)(k).
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Further, let

Si(f)= I (i<j),

A()c() (i >__j > O)

Ph()= Sh(_ (h > O)1,0

=I (re=O),
Q_ " (m> a)lX-m_l

In virtue of [9, Lemma 3.5], we have

(.9) o(x+I)=QoD (= +_).
It can be checked that

(.ao) A)Q(me) Q(me)A()__l (m >= 1).
LMMh 3.1. The identity

(3.11) Pib [f] ROb[f 1,
where o (x + e)(d/dx), holds for e + 1 and O, 1,....

Proof (by induction on i). For i=0 equation (3.11) is obviously true. Now, we
have

PCx)bk %f Ao(X+ el) bk [f’] QCoDbk [/’] R?)bk f ],
as can be seen using Definition 3.1, (3.9) and (3.4). Assume that (3.11) holds for a
certain (i >__ 1). We obtain

From (3.10) we deduce that

Ai Ri Q

which together with the result of the first part of the proof leads to

i+1 i+ lk

DEFINITION 3.2. Let

HO=H+m(X+eI) (m=0,1,...),

I (i=l,,...),

where e 1 and

H= (k- 1)ao(k)E-1- k(k + X)t(k)I+ (k + X)(k) E.

LNN 3.2. For every m O, 1,... and e 1 we have

(.a [r((x-l(xl}] 1.
Proof. It can be checked (see [9]) that

(. [(x-1’(] =[1.
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We also need the identity

(3.14) %{ (x- e) +’f(x) } (x-e) ((x- 1)f’(x)+ (m + 1)(x + e)f(x)}
(m=0,1,..-).

Equation (3.12) holds trivially for m=0. Assuming that it is true for a certain m
(m > 0), and making use of (3.14) and (3.13), we obtain

bk[em+l{ (x_ E) m+lf(x) } V(m)bk[(x2-1)f’(x)+(m+ l)(x +e)f(x)]

V(m){ H+(m+ l)(X+eI)} bk[f V()’m+lbk[f

4. Recurrence relation for the Jacobi coefficients. The main result of this paper is
contained in Theorem 4.1 below. We shall need one more lemma.

LEMMA 4.1. For every r 0,1,. and e +_ 1 we have

(4.1)
dx ((x--E)7(x)}-- k [(hr)(’ore-hf(x),

h=O

where oa (x + e)( d/dx ),

(4.2) fl(h)=(--1)h( r) (+1)h "-’h (h=0,1,...,r),

and Bm") are generalized Bernoulli numbers defined implicitly by

et_l =o-7.
Proof. We start with the identity [11, v. 1, Eq. 2.8(16)]

(y+ 1)r fl(hr)y r-h
h=0

Combining this with [11, v. 1, Eq. 2.9(4)]

dz (zg(z)} fi (o+i)g(z),
i=1

where o z(d/dz), we obtain

(4.3)
dz { zrg( z ) } "h/ (r)z.,r- hg_ Z _.( )

h=0

For e {-1,1}, let z=x+e and f(x)=g(x+e). Obviously, %f(x)=ag(z) and (4.1)
is simply a transcription of (4.3). 1

The quantities (4.2) can be calculated recursively using formulae (cf. [11, v. 1, Eq.
2.8(7)1)

(hr)’--(hr-1)-l’-r(hr_--11) (r=l,2,... ;h=O,1,--. ),
(4.4)

0(r)-" 1 /(r, 0 r > O)t-’r+
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THEOREM 4.1. Let f be a function satisfying the differential equation

(4.5) ( q,f )(m)= q
m=0

of order n, where qo, qx,"" ", q, are polynomials, and assume that f(’) can be expanded
into a uniformly convergent Jacobi series. Let ei, be an integer >= 0 such that the equation

(4.6) qm(x)=(x+l)er(X--1)e-’mu,,(X) (re=l,2,.. ",n;qmO)

holds for a polynomial u,,, u,,( +__ 1)4: O; /et

(4.7) s/= max( max
<_m<=n,qmO

and let e { 1,1 }, s, o and d be integers,

I 1
(4.8) e=

-1

(m--eim),O1 (i= _+1),

for S _’_ S_. 1,

for sl > S_ 1,

(4.9) s=G, o=s_, d=o-s.

Finally, define the polynomials

(4.101 Ch (x) a(i-s) (x + e)-iPi-s-h qi(x)
i=s+h

(4.11) /j(x)=(x-e)-Jj+a(x)

Then we have the recurrence relation

(4.12) Lb,[ f P( k ),

where

for h=0,1,..-, n-s,

forj=l,2,. .,n-o.

s-1 d

(4 13) L=e(a) _, D’-mq,,(X)+ ., S(0 R(h%kh(X)d-l,h
m=O h =0

and

+ R(d) ., Vj<OCj( X),
j=l

Proof. Equation (4.5) implies that

b,[(qmf)’m’]=bk[q]
m=O

(4.14) 0(k)= P(dODbk[ q ].

(The notation used is that of Definitions 3.1 and 3.2.) The order of this relation is

expressed by the formula

(4.15) r-s_l+Sl+2 max (deg(qm)-m).
O<=m<=n,qmO
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Applying the operator Ds, where s is defined in (4.9), to both sides of the above
equation, and using (3.7) and (3.8), we obtain

s-1 n

(4.16) E Ds-mqm(X)bk[f]+ Y’ bk[(qmf)(m-)l=Dbk[q]

Now, it readily follows from (4.7)-(4.9) that em>=m-s>=m-o. Hence the formulae
(4.10) and (4.11) actually define polynomials. Let v,,,(x)=(x+e)-mq,(x) for re=s,
s + 1,- -, n. Using Lemma 4.1 we transform the second sum on the 1.h.s. of (4.16)"

Z bk[(qmf)(m-s)]’-=hSbk[{(x-t-e)rvs+r(x)f(x)} (r)]
m== r=0

=h (hr’bk[6ore-h(Os+rf)]=hSbi[he(hf)].
r=0 h=0 h=0

In the last expression, qh is the polynomial defined in (4.10).
Let e and d be the integers defined in (4.8) and (4.9), respectively. Applying the

operator P() to both sides of (4.16) and making use of Lemma 3.1 and of (3.7), we
obtain

s-1 d }(4 17) P(a ) Z Ds-mqm(X)k- Z S(d e--) R(h)qh(X) b,[f1,h
m =0 h =0

’-(qhf)] PD’b,[ql
h=d+l

Using (4.11) and Lemma 3.2, we deduce that

h=d+l i=1 i=1

Noting this result in (4.17), equation (4.12) follows, in which the operatorL and
the function 0 are given by (4.13) and (4.14), respectively.

As we remarked in I, the differential equation (4.5) is equivalent to the equation

pmf(m)=q
m=0

of order n, where Pm are polynomials. Now, we have seen that the recurrence relation
(4.12) is obtained by the use of the operator P P)D which satisfies

n

P E bk[Pmf(m)]=Lb[f],
m=0

where L is the operator (4.13). According to [9, Lemma 4.2], the order of the operator
L is equal to

r= r(P)+ 2 max (deg(pm)- m).
ONmn,PmO

It can be checked that, without affecting its validity, we may replace pm by q in the
above expression. As r(P)=r(P))+r(D)=d+2s=s+o, we obtain the formula
(4.1). a
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The recurrence relation (4.12) takes a particularly simple form in the case where
neither x + 1 nor x-1 divides the coefficient qn(x) in the equation (4.5). Namely,
equations (4.13) and (4.14) then become

n

(4.18) L= E on-mqm( S)
m-----O

and

p(k)=Dnbk[q],

respectively. The operator (4.18) has the order

(4.19) 2n+2( max (deg(qm)-m)).
O<=m<n,qmO

In the case under consideration our method is equivalent to the Paszkowski-type
method described in [9, 5], which like most other algorithms [4-7], [12-15]) does not
analyse the form of the coefficients of (4.5) but leads "blindly" to a recurrence relation
of the maximum order (4.19). (Obviously, (4.19) is the upper bound for (4.15).)

There are two other special cases. First, if qm(X)=(X2- l)mwm(x), where Wm is a
polynomial (m=0,1,-.., n), then (4.13)-(4.15) reduce to

n

j--O

o(kl=b[q],
r=2 max (deg(wm)+m),

O<__m<=n, wnO

where

j(X)= iq(m).(X -1) Jwm(x )
m=j

Second, when for e (-1,1}, qm(X)=(X+e)mOm(X), where v, is a polynomial (m=
0,1,.-., n) and qn(-e)4: 0, we have

L= S0 R?)h( X)n-l,h
h=O

o(k)=P,,()bk[q],
r n + 2 max deg( vm),

where

(])h(X) E t’ml(m)"- hum (X)
m=h

Finally, a symmetry property of the equation (4.12) should be noted which seems
to be useful for checking purposes.
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THEOREM 4.2. Operator (4.13) can be written in the form

L=a)(k) Xi(k)Ei-u (r=r(L))
i=0

in which

u=s+ max (deg(qm)-m),
0 <= m n, q., 0

1

(d-1)(k)=(k-4ro-t-l)d()= (2k+X- 1) -1

[(2k +- 1)(2k + ;k + d+ 1) d-2] -1

(d=0),
(d= 1),

and o, hx," ", h rat are such that

kr_i( k ) (-1) rlXi(- k- k- d )
where

(i=0,1,...,r),

d (d=< 1),
r/=

d-1 (d> 1).

Proof. We give a short sketch of the proof. Let P represent any of the following
operators:

Rh) (h=0,1 d)p(d) R(d) S(de)l,h
It can be shown by induction on d that

d

P=(d)(k) y’ ri(k)E’
i=0

in which ro, %,..., dat are such that

_()=(-a)"(--X-d) (=O,,..-,d).

Further, let T stand for any of the operators
s--1 oD -mqm(X), (h=0, a,’",d).
m=0 j=l

From a symmetry property of the operators () and of the powers of D and X, it can
be seen that

in which

2t

T= E "rj.( k ) E-i-t

j=O

t=s+ max
mM,qmO

and the coefficients satisfy

(deg(qm)-m),

(j=O,1,...,21).
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Here M is the set (0,1,...,s-I), or (o+l,o+2,...,n), or (s+h,s+h+l,...,n)
(h 0,1,. ., d), respectively.

Now, it can be checked that

d+2t

/=0

in which X/are such that

X , ,()=(-)X+ ,(---d)

Substituting this in (4.13) gives the theorem, t3

(/=0,1,..-,d+2/).

5. Recurrence relation for the Gegenbauer coefficients. The special case a fl of
the Jacobi series (1.1) is of particular importance. As has already been remarked in 1,
it is then more convenient to deal with the Gegenbauer series (1.9) or the Chebyshev
series (1.5). A recurrence relation for the Gegenbauer coefficients (1.16) can be con-
structed by a method analogous to that used in 4. However, in the present section we
obtain neater looking results.

First of all, the basic identities (3.1), (3.2) may be replaced by

(5.1) c,[f ]=c,[xf(x)],
(5.2) ck[f’ =ck[f],

in which

=2-1(k q 1,)-1{ kE-1 +(k’Jr 2p)E },
=2-1(k+,)-1(E-1-E},

We have

(5.3) p() c, f c, pf ( p a polynomial),

(5.4) iCk f’) =Ck[f].

Note that [8]

(5.5) i 2-i(k+p_i)i+1 E [9im(kq-l)) E2m-i,
m-O

where

Pim(l)=(--1)m( ) m(IC--i+2m)(ic+m+l)i-m

Further,

i--2-i _, ij(kq--lt)E 2j-i,
j=O

(m=0,1,...,i).

where

(j=0,1,...,i)
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for v 0 and

oo()=,
fi+(x) -1{(_ v)fi_,j(r_ 1)+ (r + 1)) i_ 1,j_ l(ff "P 1)}

(j=0,1,..-, i; i> 1;i_l,_l--i_l,i--O)
for v 4= 0 (ibid.).

DEFINITION 5.1. For any m =0,1,..- and e 1 we define

where

Further, let

Finally, let

where

,)=I- erm( k ) E,
-O)=kI+ e(k + 2v+ m+ 1)r,,(k)E,

rm(k) (2k + 2v + 1)2/(2k + 2v + m + 1)2.

{1 (i<j),
Si(f)= ii)S-)l,j ( >=j >= 0),
ff,,() m(*) (i>0)-1,0

}= { I (i= 0),
I>al (i>o).

(m*}=+m(+eI) (m=l,2,--- ;e= _1),

/()= { / (i=0),
1/} (i> 1),

= 2-1(k+ p)-l{(k 1)2E-1- (k+ 2v)2E }.
Lemmata 3.1 and 3.2 now have the following analogues.
LEMMA 5.1. For any >= 0 and e +_ 1 we have

1% [<<I] c[l],
where % (x + e)(d/dx ).

LEMMa 5.2. For anyj >= 0 and e + 1 we have the identity

Finally, we have the following
THEOREM 5.1. Let f be a function satisfying the differential equation (4.5) of or&r n

and such that its nth &rivative can be expan&d into the uniformly convergent Gegenbauer
series. We then have the recurrence relation

(s.6) Ec[fl=(),
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where

s-1 d

Z d(e) Z )S-mqm() -[- Z (de-)X, (ff)l)() +(de) no J’(e)J()h
m=0 h=0 j=l

k ) (a))c[ q ],

and the symbols e,s, o, d, q’h, qj have the meaning given in Theorem 4.1. The order of the
relation (5.6) is expressed by (4.15). Operator L can be written in the form

=(k) k Xi(k) El-u, r=r(L),
i=0

in which

u=s+ max (deg(qm)-m),
O<m<__n,qmO

/(k)= { 1

1/(2k+2v+d+l)d_l

and ), ),. ., X 5arat are such that

kr_i( k ) --1Edk,( k-2- d)
where 0 for d 0 and 1 for d > O.

From (4.5), we have the identity

i ck[(qmf)(m)] =c[q].
m=O

(d=O),
(d>O),

(i=0,1,...,r),

.-m )}Z 2m(k+v-n)m(k+v-m+l)m Z Pn-m,i(k+v)E2i-n+mqm( ck[f]
m =0 i=0

n

Z Pnm(kWl)Ck-n+2mIq]
m-=O

The described procedure is equivalent to the generalized Paszkowski algorithm ([8]; or
[17, p. 196 ff]). Clearly, equation (5.7) has order (4.19). Equations (5.6) and (5.7)
coincide if and only if the coefficient q, in (4.5) has no linear factors of the form
(x + 1) or (x- 1).

6. Example. The generalized hypergeometric function

(6.1) F(z) p+lFp ( ]tl’ It2’" "YP+I )EIE2 Ep
Z (Re(2,-2ej.)<0)

or, in view of (5.5),

Applying the operator D" to both sides of the above equation and using (5.3) and (5.4),
we obtain another recurrence relation obeyed by { Ck[f] }, namely

(5.7) { )n-mqm())Ck[f]=)nck[q]
m=0
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satisfies the differential equation [3, v. 1, 4.2], or [11, v. 1, 5.1]

j=l

which can also be written in the form

(6.2)
p

uoY(z)+ E (UmZ-Vm)zm-ly(m)(z)+(z-1)zPY(P+l)(z) =0,
m=l

where Urn, Vm are constants. Therefore, the function

(6.3) f,(x)=F( l +x )2 (-1_<x__<1)

satisfies

(6.4)
p

UoY(X)+ E (UmX--Wm)(X +1) m-ly(m)(X)+(X-1)(x+l)py(p+I)(X)--O,
m--1

where Wm---Um--2Vm (m=1,2,..., p).
It is known [11, v. 2, 9] that the function (6.3) can be expanded in the Jacobi

series (1.1) and that

I-I p+l ( k+fl+l,k+Y1,...,k+yp+l 1)i=l(Yi)k p+2Fp+l
2k++l,k+el,’’"k+ep(6.5)

We need the following alternative form of (6.4):
p+l

XoY+ E {(X,nX +"m)(X+ 1) m-ly) ("0
=0,

m=l

where Xp+l=-/Xp+l= 1 (cf. (1.11), (1.12)). By virtue of Theorem 4.1 we have the
recurrence relation

Lpb(ka’’[fp] =0
of order p + 1 satisfied by the Jacobi coefficients of the function (6.3), where

p-1

Lp XoPp(I_)ID+ E s(pl)-2, hR(hD(’qh+X+OhZ)+R(pl)- Hi(1)
h=O

and

p+l p+l

’l’lh= E (l!--hl)---lX,, Oh= E /(ll)I 1"
l=h+l l=h+l

In particular, the Jacobi coefficients of the function

f2(x)=3F2( "Y1, 2,3el,e2 1+x)2
obey the third-order recurrence relation

(6.6) L.b’)[f] =0,
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where

L2 Aol) ( koD+ (h + h 2 + 2)X+ (Jl + 2-- 2)1 ) + Qol) ( H+ (h 2 + 4)X+ (/2- 2)1 },
and

0 =01--02 d- I23 1, )k =02 3o + 7,
X 2 1 6, 1 02-- 31 2ee2 + 4e + 4e-- 1,

2 =O1-- 2q- 2e2 + 1, o=y + Y2 + Y3,

Remark that an equivalent result is furnished by the optimum method of [9]. On
the other hand, we have recently shown [10] that the quantities (6.5) satisfy the
recurrence relation

p+l

(6.7) E di(k)a(a’B’[+]
i=0

of order p+ 1, where the coefficients A(k) are expressed in terms of hypergeometric
functions of unit argument. We have checked that, for p 2, (6.7) is equivalent to (6.6).

Acowledgment. The author would like to thank Professors S. Paszkowski and
M. J. D. Powell for helpful comments.
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INVARIANT CURVES FOR MAPPINGS*

HAL L. SMITH

Abstract. The main result of this paper concerns a smooth map T of a Banach space X into itself which
has an unstable fixed point x0. We prove that if the spectral radius X0 of the Frechet derivative of T at x0 is
an eigenvalue which exceeds one and appropriate additional assumptions hold, then there is a smooth
invariant curve emanating from x0 which might be called the "most unstable manifold" of x0. The curve is
parametrized by a smooth function satisfying a functional equation involving T and X0. This result is shown
to be especially useful when the map T possesses certain monotonicity conditions. In this case, the curve can
be shown to be monotone and to terminate on a stable fixed point of T.

Key words, unstable manifold of a fixed point, functional equation, smooth linearization

AMS(MOS) subject classifications. Primary 47H99, 47H07, 39B70

Introduction. In 1901, motivated by the work of Poincar6 on the stability of
periodic solutions of ordinary differential equations, T. Hadamard [4] published a short
note in which he showed that the unstable manifold of a hyperbolic fixed point of a
smooth diffeomorphism T of the plane can be obtained as the limit of a sequence of
curves generated by successively applying T to a suitable initial curve. In fact, his result
is more general. He assumed that

T(x,y)= (sx + F(x,y),s’y+ (x,y)),
where F and have Taylor developments about the origin beginning with quadratic
terms, s > 1, is’ < s. He then shows that if C is a curve which can be parametrized by
y=y(x) with [dy/dx[<_a, then C T(C) converges to an invariant curve for the map
T (T denotes the n-fold composition of T with itself: T T T, n times). Since s’
is not assumed to satisfy is’] < 1, nor s’4:1, this invariant curve, in general, will lie in
the unstable manifold of the fixed point; it might be called (part of) the "most unstable
manifold" of the fixed point.

The purpose of this paper is to prove a general version of this result, obtaining a
"most unstable" invariant curve emanating from an unstable fixed point for a smooth
map. We will also find a parametrization of this invariant curve which effectively
linearize the action of T on the curve. The following is a special case of our main
theorem.

THEOREM. Let T: X X be a smooth map of a real Banach space X into itself having
a fixed point xo. Let A =DT(xo) be the derivative of T at xo and assume that

Aeo=Xoeo where eoqR(A-,oI ) and )0>1 is the spectral radius of A. Then there
exists a unique smooth function y" [0, o)X, y(t)=Xo+ teo+O(t2) as tO, with the
following properties.

I. y(t)= r(y(?tlt)) t>=O.
II. y(t)=lim,_,o T"(xo+?t-dnteo).

III. If T is a diffeomorphism then y is a one-to-one immersion ( y’( ) 4: O) andy( ) is
not a fixedpoint of T (or periodic point) for any > O.

Received by the editors June 22, 1984, and in revised form February 14, 1985. This paper was presented
at the International Conference on Qualitative Theory of Differential Equations, Edmonton, Alberta, Canada,
June 1984.

Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
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In II, T" again denotes the n-fold composition T T T T, n times, of T
with itself. We will use this notation throughout the rest of the paper without further
comment.

If we let C be the curve in X parametrized by y,C=(y(t): t>=O), then the
functional relation I can be interpreted in terms of the commuting diagram of maps

T
C C

[o, .
)

In other words, the parametrization y of C effects a linearization of T on C. One
may view the functional relations I in a different vein by setting f(s)=y()qo), - <s
< , yielding the functional equation f(s)= T(f(s- 1)).

The finite-dimensional version of the theorem can be obtained from existing
results. First observe that the existence of y: [0, oe)X in the theorem follows by
continuation from the existence of y: [0,e)--* X, e > 0, satisfying I, II and III. Hence,
the issue is the local existence of y for near zero. By using [11, Thm. 5.1], one obtains
the existence of a local C2 unstable manifold for T, which by a C2 change of variables
can be taken to be a neighborhood of x0 in an affine subspace of X. Then, a result of
Hartman ([5, Exercise 8.2, p. 246]) can be applied to the restriction of T to the unstable
manifold yielding a C change of coordinates near x0 on the unstable manifold so that
in the new coordinates, T (restricted to unstable subspace) can be represented by its
linear part. This result is easily seen to imply our theorem.

Our motivation for proving the above theorem stems from dynamical systems
theory. One may imagine that T is the Poincar6 map associated with a flow. The
unstable fixed point x0 may represent an equilibrium solution or periodic orbit for the
flow. In certain situations, one may be able to conclude that the invariant curve C,
emanating from x0, asserted to exist by our theorem, is precompact in the phase space
X. In such cases, one can assert (see Remark 2 following Theorem 1.1) that the limit set

A={x" x= lim

is nonempty, compact, connected and an invariant set for T. It may contain fixed
points of T, periodic points, a closed curve or more exotic strange attractors. Those
familiar with dynamical systems theory will have a ready supply of examples. In recent
studies of chaotic motion and strange attractors, a standard technique has been to
locate saddle fixed points of suitable diffeomorphisms and to numerically approximate
the unstable manifold. For example, in (see in particular, [3, Figs. 2.2.7 and 2.2.8]) it is
conjectured that the strange attractor in the periodically perturbed Duffing equation is
the closure of such an unstable manifold corresponding to the Poincar6 map.

In a different direction, Pounder and Rogers [7] study the difference equation
(x,,y,)=T(x,,_,y,,_l) associated with the mapping Ta(x,y)=(y, ay(1-x)). This
equation is equivalent to the "delayed" logistic equation y,,+l=aY,,(1-Yn_a). They
obtain an existence proof of an invariant curve, Co(a), for Ta, emanating from the
saddle (0, 0) for a > 1 by techniques very similar to ours. Their numerical calculations of

Co(a) for various values of a are particularly interesting, (see especially [3, Figs. 2a-c
and 5-12]) showing clearly the complex behavior to be expected of the invariant curve
C= Co(a) of our theorem. In [7, Fig. 2a] the set A consists of another fixed point with
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C joining the two fixed points, 1 < a < . For larger values of 1/4 < a < 2, A is the same
fixed point but C spirals around this fixed point. For 2 < a =< 2.20, C wraps around a
closed invariant curve for T, then A S1. For a 2.27, the curve C loops back to the
origin infinitely many times and it appears clear that the outer loop of C is contained
in A in this case.

We envision that an important application of our result will be to discrete dynami-
cal systems generated by a monotone map T. A monotone map is one which preserves a
partial ordering on the space X, induced, for example, by a cone in X. Such maps arise
naturally as Poincar6 maps for ordinary differential equations, for which the Kamke
theorem [12] applies, the so-called competitive and cooperative systems of Hirsch [12],
[13] (see also Selgrade [8] and [16], [17]) and for parabolic partial differential equations
which generate monotone flows in suitable function spaces via maximum principle
arguments (see [14], [15]). If x0 is an unstable fixed point of a monotone map T, the
spectral assumptions of our theorem can often be verified by the Perron-Frobenius
theorem in finite dimensions or the Krein-Rutman theorem in infinite dimesions. In 2
we give sufficient conditions for the function y of our theorem to be monotone with
respect to the usual ordering on R / and the partial ordering on X, in case T is
monotone. This result leads to the dichotomy: either C is monotone and unbounded or
C joins x0 to a semi-stable fixed point, x, of T and C is tangent at x to the
eigenvector corresponding to the dominant eigenvalue of DT(x). This result provides
the key tool for our analysis of periodic competitive and cooperative systems in future
publications [16], [17].

1. Main results. Before stating and proving our main results, we establish some
notation. We will introduce various Banach spaces in what follows and will reserve I"
for the norm. Since we also will consider Banach spaces whose elements are Banach
space-valued functions there is the potential for confusion over which norm is being
used. In all cases we have attached subscripts to function-space norms in order to
reduce the chance for confusion. If Z is a Banach space and r > 0 we write Br(0) for the
open ball about zero of radius r, Br(0)= { z Z: Izl < r }, and B(0) for the closure of
B(0) in Z. If T is a map from a Banach space X to a Banach space Y, we call T a C
map if it possesses n continuous derivatives at all points of its domain.

THEOREM 1.1. Let X be a real, Banach space, c_ X an open set and T: f X be a
Cl-map with fixed point Xo2. Let T be Ca in a neighborhood of x o. Let A DT(xo)
have spectral radius ’o and assume

(a) ho>l,
(b) Aeo= Xoeo, eo q R(A hoI )

Then there exists to, 0 < to< and a unique C function y" [0, t0)-> X with the properties
(i) y(t)=Xo+teo+O(t 2) as tO,
(ii) y(t)= T(y(h- lt )), 0_<t<t0,
(iii) x(t)=T(xo+,-"teo), n=0,1,2,-.- satisfies x,y uniformly on compact

sets and x’,(t)y’(t) on [0,t0),
(iv) either to= + or o is maximal with theproperty that y(t) , 0<t <,t0,
(v) if T is a diffeomorphism than y: [0, to)X is an injective immersion (y’(t)4O).
Before proceeding to the proof, it is convenient to make the following remarks.
Remark 1. Condition (b) of Theorem 1.1 may seem strange. It implies the existence

of a decomposition of X=spane0+ Z, where Z is a closed subspace of T, which
reduces A (AZ Z). This, in fact, is all we use in the proof. Condition (b) will hold, for
example, if X o is a simple pole of (A-I)-1 and e0 is any nonzero vector in
N(A-hoI).
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Remark 2. Assume to= + o and C= (y(t): t>=0} lies in a compact subset of X,
for example, X might be finite-dimensional and C bounded. Let A={x: x=
limn_,ooy(tn), (/n}n=l an arbitrary sequence satisfying limtn= + 0}. It is easily seen
that A is a nonempty, compact, connected, invariant set for T.

Remark 3. When T is a diffeomorphism, the map y is one-to-one and y(t) is not a
periodic point of T for any T> 0. Both properties can fall spectacularly if T is not
one-to-one. An interesting example is given by T: R R defined by x 3x-4x 3,
which lies T(0)=0 and DT(0)= 3. Corresponding to e0= + 1, y: [0, o)---> R of Theo-
rem 1.1 is given by y(t)=sint since sint=3sin(t/3)-4(sin(t/3)3. The set A of limit
points of y(t) is the invariant set [-1,1] for T. It can be seen that T t_1,1]: [-1,1]-->
[- 1,1] exhibits Li-Yorke chaos [10] with periodic points of every period, an uncounta-
ble set of a-periodic trajectories and an invariant probability measure (ergodic [18])
(1/r) dx//1 x 2. All this follows from the observation that h" 1,1] 1,1]
defined by h(x)=sin(rx/2) is a homeomorphism providing a conjugacy between

Tit- 1,] and the piecewise linear map S: 1,1] 1,1] defined by

-3t-2, -l<t< -7,

S= at, -1/2=<t<,
-3t+2, _<t=<l.

Note that if o 2.3-3 and ti= Si(to), then < o < t < t2, establishing Li-Yorke
chaos [10]. It is clear that S preserves Lebesgue measure.

Clearly, in this example, explicit knowledge of the function y was of great help in
determining the dynamics of the difference equation x+ T(x). It is interesting to
speculate on whether the dynamics of other difference equations generated by one-di-
mensional maps might be illuminated by this approach, although it is clearly too much
to hope that y can be explicitly found in general. If, for example, T is a simple
polynomial map, for example, T(x)= rx(1- x), fixing the origin with T’(0)= r, r > 1, it
may be convenient to allow x to be complex: T: C C. It is then not difficult to see
that there is an entire function y: CC with an essential singularity at o, y(z)=z +
o(Izl 2) as Izl0, such that y(z)= T(y(r-lz)) (see Proposition 1.4 or [7]). Although y
is not a homeomorphism in general, it is surjective and one has the following commuta-
tive diagram

C C

Y Y
T

C -C

Hence the iterates w,+= T(w,), wo=Y(Zo) are w,=y(r"z,).
Remark 4. There are many different properties of a map T which will insure that

o + o. We mention only one. If there exists a closed invariant set K for T, Kc f,
(T(K)cK) such that for some e>0, Xo+teoK for O<=t<=e then to= +zand
y(t)K for t>=0. In order to see this, observe that y(t)K by (iii) for [0, t0). But then,
by (iv), to= + o.

Remark 5. If T is a diffeomorphism, the hypotheses of Theorem 1.1 may hold for
T- if T has a smallest eigenvalue. More precisely, if X 0 (0,1) is a simple eigenvalue
of DT(xo) with corresponding eigenvector eo and inf( I1: , o(DT(xo))- ( ho } } >= ho
then one can apply Theorem 1.1. to T-1 to obtain the existence of a map y: [0,t0) X
such that y(, ot) T(y(t)).
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Remark 6. The smoothness assumptions on T of Theorem 1.1 may be relaxed. We
use only that DT(x) is uniformly Lipschitz continuous in a neighborhood of x0. If T is
only continuous on X, differentiable at x0, and r(x)= T(x)-xo-A(x-xo) satisfies
(1.6) of Proposition 1.3 below, then a continuous y" [0,t0) X exists satisfying (ii) and
(iii) except that the convergence may not be uniform on compact sets if dim X= + .
(C functions are uniformly continuous on bounded sets whereas continuous functions
are not generally uniformly continuous on bounded subsets of infinite-dimensional
spaces.)

Before proceeding to the proof of Theorem 1.1 we present a simple example. Let
T: R:R2 be given by T(z)=z where we have identified R2 with C. Consider the
fixed point zo=l of T where DT(1)=( 2). For every 0[0,2r], eo=--e iO is an
eigenvalue and the corresponding function Y0: [0, o]R2, the existence of which is
asserted in Theorem 1.1, is given by yo(t)=exp(eot). As 0 runs over [0,2rr) the curves

Co= ( yo(t) >__0} coverR2-{0}.
We begin the proof of Theorem 1.1 by establishing the existence of y(t) satisfying

(i), (ii) and (iii) for small t.
LEMMA 1.2. Assume the hypotheses of Theorem 1.1. Then there exist > 0 and a C

function y: [0, ,] fl such that (i), (ii) and (iii) of Theorem 1.1 hold.
Proof. It follows from our assumptions on A that there exists foN(A*-,oI),

where A*" X* X* is the adjoint of A on the dual space X* of X, such that f0(e0) 1.
The projection P: X--+X defined by Px=fo(x)eo leads to a decomposition of X:
X lin( eo } + Z, Z (I P) X, where lin( e0 } is the linear span of Co, which reduces A"
A =XoI+ B, B: Z Z. We may choose an equivalent norm on Z so that the corre-
sponding operator norm of B satisfies [IBI[ <0 (spectral radius of B =<o). For x X,
we write x ueo + z, u R, z Z and Ixl lul / Izl where lul is the absolute value of u.

We assume w.l.o.g, that x0=0. If Txo=Xo then S(x)=T(x+xo)-Xo satisfies
s(o) o, DS(O)=A.

Write, for x ueo + z

T(x)= Tx(u,z)eo+ T(u,z)
where T1" R Z and T2" R Z Z satisfy

Tl(tt,z)=Xou+ rl(u,z ),
and ri(0,0)=0, Dri (0, 0) 0. Our assumption that T is C: in a neighborhood of 0
implies that there exists C, 8 > 0 such that

(1.1)
2

Z IlDri(ux,zl)=Dr (u2,xzg.)II Z C[lu -u=l + IZl-Zg.[]
i=1

provided lul+lzl_, i= 1,2.
One easily verifies that (1.1) implies that

(1.2)
2

E IOri(Xl)hl-Or(x=)h=lzC[miaxlx, llh-h2l+ maxlh,llXl-X=l],
i-----1

Xi’-’(Ui,Zi) hi=(hil,hi2)
provided Ixi[ =< 8, 1, 2.

We seek a function y(t)= teo + o(t) satisfying (ii). Setting

y(t)=(t+rl(t))eo+z(t), z(t)Z,
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(ii) will hold if and only if

(1.3a) (t)= XO?(X it ) + rl(X it + /(X it ),z(X it )),
(1.3b) 2(t)=Bz(lt)+r2(ltq-()klt),z(Xlt)).
We will solve (1.3) for (r/,z) by the contraction mapping theorem.Let r > 0 and let

C1 {x(t)=((t),z(t))CI([O,$],X)

(n(0),z(0))--0, In’(t)I + [z’(t)l-<Mt for some M>0}.
One can verify that C, is a Banach space when equipped with the norm 1.1, defined by

I’(t)l+lz’(t)!sup
O< t__<’r

(1.4)

Note the inequalities

Iv/’(t) / Iz’(t)lZ Ixlt,

Since

We define the linear operator L on C, by

2

I/(t) + [z(t)[ =< lxl  .

( Lx)( ) ( Xo’O(X lt ),nz( Xlt )), O<t<-.

I( tx)t( t) It( klt) q-llnZt( lt)

max{X,XXl[B ll}[x [zXxt
N max {

it follows that Lx C and

IlL max{ Nx,N2[] B [1) p < 1

provided 11B[[ <.
Define an operator R on C by

R(x) R(,z)(t) (rl(Xx/+(Xxt),z(Xlt)),v2(Xxt +(Xlt),z(Xlt))).
Since we want to make use of the estimates (1.1) and (1.2) we define R only for those
x with Ix[ < m (m and will be adjusted further in what follows) so that
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We assume - is small enough that the estimate above holds. Then

It follows that R(/,z) C and that IR(n,z)l,=< C,2[1 + m-l$]2,l(l,z)[<=m.
Equation (1.3) is equivalent to x= F(x) =- Lx + R(x), x (,z) C1. We will show

that F is a contractive self-map of Bin(0) =__c C for some m and $. For fixed m > 0
and sufficiently small that (1.5) holds we have for [x[=<m, [F(x)[<=pm+
CX211 + mXl]. In order that F be a self-map of Bm(0) we choose

m--

and - < min((v- 1)(1 p)/2C3o,o(V/1 + 2m8 1)/m }. The second term inside the
min bracket has been chosen so that (1.5) holds while the first term insures that,
together with our choice of m,F is a self map of Bm(O). We will need to choose "
possibly smaller to insure that F is a contraction.

Let xi=(i,zi) B,,(0), i= 1,2. Then, using the estimate (1.2)

IR(x)’(t)-R(x)’(t)
2

i=1

Ol’i ( k- ll -[- 2 ( k- lt ) Z2 ( k- lt ) ) ( k- -[" k- lt2 ( k- lt ) k- lzt ( k- lt )

<C

11 (XI

<C x-lt-bm- (.- IXl-X2l )+(X- +.- ,m) x2t2
mkl’r ) 1 (l+mlm ]2 + 2 Ixx-x l,

3 1T ] It.+m, [Xx--X 2
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It follows that

Hence

[R(Xl)-R(x2)I<- CX-3 +mX-x Ix-x=l.

IF(Xl)-F(x) I<= t+ CX3r + mX- l’r I11-121.
Since p < 1, we can insure that the Lipschitz constant for F is smaller than one by
further restricting r if necessary. The contraction mapping theorem can now be applied
completing the proof of the lemma.

Before continuing the proof of Theorem 1.1 we prove two results, Propositions 1.3
and 1.4 below, the proofs of which are very similar to the proof of Lemma 1.2. These
results indicate several possible variations of Theorem 1.1. The first result, Proposition
1.3 below, shows that the smoothness assumptions on T in Lemma 1.2 can be relaxed
with a corresponding loss of smoothness of y. The proof of the following lemma is so
similar to the proof of Lemma 1.2 that only a sketch is given.

PROPOSITION 1.3. Let T: f X as in Theorem 1.1 but assume only that T is
continuous on f, T(xo)=Xo and DT(xo)=A exists. Let the spectral assumptions of
Theorem 1.1 holdfor A. Define r(x) for x near xo by

T(x)=xo+A(x-xo)r(x )

and suppose there exists M,p, > 0 such that

(1.6) Ir(x) r(x)[<__C[max X
i---1,2

for IXo-Xil<__8, i=1,2. Then there exists z>0 and a continuous function y: [0,z]f
satisfying y(t)= xo + teo + O(t +P) as 0, (ii) and (iii) of Theorem 1.1 (except x’ y’).

Proof. The proof is very similar to that of Lemma 1.2. The estimates (1.1) and (1.2)
of Lemma 1.2 are replaced by the single estimate

2

(1.7) Y’. Iri(u,z)-rg(u2,z2)l<=C[ max (lul+lz, l)]P.[lu-u2l+lZl-Z_[]
i---1 i=1,2

if lull + Iz;I-< , i= 1,2, which follows from (1.6). The appropriate function space is

Cp= ((l(t),z(t))C([O,],X)" [(t) l+ lz(t) <__MtI+p for some M>=0)
with p as in (1.6). The norm on C is given by

[(/,Z) Ip sup [n(t)l/ Iz(t)l.
0<t_r

+p

It is clear that (C,ll) is a Banach space. Define L: CC^ as in Lemma 1.2 and
observe that IILIl<__p=-max(XP,X(X+PllBII). Since IIBIl<?f0+p (this may require a
different norm on Z than in Lemma 1.2), p < 1. If rn > 0 is given, choose -> 0 so that
-,[1 + m(zhl)P]=<8. Then given (*l,z)-Bm(O), the estimate (1.7) can be used to
show that R (r/, z), defined as in Lemma 1.2, satisfies

R(/,z)[p=< CX(+p [1 + m(’I’/X0) P] +P.
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Hence F-- L + R is a self-map of B,(0) provided pm+ Ck (I +p) [1 + m(’r/)ko)P]l+P <=
m. As in Lemma 1.2, since p < 1 and we are free to choose small, this inequality can
be satisfied for suitable m and r (for example, m= 2C-(1 +P)/1- p). Now use (1.7) to
calculate the contraction constant, p+ Ch(t +P)(’r/ko)P[1 + --m(’r/ko)P]P for F. For
r sufficiently small, this value is less than one.

As our final variant of Lemma 1.2, we consider the case that a complex conjugate
pair of eigenvalues, a +_ ifl, of A are the dominant eigenvalues. This result would have a
cleaner form if T were assumed to be a holomorphic map of a complex Banach space
(in which case y below would be holomorphic) but in view of possible applications we
continue to assume X is a real Banach space.

PROPOSITION 1.4. Assume T: f X, an open subset of the Banach space X, is C2

in a neighborhood of a fixedpoint xo of T. Let A DT(xo) and assume
(a) Xo=a+ifl is a simple pole of the resolvent R(,,AC)=(I-A)-1 and

dimN(A"-XoI)< o0. A is the complexification ofA.
(b) The spectral radius ofA is IXol and IXol > 1.

Then there exists > 0 and a C function y" B(O)c_. R2 such that
(i) y(0)= x, Dy(O) has rank two.
(ii) y(v)= T(y(S-tv)), vB(O) where S=( -if).
Proof. By using the functional calculus of operators [2] as in the proof of Lemma

1.2, one can regard X as the direct sum

X=R2+Z, x=(v,z),vRZ, zZ

where the decomposition reduces A" A S + B, B: Z Z. Since the spectral radius of
B does not exceed I,0l we may choose an equivalent norm on X so that
where Ivl is the Euclidean norm and Izl is a norm on Z such that the operator norm

IIBll <lXol =. Note that IISIl-Ihol and IIS-Xll= I,ol -x.
Assume xo 0 and write

r(x)=

where

T1" R2Z-R2 and T2" R2XZ’-)Z

satisfy

Tt(v,z)=Sv+rt(v,z), r (o,z)

Our assumptions on T insure that there exists 8, C>0 such that [(vi,z)[_<i, i=1,2,
implies

2

E IIDr (ox,z )-Vr,(o=,z=)IIz
i-’1

We seek y: B,(O)R2X in the form y(v)=(v+,l(v),z(v))with
o(11 =) and such that (ii) holds. This amounts to

"O ( V ) STI ( S iv ) -[-" I" ( S-iv -1- "rl ( S- lv ) z ( S- iv)),
z( o) (S-’o) + (S-o +(S-’o),z( S-Xo)).
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We solve these equations as in Lemma 1.2 by the contraction mapping theorem in the
function

is C in B,(0,0), (/(0),z(0))=(0,0),
and for some M>=O [[Dl(v)l[+l[Dz(v)[[

< Mlv], v B,(0)}.
Note that D(o)" R2 R2 and Dz(v): R2-- Z.

A Banach space norm for C is

D/(v) + Dz(v)I(r/,z) l, sup

Observe that the inequality

holds for (,z) C,1. We now proceed exactly as in Lemma 1.2 (indeed, all the
estimates are identical except that ]Xo] replaces Xo). For instance L: C) C, is defined
by (,.)=L(rl, z)=(Sl(s-lv),Bz(S-v)). Since

D + (o) D (S- lo ) -- BDz (S lo ) S

OT ( S- 1/) ) - [IB Dz ( S- iv) S- 1[]

<_max{l,

<- max{lXo[ -1 [IBlliXol-=}i(n,z)
it follows that IlLllmax{lX0[ -1, IIBIIIXoI[ -2) <1. We leave it to the reader to check
that the other estimates hold verbatim as in Lemma 1.2.

We now complete the proof of Theorem 1.1.
Proof of Theorem 1.1. The first task is to extend our function y: [0,]--,f] of

Proposition 1.2 as far as possible in such a way that (ii) holds. Extend y as follows if
0=<t_<Xo" let yl(t)=T(y(h-It)); since 0__<Xt__<, y(Xt) is well-defined and be-
longs to 2, so yl(t) is well-defined and C since y and T are. Also, Yl agrees with y on
[0, so Yl(t) T( Yl(X it)) for 0 < < h o. However, it may happen that yl(t ) f for
all [0, h o ]. Suppose that this is the case and let X 1to (, h o be maximal with the
property that .yl(t) for [0,X 1to). If 0 =< < o define y(t)= T(y(h- it)). It is again
easy to see that Yz is well-defined, C1, and agrees with y on O<t<=hor. Hence
Yo(t) T(y(h-lt)) for 0__<t<to. In general, this is as far as we can extend y. If,
however, Yl(t) for O<__t<=ho then Yl can be extended exactly as before to [0,ho].
This completes the proof of (ii) and (iv).
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In order to see that (iii) holds for 0 < < o (recall we have proved (iii) on [0, r] in
Lemma 1.2), fix < o and let n be such that ,"t_< r. We have

y(t)-- T( y( Xalt)) T( T( y( P-2t)))

lim x+(t).

Since T is uniformly continuous on bounded sets, x, y uniformly on compact sets.
From above we have

Y’Ct) DCT")(

lim

This completes the proof of (iii).
Finally, if T is a diffeomorphism and there exists s such that y(t)=y(s) then

r(y(Xt))= r(y(Xs)) aria y(Xt)=y(Xs). After n applications of this reason-
ing y(X’t)=y(X’s) which contradicts (for n sufficiently large) the fact that y is
one-to-one on [0, e] for e > 0 sufficiently small (recall y is C and y’(0)= e e 0). Since
y’(t)O for small there is a maximal tNto such that y’(t)=O on [0,t). If <t0

then y’(q) 0. But then

0=y’(,+) XoDT( y(hltl) ) y’( hg ltl)
yet y’(X t)0 and DT(y(Xq)) is nonsingular. This contradiction proves t 0

and y’(t)O on [0,t0).
2. Some results for monotone mappings. We begin by recalling some notation and

results in the theory of partially ordered spaces. Recall that a cone K in a Banach space
X is a closed subset of X with the properties (i) K+Kc K, (ii) R +. Kc K, and (iii)
K (-K) {0}. K induces a partial ordering on X via x y if and only if y x K. If
xy are two points in X we write Ix,y] for the set { z X: xzy}. A map F: X Y
between two Banach spaces containing cones K and C, respectively, is nondecreasing
provided F(x) F(y) in Y whenever x ey in X. A cone in a Banach space X is said
to be normal if there is an equivalent nondecreasing norm on X. It is easily verified
that the Fr6chet derivative of a nondecreasing map T: XX at a point x, A DT(x),
is a so-called positive operator, that is, A(K)c K. A positive operator A is said to be
strongly positive if Am(Kc {0})cintK, the interior of K, for some positive integer
m 1 (of course, this makes sense only if K has nonempty interior). In case X= R and
K R ( x: xi 0,1 n }, a nonnegative matrix A is strongly positive if and only if
all entries of A are positive for some integer m 1. In this case, the Perron-Frobenius
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Theory [6] [9] implies that the spectral radius is a simple eigenvalue, greater in magni-
tude than any other eigenvalue, and there is a corresponding eigenvector which belongs
to the interior of R. A slightly weaker assumption on A >=0 for which the above
results hold is that A be a primitive irreducible matrix (see [9]), however these ideas do
not generalize nicely to infinite dimensions. For infinite-dimensional spaces X and
cone Kc X with nonempty interior, strongly positive compact operators have the
properties mentioned above for strongly positive matrices except possibly that there
may be other parts of the spectrum in addition to the spectral radius on the circle of
radius equal to the spectral radius in the complex plane [1, Thm. 3.2].

Recall that T: XX, X a Banach space, is said to be completely continuous if T
maps bounded sets into precompact sets. It is well known that the Fr6chet derivative of
a completely continuous map is a compact linear operator.

We can now state the main results of this section.
THEOREM 2.1. Let K be a normal cone with nonempty interior in a Banach space X.

Let T: XX be a completely continuous, nondecreasing, Cl-map, which is C in a
neighborhood of 0 and T(0)=0. Let A DT(O) be strongly positive and have spectral
radius X o, ,o > 1. Then there exists a unique C1, nondecreasingfunction y: [0, c] intK
satisfying y(t)= teo + o(t) as 0 where Aeo X 0, e0 intK and

y(t)= T(y(X-lt)), t>=O.
Moreover, either ly(t)l + o as t- or limt_,y(t)=y intK exists and Ty =y.
In the latter case [0,y is invariant under T and Tx y for every x [0,y (0}. In
the former case, T"xl + for all x K- (0}.

An important extension of Theorem 2.1 can be made if X=R and K=R+. In
this case, the complete continuity assumption in Theorem 2.1 is redundant since T is
continuous. We let o(A) stand for the spectral radius of a linear operator A.

THEOREM 2.2. Let X=R and K=R+ and T: R R satisfy the hypotheses
of Theorem 2.1 and let DT(x) be invertible for xRn+. Assume limt_,y(t)=yo
exists and assume Aoo =-DT(yo ) is strongly positive. Then 0(Aoo)_<l and
limt_(y’(t)/ly’(t)l)=e where eintR_ is the unique, unit norm positive eigenvector
corresponding to O (A oo).

Before proceeding to the proof of the theorems we make the following remarks.
First the smoothness assumptions on T in Theorem 2.1 can be relaxed as observed in
Remark 6 following Theorem 1.1. Secondly, the choice of the origin as a fixed point of
T in both theorems is merely for convenience. Finally, (iii) of Theorem 1.1 holds for y
in both results.

For diffeomorphisms T: R R, nondecreasing with respect to the usual ordering
and having the property that DT(x) is strongly positive for each x, Theorems 2.1 and
2.2 allow the determination of possible "phase portraits" for the dynamics, x,+ T(xn)
in case of the existence of an unstable fixed point x0 of T(o(DT(xo))> 1). In Fig. 1 we
indicate the four possible portraits. If e0 intR_ satisfies DT(xo)eo= o(DT(xo)eo, we
write y /(t) for the function the existence of which is asserted in Theorem 2.1 corre-
sponding to the eigenvector eo(y/(t)=Xo+ teo+O(t2)) and write y_(t) for the func-
tion asserted to exist in Theorem 2.1 corresponding to -eo(y_(t)=Xo-teo+ O(t2)).
by Theorem 2.1, y+/-(t)xo+intR+ for each t>0. The four possibilities indicated in
Fig. 1 correspond to the four possible limits limy+(t)=y or m, limy_(t)=y_ or oe.
It should be observed that, in case limt_,y+(t)=y exists, the fixed point y may be
the limit limt_y_(t), of a function y_(t) corresponding to another unstable fixed
point of T belonging to y + intR_. A similar observation holds if limt_y_(t)=y_
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(a) (b)

(d)

FIG. 1. Qualitative dynamics of the iterates of T: R R2; x0 is an unstable fixed point, shaded regions
are included in the domains of attraction of a fixed point Y-o, Yoo or the point at infinity, oz. The solid curves

are y and y_.

exists. The point here is that (a), (b), and (c) of Fig. 1 may only be segments of a longer
chain of such segments. A nice example of these chains occurs in the paper of Selgrade
[8, see Figs. 1 and 2] where T is the time-one map for autonomous ordinary differential
equation.

Finally, note that if x0 is a a hyperbolic fixed point of T and WS(x0) {xR":
Tm(x)--Xo as m- oo} is the stable manifold then WS(xo)N[(xo+R+)U(xo-R+)]
{ xo }. This follows immediately from Theorem 2.1.

Proof of Theorem 2.1. As noted above, the spectral assumptions on A of Theorem
1.1 are satisfied by virtue of [1, Thm. 3.2] (notice that since 0 is a simple eigenvalue of
A, 0 is a simple pole of (A _i)-1, see Remark 1). By Theorem 1.1, there exists a
unique function y" [0, oo)X satisfying the functional equation y(t)= T(y(Xlt))t >=0.
That y(t)K follows since T"(X"teo)K for n=l,2,...,t>=0, and K is closed.
Indeed Tn(X"teo) is a monotone nondecreasing function of for each n= 1,2,.-.
and thus so is y(t). It is easy to see that y(t)intK for small and since y(t) is
nondecreasing, it lies in intK for all t. If (y(t): 0=<t<o} is bounded then it is
precompact since T is completely continuous. Let t, + o and s,, + o and suppose
limy(t,)=y and limy(s,)=y2 exist. Since y(t) is monotone nondecreasing we have
Yl >=Y(Sn) for n= 1,2,’’’ so yl >=Y2 and similarly y2>_Yl It follows that yl =Y2. Since
{ y(t)" 0 < t < o } is precompact, from every sequence t, o there is a subsequence
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which converges. The above observation shows that the limit of any such subsequence
is the same point. Hence limt_oy(t)=y exists and is a fixed point by continuity of
T. Since Yo >y(t) intK, Yo intK. It is clear that [0,y] is invariant under T since 0
and Yo are fixed by T and T is nondecreasing. If x[O,yo]NintK then y(to)<=x for
small o so y()%to)<= Tnx <=Yo after n applications of T to the previous inequality.
Since [0,y] is bounded (here we use normality of K) and T is completely continuous
it follows that T"x Yo. Now, if x [0,y]-(0) then Tmx [0,y]t3intK where m is
such that A’(K- (0})_c intK.

In case limly(t)l= + and xintK then, again, y(to)<=x for small o so
y(hoto)<= T"x as above. Since we may assume I’1 to be nondecreasing, [y(:oto)l<=lTx[
for n 1,2, . It follows that limlT"x[= +

Proof of Theorem 2.2. If 0(Ao)> 1 then since A is strongly positive we could use
Theorem 1.1 to obtain a function y_" [0,)[0,y]CqintK satisfying y_(0)=y,
Ay’_(0)=0y’_(0), y_(t)= T(y_(o-t)), p=ta(A). Clearly this contradicts that
[0,y]C intK lies in the basin of attraction of

Observe that y(t) satisfies the functional differential equation

(2.1) y’(t) ha 1DT( y(Xlt))yt(Xalt)
and since DT(x) is invertible it follows (Theorem 1.1) that y’(t)4=O for all t. We have

(2.2) y’(t) =axA y’(Xlt)
ly,()tal,) o

y,(?,Glt)
where the second term on the right tends to zero at .

Define

’(t.) }Q o" v lira Y,( for some sequence n- c
"-’ lY tn)[

To show that limt_+oc(y’(t)/ly’(t)l)=e it suffices to show that Q= (e}. It is easy to
check that Q is a nonempty compact set of unit vectors belonging to R_, the latter
since y(t) is nondecreasing. If oQ, v=lim,__,o(y’(tn)j/ly’(tn)]) it follows from
putting hxt=t, in (2.2) and taking limits that lim,__,o(y’(hoto)/ly’(tnl)=hAv.
Hence

lim
y’( hot.)

We may define a continuous map f: QQ by f(v)=Aov/lAo and observe that f is
one to one since A is invertible, f is a homeomorphism of Q onto Q. For, if
v= lim.(y’(t.)/ly’(t.)D Q, we may put t= t. in (2.1), divide both sides by ly’(t.)
and take limits to show that lim._.(y’(X-It.)/ly’(t.)l)=hoAv. It follows that

A13lim
Y’(Xgxt") -1=t)l Q

and f(vl)= v.
We now proceed to show that f"(v)e as n m (f" denoting n-fold composi-

tion as usual) uniformly for v Q. This is compatible with f"" Q--, Q being a homeo-
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morphism for n= 1,2,..., only if Q= ( e ). The principal tool in showing that f"(v) e
as n- is the fact that

v A v

and the Frobenius theorem [6, Appendix, Thm. 2.3]; limn_(A/pn)=P where P is
the projection onto the linear span of e defined Px=(h.x)e where h.e= 1, A h=ph
h int R’_]_ (O o(Ao)). Since Q is a compact subset of R+Sn-x, h.x is bounded below
by a positive constant uniformly for x Q. It follows from the above observations that
f"(o)- Pv/IPol=e uniformly for v Q completing the proof of Theorem 2.2.
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BREAKDOWN OF STABILITY IN SINGULARLY PERTURBED
AUTONOMOUS SYSTEMS

II. ESTIMATES FOR THE SOLUTIONS AND APPLICATION*

K. NIPPt

Abstract. In Nipp, [this Journal, 17 (1986), pp. 512-532] error estimates were derived for the trajectories
of a singularly perturbed autonomous system. The results are extensions of a classical result due to A. N.
Tikhonov. In this paper we give the transfer of those estimates to the solutions of the autonomous system and
an application to a problem in biomathematics.

Special cases of our results are treated by Lebovitz and Schaar in Stud. Appl. Math., 54 (1975), pp.
229-260, 56 (1977), pp. 1-50, respectively. In order to transfer their estimates to the solutions, however, they
introduce an artificial condition excluding a whole class of problems containing, e.g., the van der Pol
relaxation oscillator as well as the example given in this paper.

Key words, ordinary differential equations, singular perturbations, breakdown of stability, nerve impulse
equations

AMS(MOS) subject classifications. Primary 34E, 34D

1. Formulation of the problem. We first repeat the precise formulation of the
problem. For introduction and motivation the reader is referred to [1].

Consider the autonomous system

(1)
c ---f( x,y ) + efx( x,y, e),
ey g(x,y) + ega(x,y, e),

where x and y are m- and n-vectors, respectively, and e [0, e0], e0 < 1. Moreover, let
all functions be sufficiently smooth in the domains considered. The corresponding
reduced system is

(2) 2=f(x,y), O=g(x,y).

It is a well-known result, due to A. N. Tikhonov, that "corresponding solutions" of
the systems (1) and (2) are close to each other if a certain stability assumption is
satisfied (cf. [1]). We are interested in the situation where a solution of the reduced
system loses its stability, and we will state a local result valid in a neighborhood of the
point (x,y)=(0,0) where we assume that the stability breaks down. As seen in [1] two
cases ("s < 0", "s > 0") have to be considered depending on whether the flow along the
reduced trajectory approaches the point (0, 0) or leads away from it. We will now state
the assumptions in the first case; those in the second case are completely analogous
(compare [1]).

A1. fl(0, 0) > 0, fk(0,0) 0 (k=2,3,-..,m),
g(0,0)--0.

Hence, there exist a domain Uc R "+’, containing the origin, and a positive constant O
such that fl( x,y > O for (x,y) U.

Received by the editors September 3, 1984, and in final form July 29,1985.
Seminar for Angewandte Mathematik, ETH-Zurich, CH-8092 Zurich, Switzerland.
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0 0 0

g(0,0)
0

0

where all the eigenvalues of the (n- 1)(n- 1) matrix A have negative real parts.
Moreover, let := (Y2,’", Yn). As seen in [1], we may assume without loss of

generality that ,(x,yl,) has a Taylor formula beginning in yl with a cubic term. A2
implies that there exists a unique solution ,(x,y) of ,(x,y,)--0 in a neighborhood
Oc U containing the origin, having continuous partial derivatives there and satisfying
(0, 0)= 0. For the remaining equation

g(X,Yl,(X,Yl))=O
we require

A3. There exists a function q,(x), which is defined and continuous for (xl,)J
c , where J := (s,0] for some -1 <s <0, some neighborhood of if=0, has

continuous partial derivatives with respect to there, and is C in J’, J’ := (Sx,0),
satisfying

and

gl ( X, dPl( X ),(x, dPl ( X ))) =0, xJx,
bl(0) ---’0,

dPl(x)=al(--x1)a--kp(x), xJX,

+p(x), xJ ,xl(X) all( Xl ) -1

where a>O and a, all 0, p(O)=O, p(xl,0)=o((-xx)) and p(xx, O)=o((-x)-1)
as xx0-
If a 1 we suppose that (x)C(Jx).

Now let (x):= (x,(x)) and (x):= (,) and consider the initial value
problem

d= ](,,,(,)) (0)=0() d f(,x,,(,))
for (x,)J .

Moreover, we introduce the following initial conditions to the system (1)"

(4) (0,) o() Xo + O(),
y(0, ) =yO() o+ O(),

where X, yO independent of e and (x(e),y(e)) , x(e)J’x for all [0,eo].
We also suppose the following:
A4. The solution U(x) of (3) exists for x J, and

IO()- (()) <o,
o()- v(()) I< o,

where V(xx):= (xx, U(xx)).
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There is one more condition, the essential stability condition that, together with
A2, replaces the corresponding assumption in the Tikhonov case (see [1]).

A5. There are positive constants k and q such that

,I,y(Xl,(Xl),V(x1)) -k(-x1) q, XlJ.

Let Xl(t) be the solution of

dxx
dt =fl(Xl’ U(x1)’ W(x1))’ Xl(0)--Xl"

It exists and is unique on an interval [0, T], and increases there from X to 0. Then

(X(t), Y(t))’= (X(t), U(X(t)), V(X(t)))
is a solution of the reduced system (2) for [0, T] satisfying

(5)
X(T) =0, Y(T) =0.

Remark..A1-A5 imply the corresponding assumptions in [1].
.Assumption A4, which is equivalent to the condition (5) for a solution of the reduced
system (2), is naturally satisfied if we consider a global problem whose reduced trajec-
tory approaches the point (x,y)= (0,0) and is stable as long as it is in a finite distance
from this point.
.In order to verify A5 the asymptotic relations for (U(xl), V(xl)) given in [1] may be
used. []

In order to be able to formulate our result we need define the following nonnega-
tive quantities:

& "= min(a, 1),
8 := min(2a, 1),

a if a < 1 and gx(x,Y) has no linear term in x
/3"=

0 otherwise;

moreover, , and , which are defined by the estimates

V(x,)) [z
gl,.p(X1, U(Xl), V(X1))I "- C(--X1)

In [1] we have shown that

0

if a > 1 or ga (x,y) has no linear term in ,
otherwise,

2. The main result. Under the assumptions A1-A5 the following result holds.
THEOREM 1. If q satisfies

q < min(1 +,+ ,)
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then for Ix(e)l, ly(e)l sufficiently small there exist positive constants C and e <=eo such
that the solution (x(t,e),y(t,e)) of the initial value problem (1), (4) exists at least for
t[O,T-Ceq*], whereq*:= 1/(ql+q-fl) ql "= 1-+q, and

Celog(T- t) -1
Ix(t,e)-X(t)l<

Ce(T-t)l-q1,

lYx(t,e)- Yl(t)[< ce(r-t) -qx,

Celog(T- t) -1,
lY(t,e)- (t)[<

Ce(T_t)_q,

q1>1,

ql>l

for [0, T- CEq* ], E [0, El]. !--]

Proof. We want to apply [1, Thm. 2]. Consider the initial value problem

(6)
dx

Ex G(X1, .,y) + EGI(x1, .’,y, E), y(xp(e),e) =y(e),

where F:= f/f1, G := g/f1, F1 and G are defined for (x,y) U. Let (Ft(xl, e), v(xl, e))
be the solution of (6). By means of [1, Thm. 2] it exists for Xl J* "= [x(e), -ceq* if
IXl()l is taken small enough. And let 21(t,e) be the solution of

dx
dl --flCXl’ (XI’ +)’ uCx1, E)) -[- Ef?Cx1, (X1, E), uCxI, +), E), xI(O,E)----Xp(+).

Then the following identity holds

(xCt,e),yCt,e)) (lCt,e),t(lCt,E),e),vClCt,e),e))
as long as YCl(t,e)J*. Moreover, assumption A1 implies that Xl(t,e) is an, in t,
increasing function there. Since this is also true for the reduced solution Xl(t ) (cf. 1),
we may consider the inverse functions which satisfy the following integral equations.
To save writing we put s’= x1, sO: Xl(e), SO.= X1, s* := -ceq*, and without loss
of generality we suppose that SO> s o for all e [0,e0].

We define X{l(s)=O for s<S. Hence (cf. A1), for e small enough there are positive
constants M and M2 such that

xi-l(s e)-Xl(s)l<Mle+ o(lZ( e) l+lw(
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Applying [1, Thm. 2] and integrating yields

where

log( s) -I(S) "=

(_s)l-ql
This situation is sketched in Fig. 1.

ql>l.

s[s,s*]

FIG.

s

o

FIG. 2

The time T was defined by T= X{ 1(0). Moreover let

1():= x;’(*),
tl(e):-- xl(s,,e),
r*(e) := min(Tl, tl).
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It can easily be seen that there is d> 0 such that

T* > T- deq*

Thus, for the functions Xl(t,e), Xl(t) we obtain the situation sketched in Fig. 2. We
now want to derive an estimate for Ix(t,e)-X(t)] out of this picture. Xx(t) provides a
diffeomorphism from [0, T] onto [S, 0] with inverse Xi- 1.

We first consider the lower boundary of the tube (see Fig. 3) and we put

r(t,):=
X(t)_o

To* <=t <= T,
O <= < To*.

r(t, e) is a positive, continuous function on both intervals.

S

0

SO

so

y. I
II/

Xl Me/( Xl t))

/r(t,e)

II ’l"

O To* T T

FIG. 3

The mean value theorem implies that

r(t,e)=((,)?lep(X(l)) for some [,t],t [T,T].

Hence, since k ( XI(i)) < p ( X ( )) for i< t, we have

r(t,e)<=]lep(Xx(t)) for t [To*,T].

For [0, To*) we have

r( t, e) =< r(To*, e) + SO- s o

__< Kq(So ) + O() __< gq(So ) _< gq (x(t)).

Hence, there is M> 0 such that

r(t,e) <=Mtep(X(t)) for t [0, T].
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The upper part of the tube (see Fig. 4) is slightly more difficult.

0

s*
//

(t,)
/

// "---r(t, )

, ,,, ,,
T_* 0 T** T T

t

FG. 4

The function ?(t,e) (the upper boundary of the tube) is C and increasing for t
[T__*, T**]. This follows from the fact that the function ?-(s,e) (the lower boundary
of the tube in Fig. 1) is given by

P-(s,e)--x{l(s)-/le+(s) for s[S,s*],

and hence C and increasing there with positive derivative. Therefore

r(t,e)’= ’(t,e)-?(f,e)=(,e)f/Ie/(X(t)) forsome [f,t], t[0, T**].

For t T **, Tx we have for some r < T **

r( t,e) r(r**,e)= P( ,e)e+ ( x(r** ))

Hence, since P(, e) is bounded for all possible there is M, > 0 such that

r(t,e)Me(X(t)) fort[0, T].

And we finally obtain that

(7) Ix(t,e)-X(t)<Me(X,(t)) for t[0, r*].

Since X(T) 0 and (T)> 0 we have

X(t)= -M(r-t)+o(r-t), (r-t)O +.

Therefore, we finally obtain for T small enough (which can always be aceved by
taking ]x] small enough) the following estimate"

[x(t,e)-X(t)[<Ke(r-t) for t[O,T-deq*].
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For the remaining x-components we get from this result and again by means of [1,
Thm. 2]"

I(t,e)-(t) It(Xa(t,e),e)- ( Sl(t))

<= Il(Xa(t,e),e)--l( gl(t),e) l+ IT(xl(t),e)- ( X(t))
< glxl(t,e)-gl(t ) 1+ ce+(Xx(t))
<e(T-t), t[O,T-deq*].

We now consider the y-component which is the most delicate one.

lyx(t,e)- Yl(t)I [Oa(xl(t,e),e) VI(XI(t))

<= ]Vl(Xl(t,e),e)-- Vl(Xl(t,e))1+ [Vl(Xl(t,e))- Vl( gl(t)) I"
The first term can again be estimated by [1, Thm. 2]"

IOx(Xx(t,e),e) Vl(Xl(t,e))[<e(-Xl(t,e)) -qa.

For the second term we obtain for each [0, T *] by the mean-value theorem

Vx(x,)- Va(gx) I-" IV?(x) IlXl- gl[

for some x’ lying between x and X1. From [1] we know that V((s)=O((-s)l),
ill= min(a 1,0), for s [s,0). Hence

IV;(xf )
and, since (7) implies that there is > 0 such that for v < 0

(-x(t,e))"<__](-X(t)) for t[0, T*]
and e sufficiently small, we get

IVl(Xl(t,E))- Vx(gx(t))I<=e(-gl(t))Bx(g(t))
<NI$(-XI(t)) -qa, t[0, T*].

Therefore

lyl(t,e)- Y(t) I< e(-Sl(t)) -ql

<fie(T-t) -ql for t[O,Z-deq*].

In a similar way, it can be shown that for e small enough

[fi(t,e)-(t)l<ffe(k(Z-t ) for t[O,T-d,q*],

log(- s)-
(_S)fi-ql,

where

This completes the proof of Theorem 1.
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3. Application to the nerve impulse equations of E. C. Zeeman. In [5] Zeeman
suggests the following qualitative model for the local nerve impulse

"1
(8) :t2= -2x2- 2Y,

ej= -(Xl+Xy+y3),
where x corresponds to the potential of the membrane surrounding the axon of the
neuron, and x and y are correlated with the permeabilities of the membrane to
potassium and sodium ions, respectively. Putting e=0 in (8) we obtain the reduced
system

21= --l--XE=:fl(Xl,XE,Y ),

(9) = 2X-- 2y=:f(xX,x,y),
0= --(Xl+xEy+ya)=:g(x,xE,y),

which defines a flow on the surface M: g(x,x,y)=-O. M is sketched in Fig. 5. The
fold curves (+ and (- on M are given by

gy= (x2+ 3y2) =0.

FIG. 5
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When projected onto the (Xl, X2)-plane they form a cusp defined by

27x + 4x3 0,

i.e. the curves C+, C- are given by

C + x
2 ( x2)3/2- X2 -- 0.Outside the cusp M is single-sheeted, and inside it is 3-sheeted. Since the stability of

these sheets as reduced manifolds of the system (8) is defined by gy< 0 we find that the
upper and lower sheet are stable (attractors) and the middle sheet is unstable (repellor).

The system (8) has one equilibrium point z0 (0, 1,1) which of course lies on M.
To leading order in e the eigenvalues of the Jacobian at z0 are -, ei2r/3, e i4r/3,
which in particular means that z0 is a focus of the reduced flow on M. In Fig. 6 we
have sketched the vector field of (8) on M. The curves d,, on M are defined as
follows:

d" f=0,
/" /1--- 0,
: gy=O (fold curves).

It is easily verified that the projections A, B, C onto the (x,x2)-plane look like.
indicated in Fig. 6.

f2<0
A- f=0

fl. 0

+
ii1,,1 1\

/ f>0

FG. 6

In a finite distance away from M the vectors of the vector field of (8) are of length
O(1/e) and hence for e << 1 almost parallel to the y-axis. This means that the trajectory
through such points drops into an e-dependent vicinity of a stable sheet of M almost
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instantaneously. It is plausible that the trajectory stays close to M as long as it does not
encounter a point on a fold curve.

In the biological model, while no message is passing through the neuron, the
membrane surrounding the axon is polarized, and the potential remains constant
representing the stable equilibrium. As a message moves along the axon it triggers off a
rapid depolarization of the membrane which causes the potential to increase suddenly.
When the message has passed, the membrane repolarizes slowly, representing the
smooth return to the equilibrium.

In the mathematical model (8), what happens if a trigger increases Xl away from
the equilibrium point z0? A phase plane discussion (see Fig. 6) suggests that there are
essentially two cases

2(a) x__<
3’
2(b) x>

The value x= 2/3v/ is a threshold for the trigger. In the case (a) the trajectory
through (x, -1,1) will drop onto the upper sheet of M and in the case (b) onto the
lower sheet of M. Then, the following situations may arise, depending on the size of x:
(A) (i) The trajectory spirals back into the equilibrium.

(ii) It encounters a point on the fold curve (+ and drops down onto the lower
sheet of M (B)).

(B) (i) It slowly returns to the upper sheet of M and spirals, into the equilibrium.
(ii) The trajectory encounters a point on the fold curve C- and drops onto the

upper sheet of M and spirals into the equilibrium.
The case (B)(i) of course is the one that describes the biological model as sketched

above. We, however, want to consider the case A(ii), B(i) which contains, from a
mathematical point of view, all possible difficulties lying in this (mathematical) model.
And we want to show that a trajectory of (8) is indeed approximated by jumps into an
e-dependent neighborhood of a stable sheet of M and trajectories (on M) of the
reduced system (9). To be even more precise, we are going to prove rigorously that a
trajectory of (8) (as well as the corresponding solution) is approximated by trajectories
(solutions) of a sequence of reduced systems. Three different situations may arise:

--the reduced trajectory lies on a stable sheet of M,
--it encounters a point on a fold curve of M,
--it is "perpendicular" to M.
Hence without loss of generality we may consider a trajectory of (8) that starts in a

neighborhood of a point on a fold curve. For convenience, we take the point
z := (2, 3,1) on d+.

Let F + be the reduced trajectory of (9) through z lying on the upper (stable)
sheet of M. It is well defined for x__<2 in a neighborhood of z1. Moreover, let
(Xl(t), X2(t), Y(t)) be the corresponding solution of (9) with initial conditions (at 0)
Z’= (X, X2, y0)on I’+ sufficiently close to z1. It exists for t(T_,T), where T_ <0
and T>0 such that (X(T),X2(T), Y(T))=z1.

We introduce local coordinates near z by means of

xt=2+2-4x,
x2= -3+4}+2x,
y= 1 +..
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Then the transformed equation (8) satisfies A1 and M is locally given by

=h(x )=- -2x+2x+3:z+3
6+4p

Moreover, the fold curve 7+ has the (local) representation (h(x,q(x)),x,q(x)) for
x U(0), where the smooth function (x) is such that

h(x,(x))=O forxU(0),

with (0)= 0.
In order that A3 holds we need one more transformation

=+h(,(x)), =+(x).
In these new coordinates + has the (local) representation (0,x, 0), x U(0), and (8)
now reads

=l-2s+o(x,v),
1(ao) = (o+()),

o=a(,,o)+(,o)

where the smooth functions p, x vanish at (x, v)= (0, O) and

G(s,x,v) [(6 + 4(x))s + 4sv+ (3 + 3(x)) v2+ v].
Therefore, M in these new coordinates is locally given by

(3+3(x))v+v
S

6+4(x)+4v

Taking the positive square root on both sides we obtain an equation in (-s ,x, v that
satisfies the IFT. Hence, we find that there is a continuous function (s,x) defined for
s(sl,0], x(0), wNch is in cl((sl,0)xa) and has a continuous partial derivative
with respect to x also for s 0, and which satisfies

G(s,x,,(s,x))=O fors(s,0l,xa,
(0,0)=0,

and

q(s,x ) - 2s + h.o.t.,
1qs(s,x) t-h.o.t.,
-2

Hence, the upper (stable) sheet of M is locally given by o=k(s,x) and A3 is satisfied
with a 1/2.

Let us now consider the following initial conditions to (10)

(11)
(0, )=o()= so + o(),
(0,)=()=x+ o(),
(0,) () v+ o(),
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where (S, X, V) is the point Z in the new coordinates, i.e. we start in an e-depen-
dent neighborhood of the reduced trajectory F + and close to the point z on + (such
that the initial point lies in the s- and x-domain considered above). Then A4 is
satisfied, and from

Go(s,x,v)= -(4s+(6+6q(x))v+ 3v2) (which also implies A2)
and by applying the estimates (27), (28) of [1] we find that A5 holds with q= 1/2. In the
same way we obtain fl 0, 3’ 1.

Thus, all assumptions of Theorem 1 [1, Thm. 2] are satisfied, and we have the
following result for the phase-plane trajectory of the IVP (10), (11):

(12) Ix(s’e)-X(s) se [s(e),-ce2/3]
V(s)I<

where (X(s), V(s)) is the trajectory of the reduced problem (the reduced trajectory F +

in the new coordinates). Going back to the original variables we have for the corre-
sponding solution of (8)

{Xa(t,e)-Xl(t) I< Celog(T-t) -x

(13) Ix2(t,e)-X2(t) [< Celog(T- t) -x

ly(t,e)- Y(t) I< Ce(T-t) -1

< de log e-
[0, T- Ce2/3 ].

Hence, the reduced solution (trajectory) ceases to be an approximation in an e-

dependent neighborhood of the point z where the stability breaks down. Guided by
the algorithm presented in [2] we introduce the following shift scaling transformation

x 2 + e2/3 Ul,

x2 3 + e2/3u2,
y 1 + el/3q,

T+ e2/3o,
which means a blowing up of that neighborhood and takes (8) into

du
d--- 2 e-/3 u 2

(14) du2=4- 2ea/3q 2e2/3u2,do
dq= _(Ul+U2+3q2)_ea/3(u2q+q3 )do

Let (u(o,e), u2(o,e), q(o,e)) be the solution of (14) that satisfies

u( , e) e-2/[x(T- 6e/3, e) 2],
(15) u2 (-6, e)= e-2/3[x2(T- 6e2/’, e) + 3],

q( , e) e-,/3[ y(T_ 6e2/3, e) 11,
for some C. A solution of the reduced system corresponding to (14) satisfies

U(o)=2o+ V? U(,) =40+ U2

(16) Q= -6o-3Q2-(U?+ U?).
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Taking U U2= 0 it can be shown that

lUl(-- ,)-- Ol(-) [-- O(1/3 loge-1),
lu2(-O,e)- U2(- 6) [= o(el/3 loge-1),

q

3
\q= -3o+-

/
/

/
/

FG. 7

Equation (16) is discussed in Fig. 7. The domain sketched there is invariant, i.e. every
solution Q(o, o0, Q) with (oo,Q) stays in for all o(o0,o+), where (o_,o+),
o / > 0, is its maximal domain of existence. Moreover., it follows that Q(o, o0, Q0) o
for o o /..Since (13) implies

[q(-6,e)- 2qr-I<l
we know that q(-d,e)O for d large enough. Hence, applying standard arguments
(Gronwall lemma) we obtain that there is 0 < < such that for e sufficiently small the
solution of (14) with initial conditions (15)exists at least for o[-6,6] and

(17) q(6,e)< -1.

Equation (16) can be transformed into Airy’s equation which is linear of second order
(see e.g. [2, Ex. 1]). Let Q(o) be the solution of (16) based on the first one of the two
linearly independent solutions of Airy’s equation. Then, it can be shown that

Q( o ) /- 2o + o(( o ) -1),
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and

q( 6, e) Q ( 6 ) l< 1 for 6 large enough.

Moreover, Q(o) has a pole at o=6--0.892, and hence behaves as sketched in Fig. 7.
Thus, by means of the same arguments as before we obtain for our solution
(Xl(t,e),Xz(t,e),y(t,e)) of (8) that for every c_ e (0,6- 6] there exists M>0 such that

IXl(t,-)--l(t) [< Mloge-1,
(18) Ix2(t,e)-22(t)l<Meloge-, te[T-Oe.2/3, T-t-(O-c2)e2/3],

Y( t, e)- ?(t)1< Me1/3,

where (2x(t),(2(t), f’(t)) is the reduced solution (Ul(o), U_(o), O(o)) expressed in the
original variables.

By means of this second approximation, we have passed the delicate point z e (+.
We are still in an e-dependent neighborhood, however.

Again we proceed as motivated in [2] and introduce the new shift scaling transfor-
mation

u 2# + 81/301,
U 2 40 + el/3vz,
q=e-1/3w,
o I -I- E1/3’r,

that takes (14) into

dr1
d--" 2 4e2/3# ev2,

(19) do2 --4- 2w- 8e2/36 2eVa,dz
d__w 3w2_ w3 e2/3 (6(i + 46w ) e( 01 nt- 02 n

t- 0214; )dr

Let (Ul(’r, 6), 02(’r, 6), W(’r,/)) be the solution of (19) satisfying

O (-- 6-1/32, I)"- 6-I[ X (T+ 62/3( 6 c2), e)- (2 + e2/320)],
v2(-6-1/3c_,6)=6-1[x2(T+ 6/3(0-c),e)+ 3 62/340],
w(- r+ 1.

From (17) we know that w(- 6- /3c 6) < 61/3 Typical solutions of the reduced2,

w-equation are sketched in Fig. 8. A solution W(r, W), W(0, W) W, with wOe
( 3, 0) exists for r e ( m, oe) and approaches 0 geometrically for r oe and 3
exponentially for r + m. By using "phase-plane" arguments in the (w, r)-plane and
Gronwall type results it can be shown that ( vl( r, e), v_( r, e), w( r, 6)) exists for re

c2e- 1/3., e- 1/3]. Moreover, there is c e (0,1) such that

(,,)= 0(,),
o:(,,)= 0(,),
w(,r,e) 3 + O(e2/3),
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-3

Fo. 8

Thus in the original variables we have

x,(T+ e2/3(6 + 1),e)= 2 + 0(e2/3),
(20) x2(T+e2/’(O+ 1),e) -3+ O(e:/’),

y(T+ :/’( + 1),e)= 2 + O(e:/3).

The point z :’= (2,- 3,- 2) lies on the lower (stable) sheet of the surface M.
Hence, we have proved up to now that (and how) the trajectory of our solution
(x(t,e),x:(t,e),y(t,e)) of (8) has dropped off the upper sheet of M down to the lower
one. It drops down almost instantaneously (time O(e2/)) and almost vertically
(O(e:/)-neighborhood of (x,x2)= (2, 3)).

We again consider the original system (8) now together with the initial conditions
(20). By simple phase plane arguments (compare Fig. 6) it can be shown that the
trajectory of the corresponding reduced problem (lying on the lower sheet of M)
crosses the curve -, follows - into a neighborhood of the origin where it leaves -now being on the upper sheet of M. Then it crosses + and follows + into a
neighborhood of the point (0, 1,1) and finally spirals into this point on M which is a
stationary point (focus) of the reduced system. Hence, the corresponding reduced
solution ( (t), (t), (t)) exists for all T+ e/3(6 + 1) and since the trajectory
stays on the stable sheets of M we may apply the Tikhonov theorem (cf. [1]) on every
finite t-interval [T+ e2/(5 + l), c]. Taking also into account that z0=(0,-1,1) is an
asymptotically stable equilibrium solution of the full system (8) we thus obtain for e

small enough the following result on the unbounded t-interval"

[Xl(t,e)--l(t) 1< K82/3

[x(t,)-(t)[</ forevery tT+/(O+l).
Y(t, e)- (t)l< Ke/3

This was the final step. Summarizing, we have proved that the solution
(x(t,e),x:(t,e),y(t,e)) we have considered of the system (8) exists for all t0 and its
trajectory behaves as sketched in Fig. 9. The motion is slow as long as the trajectory is
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close to a stable sheet of M. The jump from the upper sheet of M to the lower one
happens in a fast time scale.

FIG. 9

4. The case "x > 0". This case is characterized by the fact that the flow along a
stable reduced trajectory of (2) leads away from the origin, the point where the stability
assumption is violated (see [1]). Also in this case, the estimates for the trajectories of (1)
given in [1, Thm. 3] carry over to the solutions and in a way completely analogous to
the proof of Theorem 1. For completeness, we state these estimates, but without
formulating the precise Theorem 2 corresponding to [1, Thm. 3] and without proof.

Let ((xx, e),o(x,e)) and (U(x1) V(Xl)) be trajectories of (1) and (2), respectively,
that satisfy [1, Thm. 3] and let , 8 and q* be the quantities defined there. Moreover,
let (x( t, e),y( t, e)) and (X(t), Y(t)) be the corresponding solutions obtained by intro-
ducing the time in the way (compare 1, 2)

x (0)
with

s*(e)=ce* and {s*-S*l=O(e*).
Then, if the parameter q in [1, Thm. 3] is taken such that q > 1- g (i.e. q* </),

there are positive constants C and c such that the following estimates hold for Tx and
e small enough:

Ix(t,)-x(t)l<cd,
[Yl(t,e)- Yl(t)[< Ce,#(Cleq* + t) -ql

+ t) -ql

for t[0, T1].
Examples for this case "x > 0" (as well as for "xl < 0") are the situations treated

in [3], [4].
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Abstract. A general second-order linear differential equation having an irregular singularity of rank one

in o is considered. It is shown that the solutions of this equation can be represented by series in terms of
confluent hypergeometric functions which describe the full analytic behavior at the singular point .
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Introduction. In the theory of complex ordinary differential equations a study of
the global behavior of the solutions is one of the most interesting and difficult prob-
lems. A specific problem of this kind consists in finding global representations for the
solutions which describe their full analytic behavior. In the present paper we want to
treat this question for the case of the general second-order linear differential equation
(DE) having an irregular singular point of rank one in , which is of the form

y"+f(z)y’+g(z)y=O,
where f and g are holomorphic in . There is a very extensive literature on this DE
since the fundamental papers of Horn [5] in 1908 and Birkhoff [1] in 1913. (See e.g.
[12], [61, [71, [81, [41.)

By a transformation of variables the above DE takes the following normalform

(0.1) y"+(l+a(z)) ( 2ix b(z) )z z: y+ 1++ y 0
Z Z 2

where x is a complex constant and a(z), b(z) are functions being holomorphic in a full
neighborhood r <lzl__ of infinity. We shall restrict our considerations to the DE
(0..).

It is well known that the solutions of the DE (0.1) are holomorphic functions on
the Riemann surface of lnz over r < Izl < , which possess in each sector largz r/2
nrl< r/2, (n) a characteristic asymptotic behavior as ]z]--)c. (See e.g. [11], pp.
232-236.) Our main aim is to obtain for these solutions global representations which
are valid on the whole Riemann surface and which completely reflect the asymptotic
behavior for [z[-) as well as the transition behavior in the case of analytic continua-
tion around

A central role in our consideration plays the special case of the DE (0.1) with a(z)
equal to 0 and b(z) equal to a constant -:
(0.2) y,, + zl__y, + (1 q 2ix

Z Z2
y=O.

*Received by the editors August 21, 1984, and in revised form July 31,1985
Universitht Gesamthochschule Essen, FB 6 Mathematik, D-4300 Essen 1, West Germany.
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This DE is--up to a simple transformation of variables--the confluent hypergeometric
DE. The solutions of this DE--the confluent hypergeometric functionsmare very well
known. Using a lot of these well known facts and taking advantage of the very close
relationship between the DEs (0.1) and (0.2), we can show that the solutions of the DE
(0.1) are to be represented by series in terms of confluent hypergeometric functions,
and that these representations are global ones possessing all the desired properties. A
very specific property of these series, which underlines their usefulness, is that essen-
tially only one set of coefficients is needed for the expansion of different solutions of
the DE (0.1).

An immediate cause for the present consideration results from the study of special
functions of mathematical physics, where expansions of "higher" special functions in
terms of "simple" special functions have played a central role at all times. It is just this
field from which we have obtained essential stimulations. In this connection we should
mention, above all, the corresponding considerations of Meixner and Schfke in Chapter
3 of their book on Mathieu and spheroidal functions [9, pp. 289-300], where spheroidal
functions are expanded in terms of Bessel and Hankel functions. As far as the whole
organization and the analytic methods of this paper are concerned there is a close
relationship with the paper [16] of the second author.

This paper is divided into two main sections. Section 1 contains preliminary
results: in {}1.1 and 1.2 we introduce the fundamental notations for the DEs (0.1) and
(0.2) and give some elementary, respectively well-known statements. In {}1.3 we make
available a suitable version of a theorem of F. W. Schfke on expansions in terms of
Whittaker functions, which serves as a main tool in our analysis, and in the following
we draw some important conclusions on the coefficients of such expansions. In {}1.4 we
prove a theorem on the asymptotic behavior of series in terms of confluent hypergeo-
metric functions, which surely is interesting by itself. This theorem is a generalization of
a corresponding result of Meixner and Schffke [9, pp. 95-97]. Section 2 contains the
main results on the representation of the solutions of the DE (0.1) in terms of confluent
hypergeometric functions. In {}2.1 we transform the DE (0.1) into sequence spaces. In
{}2.2 we prove the fundamental result concerning the asymptotic behavior of the
expansion coefficients which ensures the global convergence of all series. Section 2.3
finally contains the definition and a detailed discussion of the solutions of the DE (0.1)
by means of their series representations.

Three final remarks are to be made:
1) Our analysis of the DE (0.1) also furnishes the existence of asymptotic solutions

of the DE (0.1), certainly under the use of the very strong expansion theorem in {}1.3.
Another method to obtain the main results of this paper is to base all considerations on
the existence of asymptotic solutions and to use the principle of analytic equivalence.
(See [6]-[8]).

2) All series representations in this paper are only valid in the case that the
characteristic exponents v of the DE (0.1) fulfill 2, ’ ("normal case "). A treatment of
the exceptional case 2u 7/ in the frame of our methods would require a more recent
expansion theorem of F. W. Schffke in [15, pp. 134-135], which is based on the general
results in 1.1.11 of [10].

3) In principle, it should be possible to extend the methods of this paper also to
general DEs of higher rank, but considerable efforts are to be made: First, one has to
find an adequate set of "special" DEs being analytic equivalent to the "general" DE.
Secondly, one has to establish f6r these special DEs all the results corresponding to
those for equation (0.2) which are contained in 1.2, 1.3 and 1.4.
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1. Preliminary results.
1.1. General remarks on the DE (0.1); notation. In the following let f denote the

annulus (2C [r<lz[< o) and the Riemann surface of lnz over .1 The vector
space of holomorphic functions in is then denoted by o’().

For y ,’() we define

(1.1)

where x C, and

L,,y’= Z-z Y+(Z2+2ixz)Y’

d(1.2) Gy’= -z (gl.y)+g2.y

where the coefficients gl: a and g2: b-da/dz are holomorphic functions in 12 (3

(c). L and G are linear operators in ’(), in terms of which the DE (0.1) then
reads

(n) ny := Ly+Gy=O.
The solution space of (D), which we denote in the following by (D), is a two-
dimensional subspace of ().

The following remark is to be easily verified:

(1.3) Let yl,y: e(D). Then the Wronskian

d dw[yt,Y2] "= Y’Y2--Y2"Y
has the form

w[ Y,,Y2 ](z) Yl,Y2] "z-x" expi )
where y,y2 C. [.,. is a nontrivial alternating bilinearform on 92 (D ).

Defining for yd()
(1.4)2 (qy)(z)’= y(e2"i.z) (z),
we obtain a linear operator in ’() which maps 92 (D) onto itself: ( 92 (D)) 92 (D).
The restriction [ (n) is then called the "monodromy operator of the DE (D)". It is one
of the fundamental quantities of the DE (D). Further, one defines vC to be a
"characteristic exponent of the DE (D)", iff exp(2rriv) is an eigenvalue of the mono-
dromy operator [(o)- This means especially that there exists a nontrivial solution y
of (D) belonging to

(1.5) 1I" (q) e 2,i) 1( {0 } ) ( g v" h ih" 12 ---) C holomorphic}.
A solution of this kind is called "Floquet solution of the DE (D) with respect to the
characteristic exponent v".

Let the set of all characteristic exponents of (D) be denoted by E. X is then
characterized by

1
(1.6) v E cos 2rv - traceq

9(D)"

For the sake of briefness we use the same symbol z for the point (r, qg) as well as for its projection
reiCp = .

-For z=(r,(p), x=(0,k) let z.x’= (r’o,p+).
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Thus, for any vE we have E=(v+ 7/)U(-v+ 7/). For the sake of completeness we
give a short proof of (1.6), using the nontrivial alternating form [.,-] in (1.3): Let Yl, Y2
be a fundamental set of solutions of (D) with [yl,y).] 1. We then have

detlo)= [q,yx,q,y:], tracel(m [bYl,Y2] + [Yl,

Since the Wronskian w[yl,y:] is holomorphic in f, we obtain

w[Yl, Y2] =b(w[ya,y2] ) w[ yx,y)

and therefore

detlgo) [Yl,Y2] [Yl,Y).] 1.

Since the eigenvalues ) exp(2rriv) of q’ (o) are determined by

)2-h. traceql(D)+ detlD)=0,

we immediately obtain (1.6).
It should be observed, however, that the representation of traceql z) in (,) does

not provide an elementary means of calculating the characteristic exponents of (D).
Finally it turns out to be convenient introducing for v C the operator

1 2tiu).O -i (- e

Obviously, for vC and

(1 8.1)
sin 2rv
y=Q_,y-Q,y.

Moreover, for v - and y 92 (D)

(1.8.2) Q : ,y 1I +/- ,(q 92 (D).

In the "normal case" of the DE (D) where

2v q 7/for (one and hencefor all) v E

the formula (1.8.1) thus yields a unique representation of each y92(D) in terms of
Floquet solutions.

1.2. Floquet and asymptotic solutions o| the DE (0.2). In terms of the operator L
the DE (0.2) can be written in the form

(D,) D,y Ly #2y O,

where x,/ C. By the transformations

y(z)=e -i.z.u(x), x= +__ 2iz,

this DE is equivalent to the confluent hypergeometric DE

where a 1/2 -T- x +/, c 1 + 2.

xu"+(c-x)u’-au=O,
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Introducing a slightly modified function

(a)n x(a; c;x)’= F(c+n) ni

where (a),= F(a+ n)/F(a)=a(a+ 1)... (a+ n- 1), we obtain by

(1(1.9) I,,()’= e-.z’.) --+/; 1 +2/; 2i

a solution of the DE (D,). being holomorphic with respect to (x,a, c); the same is
true for I.,. with respect to (z,,/). Obviously, I,, belongs to 1I, and is hence a
Floquet solution of (D,), if 4= 0; this is especially true for 2/ ff ’.

Since the DE (D) is invariant under the substitution/ - -/, we obtain by I,_ a
second solution of (D,), which now belongs to 1I_ and is 4= 0 for 2# 7/. Therefore, in
the case of 2/ ff 7/, I.,, and I.,_, constitute a fundamental set of solutions.

Introducing the ’t, function (see e.g. [3, p. 255]), we obtain by

(1.10) H + ri/2) ’.e-. .-+_x+;l+21;2e-i/2.z),t, (z) (2e q: 1/2++ + i z. 1

solutions of the DE (D,), which possess the asymptotic expansions

(1/2++)(1/2+x-)(1.11) H +- + iz -1/2 Tx,t,(z)-.-e- .z E .(+2iz)
m=0

rn!

as Izl m within the sectors largz T rr/21 < 3rr/2. Heremand also in the followingmlet
the upper and lower signs always be taken simultaneously.

The different asymptotic behavior of H+ and H, implies that these functions
constitute a fundamental set of solutions of the DE (D,) without any restrictions to the
values of x and .

The functions H + possess the following representations as Laplace integrals

(1.12) H+ ++_iz z1/2T, foX.e-i’_zt (1 1 t),,(z)=e e 2F1 -+x+/, ___x-/; 1; __+ - dt,

which are valid for z e with largz l < r/2 where with I-Y- r/21 < r. This
follows e.g. from [3, p. 273] by transformations, but may also be easily verified directly.
Using (1.12) as definition, one immediately finds (1.11) by means of Watson’s lemma.
(See e.g. [11, p. 114] or [14, p. 40]).

From (1.12) we also obtain that the H -+,, are holomorphic with respect to (z, x,/)
and satisfy

(1.13) H + =H e

In the very special situation of the DE (D,) one can determine the connection
between the Floquet solutions I,+_ and the asymptotic solutions H-.,, explicitly.
Defining

(1.14) I + +, Q_,H7,
we obtain by (1.8.1)

(1.15) sin2r/ H -+ =I - -1 +-
qT" ,/z x,/ ,-
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and by (1.8.2) I,,+ 1I, II(D,). Using the connection formula between the and q’

functions (see e.g. [3, p. 257]) we finally find

(1.16) I,,+ -(2e q:i/2)/2++_. 1

r(1/2+ -).I,,.

1.3. Series in terms of Fioquet solutions of the DE (0.2). Throughout this section
let ;,C with 2,7/and 1/2-x+,7/. The first condition implies 1I1I_= (0} and
both together I + 4= 0 for/ + + ’For any two functions y-+ 1I + the product y+.y- is a holomorphic function on. Hence we can define

+(1.17) (Y+’Y-)’=(Y-’Y+)’- 2ri
y (z)y-(z) dZz

with an arbitrary r < O < oe. Obviously, this expression is linear with respect to y + and
y.

Since the operator L, commutes with , the spaces 1I+, are invariant under L.
One easily verifies for y + 1I +,

(1.8) y+,y-)=y+,y- )
The results of the preceding section show that both eigenvalue problems

L,,y+-=Xy +- (,C; 04:y 1I +_)
possess the same eigenvalues, namely , =/2 with/ , + 7/, and that the corresponding
eigenfunctions are just I/ 1I and I. 1I Using (1.18) as well as (1.16) and
(1.9) then yields

(1 19) (I+,/ + n, ,0 ,/

where 6n,,, denotes the Kronecker symbol and

(1.20) e,," e-’’+’).sin(1/2-x+lz) sin2r--------- =/= 0 (t ,+ 7/).

We now state a theorem which ensures the expansion of any function y -+ 1I
_

in
terms of the eigenfunctions I -+ (/ , + 7/). This theorem, which is fundamental for
the following analysis, can be deduced easily from a corresponding theorem on expan-
sions in terms of Whittaker functions found by F. W. Schfke. (See e.g. [13, p. 177] or
[14, p. 2281.)

(1.21) THV.ORF.M. Each y+ 1I + has an expansion

(1.21.1) y+(z)=
+_u+Z

which converges absolutely and uniformly on compact subsets of . The coefficients are
uniquely determined by

(1.21 2) %’e,_+,=(y+- I : ) (tt + ,+ 7/)

Moreover, the following asymptotic formula for the I + holds. (See e.g. [13, p. 180]
or [14, p. 2451.)
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Then

(1.22) Let for I + v + Z the functions g, C -o C be defined by

F(1 + 2)F(/2 -) g,.,(z).

(1)g,++,(z)=l+O

uniformly on compact subsets of C.

Theorem (1.21) serves as a main tool to transform and study the DE (D) in
suitable sequence spaces. For this purpose we make the following preliminary remarks.

Let y + 1I + and let (G), -+ + z be the corresponding sequences of coefficients
determined by (1.21.2). From (1.22) we obtain then

(1.23.1) lim

and

(1.23.2) lim sup ([ c +/-,_ i.n,)X/,. <=-’r
On the other hand, let (c,),+/-,+ z be sequences which behave like (1.23.1) and
(1.23.2). Using (1.22) again, we find that the corresponding series (1.21.1) converge and
define functions y +/- 1I +/- ,. Moreover, the sequences (c,), +/- ,+z can be obtained back
by (1.21.2). Introducing thus the vector spaces

,’= { cC "+Zlc behaves like (1.23.1) and (1.23.2)),
we have just seen that these are through (1.21.1), (1.21.2) isomohic to H,, respec-
tively.

For studying the DE (D) in ,, it becomes necessary to find the corresponding
representations of the operators L and G in ,. More generally, we consider an
arbitrary differential operator of the form

(1.24) Sy E s y (y()),
j=0

where m and the coefficients ss (j 0,..., m) are holomorphic in
commute, the spaces H , are invariant under S. Hence, S has a representation in
which we denote by S. Letting c (c) +z , and d= (d)

,, we immediately obtain by (1.21)
1 E (SI+,, ,._) +,I; .c ( +v+)(1.25) d,= e..,,

An important role in the following analysis plays the explicit knowledge of the
representations of the special operators 1/z. and d/dz in .. These result from the
following three-term recurrence relations

i i( +x+1/2i 2x i T-1/2I
z ."=g + +

(.26)
+ /2 ,.,+1

_
1/4 ’"- -/2 ,"-*]’

die i( +1/2i +ie+-l/2i }
which can readily be obtained from [2, p. 82].
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By the use of (1.26) we derive
(1.27) PROPOSITION. Let S be an operator of the form (1.24) with coefficients sj

being holomorphic in u ( oo ). Then for I,t +_ v + 7/ and n ’
)=r(l/2+-t,) ’+"’ "’-" r(l/2+--n) ’-"-"’ "’"

The proof follows in several steps:
1) For S= identity the formula is trivial by (1.19). For S= 1/z. and S=d/dz it

can directly be verified by using (1.26) and (1.19). In the first case both sides vanish for
Inl>_ 1 and in the latter for In[>_2.

2) Let now S and S2 be operators of the form (1.24) for which the formula (1.27)
is valid. Obviously, it holds then for S + S2, too. A straightforward calculation using
(1.25) shows that it also holds for S2

o S.
3) According to 1) and 2) formula (1.27) is valid for operators of the form (1.24)

where the sj are polynomials in 1/z. But then the general case immediately follows by a
simple limiting process.

We finally prove
(1.28) PROI’OSTmN. Let 0 < r < O < oo. Then for each 71 there exists a constant

,l (r, #) > 0 such that for all k and all n

_
1 {_I+/- i: ,) _< ,,. _.. (2.)-

For n _< N the inequality follows directly with (1.17) and (1.22) by estimating the
integral at I1 2. The case n > N then can be reduced to the former case by means of
(1.27). Here N has to be chosen large enough such that (1.27) is applicable.

1.4. Nedes ers 1’ syitfie slfis t’ the DE (0.). Throughout this
section let v, C be arbitrary. We prove in the following

(1.29) TEOREN. Let (c,,)C satisfy

lira sup (I c, I. Inl’)/11. <-’r

(1 29.1) H+(z)’= E c,,.H + ,,(z) (z)

define holomorphicfunctions in which possess the asymptotic expansions

O0 ~+
(1.29.2) H+(z)-.e+-iZ.z -1/2-. m=O--..(+2iz)_ ca

as Izl--’ oo within the sectors largz zi: r/21 < 3r/2, where the coefficients are given by

(1.29.3) ~+" ,z ( 1 ) (1 )ca c," -+x+v+n -+_x-v-n
By the use of (1.15) and (1.22) it follows that the series (1.29.1) converge absolutely

and uniformly on compact subsets of and hence define holomorphic functions in .
It remains to prove the asymptotic behavior. This may be done by representing H + as
a Laplace integral and then applying Watson’s lemma.

Then the series
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To simplify the following consideration let us assume that cn= 0 for n < N, where
N IN with Re(1/2 + x + v+ N)> 1. This means no restriction since by (1.13) one achieves
at once c,, 0 for n < 0 and the remaining finite series can be tackled directly by means
of (1.11).

The representation (1.12) of H -+ suggests that one study the series

(1.30) f+--(’)’= C 2F1 --t-tc+/,’q-r/, +__--l--n; 1; "n=N

for " 12 \[1, + m[. In view of this we prove
(1.31) LEMMA. Let a,bC and mEN with Rea>=l and m>=-Reb. Further, let

0 < < 1, 0 < q9 < r/2, 4 < o < oe. Then there exist constants 0 <M< oe, 0 < 7 < 0 and
1 < p < o such that for all C with I’1 _-< or <= arg ’ =< 2w tp andfor all n

[2Fl(a+n, b-n; 1; I=<M. { "l ’ln+m(

Proof. For " C\[1, + oo[ and n tN the following integral representation is valid"

2Fl(a+ n b-n.l. )=ei""+’ f ( )"2ri
ta-l"(1--t)-a’(1--t)-b" 1--"it (1--t’) dr.

Here is a contour starting and ending at 0 and encircling 1 once in the positive sense
which, moreover, is to be suitably chosen with respect to ’. All powers are to be taken
with their principal values near the initial point t= 0. (See e.g. [3, p. 60].)

A convenient choice for our purposes is given by the contour (with 0 < e < 1)
comprising the line segments ee and e0 together with the circle 1’-11 1-e taken in
the positive sense. We intend to estimate the four factors of the integrand separately
along . To this end let for the present 0 < e < 1 and 0 < p < oe be arbitrary.

Then, for I

(a) Iti_<2-e, 1-e__<ll-tl=<l.

Furthermore, for e g and ’ e C 1(/31) II-tfl=<21fl if

(/32) II-t’l=<l +(2-e)O if lift<O,

as well as

(’/1) I1 t" I> sinq
(’/2)

(3,3) II-tl>=l-8(2-e)

(74) 2

and

if O=<t=<e, __< argO’=< 2rr- ,
1It-11>=1- ,

if I" I=< 8,
if __< arg ’__< 2 r tp, 1 e =< sin -,

arg(1 t’)] bounded in each of the latter four cases.
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To prove the first inequality in (1.31), we choose 0 < e < 1 with 2(2 el)/(1 ex) < o
and after that 1/e < t9 < oo. Estimating the integral along by the use of (a), (/31)
(3,1), (3,2) and (3,5) then yields the desired result. To prove the second inequality in
(1.31), we choose now 0<e<l with 8-(2-e)<1 and 1-e=<sin(/2). Estimating
the integral along by the use of (a), (/32), (,3), (3,4) and (3,5) then yields the
inequality for I’l =< O. This completes the proof of the lemma.

We continue now in the proof of (1.29). Lemma (1.31) shows that the series (1.30)
converge absolutely and uniformly on compact subsets of C\[1, + o[ and hence define
holomorphic functions f + "C\[1, + o[C. One readily verifies the following power
series representation at 0:

(*) f -/(’)"- E r m (l l< 1)
m=O m! m!

Using the first inequality in (1.31) again, one obtains, on the other hand, for arbitrary
0 < q < rr/2 and r < < o0 the inequality

(**) If +-(’)IZ exp(2lff I),
being valid for all ’C with p=<arg’__<2rr-q0 and I’1>__0, where 1<0< c is to be
chosen sufficiently large. Obviously, the right member in (**) is also a bound for all
partial sums of the series (1.30). This especially permits one to interchange summation
and integration in the situation (1.29.1), (1.12) by means of the Lebesgue dominated
convergence theorem and finally leads to the Laplace integral

(1.32) H+(z) e+iZ z1/2T- fo’e-i -zt +(t)e "f- +---t dt,

which is then valid for z0 with Reze-i> r where (R with
Having (,) and (**) available, one can now immediately apply Watson’s lemma

onto the situation (1.32). This yields then the asymptotic expansions (1.29.2) as Izl
within the half-planes Reze->r where N with I-Y-rr/21<cr. To obtain the
asymptotic expansion within the full sectors largz-Y-r/21 < 3rr/2, one has to choose an
appropriate covering.

2. The global representation of the solutions of the DE (0.1) by series in terms
solutions of the DE (0.2). Throughout this chapter we assume that the DE (D) is in the
"normal case", which means 2, 7/ for (one and hence for all) , E. Then, for every
, E, we have 1/2 x + , ff 7/ or 1/2 + x + , 7/ (since the sum of both quantities is
2, + 1 7/). Considering , E * , -,’z we may thus assume that a

1, E with 2, 7/ and --- x +, 7/

is chosen and fixed for the following. (This is done with regard to the unrestricted
applicability of the results in 1.3). We then especially have E (,+ 7/)t9 (-,+ 7/).

2.1. TransIormation o| the DE (0.1) into sequence spaces. According to (1.8.1),
(1.8.2) each y 92(D) has a (unique) representation y=y/ +y- with y +- 1I _+ c3 92 (D).
We shall thus consider in the following always (pairs of) functions y +-

Let y - _+, (3 92 (D). Then, according to 1.3, the corresponding sequences
(c), + + z 1I + defined by (1.21.2) are solutions of the equation

Lc + d,c O,
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which can also be written in the more explicit form

1 ( )(2.1) /x2.c+ ’ GI,,+, I 0 (/ +u+ 7/),-p "Cl+l, IZ

This follows immediately from (1.25) with S L and S G; the off-diagonal terms of

L vanish due to L,,I,,, 2 ,+
/z I, and (1.19).

In the following, we also need the converse statement: Let the sequences
(c) ,++z be solutions of (2.1) belonging to 1’I ,+, which means by (1.23) that they
have the asymptotic behavior (1.23.1) and (1.23.2). Then, according to 1.3, the corre-
sponding functions y "+ 1I defined by (1.21.1) are solutions of (D), so y
(D).

The main aim of the followin analysis is to improve the asymptotic behavior
(1.2.1) for the solutions of the equation (2.1). Ts means to show that the solutions of
(2.1) belon to other specific sequence spaces. We thus have to put the equation into a
suitable form such that it can also be treated in the other sequence spaces in question.

For this puose we define, for the moment only for sequences c=(%)

1(2.2) ( Tc) ," c,,
, 1=-1

Z ,+i ,- "C+l

.= 1

1 {gi i ),+l ,- "C+l"

Obviously, the sequences Tc, Ac, Bc and Gmc belong to fI _+ and, hence, T, A, B and
G, are operators in fI ,+ . With the notation of 1.3 we especially have

T2=L-1 A B= To Gin=

Thus, (2.1) is equivalent to

(2.6) c+ To(B oGx + ToG2)c=O.
2.2. Solution of the DE (0.1) in sequence spaces. Let 0 < p < . By means of

x(n)’= pl,I Inl!
inl--7, z(n)’- I.---

we define for j 1, 2 the sequence spaces

)2j-+ "= {(c)C ++Zlzly>O s.t. ]c +/-+,,l<__’r.%(n), (nZ)}
and for c (%) !rJ2f respectively the norms

Ilclb.:= min(y>=011c +_.+.l_<_v.%(n), (n7/)).
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Obviously, the )2f (with corresponding norm II" II) are Banach spaces and

932 continuously imbedded.

We intend to study the equation (2.6) in the spaces 932f, (j= 1, 2). We thus show
at first

(2.7) PROPOSITION. The formulas (2.2), (2.3) and (2.4) define continuous operators
T, A and B in each of the spaces 992j+- (j 1, 2).

Proof. The case (2.2) is obvious. Since the cases (2.3) and (2.4) are quite analogous,
we restrict ourselves to the case (2.3). Let c=(%) 932f. Using (1.26) we obtain for

i(l_T_/ ) Cg+a ix i(l+.x) c-1
g+1/2 /z+l

This immediately yields the inequality

1(2.8.1) (nZ),

where the o, are independent of c and

(2.8.2) R+o,l (Inl).
Especially, for c

1Ac Y and Ac sup On" C IIJ.
n7/

The case (2.5) is more difficult. We shall essentially show that like the g,, are
power series in 1/z the corresponding G,, are power series in A.

We consider for N N the projection PN which we define for c (q,) 32f by

c +,,+,, (Inl>N),
(PNc)+"+"’=

0 (Inl__<N).
Obviously, the PN are continuous operators in satisfying

Here, II’llj denotes the corresponding operator norm. From (2.8.1) and (2.8.2) we
immediately obtain

(2.9) COROLLARY. To each 0 < < p there exists a N with

1
Ilao PN j -< ---We can prove now

(2.10) PROPOSITION. I the case r/2 < p< o the formula (2.5) defines continuous
operators G and G2 in each of the spaces 9Xf (j= 1, 2).

Proof. Let r/2 < < o < O be fixed and N be chosen to z according to (2.9).
(i) Using (1.25), one readily finds for k M and c (q,) 992j-+

1 (_ki + i_ >(2.11) (A%)t,=" Z 2 g-.+,, tc,--p. "p.+l ( "4"p-’1-7]).
g,-I- g [l[_k
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Estimating with (1.28), this yields for c= (%) range(1- PN)

III_N

where }’! 3q(o, p). Thus there is a constant 1 __< < oe with

(2.12) IIAko(1--Pu) I._< - (2o) -k.
By induction now immediately follows

k

<v.(Zr)- (kN)
j=l O

where T’= .exp(f(o-)). For k=0 this is true on account of I. For the step
"k k + I" we estimate by the use of (2.12) and (2.9)

A + llJ A II/11 A p II/+ a+1 (1 P)

. .+.(2o)
(ii) Expanding the g= into power series

g:{z)=: E gT.z- (r<lzl+),
k=0

we obtain

E Ig’l’(2r)-*=:3’m < o.
k--O

By the use of (1.25), (2.11) and (2.13) then follow for c=(c,)Jf and/= +_ u+ n

1

s E Igrl.lllb "llclb’(n)s’m’llclb"(n).
k=O

Thus, for c 9Jf,
Gm G_? and GmC I[j <. ’Y "Ym" C J"

According to (2.7) and (2.10) we can consider equation (2.6) now in -+ as well as
in 932 f, provided that r/2 < p. We prove

(2.14) PROPOSITXON. Let r/2 < p < oe. Then each solution of (2.6) belonging to f
already belongs to .

Proof. By the definition of T immediately follows [[PN T[lj-’-)0 for N oe.
Hence we can choose NN such that [IPu TIIj.IIB G + To GzI[j<I. Applying Pv
to (2.6) and adding (1- Pu)c on both sides gives

(1--PN)C=(1 +(puo r)o(BoG + roG2))c.
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Since the left side of (,) obviously belongs to 3 +- and the operator on the right side of
(,) is, by the above choice of N, invertible in 93x+- as well as in f, c necessarily
belongs to -+

Finally, we apply the result of (2.14) to our special situation where we have a
solution c of (2.6) belonging to 1)+,. Choosing an arbitrary (r/2)< p < , we obvi-
ously have ccf and hence by (2.14) obtain c. We summarize the
essential facts in the following

(2.15) THEOREM. Let yU.(D) and let (c.). .+z be the corresponding
coefficients defined by (1.21.2). Then

(2.15.1) limsup ([ c +n[’]nl)l/n.
2.3. Fioquet and asymptotic solutions of the DE (0.1). Let OyH(D).

According to (1.21) we have

(2.16) y(z)= E c,I,(z) (z)
v+Z

where the coefficients (c), +z are given by (1.21.2). As shown in the last section,
these coefficients possess the asymptotic behavior (2.15.1). We can thus define

(2.17) (z)’= E c_I%(z)= E O,I(z) (z)

(2.17.1) .,’= c ,’4z-’(e+i’r/2)l+2*’F(1/2+x-I) ( +v+7/).F(1/2 X- -/)
Obviously, +- 1I _+ . Multiplying (2.1) with

4-+".(e ;/)1-.. r(1/2 - +)
F(1/2+ +t,)

and using (1.27) with S=G one readily finds that () +,+z is a solution of (2.1) in
17I + . Hence, according to {}2.1, ) + lI + 92 (D).

Since y + 4= 0, there exist (unique) constants + C such that

e riv

(2.18) )+(z)= +_ 2sinr(1/2+_v).+.y+(z) (z).

This immediately implies

2rri.4 q:(2.19) +.%=r(1/2_v+)r(1/2_+t,).c_ ( +v+z),

which obviously is a connection formula between the coefficients of y + and y- Using
(2.19) twice gives

(1 )(1 }(2.20) +--=-4sinr -+x-v sinr +x+v =-2(cos(2rv)+cos(2rx)).

A short calculation then yields

e2riv.+.- eri(+v-1/2).sin2lrr
{,) 1+

4sin=(1/2 + x- v) sinr(1/2 +- v)
4=0.

whereby (1.16)--
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We define now for z

(2.21)
sin2rv (H+(z),H_(z)). (y+(z),y-(z))

e *riv -2sinr(1/2 + x- v)

e riv +

2sinr(1/2 + x- v)

-1

Since y + and y- constitute a fundamental set of solutions of (D), also H+ and H- do
so on account of (,), By the use of (2.18), (2.17) and (1.15) we obtain the representa-
tions

(2.22) H +(z)= E c,.H +

/ +v+Z

(1.29) then shows that the H +- possess the asymptotic expansions

(2.23) H+-(z) -e+-iz’z-l/2" E -. (.--2iz)Cn
m=0

as Izl within the sectors largz g r/2l < 3r/2, where the coefficients are given by

p, +v+ ’
Inserting the asymptotic series (2.23) into the Wronskian we arrive after a short

calculation at

[H+,H-] -2i.--.
Since H+ and H- constitute a fundamental system, we have [H+, H-] 0 and thus
obtain

E
g +v+’

This makes it possible to normalize the solutions y- and H +- A quite natural choice is

o-+ 1. By this, y + and H + become uniquely determined. We summarize the results
concerning the H -+.

(2.24) TnEORVM. There is a unique fundamental set of solutions H+ and H- of the
DE (D) having a representation of the form (2.22), where the coefficients (c,),

_
satisfy

(2.15.1) and

(2.24.1) Y’ c,= 1.
g+/-v+Z

The H +- possess the asymptotic expansions (2.23), (2.23.1). Furthermore, the coefficients
ofH+ and H- satisfy the connection formula (2.19), where

(2.24.2)
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The formula (2.24.2) follows by summing up (2.19) and using (2.24.1).
Introducing the monodromy matrix U of the fundamental set of solutions H/ and

H- through

(2.25)

a short calculation using (2.21) and (,) yields

_e_2,ri _e-ri.+ )(2.25.1) U=
--e-ri’’ 2cos2rrv+ e -2rix"

The formulas (2.25.1) and (2.20) show the actual meaning and the fundamental impor-
tance of the quantities +-.

We shall now call attention to the special case where H/ or H- itself is a Floquet
solution. A preliminary result which is closely related to this question is the following:

(2.26) =_= g++z -+z if and only if +.-= 0.

This is obvious by (2.20). A more detailed information is contained in
(2.27) THEOREM. A necessary and sufficient condition for H +- to be a Floquet solution

is f := O. In this case

c:_1/2+,= 0 (7/n>__l)

and hence

.H + (z)H+-(Z) E CT-g-1/2-. x,_+g+l/2+n
t-----0

+

I + (z).
"[-’lr E CT-I/2-n ,T-l/2-nsin2rrx

tl=O

Moreover, the corresponding asymptotic expansion actually converges in and represents
H +

The last statement follows from the fact that in this case zl/Z+.eZ-iZ.H +(z) is
holomorphic in fto { oz). The other statements follow directly by (2.21), (2.19) and
(1.15), (1.16).

The following remark shall clarify the actual dependence of our functions on the
previous choice of v. Obviously, all definitions and calculations only depend on v E
modulo 1, but some of them essentially use the assumptions 1/2- +v 7/. Regarding
especially the solutions H 5, one easily sees that these are uniquely determined by their
asymptotic behavior and hence are independent of v. Then, by (2.25), (2.25.1), also
the + are independent of v.

Since the H +/- are independent of the previous choice of v, we can give an
appropriate definition of Floquet solutions depending on the H 5, which is in full
accordance with the definition (1.14).

For -_- let

(2.28) I+/- "= Q_,H +-
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By (1.8.1), (1.8.2) then follows

(2.28.1) sin 2r/z H +=I I_-+,,
Especially, for/ E with 1/2 x + # ’, we obtain from (2.28.1), (2.21) and (2.18)

(2.28.2) I + + q: : 0)+_-.=y-.0; .
We close our considerations with a few remarks concerning the practicality of our

representations and their relation to other recent results on the subject.
Our series representations of the solutions of the DE (D) depend at first on the

characteristic exponents vE and secondly on (essentially) one set of coefficients

The characteristic exponents are determined by (2.20) through the quantities +

This factmbut even more their fundamental role as coefficients of the monodromy
matrix Ummakes it desirable having a method to compute the + Unfortunately,
(2.24.2) is not accessible for a direct computation because the (c,), +,+z are not
available. But (2.24.2) together with (2.23.1) yields the following limit-formula for the

lim =1.4 : :.(2.29)
,-.o F(n+_2c)-n! 2ri

Since the coefficients of the asymptotic expansion (2.23) can be calculated recur-
sively in a well-known manner, this formula provides an explicit method to determine
approximately the + (and thus the characteristic exponents v E and the monodromy
matrix U). (2.29) is exactly the formula obtained by Jurkat-Lutz-Peyerimhoff in [6],
resp. [7], [8] for calculating the so-called Birkhoff invariants of the DE (D), which are
essentially + and (- Another method to determine the j +- is to be found in Hinton
[41.

Once knowing the characteristic exponents v _,z" the coefficients (c), +_ +z of
our expansions are then uniquely determined by equation (2.1) and conditions (1.23.1),
(1.23.2), (2.24.1). Unfortunately, equation (2.1) is, in general, not recursively solvable.
The situation is nearly the same as for calculating the coefficients of the Laurent
expansion of the Floquet solutions y + But this is not at all astonishing" Knowing the
power series expansion of the I + explicitly, one can express the Laurent coefficients of
the y +- through our coefficients % and vice versa. Nevertheless, if the coefficients gl
and g2 of the DE (D) are polynomials in 1/z, equation (2.1) becomes a difference-
equation, which can be solved recursively with respect to the conditions (1.23.1),
(1.23.2). Herein are included many types of confluent Fuchsian DEs which are of
interest in the theory of higher special functions.
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DISCONJUGACY AND COMPARISON THEOREMS
FOR SECOND-ORDER LINEAR SYSTEMS*

W. J. KIM"
Abstract. Sufficient conditions for disconjugacy and disfocality are obtained for the second-order

system y" + Ay 0, where A is an n n matrix. Also proved are comparison theorems for disfocality through
a generalization of the Riccati equation method originally used by Hille (Trans. Amer. Math. Soc., 64 (1948),
pp. 234-252) for the case n 1.

1. Introduction. The second-order systems to be studied in this paper are of the
form

(I) y"+Ay=O, A=(aij)i,j=l,
where A =A(x) is an n n matrix with real elements which are continuous on an
x-interval I, and y is an n-dimensional column vector. The system (1) is said to be
disconjugate on the interval I if, for every pair of points a, be I, a <b, the only
solution y satisfying the two-point boundary condition y(a) y(b) 0 is the trivial
one. On the other hand, if the only solution of (1) satisfying the condition y(a)=y’(b)
=0, a,b I, a <b, is the trivial solution, then (1) is said to be right-disfocal on I.
Similarly, we shall say that (1) is left-disfocal on I if no nontrivial solution satisfies the
condition y’(a)=y(b)=O, a,bI, a<b.

The concepts of disconjugacy and disfocality defined for the second-order system
(1) are closely related to the concepts of suborthogonality and nonoscillation that
Nehari [13] defined for the first-order system

(2) z’+ez=O, e=

A nontrivial solution vector z=col(zl,.-., z,) of (2) is said to be oscillatory on an
interval I if zk(xk) 0 for some x I, k 1,.. -, n. The system (2) is said to be
oscillatory if it has at least one oscillatory solution vector; otherwise, it is said to be
nonoscillatory on I. The first-order system (2) is said to be suborthogonal on I if, for
any nontrivial solution vector z and for any pair of points s,t I, the inner product
(z(s),z(t))=E=lZ(S)Z(t)>O [13].

Suppose that y=col(yl,..., y,) is a solution of (1). If we put w=
col(y1,. ., y,,y,..., y,), the second-order system reduces to the first-order system

(3) w’+Cw=O, C=
A 0

where I is the n n identity matrix. If (1) has a nontrivial solution y=col(y,..., y)
such that y(a)=y(b)=O, a,bI, a<b, then yi(a)=yi(b)=O, i=l,...,n, and by
Rolle’s theorem, y’(xi)=0 for some x, a<xi<b, i=l,...,n. This means that every
component of w has a zero on I, i.e., (3) is oscillatory on I. Hence, any nonoscillation
theorems for (3) may be useful in establishing explicit disconjugacy criteria for (1).

*Received by the editors January 10, 1984, and in revised form November 12, 1984.
Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New

York 11794.
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Indeed, a nonoscillation theorem for (3) leads to a condition guaranteeing that at least
one of the functions Yl," ", Yn, Y(," ", Y, does not vanish on I if y=col(yl,. -, Yn) is
a nontrivial solution of (1). In particular, any nonoscillation theorems for (3) lead to
right- and left-disfocality criteria of (1). Furthermore, right- and left-disfocality of (1)
are also implied by the suborthogonality of (3).

In 1930 Morse [12] studied the selfadjoint second-order systems in the setting of
the calculus of variations and obtained extensions of the classical Sturm separation and
comparison theorems [16]. Following his pioneering work, many results of similar type
appeared in the literature [15]. Recently, in a series of papers [1]-[4], Ahmad and Lazer
investigated the system (1) concerning the sign properties of the components of ex-
tremal solutions and comparison theorems for disconjugacy. Their results involved
conditions imposed on the elements a ij. of the coefficient matrix A, while the earlier
results had been stated in terms commonly encountered in the variational problems
such as the positive semidefiniteness of certain matrices. Keener and Travis [9] also
studied the Sturmian properties of (1) using the theory of/0-positive operators defined
on a Banach space.

The purpose of this paper is to establish disconjugacy criteria and comparison
theorems involving disfocality for the second-order system (1). In 2 we shall prove two
sufficient conditions for disconjugacy (Theorems 1 and 2), one of which was obtained
by noting the connection between the systems (1) and (3). In [}3 we discuss comparison
and separation theorems for the right- and left-disfocality of (1) (Theorems 4 and 6).
These comparison theorems are proved by generalizing the method of the Riccati
equation first used by Hille for the second-order equations [8], which was later adapted
to higher-order equations by Nehari [14] and others [7], [11].

2. Disconjugacy criteria. Let y=col(y,. ., yn) be a solution of (1) and put

1( ) col(eyx,.-., ey,,, y(,..., y,),W=CO WI ,W2n

for some e > 0. Then

(4) w’=Bw,

where

0

and I is the n n identity matrix. According to a result of Nehari [13], (4) is nonoscilla-
tory on the interval I [a, b] if

Z II n,II & < r/2,

where IIBll denotes the matrix norm sup,z,=xllBzll and Ilzll is the Euclidean norm of
vector z. As was pointed out in the preceding section, the nonoscillation of (4) implies
that every nontrivial solution y of (1) possesses the property that at least one of the 2n
functions yx,..., y,, y,.-., y’ does not vanish on I, i.e., (1) is afortiori disconjugate
and right- and left-disfocal on I.
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Put u col(w1,. ., Wn) and v col(wn+ 1,’" ", W2n)" Then

w 112= (nw, Bw) 211 = + -211Au =

_< max( e2, e-211A
consequently,

max(
and we have proved the following result.

THEOREM 1. Let a and b, a < b, be points of the interval I. If

fbmax( e, e- ill A (x) II) dx < r/2,

for some e > 0, then every nontrioial solution y of the second-order system (1) has the
property that at least one component ofy or y’ does not vanish on [a,b]; in particular, (1)
is disconjugate and right- and left-disfocal on a, b ].

If liA(x)ll is constant, the inequality condition in the above theorem is equivalent
to IlA(x)ll < 2/4(b- a) 2.

Next we shall establish a disconjugacy criterion of a different nature. Here we shall
be concerned with a symmetric interval of the type (-c,c). This is not an essential
restriction because disconjugacy and zero properties are preserved under a translation.

THEOREM 2. The system (1) is disconjugate on I= (-c, c) if
n1 2 2) (X) I=<1

j=l

k-1,...,n.
Proof. Suppose that (1) is not disconjugate on (-c, c). Then there exist a nontrivial

solution y col(y1,. ", Y,) and a pair of points a and b, c < a < b < c, such that
yk(a)=yk(b)=O, k=l,...,n. For each component yk which is twice continuously
differentiable and vanishes at a and b on (-c, c), it is easily confirmed that

Yk(X)=(b--x) (b-t) -= t(b-s)y;,’(s)dsdt

[5], [101. Let

ly’(x) max lye’(x)l,
a<=x<b

k 1,- ., n. Then we have for a =< x =< b,

y(x)I< y’(x)Ilb-xlLXlb tl--f’lb-slldslldt[
---IY, (x,) IIb-xlla-xl.
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Since Ib-xlla-xl<(c2-1xl:2), a <=x <=b, we get the inequality

] 2 ), a<=x_<b,(6t ly,(x) I__<ly. (x)I(c -Ixl
2

where the strict inequality holds unless ly’(xk)l-- 0, k= 1,..., n. Note that ]y’(xk)l 0
if and only if y. =0, due to the condition y,(a)=yk(b)=O. If we put

max [yj’(xj)I’
=<,/" < n

then ly(x,,,)l>O since y0. From the system (1),

ly;,,’(x) I<= la,,,.(x) IlY.(x) I;
j=l

in particular, for x Xm,

(7)
n

0 < lye’(x...)I<= 2 ]amj(Xm)IlYj(X..)I"
j=l

Hence, there must exist an l, 1 <=l<_n, for which lam.(Xm)lly.(Xm)l>O. For such an 1,
y.(x)O and y[’(x)4:0; therefore,

(6’) ly,(x)l<2ly[’(x,)l(c:Z-lxl a<x<b,

from (6). Substituting (6) and (6’) with x x in (7), we get

1 :z) (X,)]lyf,(Xm)lYt(Xm) I’’-( C2- ]Xml
j=l

1--( c2- IXml2)lYt(Xm) lamj(xm) I’
j=

n

] <..(2__ IXml2) 2 la,..j(x...)I,
j=l

contrary to (5). This completes the proof.

3. Comparison theorems. In this section we shall frequently consider an interval
of the form I=[a,), where may or may not be finite. If the system (1) is not
right [left]-disfocal on [a,), we define (A,b)[(A,b)], a<_b<w, to be the infimum
of c, b<=c<, such that there exists a nontrivial solution y of (1) satisfying y(b)=
y’(c)=0 y"( b)=y(c)= O]. Then there exists a nontrivial solution y of (1) satisfying
y(b)=y’(l(A,b))=O [y’(b)=y(q(A,b))=O]. If, on the other hand, (1) is right [left]-
disfocal on a, o ), we put r/( A, b) [q(A, b) for all b.

Let yj.= col(ylj.,. ., y,.), j= 1,..., n, be the solution vectors of (1) satisfying

(8) yig(b)=O, yi.i(b)=Si.,
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i,j 1,..., n, for a fixed b, a _< b < o. Put Y= (yi.j)i’,= and S Y(Y’- 1). If the system
(1) is right-disfocal on [b,t), the determinant of Y’ does not vanish on [b,w); there-
fore, S is continuously differentiable on [b, w), and

S, y,y,-1 + y(y,-1),= I+ Y(- Y’-iY"Y’-)

=I+ Y[-Y’-I(-AY)y’-I]=I+SAS,
i.e., S satisfies the matrix-matrix equation

(9) S’=I+SAS, S(b) =0.

Conversely, we assert that det Y’4:0 as long as (9) has a continuous solution. Since
det Y’(x) is a continuous function of x and det Y’(b)= 1, det Y’ does not vanish on
some right neighborhood N of the point b; that is, Y’ is invertible on N. Therefore,
yy,-1 is defined on N; moreover, S YY’-1 due to the uniqueness of solutions of the
initial value problem (9) [6]. Suppose that det Y’ vanishes at some point: Let x0,

b < x0 < w, be the first point to the right of b at which det Y’ vanishes, while S remains
continuous at x0. Then the span G of the row vectors of Y’(xo) is at most n-1
dimensional, and there exists a nontrivial vector c (al,..-, c,) which is orthogonal to
G, i.e.,

(10) ajy,’j(Xo)=O,
j=l

i=l,..-,n. On the interval [b, x0) we have S-yy,-1, which may be written as
SY’= Y; indeed, this equality holds on [b, xo], because S, Y and Y’ are continuous on
[b, xo]. Hence, for a fixed x[b, xo], the row vectors (Ykl,’", Yk,), k= 1,..., n, of Y
are contained in the span of the row vectors of Y’. In particular, for x= x0, every row
vector (ykl(xo),. ., yk,(Xo)), k= 1,..., n, of Y(xo) is contained in G. Since the vector
a is orthogonal to G, it is orthogonal to the row vectors of Y(x0):

(11) ajy,(Xo)=O, i= 1,. ., n.
j=l

Putting

y= ajyj,
j=l

y2 col( Ylj," ", Y,),

j= 1,..-, n, we see that y is a nontrivial solution of the system (1). However, (10) and
(11) require that y(xo)=Y’(Xo)=O, which cannot be satisfied unless y is the trivial
solution. This contradiction proves that det Y’ cannot vanish at x0.

Thus we have proved the following theorem.
THEOREM 3. Let b be a point on the interval I= a, o). Every nontrivial solution y of

(1) with y(b)=0 has the property that y’4:O on [b,c), a<__b<c<_o, if and only if the
Riccati system (9) has a continuous solution on b, c).

In order to obtain the desired comparison theorems, we shall study the differential
system satisfied by the components si of the matrix S= (si)i,j=l in (9). As a first step,
we need to determine the growth properties of so. in the right neighborhood of the
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point b. Since

det Y’= E (sgnr) Y,(1)Y,(9_)’"Y’n,(n),
rP

where P is the set of all permutations of the integers between 1 and n, the cofactor of
yq may be obtained from the above formula by setting yq= 1 and Yi--O, k 1,...,
j- 1, j + 1,- ., n. Evidently, the cofactor of yq is the sum of the products of the form

where 1 =< k,, =< n, km 4:j, m 1,. ., i- 1, + 1,. ., n. Hence, every term in the sum
contains a factor Yi’s, r 4: s, unless =j. If =j, the sum contains exactly one term of the
form (12) for which k,,= m, m 1,. ., i- 1, + 1,. ., n, and all the other terms
contain a factor Yrs, r4: s. Therefore, the diagonal and the off-diagonal elements of the
inverse y,-1 are, respectively, unity and zero at b. Furthermore, we see from (8) that
the diagonal elements of Y have zeros of order exactly 1 at b, while the off-diagonal
elements have zeros of order at least 2 at b. Consequently, simple computations show
that the diagonal elements of S YY’- have zeros of order exactly 1 at b and the
off-diagonal elements have zeros of order at least 2 at b.

From (9) we have sii(b)=O, si’i(b)=l, which implies that Sii>O on (b,b+e) for
some e > 0, 1,..., n. On the other hand, for the off-diagonal element sij, 4:j,

k=l m=l

where the term aij(x)sii(x)sjj(x ) is easily seen to be dominating as x b+, provided
aij(b)4:O. This is because the term aijsiisjj has a zero of order exactly 2 at b if

aq(b)4:0, while the other terms have zeros of order at least 3 at b. In particular, if
aq(b)> 0, i4:j, then si(x)>O on (b,b+e) for some e>0. Thus, we have the following
lemma.

LEMMA 1. Let b be a point on the interval I a, to). Then the solution matrix S of
(9) is positive on ( b, b + e) for some e > 0 if a

The condition aq(b)> 0, i4j, in the above lemma may be relaxed. In view of the
zero properties of the components sq at b, we may merely require that aij be nonnega-
tive in a right neighborhood of b and aq(x)=O((x-b)x) for some , 0__<)t<l, as
x-b+, i4j.

Another result needed for our proof is an extended version of [14, Lemma 3.2],
which follows when a few obvious changes are made in the original proof.

LEMMA 2 [14, Lemma 3.2]. Let Pr(w,"’, Wm, ) and Pr*(Wx,..., Wm, ) be two sets

ofpolynomials in the variables Wx,. ., w whose coefficients are nonnegative and continu-
ous on a, to), r 1,. ., m. Suppose that

fatpr( ) fatPT( )WI," Wm,S ds <= WI," Wm,S ds,

for any set of nonnegatioe continuous functions wl,. ., w defined on a, to), r 1,.-., m.
If there exist nonnegatioe differentiable functions W,. ., W defined on a, to) satisfying
the inequality

Wr(a)=ar>__O,
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r 1,. ., m, then the differential system

w;=Pr(Wl,.. ",Wm,t ), wr(a)=fl, a> fl>__O,

r=l,...,m, has a continuous solution (wl,...,w,) on [a,) and w(t)<=Wr(t ), r=
1,...,m, on [a,0).

Let B--B(x) be an n n matrix with real elements which are continuous on the
x-interval [a, 0). We shall prove a comparison theorem for (1) and the system

(13) y"+By=O, B=(big)i,g=,
by applying Lemma 2 to the corresponding Riccati systems

(14) S’=I+SAS, S(c)=a>=0, c [a,0),
(15) T’=I+ TBT, T(c) =0, c [a,o).

THORWM 4. Let A =(aij)i;j=l and B=(bij)’,= be matrices with real elements
which are continuous on an interval [a,o). Assume that 0 <=big<=aig, i,j= 1,..., n, on
[b,0) for some b, a<=b<o, and that aij(b)>O, icj. Then (B,c)>(A,b), a<__b<_c

Proof. If y is a nontrivial solution of the system (1) satisfying y(b)=0, then
y’(x) 4: 0, b =< x < ?(A, b). Thus, the Riccati system (9) has a continuous solution S on
[b, (A,b)) by Theorem 3. The solution S is positive on (b,b+ e) for some e >0 by
Lemma 1; therefore, S is positive throughout the interval (b,(A,b)) due to the
nonnegativity of the coefficients of the system (9). Hence, on the interval [c,y(A,b)),
b <= c < (A,b), S is continuous and satisfies (14) with a= S(c). From Lemma 2 and the
inequalities O<=bj<=aj, i,j=l,...,n, we conclude that (15) possesses a nontrivial
solution T which is continuous on [c, (A,b)). It follows finally from Theorem 3 that
the system (13) is right-disfocal on [c,?(A,b)), i.e., (B,e)>=l(A,b).

If 4(A, b) =< c < o, the inequality holds trivially.
We remark that the following "separation theorem" results when A B in Theo-

rem 4" Let .4 (aij)",2= be a matrix with real elements which are continuous on [a, 0).
Assume that aig >= O, i,j 1,..., n, on some interval b, o), a =< b < oJ, and that aj(b) > 0,
icj. If b_<x <Xz<(A,b), then the system (1)has no nontrivial solution y such that
y(x)=y’(Xz)=O,i.e. (A,c)>=(A,b), b<__c<o.

There are parallel results for left-disfocality, which we summarize below. Let
uj.= col(uxj,-.., u,), j= 1,..., n, be the solutions of (1) satisfying

for some fixed point b, a<b<w, i,j=l,.., n Put U=(uij.)" and V= -U’U- Ifi,j=l
the system (1) is left-disfocal on [b,0), detU does not vanish on [b,0). Hence, V is
continuously differentiable on b, 0) and

(16) V’=A+V- V(b) =0.

Conversely, det U does not vanish on [b,0) if (16) has a continuous solution V on
[b, 0). The proof is omitted because it is similar to the preceding case of right-disfocal-
ity. To recapitulate, we have

THWORWM 5. Let b be a point on the interval I a, o). Every nontrivial solution y of
(1) with y’(b)- 0 does not vanish on [b, c), a <_ b < c <= o, if and only if the Riccati system
(16) has a continuous solution on [b,c).
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Due to the form of the Riccati system (16)rathe coefficient matrix A appears by
itself--the proof of the comparison theorem for this case is substantially simpler, and
the resulting theorem involves inequality conditions imposed on the integrals of the
coefficients, rather than on the coefficients themselves.

THEOREM 6. Let A--(aij)in,j=l and B (bg)",j.= be matrices with nonneg,ative, real
elements which are continuous on a, o ). If a g( b ) > 0 and

(17) fcbijt (s)ds<= fcaij(s)ds’t c<=t<o,

i,j 1,..., n, for some b and c, a <= b <= c < o, then d(B, c) >= d(A, b).
Proof. By Theorem 5, the Riccati system has a continuous solution Von b, O(A, b)).

Since V(b)=0 and V’(b)=A(b)>O, V>0 on (b,b+e), for some e>0, and therefore
V>0 on (b,q(A,b)) due to the nonnegativity of aij. If q(A,b)Nc, then the inequality
q( B, c) > q(A, b) holds trivially. If b _< c < q(A, b), the solution V satisfies

V’=A + V2, V(c)>=O.

From (17) and Lemma 2, we deduce that the system

W’=B+ W W(c) =0,

has a continuous solution W on [c, q(A,b)). Therefore, according to Theorem 5, every
nontrivial solution y of the second-order system y"+ By=O, y’(c)=0, is such that
y4:0 on [c,q(A,b)), i.e., q(B,c)>q(A,b).

By putting A B in the above comparison theorem, we again obtain a separation
theorem. However, all we can conclude in this case is that the system (1) has no
nontrivial solution y such that y’(c)=y(d)=O, b<__c<d<q(A,b), where c is the
lower limits of the integrals in (17). If (17) holds for all c, b=<c<0--as in the case
bij <= aj, i,j 1,..., n--then the above separation theorem is valid for any two points b
and c, b<=c<d<O(A,b).
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EVOLUTION PROBLEMS WITH HYSTERESIS
IN THE SOURCE TERM*

A. VISINTIN"f

Abstract. Jump conditions having a hysteresis effect are introduced to model some inertial mechanisms
which yield criteria of control of systems. Examples can be found in biology, chemistry, engineering, and
economics.

Both orientations of the hysteresis loops are considered, corresponding to "delay" and "anticipation"
between input and output variables.

Existence results are proved for parabolic and hyperbolic problems and also for the Stefan problem with
a term of this type in the second member. A regularizing effect is exhibited by the "jump with delay"
condition.

Key words, variational problem, hysteresis, existence results

1. Introduction.
1) We introduce a simple hysteresis relationship between two functions of time"

u(t), w(t). Fix 10a, P2R with 101 <102 Let uC([O,T]) and w be given such that

(1.1)
if u(0) _< 10 x, then w0 1;
if u(0)> 102, then w= 1;
if 10 < u(0)< 102, then w= 1 or 1.

We say that the function w: [0, T] (- 1,1 ) fulfills a jump condition with delay if

(1.2)

w(0)=w;
if u(t) _< 101 (u(t) => 102, respectively) then w(t)= 1 (w(t) 1, respectively)
Vt[0, T];
w can jump from -1 to 1 (from 1 to -1, respectively) at time only if
u(t)= 102 (P, respectively), these are the only discontinuities of w.

This means that for any [0, T[ if w(t) 1 (w(t) 1, respectively) then w remains
constant for "r> as long as u(-)<102 (u(-)>101, respectively); if u reaches 102 (101,
respectively), then w jumps to 1 (-1, respectively), where it remains till u reaches 101
(102, respectively), and so on. Here delay is meant with respect to the usual condition
taking place in any fixed point of [10x, 102]: the jump is delayed w.r.t, u, not w.r.t, time.

2) Examples of hysteresis relations of this type are quite common in technology,
for instance a thermostat which is switched on or off according to temperature, but
with an inertial behavior in its dependence on the latter, so that actually the switching
off value 102 is greater than the swtiching on one 1. A different model for problems
with thermostats has been studied by Glashoff and Sprekels in [1], [2].

Another example is given by an irrigation model; here u represents water satura-
tion, w + 1 is the intensity of a water source due to irrigation and (1.2) corresponds to a
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control criterion for switching the water source either on or off according to the water
saturation (see [9, p. 488]).

Further examples arise in biology and chemistry, as in the model studied by
Hoppensteadt and Jger in [3], [4] and treated here in 6.

Mathematical models for hysteresis phenomena have been studied by Krasnosel’skii
and Pokrovskfi (see [5], [6], e.g.) and by the present author (see [10]-[13]).

3) It can be useful to compare (1.2) with the usual jump relationship. The latter is
monotone, but its graph is not maximal monotone; thus the graph of the corresponding
operator u w sign(u) is not closed with respect to the strong topology of C([0, T])
for u and the weak star topology of L(0, T) for w. Consequently one is induced to
work with the closure of this graph, that is to replace the sign function by the sign
graph.

Similarly the functional u w defined by (1.2) (for any compatible w) is not
closed with respect to the strong topology of C([0, T]) for u and the weak star
topology of L(0, T) for w. Therefore we shall study the form of its closure with
respect to these topologies.

The couples (u, w) C([0, T])L(0, T) which belong to this closure fulfill the
following conditions:

(1.3)

l<w(t)=<l;
if u(t)< Px (u(t)> 02, respectively), then w(t)= 1 (w(t)= 1, respectively);
if 01 < u(t)< P2, then w is constant in a neighborhood of t;
if u(t)= 01 (u(t)= 02, respectively), then w(t) is nonincreasing (nondecreas-
ing, respectively) in a neighborhood of (see Fig. 1).

FIG. 1. Arrows indicate the direction of movement of u( t), w( t)) as increase. [- 1,1] is generic.
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Indeed by means of small perturbations of u(t) where this reaches 1Ol (102, respec-
tively) as a local minimum (maximum, respectively), we get perturbed w’s which attain
the constant values -1 or 1 as long as 101 < u(t)< 102; then by weak star convergence in
L(0, T) we can get any w which attains arbitrary constant values betweeen 1 and 1
as long as Pl < u(t) < 102.

We note that any w fulfilling (1.2) has bounded total variation in [0, T]: w
BV(0, T); thus the initial condition is meaningful and w’ C([0, T]). Indeed w has a
variation equal to 2 just when u reaches one of the thresholds 101, 102 and moreover the
uniformly continuous function u can have just a finite number of oscillations between
Pl and P2- Also any w fulfilling (1.3) has bounded total variation in [0, T].

We introduce some notation:

{-1}

S()----[-1,1]
(1}

if

if /=0
if />0,

(1.6) R(,)= {0)
if =p,
if Pl < /< P2
if ]-- P2,

(1.7)

It is easy to check that (1.3) entails

w[a(u)-v]dt>= ([ (u)l-lvl)dt VveL(O,T),

i,eo

(1.8) wS(a(u)) in]O,T[.
Conditions (1.3) imply also

(1.9)

i.e.,

(1.10) w’R(fl(u)) in (C([o,r]))’;
the latter is equivalent to

10- 01 2

which is to be understood as follows

(cO([o, rl)),(w’,fl(u)-o)co(io, rl >=0 VvC([O,T]) such that 101

2 [(u)-Pl + P2 _S(w’)
P2-- Pl 2

T bav(C([O,T]))

(here foTlv[ denotes the total mass of v in [0, T]); this can be easily deduced by (1.3).
(We point out that calculations are simplified in the case of PI-- --1, P2-1.) (1.7) and
(1.9) express the property (1.3) in variational form. We weaken the compatibility
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condition (1.1) requiring just that

(1.13)
if u(O) < 01 (u(O) > #2, respectively), then w= 1 (w- 1, respectively);
if 01 =< u(O) _< 02, then 1 _<_ w(O) _< 1;

then for any compatible couple (u,w) C([0, T])X[- 1,1] we consider the set of the
we BV(O, T; [-1,1]) such that w(t) w as 0+, (1.7) and (1.9) hold.

For any fixed w this multivalued correspondence u w is closed with respect to
the strong topology of C([0, T]) for u and the weak star topology of BV(O, T) for w;
hence it is the closure of the functional defined by (1.2).

So far we have assumed the couple (01,02) to be fixed; an interesting generali-
zation is obtained as follows. Set = (0=(01,02)1I2101 < 02); let u C([0, T]) and
for any p let wo denote the function w defined by (1.2) and corresponding to an initial
datum woo compatible with u in the sense of (1.1); let/ be a measure over ; then we
can consider the functional u w f wo d/o; this corresponds to the classical Preisach
model introduced for ferromagnetism and has been studied in [12], for example,

4) After considering hysteresis (delay), we take into account the inverse effect,
namely anticipation.

Let u" [0, T]---, R be absolutely continuous; we shall say that a measurable func-
tion w(t) fulfills a jump condition with anticipation if a.e. in ]0, T[

(1.14)
if u(t) < 101 (u(t) > 102, respectively) then w(t)= 1 (w(t) 1, respectively),
if 01 <-u(t)102, then w(t)S(u’(t)) (see Fig. 2,

-1

FIG. 2. A rrou,s indicate the direction of movement of (u(t), w(t)) as increases, l [01,02] is generic.
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or equivalently

wS(a(u)) a.e. in 10, T[,
(1.15) wS(fl(u)’) a.e. in]0, T[
or also

(1.16) wS(a(u)+fl(u)’) a.e. inl0, T[.

Note that here no initial condition is required for w; moreover the graph of the
multivalued functional u w is closed with respect to the strong topology of W1’ a(0, T)
for u and the weak star topology of L(0, T) for w.

If 01 -1 and 02=1, then the behavior of (u(t),w(t)) in (1.7), (1.9) and in (1.14)
are reciprocally inverse in [-1,1]-; in particular the esterior loop is covered with
opposite orientations in the two cases.

5) Anticipation corresponds to the case in which in a certain range the output w
depends on the trend of the input u, not on its value. Examples of this situation can be
found in sociology, economics, and so on. For instance delay and anticipation in the
sense introduced above are possible attitudes of economical operators; here w may
represent a decision (w= 1 for Yes, w= -1 for No, say), whereas u may be a measure
of the advantages offered by the operation under consideration.

In this last case and in the example of irrigation the dependence u w corre-
sponds to a criterion of control, whereas in the example of thermostat it describes the
behavior of a system. In some cases, for instance that of the economical operator, it
may be possible to choose between the strategy of delay and that of anticipation (and
also to select the thresholds 01, 02). If the input u is continuous in time, then the delay
criterion offers the advantage of bounding the total variation of the output w; for
instance in the model of irrigation the number of interventions on the irrigation system
will be finite. On the other hand, if the input is absolutely continuous in time, then the
anticipation criterion allows to take advantage of the forecast offered to some extent by
the inertia of the variable u.

6) Let D be a bounded domain of IR" (N>= 1). We shall deal with PDE’s of the
form

(1.17) ut-Au+w-f inQ=D]0, T[;

(1.18)
u,- Au=g in Q,
Ou
o+w=h on =OD ]0, T[;

(1.19) u,t-Au+w=f in Q;

where f, g, h are data, A Y’.iu= l2/X/2 and 3/v denotes the outward normal deriva-
tive.

Each of these equations will be coupled with either the hysteresis or the anticipa-
tion relationships introduced above. We also consider a Stefan problem with hysteresis
in the source; this corresponds to coupling the hysteresis relation with the system

(1.20)
(u+,X),-Au+w=f inQ;

X H(u) in Q,
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where , is a positive constant representing latent heat and H denotes the Heaviside
graph (H() (0 ) if < 0, H(0) [0,1 ], H() (1) if > 0).

The present author has already studied hysteresis in connection with PDE’s (see
[10], [11], [12] and [13] for a survey). In particular in [11] existence and approximation
results were proved for (1.7), (1.9) coupled with the equation

(1.21) (u+w)t-Au=f inQ,

with suitable initial and boundary condition. This setting generalizes the weak formula-
tion of the Stefan problem.

Here we shall prove existence results for (the weak formulations of) equations
(1.17), (1.18) and (1.19), each one coupled with the hysteresis relation (1.7), (1.9)
(problems (P1), (P2), (P3), respectively; 2), for the same equations coupled with the
anticipation relation (1.15) (problems (P4), (P5), (P6), respectively; {}3) and for the
Stefan problem with hysteresis in the source, i.e. (1.20) coupled with (1.7), (1.9) (prob-
lem (P7), 5). We also give several complementary results.

Finally in 6 we consider the problem studied by Hoppensteadt and Jtger in [3],
[4]. There a system of two diffusion equations is coupled with a hysteresis relationship
of the form (1.2). We replace the latter by the weaker condition (1.3), i.e. with the
system (1.7), (1.9), and prove existence of a variational solution of the problem.

We stress that the formulation of the hysteresis relation we give here is different
from that used by Jger in [4].

For all of these problems the uniqueness of the solution is an open question. We
are just able to prove the weaker result of Proposition 8.

2. Jump with delay.
1) Set V=H)(D), Hilbert space with norm IlVllv=(fDlvl2dx)x/2, and A" V V’

defined by v,(Au, v)v= fovu. Vvdx Vu, v V. Let

(2.1)

(2.2)

fL2(O,T,V’);

uLZ(D) and wL(D), such that wS(a(u)) a.e. in D.

We introduce a weak formulation of (1.17), (1.3).
(Pl) Find u L2(O, T, V)NHI(O, T, V’) ( c C([0, T]; LZ(D))) and w L(Q) such

that [3(u(x, .)) C([0, T]), w(x, .)BV(O,T)a.e. in O and

(2.3) wS(o(u)) a.e. in Q,

(2.4)

(2.5)

(2.6)

(c" (to, l,’(w,, B(u) V)co(t0, 1)>__ 0

’qvC([O, Tl) such that 01 <=v<=o2, a.e. in D,

lim [w(x,t)-w(x)].[(u(x))-v]>O Vo[p,p] a.e. inD
t-’0

ut+Au+w=f inV’, a.e. in]0, T[,

(2.7) u(x,O)=u(x) a.e. in D.
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THEOREM 1. Assume that (2.2) holds and that

(2.8) u V;

(2.9) f=fl+f2, flLZ(Q), f2WI’I(O,T;V’).

Then problem (P1) has at least one solution such that moreover

(2.10)

(2.11)

u nl(O, T; t2(O )) l fs([O, T

v)).

We recall the definition of the space of scalarly continuous functions with values
in a Banach space B"

(2.12)
Cff([O, TI;B)= (o" [O,T]-BIVqB’, t {o(t),q)B, is continuous in [0, T]}.

Throughout this paper u and w are regarded as functions of with values into a space
of functions of x, as well as functions of x with values into a space of functions of t.

Proof. (i) Approximation. Let m N, k T/m. Set

1 f,k fl(x,t)dt a.e. in D;
(2.13)

f"=flnm+f2nm’ flnm (X)= -(n- 1)k

f2m=f_(nk) inV’ forn=l m"

(2.14)

{-1}

}
1]

if

if

if 01
if }=02
if } > 02

0 O, 0(P1)m Find Umn V, w L(D) for n 1, -.., m, such that, setting urn= u w--w a.e. in D,

nm n-1

(2.15)
U Um +Aun+w,,n,_fm_ ing’, for n=l,.., m

(2.16) n-l)w K urn,w;; a.e. in D, for n= l,. m.

n-1’q’m t (P1)m can be solved step by step. Fix n (1,-.., m ) and assume that u
w,", -1 are known. K(., wg-l(x)) is a maximal monotone graph a.e. in D. Therefore
(2.15) is equivalent to, the minimization of a coercive, strictly convex, lower semicon-
tinuous functional VR; this problem has a unique solution u, (which can be
approximated by standard space-discretization methods).
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(ii) Estimates. Take a generic (1,. m ), multiply (2.15) by unm- u,,"-1 and sum
for n 1,.- -, l. Notice that

n-1

fo u,. o_ n_l)dx__ k E(2.17) E u

,, k Um Um
n=l

(2.18)

(2.19)

(2.21)

k L2(D)’

n LWr( n__ n-1)dx> _kn1

Um Um
Um Um k

=1 LI(D)

v’ hum, Um V XT’ u U U

1 ( 112v n_lll2V) 1 II2V 1 0

n=l

E fDflmUmUmn ( n-l) dx__< fll=w) k u kU
n n L2(D)

I/" Um’Um V
n

v’(f2m Urn) V-- P’(fTm, uO) V--
n=l

< Const.It f2m I!.’"’0, ; ’ max u;. .
n=0,. ,1

Using Gronwall’s lemma we get

(2.22) k n k L2(D)

(2.23) max u, II =< c
rt=0, , m

=<C;

(throughout this paper we shall denote positive constants independent of m by C and

Ci’s). Note that by (2.16)

(2.24)
w w- only if u > 02

n-1w; < w;,; only if Um =< Ox
Wm"-- Wm"- I__< 2,

a.e. in D, for n-- 1,.-., m.

This yields

2 m

(2.25) El<-<-’i=<E.iu"-uwll+2 a.e. in D,
P2-- Pl

whence

W n- + )1/2(2.26) n m- wii, =< n u",.,, un- 2(measD
L2(D) 02--0! L2(D)
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Let u,,(x,t) denote the function obtained by linear interpolation of the values
u,,(x, nk)=u",,(x) for n=O,...,m a.e. in D; define w similarly. Set ftm(X,t)=Un(X),
v,,(x,t)=wd,’,(x) a.e. in D and f,,(t)=f,, in V’ if (n-1)k<t<=nk, for n=l,...,m.
(2.15) becomes

(2.27) umt+A,im+Cvm=L in V’,a.e. in ]0, T[.

(2.22), (2.23) and (2.26) yield

(2.28) u I1,,,<0, ; =<o))<o, ; )z c,
(2.29)

P2--Pl

2f- )/2-< Um I1-1<o. ; ()) 4- 2(measD __< C,
02- Px

moreover of course

(2.30) IIw I1)-< C, IIm libidO)__< C.

(iii) Limit. By the above estimates there exist u, w such that, possibly taking
subsequences,

(2.31) u,, u in Ha(0, T; L2(D)) weak, in L(0, T; V) weak star;

(2.32) ftm0 in Hr(O,T;L2(D))weakVr<1/2, in L(0, T; V)weak star;

(2.33) w,,w in L(D;BV(O,T)) weak star;

(2.34) w., w, ., w in L (Q) weak star.

Taking rn oo in (2.27) we get (2.6). As a and fl are Lipschitz continuous we have

(2.35) a(,,)a(u) in H(O,T;L(D))weakVr<1/2, in L(0, T; V)weakstar;
(2.36) fl(Um)(U) in Hi(O,T;L-(D))weak, in L(0, T; V)weakstar.

By (2.a6)

(2.37) WmS(a(u)) a.e. in D, for n=l,..., m,

that is,

(2.38) ,,S(a(ft,,)) a.e. in a.
Hence ’Co LI(Q)

(2.39) ff CVm[a(Um)-vldxdt>= ff (l,(,m)l-lollaxdt,
Q Q

whence taking m o and using (2.34), (2.35)

(2.40) ff w[a(u)-v] dxdt>_ ff (la(u)I-Iv[) dxdt,
Q Q

that is, (2.3).



1122 A. VISINTIN

Notice that (2.16) yields

(2.41.) w;,,-w;,",-leR(fl(u)) a.e. in D, for n=l,...,m.

Take a generic veHx(O,T,L-(D)) such that pl<=v<=o2 a.e. in Q and v(x,T)=
fl(u(x,T)) a.e. in D; set v,(x)= v(x, nk) if (n-1)k<t<=nk for n=l,...,m and
denote the linear interpolate of these values by vm. By (2.41)

(2.42) O<=En fo (w-w-l)’(fl(unm)-nm)dx= ffwmt’((ftm)-bm)dxdt’
Q

that is

(2.43) 0 - ff (cO(j0, T])),(Wmt,( Um)--Om)CO([o, T])dx
D

+ ffWmt.(fl(Um)-/3(ftm)+Om-bm)dxdt.
Q

The inclusion H(Q)c LZ(D; C([0, T])) is compact, hence by (2.36) we have [3(Um)
fl(U) in LZ(D; C([0, T])) strong and (Um)--(m)O in LZ(D;L(O,T)) strong;
the same convergence properties hold for o,, and o,,-b,,; moreover by (2.33) Wmt W

in L-(D; (C([0, T]))’) weak star and by (2.29) IIWmtIIL2(D;LI(O,T))<__ C. Therefore taking
m ---> o in (2.42) we get

(2.44) o<=fD (cO(tO, TI)),(Wt,fl(U)--V)co(Io, TI)dx+O

whence (2.4).
Finally u e Cff([0, T]; V) is entailed by the following result.
LEMMA 1. Let X, Y be two Banach spaces, Xc Y with continuous injection, X being

reflexive. Then

(2.45) L(O,T;X)CqCf([O,T]; Y)=Cs([O, TI;X).
Proof. Cf. [8, Chap. 3, 8.4]. r
PROPOSITION 1. Assume that (2.2), (2.8) hold and that moreover

(2.46) f(0) + Au-w e L2(D),
(2.47) f=fx+f2 with fi e wI’a(O,T;L2(D)), f2enl(O,T; Vt).
Then the problem (P1) has at least one solution such that moreover

(2.48) ue wx’(O,T;L2(D))OHX(O,T; V),
(2.49) we Lg-( D; BV(O, T)).

Proof. It is sufficient to show stronger a priori estimates on the solutions Um’S of
the approximated problems (P1) m’S" Vm e N, set

Um ,._.Wnm_Wr"= forn=l, m"Zm k o,, k g’=
k

0 0set also z,=f(0)+ Au
we get

-w a.e. in D. Taking the incremental ratio w.r.t, time in (2.15),

nw n-1Zm Zrn +Azn+Cm gm in V’, for n=l,...,m.



EVOLUTION PROBLEMS WITH HYSTERESIS 1123

Take a generic l (1,.-., m }, multiply (2.50) by kznm and sum for n 1,..., l. Notice
n n-1that, as w;i K(um, w;;, ) and by the monotonicity of K. w.r.t, its first argument, we

have

Wm" W"- "-- "-Um Um >0 a.e. inD, forn=l,...,m.(2.51) ,z, k k

Thus by developments analogous to (2.17)-(2.21) and still by Gronwall’s lemma we get

(2.52) max
rt=O,.--,m
m

2.3 En zZ I1=< C,

ioeo

(2.54) Um WI’(0, T; L2(D))cq Hi(0, T; V)Z C. I’-’]

2) We are going to introduce a weak formulation of (1.3), (1.18).
Assume that F )D is a variety piecewise of class C1, that D is only on one side

of F. Set W=HI(D), Hilbert space with norm Ilollw=[fo(o=/lol2)dx]/. Intro-
duce the trace operator 7" WH/2(F) (cf. [8, Chap. 1]) and, after identification of
L(F) with its dual, denote its adjoint by 7""

(2.55)
y*" H-/:(F) W’ UvH-/(r), qz W,

w,V*o,z) w .-()o,
in particular

(2.56) w,(y*v,z)w=fr v.Vzcto UvuLa(r), Uz W.

Let (2.1) hold and

(2.57) uL-(D)WI’(D) and wL(F)such that wS(a(Vu)) a.e. on F.

(P2) Find uLz(O,T; W)H(O,T; W’) ( C([O,T];L(D))) and wL(E)
such that fl(yu(o, ")) C([0, T]), w(o, .)BV(O,T)a.e. on F and

(2.58) wS(a(Tu)) a.e. on ,
(2.59) cOto, r)),(w,,(u)-V)coto, r)O

oC([0, T]) such that OxZVZO2, a.e. on F;

(2.60) lim [w(o,t)-w(o)].[[(u(o))-l)]>O /)[p1,o21
t_,O

(2.61) ut+Au+’y*w=f inW’ a.e. in]0, T[;
(2.62) u(o,O)=u(o) a.e. on F.

THEOREM 2. Assume that (2.8), (2.47), (2.57) hold and that

(2.63) f(O) +Au + y*w L2(D).
Then problem (P2) has at least one solution such that moreooer

(2.64) u W’(O,T;L2(D))HI(O,T; W),
(2.65) wLz(F,BV(O, T)).

a.e. on F;
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Proof. /m we introduce to mean a time-discretized problem (P2),, similar to

(P1),,; also (P2),, has one (and only one) solution. Taking the incremental ration w.r.t.
time in the approximate equation and using the procedure of Proposition 1, we get the
following estimates

(2.66) u w,.(0. ; ()),,(0, ; y)_< c;
(2.67)

The approximate equation has the form

(2.6S) ,,+X+V*=L in W’, a.. in ]0, r[

(notations are as in the proof of Theorem 1). (2.25) yields

(2.69) Wm

2
<- {l’tUn I1,.(" w’.’(0, r))/ 2(meas(F))1/_

P2--Pl

<-_ Clllull.,(o,;+c <= c.
Therefore there exist u, w such that

(2.70) u,,---) u in wa’(0, T; L2(D)) weak star, in H(0, T; W) weak;

(2.71) ,,---) u in H(0, T; W) weak

(2.72) Wm---)w in L2(F;BV(O,T)) weakstar;

(2.73) w,,,---) w, m--) W in L(Q) weak star.

Taking m ---) c in (2.68) we get (2.61). (2.70) yields

(2.74) /Um’--) /u in H(0, T; Hx/2(F)) weak

and as a and fl are Lipschitz-continuous we get also

(2.75) Ol(’Ylm)--’)Ol(fU ) in Hr(O,T;L:(F))CL:(O,T;H/:(F)) weak,’q’r<-};

(2.76) fl(),u,,)---,fl(,u) in H(O,T;L:(r))cr:(O,T;HX/-(r)) weak.

This allows us to prove (2.59) and (2.60) by a procedure analogous to that of the proof
of.Theorem 1.

Remark. (2.63) is equivalent to the existence of a positive constant C such that

(2.77) I,<f(O)/Au/m*w,o>l_<cllvll,(o) vo v;
thus if f(0) V’ is of the form

(2.78) ,(f(o),o>=fo w.d +,,-,:()(,o>,,,,(r) vo v

with (p L2(D) and q H-X/:(l"), then (2.63) is equivalent to

-au+rr:(D) i.e. AuL2(D);
(2.79) 3u0

--+w++=0 in n-X/:(F).
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Remark. Theorems 1 and 2 can be extended to the case in which D,- A is replaced
by a nonlinear strictly parabolic operator.

3) We shall give a weak formulation of (1.3), (1.19). We introduce the interpolation
spaces H2(D)=[L(D), V]/, (H-(D))’=[V’,L2(D)]/ as in [8, Chap. 1]. As-
sume that (2.1) and (2.2) hold with moreover

(2.80) u H) Z( D )
let

(2.81) u ( H)2(D )) ’.
(P3) Find uL2(O,T;V)nH2(O,T;V’) and wL(Q) such that w(x,.)

BV(0, T) a.e. in D and

(2.82) wS(a(u)) a.e. in Q;

(2.83) (c,,(to. rl)),(w,fl(u)-o)c,,(to, rl)>=O
Vv C([0, T]) such that io1 O_ O2, a.e. in D;

(2.84)

(2.86)
(2.87)

lim [w(x,t)-w(x)] [/3(u(x))-c] >0
t---, ()+

utt+Au+w=f in V’, a.e. in ]0, T[;
u(x,O)=u(x) a.e. inD;

u,(x,O)=ul(x) in V’.

*qtO [i01,P2], a.e. in D;

Remark. u L2(0, T; V) O H-(0, T; V’) entails u Hi(O, T; L2(D)), hence
fl(u(x,. )) C([0, T]) a.e. in D; moreover L2(0, T; V)OHI(O,T;LZ(D))c
C([O, TI;H(Z(D)) and HI(O,T;L(D))oHz(O,T; V’)c C([O, TI;(H]Z(D))’).
Therefore (2.83), (2.86) and (2.87) are meaningful; furthermore (2.83) can be written
equivalently in the form (1.15) a.e. in D, as fl(u) W1’1(0, T) a.e. in D.

THEOREM 3. Assume that (2.1), (2.2) hold and that

(2.88) u V;
(2.89) uLZ(D).
Then problem (P3) has at least one solution such that

(2.90)
(2.91)

umC([O, TI;L2(D))CCs([O,T]; V);
wL2(D;BV(O,T))

(where C([0, T]; L2(D)) {v Cs([0, T]; L:(D))Iv, Cs([0, T]; L2(D))}).
Proof. Let m 1, k T/m. Set

1 f,k f(t)dt in V’(2.92) f"m= ,-l)k
for n=l,...,m.

Remember the definition (2.14).
0 0 0(P3),,, Find u,,," V, w,,] L (D) for n 1, m such that, setting u,, u w,;, wo,

0 =U n n-1Z Zm (Urn U )/k for n 1,..., m a.e. in D,

(2.93)

(2.94)

n_ n-1Z Z
+Au+W"m-fm inV forn=l,...,m,k

wK u,w;;, a.e. in D, for n= 1,.-., m.
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Vm M, (P)m has one (and only one) solution, which can be constructed step by step
as for (P1),.

Take a generic e { 1, m ), multiply (2.93) by U"m Uo,"- and sum for n 1,... l.
Notice that

) EfD (n_o-1)dx2.95 Zm Z

n=
k Um

Z Z Zm

a1 m IIz uI L2(D)

Thus by (2.17)-(2.21) we get (2.23) and

(2.96) max u u
N C.

n=O,. .,m k L2(D)

Therefore, using the notation of the proof of Theorem 1, we have (2.31)-(2.34) and

(2.97) Um+ U in W1’ m(0, T; t2(O)) weak star.

The rest of the proof follows as in (2.35)-(2.44); just remark that by (2.85)
L(0, T; V’), hence u L(O,T;L2(D)) C([0, T]; V’)c Cff([O,T];L2(D)) by
Lemma 1.

3. Jump with anticipation.
1) Let (2.1) hold and

(3.1)
We introduce a weak formulation of (1.17), (1.15).

(P4) Find u L2(0, T; V)H(O, T; V’) ( C([0, T]; L2(D))) and wL(Q) such
that fl(u) WI’I(0, T; LI(D)) and

(3.2) wS(a(u)) a.e. in Q;
(3.3) wS(fl(u) ,) a.e. in Q;

(3.4) u +Au + w=f in V’, a.e. in ]0, T[,
(3.5) u(x, 0) u(x) a.e. in D.

TnzOgeM 4. Assume that (2.8) holds and that

(3.6) fL2(Q).
Then prob&m (P4) has at least one solution such that moreover

(3.7) uHa(O,T;L2(D))C([O,T]; V)L2(O,T;H2(D)).
Proof. Set

(3.8) v ,nen.
Let m , k T/m. Set

1
f(x, t) dt a.e. in D, for n 1,--., m.(3.9) f(x)= ,-1)k
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0=u0 a.e. in(P4),,, Find u"m V, wL(D) for n--1,..., m, such that, setting U

n-1Um +A n+ n_
u

k um w;g-f, inV,forn=l,...,m,

(3.11) w,L Urn,U,, a.e. in D, for n=l,...,m.

Vm N, (P4),, has one (and only one) solution, which can be constructed step by step
as for (P1)m. A priori estimates (2.22) and (2.23) can be obtained by the procedure
(2.17)-(2.21); but here there is no reason for having (2.26). Using the notation intro-
duced in the proof of Theorem 1, (3.10) can be written in the form

(3.12) tlmt+Alm+m--L in V’,a.e. in ]0, T[;
as IImll (O)__< C, comparison in (3.12) yields [[AftmllL2(O)<= C, whence

(3.13) I1 =(0, =< C.
Therefore there exist u, w, j such that, possibly taking subsequences

(3.14) Um--*U in/4(0,r;z(z))(0,r;/-/(9)) weak,
in L(0, T; V) weak star;

(3.15) lm---)U in nr(o,r;t2(O))ot2(o,r;n2(v))weakVr<1/2,
in L(0, T; V) weak star;

(3.16) Wm- W and v,, w in L(Q) weak star;

(3.17) Um(T)t in Vweak.

Thus also (2.35) and (2.36) hold; by (3.11) we have (2.37), whence (3.2) by the
procedure (2.38)-(2.40). Let r denote the operator which extends any function defined
in [0, T] with value 0 in R \[0, T]; (3.12) can be written in the form
(3.18)

(q’l’Um)t--[-qT’A.lm-[-ql’m=qrmqt-um(O)io(t)-um(T)co(t T) in ((0, T; V))’
(where 8o denotes the Dirac mass in 0); taking rn--* o we get

(3.19) (ru)t+Au+rw=f+u8o(t)-l8o(t-T) in ((0, T; V))’
whence (3.4), (3.5) and

(3.20) u(T)= a.e. in D.

Notice that, by the regularity of f, (3.4) can be written in the form

(3.21) ut- Au + w=f a.e. in Q.

Besides the notation introduced in the proof of Theorem 1, let b,,(x,t) denote the
function obtained by linear interpolation of the values bm(x, nk)=fl(unm(x)) for n=
0,..., rn a.e. in D. As/3 is Lipschitz-continuous, by (3.14) we have

(3.22) bm---)i(u ) in nl(o,z;t2(O))weak, in L(0, T; V)weak star.

(3.11) yields

(3.23) W"mS(a(U"m)) for n=l,...,m;

((n)-fl(un-1)) forn=l.., m"(3.24) w,S u,
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therefore

(3.25)

u, Um dx

m m
n n n- n n n-l)

n=l

m m

n=l n=l

=1 k LI(D)

n n-1 and summing for n 1,... m we Betthus multiplying (3.10) by u-u

(3.26)

whence taking m m and using the lower semicontinuity of norms

1 1(3.27) Ilutllo)+llu(r)II-llull+
-II(u) I1,.,,o, z ff.udxdt.

Now multiply (3.4) by u L2(Q) and integrate w.r.t, space and time; using (3.2) we get

1 a 11+ f w.(3.28) Ilutll2(o)+llu(T)ll=-llu ),dxdt

+ (u(T))I1o)-II(u) I1(o)= ffu,dxdt;
the comparison of the last two formulae yields

(3.29)

whence, as Iwl 1 a.e. in Q,

w(u) ,dxdt> 3(u), I1,)

that is (3.3). Finally by Lemma 1 we get u Cs([0, T]; V). []
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PROPOSITION 2. Assume that (2.8) and (2.9) hold. Then problem (P4) has at least
one solution such that moreover

(3.31) unl(O, T; Z2( O))(’Cs([O, T]; V).
Proof. As for Theorem 4, with the exception of (3.13); hence a priori u and /m

do not converge in L(0, T; H(D)) weak and the equation (3.4) does not hold a.e. in
Q. Therefore in this case the multiplication of (3.4) by utq L(O, T; V) is only formal.
In order to make it rigorous, convolution with a regularizing kernel can be used, as in
[7, Chap. 1, 1.8] (we shall give more details about this technique in the proof of
Theorem 6).

We give a regularity result.
PRO’OSITION 3. Assume that (2.8), (2.46) and (2.47) hold. Then (P4) has at least

one solution such that moreover

(3.32) u W’(O,T;L(D))H(O,T; V).

Proof. For the solutions of.the approximate problems (P3)m’S the stronger a priori
estimate (2.54) can be proved as for Proposition 1 (notice that (2.51) holds also in this
case). Thus we get in particular u H(0, T; V); hence (3.4) can be multiplied by ut.

2) We introduce another weak formulation of (1.17), (1.15). Let (2.8) and (2.9)
hold.

(P4)’ Find u HI(0, T; L2(D))tqL(O, T; V) ( Cs([O,T]; V)) such that

(3.33) fef (l (u)l-lol)axat
<= v,(f,a(u)-v)vdt VoeL2(O,T; V),

ss lSo o s s--I )ex
+

(3.34)
<__ fff,(ut-o)dxdt+ z,(f:(T),u(T))z- z,(f_(O),u)v

SOT u)vdt SOTv’(f2t, (f2,o)vdt VoLz(O,T; V).

Remark. A system of variational inequalities was used also in [11] for the weak
formulation of (1.3) coupled with (1.20).

PROPOSITION 4. Assume that (2.8) and (2.9) hoM. Then problem (P4)’ has at least
one solution.

Proof. Quite similar to that of Theorem 4.
PROPOSITION 5. Assume that (2.8) holds and that

(3.35) fL2(Q)C W1’1(0, T; V’).
Then any solution ofproblem (P4) also soloes (P4)’.

Proof. (3.2) and (3.4)’are equivalent to (3.33). As f-wLZ(Q) then u
Hi(0, T; LZ(D))CL2(0, T; H2(D)) and (3.4) can be written in the form

(3.36) ut- Au + w=f a.e. in Q.
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Multiply this by Ut--l)(-L2(Q), for a generic o L2(0, T; V); notice that

(3.37) ffe-Auu,dxdt=ffoTu.V’u,dxdt= (lu(T)-Iuldx,
and that by (3.2), (3.3)

 3.383 ff ff w,  u3,dxd,/ ff w(Z  u3,-, dxd,

thus we get (3.34).
3) Assume that (2.1) and (3.1) hold. We introduce a weak formulation of (1.18),

(.5).
(P5) Find uL2(O,r; W)CH(O,T; W’) (cC([0,rl;L())) and wL(Z)

such that fl(u) W’(0, T; L(I’)) and

(3.39) wS(a(to)) a.e. on

(3.40) wS(fl(,/u)t) a.e. on

(3.41) ut+Au+y*w--f in W’, a.e. in ]0, T[;
(3.42) u(x,O)=u(x) a.e. in D.

Remark. It is possible to introduce a different setting, analogous to problem (P4)’,
and to prove results similar to Propositions 4 and 5.

TI-IEOREM 5. Assume that (2.8), (2.47) and (2.63) hold. Then problem (P5) has at
least one solution such that moreover

(3.43) u WI’(O,T;L2(D))CqHI(O,T; W).

Proof. Vm N we introduce a time-discretized problem (P5)m similar to (P4)m;
also (P5),, has one (and only one) solution, which can be constructed step by step.
Taking the incremental ratio in the approximate equation and using a procedure similar
to that of Proposition 1, we get the a priori estimates (2.66), (2.67) for the equation
(2.68). Therefore there exist u, w such that possibly taking subsequences (2.70), (2.71)
and (2.73) hold. Taking rn m in (2.68) we get (3.41). We have also (2.75) and (2.76).
Therefore we can show (3.39) and (3.40) by a procedure similar to that used in the
proof of Theorem 4 Oust notice that the regularity u Hi(0, T; W) is sufficient for
multiplying (3.41) by ut).

4) Assume that (2.1), (2.80) and (2.81) hold. We introduce a weak formulation of
(1.19), (1.15).

(P6) Find u L2(O, T; V)CIH2(0, T; V’) and we L(Q) such that

(3.44) wS(a(u)) a.e. in Q;
(3.45) wS((u)t) a.e. in Q;
(3.46) utt-t-Au+w=f in V’, a.e. in ]0, T[;
(3.47) u(x,O)=u(x) a.e. in D;
(3.48) ut(x,O)=u(x) in V’.
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See the remark following (P3).
THEOREM 6. Assume that (2.1), (2.88) and (2.89) hold. Then problem (P6) has at

least one solution such that moreover

(3.49) uC([O,T];L2(D))Cs([O,T]; V).

Proof. VmN we introduce a time discretized problem (P6)m similar to (P3)m,
with (2.94) replaced by (3.11); also (P6), has one (and only one) solution. Using the
notations introduced in the proof of Theorem 1, the approximated equation can be
written in the form

(3.50) Umt +A,l "4- 12 --L in V’, for n 1,..., m.

n-l, summing for n 1,.-. and usingMultiplying the discretized equation by um- u,,,
(2.17)-(2.21) and (2.95) we get

(3.51) Ilullw.=(o,r;(o))a=(o,r; v)Z c,
(3.52) I1  (o. v)S c.
Fix a generic ]0, t]. By the above estimates there exist u, w, , such that possibly
taking subsequences

(3.53) u u in W’ (0, T; L(D))L(0, T; V) weak star,

(3.54) u in L(0, T; V) weak star;

(3.55) w,, w, w in L (Q) weak star;

(3.56) u () ( in V weak;

(3.57) ut(), in L2(D)weak.
By the procedure of (3.18)-(3.20), we get (3.46) and

(3.58) =ut() a.e. in D;

integrating (3.50) w.r.t, time and repeating the same procedure we obtain

(3..59) =u() a.e. in D.

Multiplying (3.50) by umtL(O,T; V) and integrating in ]0,[ we get (cf. (3.25),
(3.26))
(3.60)

1 2 1 1 1

whence taking m m and using lower semicontinuity of norms

(3.6)
1 1 1 1

+ -I1 (0)

Z
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and this last holds for any ’ ]0, T[ (though the extracted subsequences may depend on
/’). Now we would like to multiply (3.46) by u, and to integrate w.r.t, time (similarly to
the procedure used in the proof of Theorem 4); but this is only formal, as u, L2(0, T; V)
a priori. In order to make this rigorous, convolution with a regularizing kernel can be
used; by the procedure of [7, Chap. 1, 1.8], one gets

l 1 2 1 2 1 2(3.62)-llu,()ll2,:_o,-llu,(t)ll,,o,/-llu(OIl--llu(t)ll

d’r flutdx + v,<f2(i),u(i))v- v,(f2(t),u(t))v- v,<f2,,u)vdr

a.e. for t, ’ ]0, T [.

Now let t0. By Lemma 1 utCs([O,T);L2(D)) and uCff([O,T]; V), hence ut(t)"’
u in L2(D) weak, u(t)--,u in V weak; therefore by the lower semicontinuity of
norms we get

l 2 1 1 2 1(3.63) -11 ut(/’)[IL2(D)--IlUllI2L2(D)-IlU()ll V--’ uOll2V

a.e. for ? ]0, T I;
comparing (3.61) with (3.63) we get

whence (3.30), i.e. (3.45) []

a.e. for/’ ]0, T

Remark. As the system (1.15) is equivalent to (1.16), in (P4) we can replace (3.42),
(3.44) by

(3.65) wS(a(u)+fl(u)t) a.e. in Q;

eliminating w by (3.4) and (3.65) we get

(3.66) ut+Au+S(a(u)+fl(u)t)f in V’,a.e. in ]0, T[.
Formally a solution u of (3.66) can be interoreted as a fixed-point for the application

such that fit+Afi+S(ft-fl(t)+fl(fi),)f in V’,a.e. in ]0, T[(3.67) fifi

as well as for

(3.68) fi such that t+a+s(ot(Fl)-ot(Fl)t-I-lt)f in V’, a.e. in ]0, T[

(where in both cases we have used the fact that a + fl Identity). (3.67) ((3.68)) corre-
sponds to a variational inequality of the first type (of the second type, respectively).
Therefore (3.66) can be regarded as a nonstandard nonstandard quasi-variational
inequality.
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4. Other results. Let # and ,P2 run along two sequences converging to the same
limit, which we can assume to be zero: p2--)0 as j o, for i= 1,2; moreover let
p./<_ p2:./j. Accordingly ’j 1 define % and f12 similarly to (1.8) and define (1)2 as
(P1) with a and fl replaced by % and f12.

PROPOSITION 6. Assume that (2.1) holds and that

(4.1) jl wL(D) andwS(a(u)) a.e. in D;

Vj 1 let u be a solution of (Pl) (existing by Theorem 1). Then

(4.2) u2---)u in L:(0, T; V)cqHx(O,T; V) weak,

where u is the unique solution of the following variational inequality:
Findu L)(O, T; V)OH(O, T; V’) (c C([O, T]; L)(D))) such that

(4.3) v,(Ut,U-V)v+fo fo (lul-lvl)dx<__

Vv V a.e. in ]0, T[
(4.4) u(x,O)=u(x) a.e. in D.

Proof. /j, multiplying the corresponding (2.6) by u:. and integrating w.r.t.
time, by a standard procedure (cf. (2.17)-(2.21)) we get

(4.5) v)=
< cnstant independent of j

and then by comparison in (2.6)

(4.6) ujll.,0, r; v’)<= constant independent of j.

Therefore there exists u such that, possibly taking a subsequence,

(4.7) u. u in L2(0, T; V)CHI(0, T; V’) weak;
hence
(4.8) u u in L-(Q) strong,

whence, since limg
(4.9) %(u.)u in L2(Q) strong.

/j , multiplying the corresponding (2.6) by ug-v for a generic v V and integrat-
ing w.r.t, time we get

1 2 1 0 2 fT(4.10) L2(0, T;

v,(f,u:-v)vdt.
Q

Notice that by (2.4) and (4.9)

lim gw u v ) dx dt(4.11)
./--’

>- ff (lul-Iol)dxdt;
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therefore taking the inferior limit as j oo in (4.10) we get

(4.12)

which is equivalent to (4.3) and (4.4). Uniqueness of the solution of (4.3), (4.4) entails
the convergence of the whole sequence { uj }j N. rn

PROPOSITION 7. Assume that (2.1) and (2.2) hold. If
(4.13) f<=O in ’(Q), 02>=0, u<=p2 a.e. inD,

then for any solution ofproblems (P1), (P2), (P3), and (P4)

(4.14) u <_ P2 a.e. in D.

Similarly iff>O in ’(Q), pl <_0, uO>____pl a.e. in D, then u>_pl a.e. in D.
Proof. For problem (P1) it is sufficient to multiply (2.6) against (u-02) + in the

first case, by -(u-px)- in the second one, then to integrate in time. Proof is quite
similar for (P2), (P3) and (P4). rq

For all of the above problems, uniqueness is an open question. We are just able to
prove the following result.

PROPOSITION 8. Assume that (2.1), (2.2), (2.8) hoM and that

(4.15) f=O a.e. in Q, pl<O<P2 pl <_UO<p2 a.e. in Q.

Then problem (P4) has at most one solution such that u Hi(0, T; V).
Proof. Let (Ul, Wl) (u2,w_) be two solutions of (P4). By Proposition 7 p<=ui<=p2

a.e. in Q, hence fl(ui)=u a.e. in Q for i=1,2. Take the difference of (2.6) written for
u and u 2, multiply it by(u1- u2)t L2(0, T; V) and integrate w.r.t, time. Notice that as
w, S((u,)t) (i= 1,2),

(4.16) ff (W W2)" (U U2)tdxdt--- ff (w w2)- ((Ul) ,-/(u2) ,)dxdtO;
Q Q

thus by standard calculations we get (ux- u2)t 0 a.e. in Q. H
Remark. All of the previous developments for problems (P1)-(P6) extend in a

natural way to the case in which the normalized output w is replaced by a(x,t)w with
a L(Q) (a L(Z) in (P2), (P5)), a > 0 a.e. in Q (on z, respectively).

5. Stefan problem with hysteresis in the source. We remind that we denote by H
the Heaviside graph, by , the latent heat of water; if u represents temperature then
u + XX u + XH(u) has the physical meaning of enthalpy. We denote the inverse of
+XH() by l: /()=(-)+--V R. Assume that (2.1) holds and let

(S.1) o( rtx/2 )’ L w S(a(l())) a.e.oo (D) LX(D) w (D) such that in D

(.0 and 1(") will represent initial enthalpy and initial temperature, respectively). We
introduce a weak formulation of a two-phase Stefan problem with hysteresis in the
source (see (1.7), (1.9), (1.20)):
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(P7). Find uL2(O,T; V), xL(Q), wL(Q) such that u+,xHI(O,T; V’),
(u(x,. )) C([0, T]), w(x, .) BV(O, T) a.e. in D and

wS(a(u)) a.e. in Q,

(C[(0, T)])’ Wt’ [( U)--U )cO[(0, T)] 0

’v C [(0, T)] such that 01 < v =< 02, a.e. in D,

(5.4)

(5.6)
(5.7)

lim [w(x,t)-w(x)] [(u(x))-v] >0
t_.0

X H(u) a.e. in Q;

(tl-t-XX)twatl-t-w=f in V’,a.e. in ]0, T[;
=.0 in V’(u+Xx)l,=0

[101,02], a.e. in D

Remark. u+xL2(Q)NHI(O,T; V’)c C([O,T]; (H2(D))’), hence (5.7) is
meaningful.

THV.ORV.M 7. Assume that (2.8), (2.9) and (5.1) hoM. Then problem (P7) has at least
one solution such that moreooer

(5.8) uH’(O,T;L2(D))CL(O,T; V);
(5.9) wL2(D; BV(O, T)).

Proof. Let m , k= T/m. Define fm and K as in (2.13), (2.14).. . o l(.o o(P7)m Find Um V, XmL(D), w;;,L(D) such that, setting Urn= ), X,,,-
.o_ l(.o), Win0= Wo in D,

(5.10)

(5.11)
(5.12)

n-1 n n-1Urn U Xm Xm+ +Au+w=f nV’ forn=l m
k k

xO u a.e. in D, for n 1, m,

(. .-1)w;, K um, wd, a.e. in D, for n 1,. ., m.

k/m 1 (P7)m has one (and only one) solution, which can be constructed step by step
as for (P1)m; indeed, by the monotonicity of H, also in this case at every step a
coercive, strictly convex, lower semicontinuous functional VR is to be minimized.

and sum for n 1 l, for a generic ! {1,..., m };Multiply (5.10) by u u
notice that the monotonicity of H yields

n-1

(5.13) YlfDXm--Xm (n n-l) dx > 0
k UmmUm

thus by (2.17)-(2.21) we get (2.22), (2.23).
We use the notation of the proof of Theorem 1. Moreover by X we denote the

function obtained by linear interpolation of the values X(x, nk)=Xm(X ) for n=
0,-..,m, a.e. in D; set also (m(X,t)--Xnm(X) a.e. in D if (n-1)k<t<=nk for n=
1,. ., m. (5.10) can be written in the form

(5.14) Umt+kXmt-l-hlm-l-tlm---L in V’, a.e. in ]0, T[;

we have a priori estimates (2.28)-(2.30). Therefore there exist u, X, w such that
possibly by taking subsequences (2.31)-(2.34) hold and moreover

(5.15) X X in L (Q) weak star.
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We have ,,H(ftm) a.e. in Q; hence by (2.31) and by a standard monotonicity
technique we get (5.5). The rest of the proof follows as for Theorem 1. t3

It does not seem trivial to extend Theorems 2, 4, 5 to the case in which the linear
operator u ,--->ut-bAu is replaced by u --->ut-bXtq-Au where xH(u), as in the Stefan
problem.

A result analogous to Proposition 6 holds for (P7), too.

6. A parabolic system with hysteresis. Hoppensteadt and Jiger have modelled and
numerically studied a biological phenomenon exhibiting hysteresis (cf. [3], [4]). They
formulated the following parabolic system

(6.1) Uit--DiAui+cis=O (i= 1,2),
where D and c; are positive constants, Ui_O (i=1,2); s is related to (ul, u2) as
follows: the quadrant (R +)2 is parted into three sets by two disjoint curves on which s
is switched from 0 to 1 and conversely; let 1"1(1-’2) correspond to the switching off (on)
curve (see Fig. 3). We can assume F1 and F_ to be level curves of a "smooth" function

’. (1 +)2"1; that is Fi=((Ul, U2)l(Ul, U2)=Pi} (i=1,2) with Pl, P2 1" If 1 "</92,
then the relation between 2s-1 and (ux, u2) is the same as that between w and u in
(1.2). Therefore the system (6.1) can be studied similarly to the single equation (1.17).

U2

S=O

_
F

FIG. 3

In the biological phenomenon considered by Hoppensteadt and Jger, the ug’s
represent the concentrations of substances ("nutrients") which activate the growth of
another substance (" bacteria"). This last diffuses slowly and reacts fast, so that one can
use the ordinary differential equation bt’-CoS where b represents the concentration of
bacteria and co is a positive constant. Due to the threshold effect in the dependence of
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s on (Ul, U2) some spatial structures appear in the distribution of b. This is analogous
to the Liesegang phenomenon arising in chemistry, in which nutrients and bacteria are
replaced by ions. The above model has also been confirmed by numerical tests (cf. [3],
[41).

Let I=(HI())2, #=(L2(D))2; identifying / with its dual /it,, we get the
Hilbert triple 17"c/it =/it, c ,, with dense and compact inclusions. Let A" 17"-0 ’ be
linear, continuous, symmetric and coercive (so that u (f,(Au, u)f,)1/2 defines a norm
equivalent to Ilull); let fL2(O,T; (/")and u l?’. Moreover let c=(c,c2)(R+)2

and q: (R +) 2 continuous.
(P8) Find u=(ul, u_)L(O, T; )NHI(0, T; ’) and weL(Q) such that, set-

ting z =q(u) a.e. in Q,

(6.2)
(6.3)
(6.4)

(6.5) lim [w(x,t)-w(x)] "[fl(u(x))-v]>=O Vve[pl,P2],
t--O

W+I
(6.6) ut+Au+c 2 =f in ,a.e. in ]0 T["

(6.7)

(z(x),.)C([O,T]),w(x,’)BV(O,T) a.e. inD;

wS(a(z)) a.e. inQ;

(cO(j0, T])),(Wt, [( Z )--O)cO([0, T]) 0

VvC([O,T]) such that 01 <__v<p, a.e. in D;

a.e. in D

Remark that (6.6) corresponds to (2.6) setting

,,<A,,,,>,= f, ( DIUl"V + D2’u2" ’v2) dx,

,(f,o)= D,W.o+Dw., o

a.e. in ]0,T[ Vv=(v,v2) V and s=(w+ 1)/2.
THeOReM 8. Assume that

(6.8) is Lipschitz-continuous and monotone with respect to each of its arguments;

(6.9) u;
(6.a0) f=fl+f, fl L2(0, T; ), f W,(0, T; ).
Then problem (P8) has at least one solution such that moreover

(6.) uH(O,V;a)C([O,V]; ),

(6.42) wc(o; v(0, v)).
Proof. Similar to that of Theorem 1. An approximated problem (P8)m analogous

to (P1) can be introduced, with (2.16) replaced by

(6.13) w((,") "-)W a.e. in D, for n 1,. ., m.

By (6.8) K(w(.),w-(x)) is a maximal monotone operator a.e. in D; therefore also
(P8),, has one (and only one) solution, which can be constructed step by step. A priori
estimates (2.22), (2.23) can be proved also here (obviously with LZ(D) and V replaced
by and , respectively).

u(x,O)=u(x) a.e. in D.
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We use the notation introduced in the proof of Theorem 1. Moreover by z.,(x, t)
we denote the function obtained by linear interpolation of the values Zm(x, nk)=

mq(u,(x)) for n=O,...,m, a.e. in D; set ,m(X,t)--(Um(X)) a.e. in D if (n-1)k<t<=
nk for n 1,--., m. Thus the approached equation can be written in the form (2.27)
and also (2.28) holds. Then by (6.8) we have

(6.14)

whence as in (2.29)

(6.15)

Therefore there exist u, z, w such that, possibly taking subsequences, (2.31)-(2.34) hold
and

(6.16) Zm---) Z in Hi(0, T;/Q) L(0, T; re) weak star.

This last and (2.31) yield

(6.17) z =q(u)a.e. in D.

The rest of the proof follows as in (2.35)-(2.44). []

Acknowledgment. The author is indebted to the referees for several useful sugges-
tions.
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ON THE FRACTAL DIMENSION OF ATTRACTORS FOR VISCOUS
INCOMPRESSIBLE FLUID FLOWS*

J.-M. GHIDAGLIA

Abstract. We prove that attractors associated to various equations of viscous incompressible fluid flows
have finite fractal dimension and lie in the set of C-functions. The first part of this article consists in an
abstract formulation of our results; then in the second part, we apply these results to Navier-Stokes
equations with nonhomogeneous boundary conditions to N.S.E. on a Riemannian manifold, to thermo-
hydraulic equations and finally to magnetohydrodynamic equations.

Key words. Navier-Stokes equations, long-time behavior, attractors, fractal dimension
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Introduction. The equations which describe the motion of a viscous fluid can be
viewed as an infinite dynamical system. However from a physical point of view it is
admitted that this motion depends on a finite number of degrees of freedom. This is a
physical evidence for laminar flows (observed for small Reynolds numbers) which
correspond mathematically to the existence of a stable steady state. For large Reynolds
numbers, the phenomenon of Turbulence occurs and the interpretation becomes some-
what more complicated (both physically and mathematically).

D. Ruelle and F. Takens [28] attribute Turbulence to strange attractors. These sets
represent the behaviour of the flow since after some transient period they trap the
motion. Thus in a certain sense, attractors carry all the information contained in the
external excitation. This feature is characteristic of dissipative systems.

Proving that attractors have finite dimension is a way to give a mathematical sense
to the physical concept of finite number of degrees of freedom. In 1979, C. Foias and
R. Temam [14] proved that attractors associated to Navier-Stokes equations have finite
dimension and more recently M. Sermange and R. Temam [29] have investigated the
magnetohydrodynamic equations. Using completely different methods, various authors
have obtained bounds for the dimension of attractors which have physical interest (i.e.
in terms of nondimensional physical numbers) in case of Navier-Stokes equations with
homogeneous boundary condition: C. Foias and R. Temam [15], P. Constantin and C.
Foias [8], P. Constantin, C. Foias and R. Temam [10], D. Ruelle [26], E. Lieb [23], P.
Constantin, C. Foias, O. Manley and R. Temam [9], R. Temam [33] (this reference
contains a quasi optimal result for 2D-N.S.E.) and in a special case of thermo-hydraulic
equations, D. Ruelle [27].

In this article we shall study various situations arising in fluid mechanics of viscous
incompressible fluid flows. We successively consider the motion of a fluid dragged by
moving walls (Navier-Stokes equations with nonhomogeneous boundary conditions),
the motion of a fluid on a Riemannian manifold (motivated by a meteorological model
for the circulation of the atmosphere), the motion of a fluid submitted to buoyancy
effects (thermo-hydraulic equations). Finally we consider the motion of a resistive fluid
(magnetohydrodynamic equations).

*Received by the editors November 14, 1984, and in revised form April 5, 1985.
Laboratoire d’Analyse Num6rique, Universit6 Paris-Sud, 91405 Orsay, France.
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The plan is as follows. In the first part, we consider in 1.1, an abstract equation
(generalizing the usual Navier-Stokes equation where ! 0):

dq,
(0.a)

and briefly recall the well-known results of existence and uniqueness. Estimates, uni-
form with respect to time, are stated in 1.2. They extend those obtained by C.
Guillop6 [20] for the Navier-Stokes equations with homogeneous boundary conditions.
In 1.3, which contains the main results of the first part, we introduce with C. Foias
and R. Temam [14], R. Temam [31], a notion of functional invariant set and attractor.
Then we prove that the attractors have finite fractal dimension and lie in a set of
regular functions. In the second part we show how the results of the first part apply to
the situations mentioned previously, namely Navier-Stokes equations (N.S.E.) with
nonhomogeneous boundary conditions (2.1), N.S.E. on a Riemannian manifold (2.2),
thermo-hydraulic equations (2.3) and finally M. H. D. equations (2.4).

In a subsequent work we shall derive bounds for the dimension of attractors in
term of nondimensional physical numbers similar to those obtained by P. Constantin,
C. Foias, O. Manley and R. Temam [9] in the case of the Navier-Stokes equations.

This work summarizes a thesis [16] prepared at the Laboratoire d’Analyse
NumBrique of the University of Paris-Sud at Orsay, France.

1. Review of known results and complements.
1.1. The abstract framework. Let , be a separable Hilbert space topologically

included in a Hilbert space with compact injection; we denote by (.,.) and [.[the
scalar product and the norm on and by I’1, the norm on ,. We suppose that , is
dense in and thus, identifying with its dual, we have the usual injections

(1.1) c;c’.

We shall also denote by (.,.) the pairing between and t’.
Let 9 be a self-adjoint linear operator, continuous form into ’, such that

(a>O):

(1.2) { ?1 )> 112 V.

For convenience we shall use in the sequel the norm Ilq, ll -= (9,, q,)a/2 on t. This norm
is equivalent to [. [,.

Let be a linear continuous operator from , into ,’ which maps D(
9q (9) into and such that there exist 01, 02 [0,1[ and two positive constants K
and K2 satisfying

(1.3) I,t,l<=glllq, lll-’lgAq, ’ VD();

(1.4)
--0

Finally let 3 be a bilinear continuous operator from t into t}’ and D(9)
D( 9 ) into such that

(1.5) )=0 re,
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and there exist 03, 04 [0,1[ and K3, K4 > 0 satisfying

(1.6) 1(3 (ql,q,2), )I__< gll,llll= III1 I11 -03
qbiC D

Flow of stron solutions. Given 0 and L(0, T; ) with T> 0, the initial
value problem

dq,(a.8) +,+ (,)+,=,
(1.9) q,(0) =qo,
has a unique solution on [0, Tl(ll,l[)] (0 < T < T) such that

(1.10) q([0, T1]; t)tL2(O, T1; D(9/))
where T Tx(IIII) depends on IIq,ll and the other data 91, 3, tt, ; more precisely
there exists a positive constant C1 depending only on the operators 9/, 3, 9 and
such that

(1.11) TI(O)>
C

(1 + 10
2 ) 1/(1-04)

(1.12) sup (t) a + 2 qo II.
O<t < T1

DEFINITION 1.1. We say that q, is a strong solution of (1.1.8) on an interval I if
q,C(I; V)cqL2oc(I; D(91)).

If 3 satisfies in addition: there exist 0 [0,1[, K5 > O, such that

(1.13) l3(01,q,) l<_ K5llq,lll’-’lq,ll’llea_lll-lgq,2l’
we can take T T i.e. we have existence for all time. These results are well known in
the case of Navier-Stokes equations (C. Foias and G. Prodi [13], J. L. Lions [24], R.
Temam [31, 32],... ); the details of the proofs, for the equation considered here, are
given in [16].

1.2. Time uniform estimates. We denote by t.= D(92’/:) the scale of Hilbert
spaces endowed with the norm Ilq, llm 19 m/2].

We introduce a family of Hilbert spaces { @m }m N, with

(2.1) m+lCm VmN,

the injection being continuous,

(2.2)
is a dosed subspace of m’ m IN, the norm

induced by @,, on t being equivalent to I1"
We assume that @ 0 and

(2.3) 9/- is continuous from ,, into ,,+nt Vm>O.
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We make the following assumptions on 3 and "
(2.4) R is continuous from @m+ into @ m, m >= 1;
(2.5) is continuous from @,+ x @ m+ into @ m, m >= 1.

The following theorem was first proved by C. Guillop6 [20] for Navier-Stokes equa-
tions with homogeneous boundary conditions. The proof in our more general case can
be found in [16].

Let m I%1 and l=[(m/2)].
THEOREM 2.1. If q satisfies

j=0,...,1-1,

then every solution of (1.1.7) such that

(2.8) dpL(to, + ; t), to>=O,

satisfies

(2.9) dp(J)b([tl,-Jl-O[; m-2j) Vtl>t0, j=0,’- ",1.

The notation b([a,b[; X) means 6([a,b[; X)f3L(a,b; X) and the proof of
this theorem shows that the norm of the qbJ) in b([tl, d- Cg3[, (m_2j) depends on the
operators 9, , , on the different norms of the J) in the spaces appearing in
(1.2.6)-(1.2.7), on the norm of qb in L(t0, + ; ,) on j, o and tl.

Remark 2.1. When 9+ is 3-coercive (i.e. there exists />0 such that
((9 + R)q,q)>,/llq[[ 2, Vq t) and when (1.1.13) is satisfied, it is shown in [16, p. 35]
that the strong solution of (1.1.7)-(1.1.8) satisfies (1.2.8) with to= 0.

1.3. Fractal dimension of an attractor. This section contains the main results of the
first part. It is organized as follows. In a first time we show a squeezing property for the
flow of strong solutions in the sense of C. Foias and R. Temam [14] (Theorem 1.3.1).
Then we define functional invariant sets and attractors. We prove for these sets a
regularity like property (Theorem 1.3.2) and finally we establish (Theorem 1.3.3) that
invariant sets, bounded in , have finite fractal dimension. In the previous works on
the dimension of attractors ([14], [11], [4], [26], [23],... ) the authors have proved that
the Hausdorff dimension of these sets is finite. P. Constantin, C. Foias and R. Temam
[10] are the first who have shown that, for Navier-Stokes equations with homogeneous
boundary conditions, the fractal dimension of attractors is finite (note that this notion
of dimension is stronger than that of the Hausdorff dimension).

Squeezing property. We first introduce some notations. The operator 9 is an
isomorphism from D(9) onto ; -1 is a self-adjoint and compact operator on .
Thus 9 possesses an orthonormal family of eigenvectors (j)j. >__ 1, which is complete in
g). The increasing sequence of eigenvalues of 9 is denoted by (}>= and we also
denote by Pm the projector in g) onto the space spanned by 1," ", ,n- When dim
(we shall only consider this case) the sequence is infinite and

(3.1) lim j.= + .
j+o
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In this section we assume that R is linear and continuous from 19 onto g) (i.e.
01 02= 0 in (1.1.3), (1.1.4)):

(3.2) I__<gxllqll vq .
Let ,h, , be two strong solutions of (1.1.7) on some interval [0, T]; i= 1, 2:

d
at + 91,s + (,,) + ,/, ,

,;(o)

(3.3)i

(3.4)i

where ,0. is given in 19 and

(3.5) L(O, T;

Since strong solutions belong to ([0, T]; 19), we set

(3.6) R= max ( sup
i=1,2 t[0,T]

THEOREM 3.1. Under the previous hypotheses, there exist C and C2 depending only
on , , fit, R, T and such that for every m >__ 1 and every [0, T] the following
alternative holds"

either (i) Iql(t)-q2(t)I<_ lPm(Ckl(t)-q2(t)) l,
or (ii)I’/’x(t)-’2(t)[_-< Cx exp( C2,m+ ) dPl dP2

The proof given here is inspired from P. Constantin, C. Foias and R. Temam [10].
It should be noted that the constant appearing in (i) could be any real number

strictly larger than 1.
In the following the positive constants C depend only on 9, 3, R, R, T and on

the norm of in L(0, T; ) (denoted I1). Before proving Theorem 3.1 we
establish:

LEMMA 3.1. Under the assumption of Theorem 1.3.1; if k1 4= k then kl(t) 4 k2(t) for
every [0, T] andfor 0 <= <= <= T, we have

(3.7)
Ilql(t)-q2(t) I1-> IlCkl(Z)-ck-(r)ll-exp(-C3(-t)l-4).
[bx(t)_b2(t) [2

Proof. We set q 1 2- From (1.3.3)i= 1,2 we deduce

(3.8) dt

(3.9) q(0) q q.
Denoting by B(t) the time dependent operator

(3.10) B( )l:= (l( ),l ) + 3 ( l, ck2( )) + RI
from (1.1.6), (1.3.2) and from the fact that strong solutions belong to L2(0, T; D(9)),
we deduce that

(3.11) B(t)L2(O,T;
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Now according to C. Bardos and L. Tartar [6] the equation

d+
at

with B(t) satisfying (1.3.11) possesses the backward uniqueness property (note that
(1.3.8) is ill-posed for t<0). Then if q(0)4=0, +(t)4=0, O<=t<=T. This proves the first
part of the lemma.

We can set A(t)=l]q(t)llz/lq(t)] 2. According to (1.3.8) and to the identity
( 91 q Aq, q) 0 we deduce that

1 dA lgxq,-Aq,
2

(3"12t 2 dt
-t

Now thanks to (1.1.3) and (1.1.6) we can majorize the r.h.s, of (1.3.12) by

We denote by o the term between the brackets, and then

2 dt 12
__<o.

1 1

Thus we have

(3 13) dA
dt =<2A

which yields by integration

(3.141 2A(t)>__A(r)exp- o (s)ds.

We estimate now this last integral. Thanks to Young’s inequality

fzt[I bi 2(1 -04)] ’[ bi 120’ds<= (fzt[I i 112dS )1-o4(t19i [2ds )04
< (t"r_11--0 R2(1-04) t 12ds

Thus in order to deduce (1.3.7) from (1.3.14) we must majorize (ftlgqil2ds)4. For that
purpose we take the scalar product in g) of (1.3.3)i with

1 d 2 2 O i1 +01 + g4llq,l]-4 19qi i1 +o4

(we have used (1.1.3) and (1.1.6)).
By applications of Young’s inequality we deduce that

d 2 12
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from which we get by integration" folS12ds Cs. Thus

(3.15) fr 2( )1-04o s)ds<=C3(-t

This completes the proof of Lemma 3.1.
Proof of Theorem 3.1. We take the scalar product in of (1.3.8) with q" (we use

(1.1.5))

1 d 2 2

2 dt ]b] +[1+[1 ----(}’1/2)--(((+’2)’ 1/2)

by (1.1.7) and (1.3.2)

We obtain

d 2 2 2

d-Sl+[ /(A-o )l+l =<0,

and thanks to (1.3.7) ( is fixed)

d 2
=<0odt

Iql /(A() exp(-C3"ra-4)-o2)]]2

By integration from 0 to we get

(3.16) 1/, (’r)
2 2 fo=<1(0) exp(-rA()exp(-C3,1-4))+ o2(s)ds).

First case: IQm/()l<=lPm@(w)l, then (i) is satisfied.
Second case: IOm/(w)l>lPmq(w)l, then

P()II
2

km+llOm(’g)
A(’) >= >

IQm(,) 12 2 2

)Xm+l

and from (1.3.15) and (1.3.16) we deduce (ii) with instead of t.
Remark 3.1. From (1.3.15), (1.3.16), and A()>=X we deduce the following prop-

erty of continuous dependence w.r. to the initial value 0 for the flow
There exists a constant C7 depending only on 91, 3, , R, T and I1 such that

(3.17) ]a(t)-dp2(t)[<_Cvldpa(O)-d?2(O)[ Vt [0, T].
Functional invariant sets, attractors. Let be given g). For every o, as

recalled in 1.1.1., the problem
Find q ([0, T1(114,11)]; D)OL2(0, rl(llq,ll), D(?I)) such that

(3.18) --d7 +
,+ (,/,,,/,) + tq, ,

(3.19) ,(0) =0,

possess a unique solution which will be denoted by S(t)--rk(t). This defines a
nonlinear semi-group on , continuous w.r. to the g) norm (see (1.3.17)).
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DEFINITION 3.1. A functional invariant set X is a subset of 9 such that
i) for every q,X, (1.3.18)-(1.3.19) possess a solution for all time (i.e. q

([0, + [; ));
ii) S(t)X=X, Vt>=O.
Remark 3.2. As mentioned previously, the problem (1.3.18)-(1.3.19) is in general

ill-posed for < 0. Nevertheless for qP X, where X is a functional invariant set, this
problem is well-posed for R. Indeed from (ii) of Definition 1.3.1 we deduce that for
every nN, there exist q,X such that S(n)=@. Now for t<0 and n=[-t], we
set S(-t)q=S(n+l-t)rk,/l. Note that this definition is not ambiguous thanks to
the backward uniqueness property pointed out at the beginning of the proof of Lemma
1.3.1. rn

Examples.
(i) Let (ql,’",q,) be a set of steady-state solutions of (1.3.18); then X=

{ ql,"" ", q, } is functional invariant.
(ii) If T>0 is such that q(T)=q then the orbit X={q(t), O<t<T) is a

functional invariant set.
(iii) Proposition 3.1 will exhibit a functional invariant set which is attracting in a

certain sense. We do not know if this set is trivial (i.e. of the form (i)). rn
An attractor is an invariant set attracting the trajectories which fall in its basin of

attraction:
DEFINITION 3.2. An attractor is a functional invariant set X which possesses a

neighbourhood in t, (C), such that for every q0 (C), the distance from S(t) to X in
tends to zero.

Remark 3.3. A. V. Babin and M. I. Vishik [4], [5] have proved the existence of an
attractor in the case of two-dimensional Navier-Stokes equations in a rectangle with
periodic boundary conditions (these equations can be written under the form (1.3.18)).
In [4] it is showed that the dimension of that attractor grows at least like the inverse of
the aspect ratio--the ratio of the length and the width of the strip.

Remark 3.4. The previous definitions were given in case of a constant excitation. We can also consider the case of forced oscillation: L(0, + ; g)) and is
T-periodic (T>0). In this case we must substitute to the continuous semi-group
( S(t)}t>__othe distance one ( S(nT))n N (see also Remark 3.7).

PROPOSITION 3.1. Suppose that fulfills (1.1.13) and that 91 + R is t-coercive (see
Remark 1.1.1). For every bt and q, there exists a functional invariant set
X( rk, ), bounded in D( ), such that

(3.20) lim d,(S(t),X)=O.

Proof. As mentioned in Remark 1.1.1, under the above hypotheses, the
problem (1.3.18)-(1.3.19) possesses a solution ([0, + c[; 19) and moreover q
L(0, +; t). We set X(q,)=f’l>__0{q(s), s>r}, and remark that q,X is
equivalent to the existence of a sequence of real numbers (sj.)j _>_ such that

(3.21) lim s.=+oo, lim [S(s.)q-bl=O.
j +oe j--,

Since qL(0, + oe; 19), we deduce from Theorem 1.2.1 with m=2 that q
L(1, + oe, @ 2) and by (1.2.2) it results that X is bounded in D(I) (see also Remark
1.3.5).
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We prove now (ii) of Definition 1.3.1. Let be >0 and q S(t)X. There exist
q S and (sj)j >= satisfying q S(t) + and q,(s) q in g). By continuity of S(t) we
have q,(s+ t)q in and thus qX" S(t)Xc X. Conversely, let q X. There exists

(s) >__ such that q(sj.) ---, q in g). We set oj. sj.- where > 0 is fixed; the sequence
(q(%.)) is bounded in D(), by compactness we can extract from (q(oj.)) a subse-
quence ((oj,)) which converges to some limit q in g). We have q,(s,)= S(t)q(o,)
S(t)k in s and since the sequence (q(sj.,)) is extracted from (q(sj.)) we have q(sj.,) q
in g). Thus S(t)q=q and then qS(t)X’XcS(t)X.

It remains to show that the distance in 19 from X to S(t) tends to zero. If it
were not the case, there would exist some e0 > 0 and a sequence (t), tj. + c, such
that d(q(tj), X)>=eo. But the sequence (q(tj)) is bounded in D() and thus rela-
tively compact in 19. We can extract a subsequence (q,(t,)) which converges to some
limit q w.r. to the 19-norm and since (1.3.21) is satisfied, q X. The function do (., X) is
continuous on 19; thus d(q,X)>= eo which contradicts q X.

Remark 3.5. Assume that @ mo for some m0>= 0, and then according to Theo-
rem 1.2.1 with m= m0, X(q,) is bounded in @ mo/ 2 and

lim de (S(t),,X)=O.
q- O0

+1

Regularity. In all the applications that we have in view, the operator is in a
certain sense an elliptic differential operator of even order. Thus the spaces 19, (and
@ m) are spaces of functions more regular as m increases (think that m is approxi-
mately a space of functions whose mth distributional derivative is still a function). The
next result shows that functional invariant sets (and thus attractors) are as regular as

THEOREM 3.2. Let m >__ 0 m, and then every functional invariant set, X, is

included in >_ 0 m" Moreooer if X is bounded in 19, then X is bounded in for every
m>Oo

Proof. Let k X, and then there exists T> 0 and qo 19 such that q, the solution
of (1.3.18)-(1.3.19), satisfies q(T)=q and qC([0, T]; 19). Then according to R.
Temam [30], we have q(T) @,,, for every m N.

If X is bounded in 19, then for every qoX the flow q(t) satisfies (1.2.8) with

to=0. Thus Theorem 1.2.1 applies for every mN and is bounded in m by a
constant which does not depend on q0. This proves the last part of Theorem 3.2.

Remark 3.6. Assuming only that @mo’ for some m0l, we obtain that
Xc @ mo / -" And when X is bounded in 19, X is bounded in

m0 / 2"

Finite dimension. We show that functional invariant sets, bounded in 19, have finite
dimension. We first introduce the definition of fractal dimension (see B. Mandelbrot
[25]):

DEFINITION 3.3. Let Y be a subset of a metric space X. For every 8>0, the
minimal number of open balls of radius equals to 8 which is necessary to cover Y is
denoted by Nr(8 ) (this number can be infinite). We set (7 R-):

b F ( Y, Y ) lim supNv (e) e.
e--0

If there exists >= 0 such that F(Y’)< + OQ, Y has finite fractal dimension and its
dimension is the number

inf(,>__O, /ZF(Y,y) < +c}.
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THEOREM 3.3. Every functional invariant set, bounded in , has finite fractal dimen-
sion.

Proof. Let be R such that 11(/,11 =< R for every q, in X, the functional invariant set
considered here. We also fix T> 0.

According to Theorem 1.3.1, for every q) and q in t) we have

(3.22) [S(T)-S(T)/I<=Cexp(-Cg_Xm+IT)I-

VO, II0]i__<R, I[ II=<R.

And thanks to (1.3.17)

(3.23) IS(T)O-S(T) I<=CvlO-+I II II=<R,
Let / ]0,1[, and from (1.3.1) and (1.3.22) we deduce that there exist a constant C8

(= v/-) and a continuous projector on 0 of finite dimension I-[ (= Pm, with m such
that __< C exp(- Cz,,+ tt)) such that

(3.24) IS(T)q,-S(T)ql<__nlrl,-q[+C8[II(S(T)q,-S(T)+)l.
We shall prove that Theorem 1.3.3 is a consequence of (1.3.23) and (1.3.24).

Let there be given 3 > 0 and e > 0. Since X is relatively compact in g), it can be
covered by a finite number of open balls { ni}l<_i<N of radius e. The ball B is
supposed centered at q)i X. From S(T)X X we deduce that XcUN=IS(T)(BiX).

Let there be given q, in S(T)(BinX), and thanks to (1.3.23) and (1.3.24) we have
(/,= S(T)O,)

(3.25) I=< / C8[ II
(3..26) q-q I__< Cve.
We construct a new covering of X. For fixed, according to (1.3.26), II(S(T)(B X))
is included in a ball of II() of radius 2C7e. Let be/3/, /e a minimal covering of
II(S(t)(BinX)) by balls of radius r=(1-l)/4C8e. We have p<_lm(rl/2CTe)=
/,,,((1-/)/2C7C8), where l,,(0) is the minimal number of balls of radius p which is
necessary to cover the unit ball of NI’. We set Gf=S(T)(BCX)c3II-(ik). Accord-
ing to (1.3.25), Gf is included in a closed ball, centered at qi, of radius =< le + C8rl
(1 + 3/)/4e. Thus we can include G in an open ball Bf of radius (1 +r/)e/2. Let us
now summarize what we have done. Starting from a generic covering of X by balls of
radius e, ( B } <; < N, we have constructed a new covering ( Bf } <i N,1 k < p’ by balls
of radius (1 +)e/2 (<e). Thus we have: Nx((l+l)e/2)<=p.Nx(e). Denoting by
q)(e)=Nx(e)ev, we get from this last inequality that O((l+l)/2e)<_lm(l/8C7C8)
((1 + l)/2)vg)(e). We claim that if lm((1--)/8CvC8)((1 + /)/2)v < 1 i.e. if

log/,,, ((1 )/8C4C5)(3.27) 7>’/= log2/(1 +/)

we have lim sups_. 0q’(e)= 0 and thus the fractal dimension of X is not greater than 0-
It remains to prove our claim. We set i=(1 +rt)/2 and X=Im((1--I)/8CnC5)

((1 + rl)/2). We have q,(ie)__< Xq,(e) thus by iteration q,(e)<XJq,(6-e),
Taking j=l+[loge/log8], dp(-Je)<_suPl<o<=,--l(O)<=-Nx(1)< +oo and

,l,( e) <_ X./8-’Nx(1) tends to 0 with e.
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Remark 3.7. (Continuation of Remark 1.3.4): Theorems 1.3.1, 1.3.2 and 1.3.3 are
also valid in case of forced oscillations.

2. Applications. In this part we illustrate the abstract results of the first part by
four applications in fluid mechanics. The four following sections are set in the same
way: after writing the set of equations coming from physics, we give the functional
setting that allows us to use the results of the first part. Then we state in each particular
situation the results obtained in 1.3.

2.1. Nonhomogeneous Navier-Stokes equations. Many of the results obtained here
were proved by C. Foias and R. Temam [14]. Nevertheless we need to present them in
order to introduce some notations and to check the hypotheses of the abstract frame-
work, which will be subsequently useful.

We consider the motion of a viscous incompressible fluid which fills some bounded
region f. The velocity u(x,t) and pressure p(x,t), are determined by the set of
equations

where u is the viscosity of the fluid, h is an external force acting on the fluid and q (x)
is the velocity of the boundary F of f (we have taken the density equal to 1).

2.1.1. Functional setting. We assume that 2 is an open connected bounded set in
d= 2 or 3) and that

(1.2)

(1.3)

F is a C-manifold of dimensional d-1 and 2
is locally located on one side of F,

F has a finite number of connected components denoted
F1,..., Fk

Let H and V be the closures in L2()d and H(2)d respectively of

,A/’= (v (2) a, divv=O}
where H"(f) denotes the closure of () (the space of C functions with compact
support in f) in the Sobolev L2-space H"() of order m.

The spaces H and V are endowed with the scalar products

(u,v)= ffuividx and (( u, o )) fOjuiOjoidx
respectively. We set also lul=(u,u)1/2 and Ilull=((u,u))1/9-. The injection from V into
H is dense, continuous and compact (thanks to Rellich’s lemma). Let A be the operator
from V into V’ defined by
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We set

(1.4) Eo=H and Em=Hm(a)dH, m>=l
and according to the regularity properties of Stokes operator A (see R. Temam [32], J.
M. Ghidaglia [17])"

(1.5) A is a continuous operator from @ into m+ 2 V.

For u, v, w in HI()a we set

(1.6)

We have the following property for b (see R. Temam [31]):

is continuous on Hl(a)dHs+l(a) d

d
if one of the si=.,

otherwise.

X H’3 ( a ) a, where s >= 0 and

Let u,v, wG V, weset B(u,v)G V’" (B(u,v), w)=b(u,v,w), then

(1.8) B is continuous from E, + Em+ into E for m __> 1.

The following result (see R. Temam [32] for the proof) will be useful to find an
appropriate fig H1(2)a such that

LEMMA 1.1. Let +GH1/2(F)a be given such that (n is the unit outward normal
on F)

(1.9) f..q.ndr=O, i=1,...,k.

There exists fig Hl(f) such that
i) flit q (in the sense of traces on F),
ii) div fi 0,
iii) Ib(v,,v)l<=vllvll=/2, Vv V.

Moreover, for every m G IN, if q GH
Using now the classical projection on divergence free fields (see J. L. Lions [24], R.

Temam [32],... ) we deduce that (2.1.1) is equivalent to the initial value problem for
q) u- fi (fi is given by Lemma 2.1.1)"

(1 10) -- + vAq+ B(q,q)+R=f,

(1.11) 4)(0) =q0,

where R G (V, V’) is defined by

(1.12) (Rq,) b(q, fi,) +b(fi,q,)

2.1.2. Fractal dimension for attractors. We briefly show that the operators intro-
duced previously satisfy the assumptions of the first part.
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Suppose that q H3/2(I") satisfies (2.1.9); then according to Lemma 2.1.1, (2.1.7)
and (2.1.12), R satisfies (1.3.2) and B satisfies (1.1.6) with 03= 1/2. Note that (1.1.5) is
the well-known property of orthogonality of b. The estimate (1.1.7), with 04= 1/2, results
from (2.1.7) and from (of. S. Agmon [1]):

Remark 1.1. When f c R 2, according to (2.1.7), (1.1.13) is satisfied with 05 1/2. On
the other hand, thanks to the choice of fi (Lemma 2.1.1)"

p 2

 11 ,11
As mentioned in Remark 1.2.1, the problem (2.1.10)-(2.1.11) possesses a unique

strong solution for [0, + o[ which is bounded in Ht()2. Note also that, according
to Proposition 1.3.1, for every u V and hL2(2)d, there exists a functional in-
variant set X(u,h), bounded in H2(2)d, such that the distance from u(t) to X in
HI()d tends to zero when goes to +

THEOREM 1.1. Assume that h()d and q(F)d; then every functional
invariant set, X, lies in o()d. Moreover ifX is bounded in HI()d, then X is bounded
in H (- ) d for every m >= O.

Proof. From the hypotheses on h and
6 ()d. It follows then that R maps E / into Em; thus Theorem 1.3.2-applies.

From Theorem 1.3.3 we deduce"
THEOREM 1.2. Every functional invariant set, bounded in H(2)d, has finite fractal

(and Hausdorff ) dimension.

2.2. Navier-Stokes equations on a manifold. This application is motivated by the
modelisation of geophysical flows. Assuming that the velocities are horizontal and
proportional to the distance from the center of the Earth, this flow can be viewed as a
viscous incompressible flow on the 2D-sphere S (see for instance A. Avez and Y.
Bamberger [3]). In the following analysis this case corresponds to M= S2 and the
metric g is that induced by the 3-Euclidean space. Note that in this case the following
assumption (2.2.4) is a well-known property of sphere with even dimension.

It should be observed that Navier-Stokes equations with periodic boundary condi-
tions correspond to M= T (n-dimensional torus) endowed with the flat metric

;.).
2.2.1. Geometric preliminaries. Let M be an n-dimensional compact, connected

and oriented Riemannian manifold without boundary.
We denote by g the Riemannian metric on M: g is a C-field of symmetric and

bilinear forms on the tangent spaces:

g(x; u,v)=g(x; v,u) VxM, Vu, vTxM

where TM is the tangent space at M in x,

g(x; u,u)>O VxM, VuTxM, u4:0.

Recall that if a set has finite fractal dimension then it has finite Hausdorff dimension. The converse is
false.
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Letting (xl, x") be a coordinate system on M, we set

and denote by

gij=g x; G=det(gij )xi’ xj

(ulv)=ghuu

the scalar product on TxM induced by g and l" the corresponding norm.
The inverse of gij is denoted by gij.&gk= i. Thanks to go and giJ we can"

assign to u (vector), fi (eoveetor)by
assign to oa (covector), (vector) by
In the sequel we shall omit the and the /x and use subscripts for covariant

index and superscripts for contravariant index.

2.2.2. Differential operators, Sobolev spaces. We denote by C(M) (resp.
C(TM)) the space of C-functions (resp. C-vector field) on M.

Gradient of a function. We associate to p C(M), the element XTp C(TM):

p(vp) =g"
)xj

Total derivative of a vector field. Let u C(TM) and D the Levi-Civith connec-
tion (see (2.2.1) for the expression in a coordinate system),

Divergence of a ectorfield. The divergence is the contraction of the total derivative

divu=Diui.

Laplacian on (TM).

(hu)i=gktDDtu VuC(TM).
In order to give the expression of these differential operators in a coordinate

system, we introduce Christoffel’s symbols:

(i j k}=- Ox
k kl{i,}=g {ijl}.

The expression of the covariant derivation is then

(2.1) Diuj
Ouj

2.2.3. Navier-Stokes equations on M. With the previous notation, Navier-Stokes
equations on M read (see D. Ebin and J. Marsden [12]):

(2.2) Ou_ vAu + D.u + Vp f)t

(2.3) divu=O,
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where f is a tangent vector field, the unknowns u (the velocity) and p (the pressure)
being respectively a tangent vector field and a scalar field.

Let us introduce Stokes operator on M. We set

.W’= (u C(TM), divu=O},

and let H and V be the closures in 112 and .1 respectively of (for Sobolev spaces on
manifolds the reader is referred to T. Aubin [2]). These spaces are endowed with the
scalar products

and

(u,o)=f(uo)aM (dM= v/- dxl dx n)

((u,v))l=f(ul v)dM+f(XzulXzv)dM
respectively. We set also Ilullx ((u, u))l/2.

Let A be the operator from V into V’ defined by

(Au,v)=f(XTulXTv)dM Vu, o V.

The next proposition gives a condition which is sufficient to insure the coercivity of A"
PROPOSITION 2.1. The semi-norm

lull Ivul=dM
reduces to a norm equivalent to 11"[11 on .1 if the metric g does not locally split under the
form g’ + dyn2 where g’ depends only on n- 1 variables. [3

This proposition is a consequence of the de Rham decomposition theorem (see S.
Kobayashi and K. Nomizu [21]). For further details see [16]. It is also proved in this
last reference that under the topological condition:

(2.4)
Every continuous vector field on M, vanishes at
least at one point,

the semi-norm I’lx is equivalent to 11"111-
Let v be given in . The scalar product in 2 of (2.2.2) with v yields since div v 0:

o>+<S(u ),,u), v)=(flv

where we set

(B(u,v), w)=f(Duvlw)dM Vu, v, w@(TM).

With this notation, (2.2.2)-(2.2.3) turn out to be equivalent to the differential equation
for u:

(2.5) -+ ,Au + B( u,u) f
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2.2.4. Fractal dimension of attractors. The verification of the fact that the previous
functional setting is compatible with the hypotheses of the first part (when dimension
of M= 2 or 3) is similar to that of the case of Navier-Stokes equations (here 0).
The details are given in [16].

Remark 2.1. When dimM= 2, (1.1.13) is satisfied with 0= 1/2. According to Re-
mark 1.2.1, for every fL(0, + o; H) and u V the initial value Problem for
(2.2.5) with u(O)= u possesses a strong solution which is bounded in H t. Note also
that Proposition 1.3.1 applies in this case. rq

We deduce from the results of 1.3:
THeOReM 2.1. Assume that f C(TM); then every functional invariant set, X, lies

in C(TM). Moreover, ifX is bounded in 1, then X is bounded in for every m >= O.
THWOgWM 2.2. Every functional invariant set, bounded in , has finite fractal (and

Hausdorff ) dimension.

2.3. Thermo-hydraulie equations. We consider the motion of a viscous incompressi-
ble fluid, subjected to thermal effects, which fills some bounded region . In the
Boussinesq approximation the velocity u(x,t), pressure p(x,t) and temperature O(x,t)
are determined, in case of homogeneous boundary conditions, by the equations (see
Chandrasekhar [7]):

u + ( v ) u- + + vp =f,

0 ( u. v )0-  AO=s,
(3.1)

div u 0
u(x,t)=O onOf]XR+,
O(x,t)=O on3fXR+;

where denotes the Fourier coefficient of the fluid and o is a fixed vector in R d

pointing vertically downwards.

2.3.1. Functional setting. We supplement some notations to that of the {}2.1.1. The
orthogonal projector in L2(f)d onto H is denoted by P. The operator -A on H01(f) is
denoted by A and we define B (V H0X(f), H-1()) by

O0(BI(U,O), )-- Uixi$ldx.
We set

=HXL2(), 19 VH();
these spaces are endowed with the scalar products

and

(1, (])2)"" f( Ul*/’/2 if-

(( 1’ (])2))= Pf’7 t/1 7 u2dx .-I- if’701 ’702dx

respectively, where q, denotes the pair ( u;, O }.
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We introduce the operators 9 ( 19,19’), B ( 19 19,19’) and t ( 19,19’)"

( [1, 2>-- (()1, 2)),

( 1,)=f.0xO" uadx.
With these notations and =,s) equations (2.3.1) read

d

2.3.2. Fractal dimension of attractors. The verification of the fact that the previous
functional setting is compatible with the hypotheses of the first part is similar to that of
the case of Navier-Stokes equation. The details are given in [16].

Remark 3.1. When fl c 2, (1.1.3) is satisfied with 05 1/2. In general [ + R is not
19-coercive, but studying the system equivalent to (2.3.1), obtained by multiplying the
evolution equation of O by a large constant, we change to make 9A + R 19-coercive.
Thus Proposition 1.3.1 applies also in this case. Note that in case of nonhomogeneous
boundary condition on the temperature, the trick mentioned previously does not apply
but, as proved in [16], the conclusions of Remark 1.2.1 and Proposition 1.3.1 still
hold.

We deduce from the results of 1.3"
THEOREM 3.1. Assume that foo()d and s(); then every functional in-

variant set, X, lies in o()d+l. Moreover if X is bounded in HI()d+l, then X is
bounded in Hm([2) d+ for every m >= O.

THEOREM 3.2. Every functional invariant set, bounded in Hl(fl)d, has finite fractal
(and Hausdorff ) dimension.

2.4. Magnetohydrodynamic equations. In this section we briefly give the functional
setting that allows us to apply the results of the first part to M. H. D. equations. Most
of the results which issue from this application are contained in M. Sermange and R.
Temam [29]. Nevertheless we have presented them in order to emphasize the generality
of the abstract framework.

We consider the motion of a viscous incompressible and resistive fluid. The
velocity u(x,t), pressure p(u,t) and the magnetic field B(x,t) are determined by the
equations (see L. Landau and E. Lifchitz [22]):

(4.1)

Ou 1 ( 1B2 ))--+(u’V)u--eAU-(B’v)B+V p+- =f,

0Bo___ + (u. Xz )B +--mlcurl(curlB)- (B- 7 )u=0,
div u 0, div B 0,
u=0, B.n=O and(curlB)n=0 on F,

where n is the unit normal on F. The two positive numbers Re and Rm appearing in
(2.4.1) are respectively the Reynolds number and the magnetic Reynolds number.

We assume, in addition to the hypothesis of {}2.1.1 that 2 is simply connected (this
assumption is not essential) and introduce the space

’-" ( O ol(]) d divB=0 B. n=0}
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We set =HH and t= V 1?. If we denote by q the pair {u,B} and introduce the
operators 9 ( u, u’), 3 ( , u ’)"

( qx, q2) -e VuxVu2dx+-ff-m urlB.curlB2dx,

< (1,2), dP3>=f[(uI’V)u2u3-(BI’V)B2u3+(Ul’V)B2B3-(BI’V)u2B3]dx;
Equations (2.4.1) can be written under the form

dA+
dt

Therefore we can, in the same way as in the previous applications, derive the following
regularity and finite dimension results for attractors for M.H.D. equations:

THEOREM 4.1. Assume thatfoo()d and then every functional invariant set, X,
lies in oo()2d. Moreover if X is bounded in H(f)d, then X is bounded in H’()2d

for every m >_ O.
TnwOWM 4.2. Every functional invariant set, bounded in H(f)2d, has finite fractal

(and Hausdorff ) dimension.
Remark 4.1. We have considered for the sake of simplicity the homogeneous case

(i.e. 9 0). The nonhomogeneous case that could be treated like it has been done for
Navier-Stokes equations.
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EXISTENCE AND CONTROL OF PLASMA EQUILIBRIUM IN A
TOKAMAK*

J. BLUM, T. GALLOUET" AND J. SIMON"
Abstract. The "Tokamak" is a machine where the plasma is confined inside a toroidal vessel by the

magnetic field due to currents in external coils. In the present Tokamaks the free plasma boundary is a flux
line which is in contact with a given limiter. We first give a simplified model for the plasma axisymmetric
equilibrium. We prove, under suitable assumptions on the limiter, the existence of such an equilibrium for
given external currents. We then establish the existence of external currents for which the domain aoccupied
by the plasma is as close as possible to a given domain. For this problem, which is formulated as an optimal
control problem, the first order necessary optimality conditions are obtained by introducing a suitable adjoint
state.

Introduction. A model which describes the equilibrium of a plasma in a toroidal
machine (a Tokamak) is studied here. The plasma current is obtained by magnetic
induction from a primary circuit made of poloidal field coils. In the present Tokamaks
the volume occupied by the plasma inside the vacuum vessel is limited by the presence
of a "limiter". The configuration is supposed to be axisymmetric, so that the problem
can be reduced to a two-dimensional one in the meridian section of the torus.

Section 1 is devoted to the establishment of the model for the plasma axisymmetric
equilibrium. Section 2 deals with an annex mathematical problem. In 3 the existence
of a solution for the equilibrium problem formulated in 1 is studied. The control of
the plasma shape by the external currents is treated in 4.

1. The plasma equilibrium model.
1.1. The Maxwell equations in an axisymmetric configuration. The magnetic induc-

tion B and the current density j verify the following Maxwell equations"

(1) divB=0,

B

where/ is the magnetic permeability.
We restrict the problem to the study of axisymmetric configurations, so that in

cylindrical coordinates (r, z, p) the vectors B and j are independent of the angle
Equation (1) can then be written

(3)
1 0 OB
r Or (rBr)+--z=O"

From (3) one deduces the existence of a scalar function b(r,z) called the poloidal flux,
such that

(4) Br
10q 10b
r Oz’ Bz-r Or"
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From (2) and (4), one can deduce the following partial differential equation for q (r,z)

with

and where Jr is the toroidal component of the current density (i.e. the q0-component of
j).

Let us restrict ourselves to air-transformer Tokamaks, so that is constant and
equal to the magnetic permeability /0 of the vacuum (/0 1 in Gaussian units).
Therefore the operator 0 is a linear elliptic operator.

The current density Jr in the right-hand side of (5) is equal to 0 everywhere except
in the coils C,. and in the plasma P.

1.2. Equilibrium conditions for the plasma. In the first Tokamaks (T3, TFR,-.-)
the plasma was inside a perfect superconducting shell, on which k was constant. The
eddy currents on this shell generated the magnetic field necessary to ensure plasma
equilibrium (cf. [10], [14]). Simplified models of plasma equilibrium inside a perfect
superconducting shell have been studied in [17], [18], [1]. In the present Tokamaks
(JET, TFTR,... ) there is no more superconducting shell and the plasma shape is
determined by the currents in the external coils. The plasma is inside a vacuum region
V, whose boundary OV is the vacuum vessel (see Fig. 1). The plasma boundary is a flux
line (q=constant). Since an arbitrary constant can be added to q according to its
definition (4), we can assume that q 0 on the plasma boundary. Therefore the plasma
domain is defined in the following way

(6) P= (x V such that q(x) >0}.
The plasma particles (electrons and ions) follow the flux lines; they are stopped

when they touch the limiter D, which is a piece of metal inside V. This contact
condition between the plasma and the limiter can be written

(7) PND=, OPND,O.

In fact the aim of the limiter is to prevent the plasma from touching the vacuum vessel
(that is to ensure 0P (q 0V= ).

The plasma is in equilibrium when the kinetic pressure force gradp (p is the
plasma kinetic pressure) is equal to the magnetic pressure force (j A B)

(8) gradp =j/ B.

The toroidal plasma current density Jr can then be deduced from (2), (4) and (8),
and it is given by the Grad-Shafranov relation (cf. [7], [13])

Op 1 )f2(9)

with f= rBr, where Br is the toroidal component of B. The functions p and f are the
solutions of parabolic diffusion equations, which depend on the shape of the flux lines.
These "queer" differential equations (cf. [8]) will not be considered here and, as in [18],
we assume, for the sake of simplicity, that Jr is proportional to q in the plasma P. The
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proportionality constant is unknown here and is determined by the fact that the total
plasma current Ip is given (Ip is assumed to be positive). The plasma current density
can then be written, with (6),

(10) =hP+lv,

with k+ sup(, 0) and lv is the characteristic function of the vacuum region V.

1.3. The equations |or the poloidal flux {. Physically the problem is set in R + R.
But we can restrict it to an open bounded subset f of R+ R, with a regular boundary
F f, and such that

c {x=(r,z),r>=r_ } with_r>0.

r

FIG. 1. The cross section f of the torus.

If F is taken sufficiently far from the vacuum vessel and from the coils, then
can be assumed to be constant on F. Therefore the equations for k will be set in such a
bounded domain

The vacuum region V is an open subset of and its boundary OV is the vacuum
vessel. The sections of the coils C1,. ., Ck are closed subsets of f, pairwise disjoint and
which do not intersect V. The section D of the limiter is a closed subset of V.

From (5), (7) and (10), one can deduce the equations for the pair (k,,)

L,qp=)k+lv+j in f,

(11)

p is a constant on F
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and

(12) sup g,(x) =0,
xD

where j is the external current density, whose support is UC. For a continuous
function k satisfying (11), equation (12) is clearly equivalent to the contact conditions
(7), since, by the maximum principle, has no local maximum on D.

Remark 1. From (11) it is clear that, if there exists a zone of positivity of + outside
V, there is no plasma in this zone.

Remark 2. For a pair (p,X) satisfying (11) and (12), the plasma boundary 0P may
intersect 3V (see Fig. 2). In this case aP is no longer the flux line { +=0} and this
solution is not interesting from a physical point of view. It shows that the limiter D is
not correctly located, because in this case it does not prevent the plasma from touching
the vacuum vessel aV.

FIG. 2. A nonphysical solution of equations (11)-(12).

In {}3, we are going to establish under suitable assumptions on D, the existence of
(at least) one pair (+,X) C()R solution of (11) and (12). In order to prove this,
an annex problem will first be studied in {}2, namely the existence of a solution of (11),
for X given.

2. An annex problem.
2.1. An existence result. One defines

Hc2() ( v H:(f) such that v is constant on F ).

Let us recall that, according to Sobolev’s theorem, H2(f)c C(0).
If v > 0, I > 0 and f L2(fa) are given, we are going to study the solutions u of

(3) u=vu+lz+f
I=vfvU+ dX.
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Many papers have been devoted to the case f= 0, V= f which corresponds to the
plasma equilibrium in a perfect superconducting shell. Particularly existence results
have been established by R. Temam [18] and by H. Berestycki-H. Brezis [1] using
methods of minimization of suitable functionals and also in [1] using the topological
degree of J. Leray-J. Schauder [9].

Following [1] the topological degree method will be used here, because it enables
one to prove, in addition to the existence of a solution for each value of the parameters
u, I and f, that there exists a connected set of solutions, when , is varying. More
precisely the following theorem will be proved in 2.6:

THEOREM 1. For every I>0 and fL2(), there exists a set rg of pairs (u,,)
satisfying (13) such that cd is connected in Hz(f)R+, and such that , spans R+- (0)
when ( u, u) spans c.

To prove this result, the existence and uniqueness of a solution u of (13) will first
be established when v is sufficiently small, and a priori estimates on the solutions of
(13) will be given.

2.2. Uniqueness for v small. Let/, /2"’" be the sequence of the eigenvalues of
the problem

.LZv Il vv, v

where = ( v H.2(f) such that f.ev dx 0}.
LEMMA 1. If 0 < , < 12, equation (13) has at most one solution.
Remark 3. Let 1, k2"" be the sequence of the eigenvalues of the problem

.qO MvV v H(12 ).

We have:/1=0 and 0<h <2_<h2 (cf. for example [6]).
Let us recall that in the case f= O, V= t, Lemma 1 is still true with h 2 instead of

: (cf. [11] and [18]).
Proof of Lemma 1. This result is essentially in H. Berestycki-H. Brezis [1, Thin. 4].

Let us prove it in the following way: let u and u: be two distinct solutions of (13).
Their difference w= u2 u satisfies

(14) .’w ,Ol vw
where

0

if u2(x)-ul(x)=/=O

if u2(x)-ul(x)=O.

Let ,f, ,’, be the nondecreasing sequence of the eigenvalues of (14). These eigen-
values are nonincreasing as p increases. Since 0 =< p =< 1 one has ,’ >= 2. Since , </ 2

one has necessarily ,= ,{’ 0, which is impossible. []

2.3. A priori estimates.
LEMMA 2. Every solution u of (13) satisfies

)(1 + /

where C only depends on 2 and V.
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Since the operator 5e is uniformly elliptic with regular coefficients in f, a is an
isomorphism from H0X(fl)H2(fl) onto L2(Fa). Its inverse operator is denoted K.

For every s =< 0, there exists 0 R (depending only on 2) such that

Proof of Lemma 2. Let u be a solution of (13). Its (constant) value on F is denoted
ur and we set P(u)= {x V such that u(x)> 0}. Then we have

(16) U=Ur+ vK(u+lz)+K( f ).

i) Upper bound on (U-Ur) in L2(). One has" lu+lvlLl(a)=l/v; therefore it
follows from Sobolev’s theorem that

Ilu+llw=<.)<C -.
1’

Using (15) we deduce

(17) u Ur L<a =< C(I+ If
ii) Upper bound on lurl. If ur<=O, we have in P(u)

21 ur In + -< (u+/ ur [)’----lu- ur 12,
and, integrating on P(u), we deduce

21UrlI 2

If Ur> 0 one has

Ur<_}U-Url+U+ in

and, integrating on V, one deduces

url v l< I 1/21 u- ur I,.<.)+L
In both cases, using the upper bound on (u- Ur), one obtains-iii) Upper bound on u in Ha(f). From (15) and (16), one has

u I,,<, z u II 11/z + v00l u l2(a) + 00l f L2<).

The lemma follows from the estimates on lu- url L(m and lurl.
2.4. Trans[ormation o[ (13). According to the Lax-Milgram theorem, for every

w L2(fa) there exists a unique q H(f) such that

ffa(1--V’q’Vv+q)dx=fa
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where H,.(2)={vH(ft)such that v s constant on I’}. One easily verifies that q is
the unique solution in H.2(2) of

L’q + q w f L’qdx O

A linear continuous operator from L2(f) into H,.2(2) is then defined by Lw= q.
The Lax-Milgram theorem gives also the existence (and the uniqueness) of a

solution q H,.(f) of

fa (-xTq"XTv+q’v)dx=-(I+ fafdx) vrr
Vv HJ(f]).

In fact q is the solution in H.z(f) of

Z,aq, + q 0, fz’qdx=I+ffdx.
One defines an operator H from H,.2(f) into itself by (, is fixed)

H(u) q, + L(,u+lv+f+ u).
From this definition it is easy to prove the following lemma.

LEMMA 3. The problem (13) is equioalent to

u-n(u)=0.

The operator H is compact from H,.(2) into itself. Therefore one can define,
according to J. Leray-J. Schauder [9, [}13, p. 60] the index of the solutions of (18).

Using results of [9], we will prove in [}2.5 that, if , is sufficiently small, there exists
a unique solution of (18), with a nonzero index, and we will deduce from this in 2.6
the existence of a connected set c of solutions (u,,) of (13) with the properties that ,
spans R + (0) when (u, ,) spans .

2.5. Existence o| a solution Ior small v and computation oI its index.
LV.MMA 4. There exists a > O, which depends only on , V and f, such that when

0 < , <= , the problem (18) has a unique solution up, and the index ofu, is equal to -1.
This lemma will be proved by transforming continuously, with the help of a

parameter t, equation (18) so as to obtain an equation having a unique solution k,
whose index is easily computable.

Proof. Let a and , be two constants such that: 0 < , =< a < t-
i) Transformation of (18). There exists a unique real number b such that k=+ b

satisfies

(19) ’fvk+ dx=I.

One defines a function G from H,.(f)[0,1] into H,.(f) by

G(o,t)= tq,+ (1 -t)k + L(,v+lv+ v+ tf-(1 -t)(uk+lv+ k)).
Then the equation

(20) wH,2. (f), w-G(w,t)=O
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is equivalent to

(2) tf+

vf,+ dx=I.

For t= 1, (21) is equivalent to (13) and therefore to (18).
For every t, Lemma 1 shows that there exists at most one solution w. Moreover the

operator vG(v,t) is compact from H2(fl) into itself; therefore one can define the
index of the solution w, when this solution exists.

ii) The case =0. Existence of a solution and computation of its index. As k is a
solution of (21), it satisfies (20). We are going to compute its index relatively to this
equation.

The condition (19) shows that a can be chosen small enough so that, when v =< a,
one has k > 0 in f.

Then, in a neighbourhood of k (note that H2(fl)C(O)), w is positive and
G(w, 0)= k + vL[(w- k)ll+L(w- k).

It follows that G(., 0) is Frechet differentiable at the point k, and its derivative is
the operator v L(vl v + v).

According to [9, Conclusion, p. 56], the index of k for equation (20) is equal to the
index of 0 for the equation z-L(vlvz + z)=0 in H,.2(f), when this latter index exists.
This equation is equivalent to

X"z vl vz, ’z dx O

Its eigenvalues are the i defined in 2.2. Since 0--t </<2 and /.t is a simple
eigenvalue, this index exists and is equal to (- 1).

This proves that the index of k for equation (20) is equal to 1.
iii) Existence of a solution for t=l. The function G: H,.2(f)x[0,1]H,.2(f) is

continuous, the functions G(o, t) are equicontinuous and, for every t, v G(o, t) is
compact.

Lemma 2 shows that the possible solutions w of (21), and consequently of (20), are
bounded (in H,.(f)) independently of t.

Then, according to [9], there exist a solution of (20) for 1 and its index is equal
to the index of k relatively to (20) for t= 0.

As G(., 1) H this proves Lemma 4. []

2.6. Proof of Theorem 1. Let e and be two real numbers such that 0 <
_

__< a <
where a is given by Lemma 4. The operator H defined in {}2.4 depending on v, one
defines a function F from H,.(f)x[e, ] into H(f) by F( v, v)= H( v).

Lemma 3 shows that (13) is equivalent to

(22) uH,Z. (a), u-F(u,v)=O.

Lemma 2 shows that the solutions of (22) are bounded (in H,.2(f)) independently
of v.

Moreover F is continuous, the functions v F(v,v) equicontinuous when v re-
mains in a bounded set, and for every v the function v F(v, v) is compact.
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Finally for v a the total index of the solutions of (22) is equal to 1 according to
Lemma 4.

Theorem 1 of J. Leray-J. Schauder [9] proves then that there exists a set ff of
pairs (u,v) satisfying (22) such that , is connected in H2(2)R / and such ilat v
spans [e, ] when (u, v) spans ,.

For every positive integer n, setting e a/n and = na, one obtains a connected
set cn. Since each fin contains the point (us, a), the reunion ff of all the (n is
connected, and v attains in c all positive values.

This proves Theorem 1. t3

2.7. Lower bound of the solutions for small v.
LEMMA 5. If v <= 1/d(I+ IflLU)), then every solution u of (13) satisfies

Iu>_-l--d’(I+lflL2(n)) in ,
where d and d’ only depend on .

Proof. One has (recall that P(u)= (x V,u(x)>O))

(u-ur)dxzf lu-ur[dxzlll/9-1u-urlzu,

and from (17) it follows that

--urlP(u) I_-< a(s+ /

If l/v>= d(I+lflL2(n)) one has Ur>=0 and, since IP(u)l=<lfll, it comes

I d
ur> (1+ f I,)11 I1

The maximum principle shows that K(u+lv)>O where the operator K has been
defined in 2.3. It follows from (15) that IK(f)lLu)<=dllfl2u) and, with (16) one
has

2.8. An estimate on P(u) for large v.
LEMMA 6. Assume that Supp(f) V= ;. Then there exists C depending only on f

such that for every v>0 and u solution of (13) one has B(xo, C/v/-)cZP(u), for every
xo ( where B(xo, R) designates the ball centered on xo and of radius R).

Proof. Let us suppose that there exists a ball B, of radius R, included in P(u).
Then

<,’u=vu in B,
u>0 on B.

Let XI(B) be the first eigenvalue of
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and let (Pl be a related positive eigenfunction. Then,

vfB U dX fBPU) dX fB U,,flq) dX +f Ur O(plOn do
__kl(B) fBUePldX+f u

sr On

whence

(v_Al(B)) fB UqldX=f
u 021
r On do<__O.

This implies v _< I(B).
Since I(B)< C-/R2 (where C is a constant depending only on 2), Lemma 6 is

proved. [3

3. Existence of solutions for (11)-(12).
3.1. An existence result. The aim of this section is to find a solution (+,X) of

equations (11)-(12). The total plasma current Ip and the external current density j are
given such that

/p>0,
(23)

jLZ(f), suppjV= .
Let us set, in (13), f=j and 1= Ip. According to Theorem 1, one can define a unique
set C* by

* is the greatest set of pairs (u,v) H(2) R + satisfying
13), such that C * is connected in H,.2 (2) n +, and such that
spans n + { 0 } when (u,v) spans C *.

Let us recall from Lemma 1 that if 0 < u <2 there is a unique solution u=u, of
(13). Then (u, v) C*.

TrIEOREM 2. Assume (23) and

(24) there exists ( v, 3, ) C * such that v <= 0 in D.

Then there exists a pair (,)H(f) +, solution of (11)-(12).
Proof of Theorem 2. Since u SUpx nu(x) is continuous from C() (and there-

fore from H,.Z(f)) into , the set

( sup u(x), (u,p)
xD

Lemma 5 shows that there exists fl, 0 < fl < #2, such that supx ou(x)>__ 0. By hypothe-
sis (24) one has SUPxnV(X)<=O. Then there exists (q,X) C* with SUpxoq(x)=0.
The pair ( q, X ) satisfies (11)-(12).

Remark 4. Condition (24) is hard to verify in practice. Letting (v, 3,) be a solution
of (13), it is an open problem to know if (v,3,) C*, except if 3, </-2. Indeed in this
latter case, from the uniqueness of Lemma 1, one has (v, 3’) C*.

Remark 5. Every pair (u,p) C* defines an admissible zone for the limiter D.
Indeed if Dc VP(u), there exists a solution of (11)-(12). This zone is not empty as
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soon as u > ’1 where ’x is the first eigenvalue of the Dirichlet problem for the operator
inV. (Note that k’l </2).
Another possibility to verify (24) is to study the behaviour of P(u), for (u,u)

solution of (13), as v + oo. This is done in the next sections 3.2 and 3.3.

3.2. Existence by infinitesimal change of the limiter. For two closed subsets E, F
of R 2 we recall the definition of the Hausdorff distance from E to F

du( E,F)= Sup{ sup d(x,F); sup d(x,E)}.
xE xF

THOgM 3. Let 9 be a closed subset of V, and > O. Then there exists a closed
subset D of V such that

i) d(b,D)<=.
ii) There exists (q,) H,. (f)R /, solution of (11)-(12).
Proof of Theorem 3. We can assume that e <d(b,\V). From Theorem 1, there

exists (u, v) C * such that v C2/e, .where C is defined by Lemma 6. From Lemma 6
one has B(x,e)C_P(u) for every xD. Set D=UxbB(x,e)\P(u). One has Dc V,
d,t(D,b) =< e, D closed. Moreover, u =< 0 on D; then from Theorem 2 we deduce ii).

Remark 6. The case of punctual limiters.
Let w={dV such that there exists (/,h)H,2.(f)R + solution of (11)-(12)

with D { d } }. Then is dense in V.
Indeed in Theorem 3 if b is reduced to a single point, then in the proof D can be

chosen as a single point.
Remark 7. The cylindrical case. If the machine is cylindrical instead of toroidal,

the operator is replaced by -A. In this case if f is a ball centered at 0 and if V= f,
j=0, then there exists a solution of (11)-(12) iff 0 D. then the set in Remark 6 is

An example for which the existence holds only for some convenient values of the
inducing current j in one single coil C is given in J. Simon [15].

3.3. Ope quetio. In order to prove condition (24) in Theorem 2 it would be
interesting to know the answer to the following questions.

Open question 1. Is the set of pairs (u,v) satisfying (13)connected in C()x +?
On the other hand, we can define "variational solutions" of (13) as in [18]. Indeed,

let us set for v H(f)

E(v)=f(1-lVvl2-vlv+121v-2jv)dx+2(Ip+fajdx)or’r
By using a simple adaptation of the method of R. Temam [18] one can prove that for
every u>0, E reaches its minimum on the set K={vH,.(f), fvv dx= }.
Moreover each minimizing point of E on K is a solution, called "variational solution",
of (13).

By an adaptation of the method of L. Caffarelli-A. Friedman [4] (where V= fl,
j 0) one may prove that, for every variational solution u, dimP(u) 0 as v z, and
P(u) is asymptotically located on the set OV+= { x V,r(x)>_ r(y) Vy V ).

Therefore condition (24) is satisfied if one can answer positively to the following
question.

Open question 2. Is the set of pairs (u,u) such that u is a variational solution
connected in C()XIR +?
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At last for some particular geometries and currents it is perhaps also possible to
answer positively to the next question.

Open question 3. For , large enough does (13) have a unique solution? This is not
always the case. Indeed the counterexample given by D. G. Schaeffer [12] rdative to the
operator A, can be adapted to the operator

3.4. Computational aspects. More sophisticated models can be written for the
axisymmetric equilibrium in a Tokamak, including a more general law for the plasma
current density and a nonlinear operator S; indeed, in an iron-transformer Tokamak,
the nonlinearity of . is due to the fact that the constant #0 is replaced by a function
(IxTql). These models are numerically solved in [2] by a finite element method and by
iterative algorithms for the nonlinearities; they are applied to the simulation of the
axisymmetric equilibrium configurations in TFR 600 (Tokamak of Fontenay-aux-
Roses) and JET (Joint European Torus).

4. Control of the plasma shape.
4.1., Formulation of the problem. Let us assume that the current density is homo-

geneous in each coil C and let I be, the total current flowing in Cz; then j can be
written

k iiJ=l [-lc’’
i=

where ICil denotes the Lebesgue measure of Ci and k the number of coils. One intends
to determine the currents I in the coils Ci, so that the plasma boundary OP is as close
as possible to a desired boundary Z. In order to achieve this, we want to realize "at
best" 0 on Z. Therefore we shall minimize the following cost-function

on the set ,I, of the solutions of (11)-(12) when the currents I are varying, i.e.,

,I { q C(), such that qX > 0, 11,.-., Ik, so that (+,X) satisfy ()-(a2) }.
Let us mention that the total plasma current Ip is fixed. We are looking for a solution
q ,I, of the following optimal control problem

(25) J(+) .inf J().

Notice that since there is only a finite number k of control parameters, the minimum of
J will generally be different from 0 and )P will not be exactly identical to Z. It is
reasonable to assume that Z is in contact with the limiter D, because the plasma
boundary must satisfy this condition. But this hypothesis will not be used in the
following. On the other hand we shall use the following, hypothesis

k

(26) 12- (.J C is connected; Z. is the boundary of a regular open subset of V.
i=1

4.2. An a priori estimate.
LEMMA 7. Every solution C() of (11) satisfies

k

i=1

where the constant e only depends on fl, E, C1,--- Ck.
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Proof of Lemma 7. From (16) it follows that -r/g(/l)+g(j). One has

IX/lvl<u)--I. Since L()H-(), for all s> 1, it follows from (15) that, taking
some s 11, )[, one has

Since I1=>= j(), and since the trace operator is linear continuous from H()
into L(2), one deduces

Let be the mean value of the function v on Z, i.e. =(1/[Z[)fvdo. One has

101)lvl). Let us set g=K(j)-K(j). Then

i) We shall now prove that there exists e3 > 0 such that

Let us suppose that Igl)=0, i.e. g=0 on 2. One has g=j which is zero in
U C. Then, with (26), we deduce that g 0 on U Ci.
Then for each i, one has

ii= jdx=Lgdx

_
10g

c, q r n d O"

Then the function (I,..., I)lglc( is a norm on N . This proves the existence of
the constant e.

ii) It remains to bound r. We have

and

whence

[K(j)+ qi. [<_ IZI-1/21K(j)+qFIL2(x),

i Ii K(lc ) e4EIIi[’Ig( )l

2e4)e3

4.3. Existence of an optimal control. We assume here that k remains bounded
when j and k r are bounded. More precisely

(27) For every a>0 and +I, such that E ILl/ Iqr I-<a one has ,=<A,

where A depends on a, , V, Ie and on the Ci.

Remark 8. We can show that (27) is satisfied if equation (13) has only variational
solutions, and in particular if, for every v and f there exists a unique solution of (13).
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THEOREM 4. Assume that 4: and that (26) and (27) are verified. Then there
exists a solution o of (25).

Proof. Let ( +n } be a minimizing sequence of J in , i.e.,

J(")- inf J() as n-

Let " and I1"," ", I; be the proportionality coefficient and the currents relative to
Lemma 7 shows that Ii and q are bounded independently of n.
Then j is bounded in L2(f) and Lemma 5 shows that there exists b>0,

independent of n, such that M > b (otherwise q. would not be bounded).
Moreover assumption (27) shows that M__< B. Then Lemma 2 shows that the

are bounded in H2(f).
The imbedding of H2() into C() being compact, one can extract a subse-

quence, still denoted +" such that as n +

q"o+0 inC(),
M --> o Ii" -, I

Passing to the limit in the equations (11) and (12) relative to +", one shows that qo ,I,.
Moreover J(q")J(k0), therefore +0 verifies (25).

Remark 9. Control of the variational solutions. Let Xltva be the subset of xI, con-
stituted by the variational solutions. Assume that XItvar=/= J and (26) is satisfied. Then
there exists +o XItvar such that

S(q,o) inf J(q,).
XItva

This is a consequence of Remark 8, and of the fact that a limit of variational solutions
is itself a variational solution.

4.4. Differentiation of a solution with respect to the currents in the coils. If (,)
is a solution of (11)-(12) relative to j= EI(lc,/ICl), we intend to find, in a neighbour-
hood of (, ,), a solution which depends continuously on the currents.

For this it is enough to find a solution which depends continuously on each
current. Let us consider the variation with respect to I.

We assume (this assumption may be weakened as we shall see later) that

(28) D is reduced to a point d.

For every R, one looks for a solution of (11) and (12) relative to jt=j + tlcl/ICll,
i.e. for a solution of

(29)

such that ----> (t,/) is differentiable. (With (ko,?0)= (,).)
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First let us differentiate formally this equation so as to obtain the equations
satisfied by the derivative k’ =3/t/Ot, )t’=O)tt/Ot at the point t=0. We set P= (x
V, + (x) > 0}. One obtains

(30)

f./’dx l,

’(d)=0.

We are going to prove this "formal" differentiation by using the implicit function
theorem. To do this we introduce the eigenvalue problem

(31) e= {veH. (a), evax=O},
q9 vl pq.

If X is not an eigenvalue of (31), one defines the unique function 1 by

(32)

that

,.P’q )kl pip1=
+ 1v

THEOREM 5. The pair (q,X) H,.(a)R being a solution of (11)-(12), one assumes

(33)

(34)

V’ ( x ) 4:0 for every x such that / ( x ) O,

)t is not an eigenvalue of (31) and Pl ( d ) 4 O.

Then, for every small enough t, there exists a unique solution of (29) such that
( /t, X t) is continuously differentiable into H, (f) xN and such that ( /o, o) ( /, ).
The derivative for t=0 is the unique solution (’,’) of (30).
Remarks 10.
i) From (29) one can deduce that C1() and (33) is therefore meaningful.
ii) Let us assume that X < 2, where /2 is defined in {}2.2. Then X is not an

eigenvalue of (31).
Indeed, as it has been seen in the proof of Lemma 1, the first eigenvalue of (31) is

zero, and the second is larger than/2.
Remark. Analogous results of derivability have been obtained by A. Dervieux [5],

for the equilibrium problem without inductive currents, vacuum vessel nor limiter.
Proof of Theorem 5. Let p > 2 be given and let us set X= ( v W.2’p (f), v(d) 0}.

Provided with the norm of wz’P(2), X is a Banach space included in C1().
One defines F: R X R L(fl) N by

One looks for a solution of F(t; qt, X t) 0 in the neighbourhood of the solution (p, X)
relative to =0. The implicit function theorem gives the announced results, provided
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that one verifies the following properties:

(3)
There exists a neighbourhood ’ of + in X such that

FC( /" ,LP(f)).

The derivative A (OF v, b))(O; q,)) is an isomorphism from
(36)

XxN onto LP(f) xN.

i) Proof of (35). The only difficulty comes from the nonlinear term v/lv The
function v v+lv is differentiable from W2’p(a) into LP() at any point w such that
the measure of (x V,w(x)=O} is zero, and its derivative is the function G(w):
v lev where Pw {x V, w(x)> 0} (cf. for example [6] for the proof of these points).

To prove (35), we have to verify that:

(37) for every w ’ the measure of the set ( x V, w(x) 0 ) is zero,

(38) GC(t,(W2’p();LP(a))).
From the assumption (33) it follows that there exists a neighbourhood of + in

C(), and therefore a neighbourhood U’ of + in X such thatwU’, one has

Vw(x) 0 for any x such that w(x) 0.

This yields (37) since, according to G. Stampacchia [16], one has

l=0Vw 0 a.e. in V.

Moreover, when w,--w in ’ one has, since the measure of (x V, w(x)= 0} is
zero, 1,,,, 1 in L(). Therefore, for any W2’p(), one has

IX/P[I(1p.--1p)VLp(a) ]lp.-- 1P,L(a),V[L(a
which yields (38).

ii) Proof of (36). The operator A (XX;LP()X) is defined by

One has to show that, for every g, a) L (a) x N, there exists a unique solution (,)
of -Xl-+I=g,

Since X ’is not an eigenvalue of (31) there exists a unique function such that

Xle g,

dx a.
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It is clear that (Pl and P2 belong to W,.2’P(f); therefore (p,/) is a solution of (39) if and
only if

(40)

Since one has supposed qol(d)0, (40) (and therefore (39)) has a unique solution
(qo, ). This proves (36). rq

Remark 11. In Theorem 5, we have assumed that D is reduced to one point. This
assumption is not necessary. In fact if D is constituted by a finite number of points and
if we assume that the maximum of + on D is reached at a unique point, it is easy to see
that Theorem 5 is still true.

More generally let us suppose that D is a closed subset of V, with a regular
boundary and that the maximum of q on D is reached at a unique point d. Then one
can prove a result, which is similar to that of Theorem 5. By using additional assump-
tions, in particular that the curvatures of the boundaries of P and D at the point d are
different, one can show that qt reaches its maximum at a point d which depends
regularly on t. The derivative of +t for 0 is still given by (30).

4.5. Optimality conditions. In this paragraph we still assume that D is reduced to
a point d (this hypothesis can be weakened as we have seen in the remark at {}4.4).

Let qo be an optimal control, i.e. a solution of (25). Thus there exists a unique
o> 0 and unique currents I, ., I such that (+o,0) satisfies (11) and (12).

One denotes by 3d the Dirac measure at point d, and the measure on Y defined
by

(8,v)=fvdo
(o is the 1-dimensional Lebesgue measure on Y.). We set P0 (x V, q0(x)> 0}.

THEOREM 6. We assume that (q0,k0) satisfies the assumptions (33) and (34). Then
there exists a unique solution q of

(41)

q WI.’P’(n) where 1 <p’< 2,

.q-,oleoq-+oS-(XOfpoqdx+f d/odo)3d,
dx=O,

and one has the following necessary optimality condition

IGI qdx=qr Vi.

Proof of Theorem 6.
i) Differentiation of the cost function. Theorem 5 enables to define in a unique way,

for small enough, a solution (lt,)kt) of (11)-(12) relative to jt=Jo + tlc,/]Cll.
Since b0 is optimal one has
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Since t qt is differentiable into H,.2(fl), one has

(42) fy /o’ do O

where (k’, X’) is the unique solution of (30)(relative to (+,)= (+0,0)).
By introducing an appropriate adjoint state, we are going to transform this condi-

tion (42).
ii) Definition of the adjoint state q. As it has been mentioned in the part ii) of the

proof of Theorem 5, the operator A which is defined by

is linear continuous from XR onto Le(f)R. Let us recall that X={v
Wc2’P(),v(d)--O}.

The adjoint operator A* of A is therefore linear continuous from LP’()g onto
X’ R with p’ =p/(p- 1).

As the embedding of X into C() is continuous, the measure qoi is an element
of X’. Then one defines (q,h) in a unique way byA’(q,h)=(poy,O), i.e. by

q LP’(a), hff,
(43) faq(  _Xol,o _g / l )clx+hfa e clx=
When v spans W,}’P(a), v-v(d) spans X and then (43) is equivalent to

hea,

(44) fa q(*q’v-Xl’v)dx+ hfa*vdx= fy vd-v(d)[Xfp qdx+ f, odo],

iii) Characterization (41) of q. Let us set

t =Xol ,oq+q o, ,.-(XOfpoqdx+f @odO) d.
One has # l/V-1,p’(2) since the measures belong to this space.

Let us consider the solution /of

(45) W0’P’(a), q t

and let us assume for a while that is the unique solution of

(46) /LP’(a), qvdx=(g,v)

Since q + h satisfies (46), one has q + h 4, which establishes (41).
Reciprocally if q satisfies (41) one has q-qr=l, then for h= -qr the pair (q,h)

satisfies (44), therefore (41) has a unique solution.
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iv) Equivalence of (45) and (46). Let us first prove that satisfies (46). One sets
v=v + v2 where v equals zero in a neighbourhood of F and v2 equals zero in a
neighbourhood of t2 ( d ). If v (f) one has

and by density one obtains this same result for every vl W,.2’P(f]), such that vx equals
zero in a neighbourhood of F.

Moreover, as #=01poq in the support S of v2 one has W2’P’(S) and

f2 oQgv2dx fs Tl-.tQOv2 dx fsOZ.c4"to2dx ( U2 )

By adding these equalities one obtains (44).
It remains to verify that (44) has a unique solution. Indeed the difference w of two

solutions satisfies w LP’(f) and

wqvdx O ’qv Y

where Y= W2’p()O Wol’P(,"]).
As &P is an isomorphism from Y onto LP(), its adjoint * is an isomorphism

from LP’() onto Y’. One has

(,,*w,v)v,v=O Vv Y;

therefore o*w 0 and w O.
v) Necessary optimality condition. From the definition of (q, h) one has

A*( q,h ). ( q/,’)= ( /oSx, O). ( /,’) fy /o+’ do.

Moreover, from the definition (30) of (q/, ?() one has

( q h ) A ( q/ X’ ) ( q h ) 1,1] ,1 =1-1] qdx + h

Then the optimality condition (42) shows that

[CI[
qdx= -h=qr.

One can of course replace C by any coil Ci, whence the announced result.
Remark 12. A sequential quadratic method is used in [3] in order to solve numeri-

cally this optimal control problem and it is applied to the control of the plasma shape
in the Tokamaks JET and TORE SUPRA.

Acknowledgment. The authors are very thankful to Dr. H. Berestycki for many
valuable comments on this paper.
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THE SCALAR RIEMANN PROBLEM IN TWO SPATIAL DIMENSIONS:
PIECEWISE SMOOTHNESS OF SOLUTIONS AND ITS BREAKDOWN*

W. B. LINDQUIST

Abstract. Consider the scalar quasilinear equation

o,(t,x) +
i=1

=0,

for n 1, 2, f; C2: R R. For n 2, we define the two-dimensional Riemann problem and show the unique
(in the sense of Krukov) solutions are piecewise smooth for fl =f2 =f, f purely convex or having a single
inflection point. A mechanism leading to a presumed loss of piecewise smoothness is presented for f having
three or more inflection points. The analysis is based on a study of the generalization of the one-dimensional
Riemann problem to allow for initial data having a finite number of jump discontinuities with constant data
or rarefaction waves between jumps.

Key words. Riemann problems, hyperbolic equations

AMS(MOS) subject classifications. Primary 35C05" secondary, 35B65, 35L65

1. Introduction. Consider the Cauchy problem for the scalar quasilinear equation

i=1

=0, n=1,2,

with f;: R R C2. For two spatial dimensions, we define the Riemann problem and
show that the unique (in the sense of Krukov) solutions are piecewise smooth for

fl =f2 =f, f having at most one inflection point. The assumption fl =f2 appears to be
natural from the point of view of applications. This sufficiency condition follows from
a detailed analysis of a generalization of the Riemann problem in one dimension to
allow for initial data having a finite number of jump discontinuities where the data
between points of jump is allowed to contain rarefaction waves as defined below. For
these generalized one-dimensional Riemann problems, we show the unique (in the sense
of Krukov) solutions are piecewise smooth if the initial data has a single jump
discontinuity and fl is restricted to at most two inflection points. If the initial data has
more than a single jump discontinuity we show that restricting fl to at most one
inflection point guarantees a piecewise smooth solution.

We present a construction based on a function fl having three inflection points
which shows a possible breakdown of piecewise smoothness for the associated one-
dimensional Riemann problem. The implication of this example is that the scalar
Riemann problem in two dimensions can presumably fail to have piecewise smooth
solutions for nonconvex f2--fl having three inflection points.
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A bounded measurable function u(t,x) is a weak solution of (1.1) in the strip
IIr= [0, T]R" if

(1.2) dtdx u--+ f(u)-x + dx Uo(X)O(O,x)=O,
IIr i= =0

for all C(IIr). A function is a weak solution in the large if it is a weak solution
for all T. For initial data Uo(X) in the class of bounded, measurable functions Krukov
[2] has shown the existence and uniqueness of a bounded measurable function which is
a weak solution to (1.1). The uniqueness (entropy) condition satisfied by this weak
solution is [2]

(1.3) ff dtdxsign(u-k) (u-k)-+

_
(fi(u)-fi(k))x >=0,

Hr i=1

for any real constant k and any C(Hr) such that >__0. This uniqueness condi-
tion characterizes the allowed discontinuities in the weak solution.

Define a regular point of the weak solution u as a point p for which Ou/3t and
Ou/Ox exist and are continuous in a neighbourhood of p, and at which the differential
form of (1.1) is satisfied. The function u shall be termed smooth in an open neighbour-
hood N if each point p N is a regular point. Let a smooth surface of codimension
in R" R+ be a surface at each point p of which a unique (modulo minus signs)
/-dimensional space of normals exist and for which the normal space varies continu-
ously as the point p is varied over the surface. A piecewise smooth surface is defined by
induction on the codimension i, as the union of a finite number of smooth surfaces
with piecewise smooth boundaries of codimension / 1; each of the finite number of
pieces being everywhere the boundary of the same codimension surfaces. A piecewise
smooth solution uRR+ is defined as a function that is smooth except on a
discontinuity set that consists of piecewise smooth surfaces. A point ofjump is a point
p of discontinuity of a function u for which the discontinuity is a simple jump in u, i.e.
locally the point p lies on a smooth codimension I surface of discontinuity and the one
sided limits u- lim o u(p en) and u + lim_ o u(p + en), where n is the unit
normal to the smooth discontinuity surface at p, exist at p. A singular point of u
which is not a point of jump shall be termed an irregular point.

Using integration by parts, the arbitrariness of q, and appropriate choices of the
constant k, it can be shown that (1.3) is equivalent to two conditions for points of jump
p in whose neighbourhood the unique weak solution u is piecewise smooth:

(1.4)

and

(1.5)

n u+- u+ ) u- ) =o,

n.[k-u-,f(k)-f(u-)]>O,
where fi stands for the vector [fl,f2]. In (1.5) n is oriented such that u-=< u + and k is
any constant such that u-=< k < u /. As a consequence of (1.4), (1.5) also holds with u-
replaced by u /. Equation (1.4) will be denoted the jump condition for the discontinuity
at p and (1.5) the entropy condition. In R R/ (1.4) is the familiar Rankine-Hugoniot

Kru,kov’s proof holds for n > 1 spatial dimensions. Here only n < 2 concerns us.
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condition and (1.5) is equivalent to the entropy condition of Oleinik [5]. The advantage
of equations (1.4) and (1.5) over (1.3) is that the former are local conditions which will
allow construction of piecewise smooth global solutions by piecing together local
solutions which individually obey (1.4) and (1.5).

A weak solution u R R+ to (1.1) which is piecewise smooth and whose discon-
tinuity sets are piecewise smooth surfaces of points of jump obeying (1.4) and (1.5) then
satisfies (1.3) and is therefore the unique Krukov solution to (1.1).

The existence and uniqueness theory gives little insight into the actual form of the
weak solution. In R R+, insight is provided by analysis of the Riemann problem
whose solution is piecewise smooth and can be derived in terms of a nonlinear wave
analysis. It can be shown (see, for example, Lax [3] and the references therein) that
these nonlinear waves consist of rarefaction and shock waves. The initial motivation of
this paper was to consider the natural generalization of the Riemann problem in two
dimensions and investigate its solution in terms of two-dimensional waves which, by
implication, is a restriction to the set of piecewise smooth solutions. In this paper we
determine a sufficient condition for which the solution to the two-dimensional Rie-
mann problem is piecewise smooth. In a companion paper [4] we investigate the form
of these solutions in terms of nonlinear waves. For the case fl=f2 =f, the sufficiency
condition consists of restricting f to at most one inflection point. We conjecture that if
the number of inflection points of f is at least three, the solution to the generalized
Riemann problem defined in one dimension (and hence for the Pdemann problem in
two dimensions) may fail to be piecewise smooth. Our argument for this is presented in
2.

The generalizations of the one-dimensional Riemann problem to allow multiple
jumps and restricted smooth variation in the initial data are presented in 2 and 3. In
4, the two-dimensional Riemann problem is defined and a sufficiency condition for
piecewise smooth solutions obtained.

2. The one-dimensional Riemann problem. Throughout this paper the notation
q’(p) or (q( p))’ shall denote dq( p)/dp for any function q of a single variable p.

We first discuss the familiar results for the one-dimensional Riemann problem to
introduce notation and reformulate results in a manner that will allow generalization.
The scalar quasilinear equation (1.1) in one spatial dimension (f=-f,x=x) with
initial data

u for x<xo,(2.1) u(O,x)- u forx>xo,

defines the one-dimensional Riemann problem.
The Riemann problem (1.1), (2.1) is invariant under the similarity transformation

(t,X-Xo)(ct, c(x-Xo)), c>0.2 Hence the solution is constant along the straight
lines (X-Xo)/t=constant. In a neighbourhood of a point in which the Riemann
problem solution is smooth, (1.1) implies that the solution will be constant along the
straight lines

(2.2) x-x’-f’(u), t>_t,.,
t-t

This scale invariance is one of the essential features of the Riemann problem.
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which are denoted characteristics. Characteristics shall be denoted (u, t., x.) where
(t,.,x,.) is the origin point of the characteristic given by (2.2). For the Riemann problem
(1.1) (2.1), t,.= 0 for all characteristics.

Let p=(tp, Xp) be a point on a characteristic (ul, tl,Xl). Let h be a normal to the
characteristic at p. By the smoothness of u there exists 8p such that each point p +
where -Sp __< e __< 8p, lies on a characteristic. Let (u, t, x) denote such a characteristic.
Then (Ul, tl,Xl) is a rarefaction wave if the lines defined by the characteristics (ul, t,xl)
and (u,t,x) intersect at some <=tp. This condition generalizes the concept of the
familiar centered rarefaction wave for which t--" t, x=x1, to noncentered rarefaction
waves which appear in the generalized Riemann problem solutions and also generalizes
to a definition of rarefaction waves in two spatial dimensions.

A rarefaction fan is an open set in the t,x plane all points of which belong to
rarefaction waves.

A shock is defined as a smooth curve of points of jump in the t,x plane at each
point of which the conditions (1.4) and (1.5) are satisfied. A shock curve (wave) will be
denoted (ul(t),ur(t),ts,xs) where u(t) is the limit value of the solution u to the left of
the shock wave at time t> s, ur is the corresponding right limit, and (ts,xs) is the
origin point of the shock wave. For the Riemann problem (1.1) (2.1), G=0, x=xo.

A constant state is a domain (connected open set) in the t,x plane over which the
solution is constant.

Let f(u) C2" R R. Let ( Ul, U2) denote a closed interval where

[/’/1’ U2] if U <
(2.3) (Ua’U2) [u2,ul] if Ul>U 2.

A rarefaction interval off shall denote an interval which satisfies either

(2.4a) f"(u) > 0 if u < u2 for every u ( ux, u 2 ),

or

(2.4b) f"(u) < 0 if u > u 2 for every u ( ul, b/2 ).

Let E(Ul, Ug_; u): 1--+ R denote the convex envelope function for f(u) restricted to
the interval { u, u 2 } of f such that

upper convex envelope from u to u 2, if/,/1 >/,/2,(2.5) E ( ul, u 2; u) --- lower convex envelope from u to u 2 if U < u2.

Let C(Ul, U2; u): R R denote the linear map restricted to the domain interval
(/21, U 2 ) such that

(2.6)
C(Ul,U2;Ul)--f(ul),
C(Ul,U2;U2)-’-f(u2),

i.e. for all u in ( u,/12 ),

dC(u,,u2;u) f(u:z)-f(u)
U2-- U

Denote the restriction of the function f(u) to the subinterval (u,u2) by f(ul, u2; u).
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THEOREM 2.1 (Oleinik [5]). Consider the Riemann problem (1.1), (2.1). Assume
f( u) C2: R R such that f has a finite number of inflection points. Then the unique,
entropy obeying solution connecting the states u and u is determined solely from
E(ui, Ur; u), as described below. Further, the solution is piecewise smooth, with a single
irregular point corresponding to the discontinuity at xo in the initial data.

The convex envelope function E(ul, Ur;U ) uniquely divides the interval (Ul, Ur)
into rarefaction intervals separated by intervals corresponding to the linear chord
segments of E. Each rarefaction interval corresponds to a rarefaction fan in the
solution. The fans are centered on 0, x x0 and each rarefaction wave has a unique
value u corresponding to a state in a rarefaction interval. The slope of the rarefaction
wave (v,O, xo) is given by f’(v). Each linear chord in E covering an interval (Ul, U2}
corresponds to a shock wave (u1, u_, 0,x0). The solution is bordered on the left by the
single constant state u u and on the right by u u r. No constant states appear within
the solution except for these two bounding constant states, which are the states u and
u, of the initial data. The speeds of the nonlinear waves found in the solution increase
continuously from left to right along the x direction. Fig. 2.1a shows an upper convex
envelope drawn between two states for the function f(u) illustrated. Figure 2.1b
illustrates the corresponding Riemann solution in t,x space, with the three shocks (in
this case) represented as dark lines.

U (a) ul

FIG. 2.1. (a) The upper convex envelope drawn between two points u and u for an illustrative function f.
(b) The Riemann solution in the t,x plane based on (a). Dark lines represent shock waves, light lines are

rarefaction waves.

A solution given by Theorem 2.1 shall be referred to, for brevity, as the Olenik
solution to { ul, u, centered on x0.

2.1. The generalized Riemann problem for initial data with a single point of discon-
tinuity. Let h(Xl, X2,Ul, U:z;x): R--,R be a continuous, differentiable, 1-1 mapping
from the interval [Xl,X_] of the real axis onto a rarefaction interval (u,u2 } of f such
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that

(2.7)
h (Xl,X2, Ul,/,/2; Xl) ul,

h (x1,x2,/11,/12; x2) --/2 2

Further, assume that the derivative of h is bounded and bounded away from 0. Then
its inverse map exists, is 1-1, onto, and has derivatives bounded away from 0. Denote
the inverse map by

h-l(xl,x2,ul,u2;u).

Where no ambiguity exists the notation for these maps shall be shortened to h(x) and
h-l(u).

Let f(u) C: R-, R such that f"(u)= 0 at a finite number of points. Let { a,b)
and { c, d ) be rarefaction intervals of f(u).

DEFINITION 2.2. The Cauchy problem

(:.8) Ou(x,t) + O/(u(x,t)) =0,0t 0x

with initial data

(2.9)

a, X Xl
ht(xl,xo,a,b;x), x<x <x0,U(X)= hr(xo,Xr,,d;x), Xo<X<Xr,

d, Xr<_X,

will be denoted as a Cauchy problem with generalized Riemann data (generalized
Riemann problem, for short). The unique solution to (2.8) and (2.9) obeying (1.4) and
(1.5) shall be referred to as the generalized Oleinik solution.

THEOREM 2.3. Let f(u)C2: RoR such that f"(O) for at most two values of u.
Then the generalized Oleinik solution to (2.8), (2.9) is piecewise smooth; it consists of two
constant states, rarefaction fans, at most three shock waves and at most two irregular
points. A rarefaction wave either originates at 0 on the interval [Xt, Xr] or tangentially
to a shock line at > 0 and either terminates on a shock line or propagates undisturbedfor
all t. At most two points can be irregular, the initial discontinuity point in the data
(t O, x Xo) or the meeting point of three shocks.

2.1.1. Proof of Theorem 2.3. The following definitions will prove useful. Let
(ul, u2} be a rarefaction interval of f and h(xl, x2,u,u2;x ) a map as in (2.7). At each
point x [Xl,X2] construct the rarefaction wave (u, 0,x) with

x(t)=x+f’(h(x))t.

The set of waves thus constructed on [Xl,X2] form a rarefaction fan which shall be
referred to as the rarefaction fan determined by h(xx, x 2, Ul, u2; x).

By definition of a shock wave as a smooth curve, the occurrences of either two shock lines interacting to
produce a single shock curve, or a single shock curve splitting into two shock curves, are each described as
involving three shock waves.
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Let (Ul, u_ } be a rarefaction interval of f. For every u in (Ul, U 2 } construct the
rarefaction wave (u, 0,x0) with

x(t)=xo+f’(u)t.

The set of waves thus constructed form a rarefaction fan which shall be referred to as
determined at xo by the interval ( Ul, u 2 }.

Let (a,b } be a rarefaction interval of f. Let h(po, Pl, a,b; p) be a map as in (2.7)
from the real interval [00,01] to (a,b}. Construct a curve segment (t(p),x(p)) from
( o, x0) to ( 1, x1) in the t, x plane such that

At each point (t(O),x(o)) construct the rarefaction wave (h(o),t(O),x(p)). Then the
set of waves constructed on the curve segment form a rarefaction fan which shall be
referred to as the rarefaction fan determined by the curve (t(p),x(o)).

LEMMA 2.4. Let N be a rarefaction fan in the t, x plane for some solution u(t, x). Let
[x1, x2] be an interval in N parallel to the x-axis at some time such that the rarefaction
wave passing through the point (t, xl) has value u=u and the rarefaction wave passing
through the point (t, x2) has value u=u2. Then { ul, u 2 } is a rarefaction interval off and
the fan defines a continuous, 1-1 mapping h’(xl,x2,ul, u2;x): R--+R from [Xl, X] onto

{ ul, u 2 } whose derivatives are bounded and bounded away from O.
The proof for Lemma 2.4 follows from the definition of a rarefaction wave. q

The proof for Theorem 2.3 is constructive. All possible Cauchy data (2.9) fall into
four classes:

C1. ( a, b ) and ( c, d } are not disjoint, f" > 0 on { a, b } to { c, d },
C2. { a, b } and { c, d } are not disjoint, f" < 0 on { a, b } to { c, d },
C3. { a, b } and ( c, d } are disjoint, b > c,
C4. { a, b } and { c, d } are disjoint, b < c.

Classes C3 and C4 can each be divided into four subgroups:

$1: a<b, c<d,
$2: a>b, c>d,
$3: a<b, c>d,
$4: a> b, c<d.

For classes C1, C2 there are no inflection points of f in the interval [a,d]. For
subgroups $1 and $2 of classes C3 and C4 there are either 0 or 2 inflection points in the
interval [a, d]. Subgroups $3 and $4 of classes C3 and C4 contain one inflection point
in the interval [a, d ]. Theorem 2.3 will be proven for the case of 0 and I inflection point
in the interval [a, d] of f. The proof for the case of two inflection points will be omitted
for brevity.

f has zero inflection points. Restriction of f to no inflection points implies initial
data from either classes C1, C2 or subgroups $1 or $2 of C3 and C4. We study data of
classes C1, C3.$1 and C3.$2; the proofs for classes C2, C4.$1 and C4.$2 follow
analogously.
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Class C1. There are four arrangements of initial data in the class CI:

C1.A1 a<c<b<d,
C1.A2: a<c<d<b,
C1.A3: c<a<d<b,
C1.A4: c<a<b<d.

The generalized Oleinik solution to Cauchy data of type C1.A1 is examined below.
Let { a,b } and { c,d } be rarefaction intervals of type C1.A1. Consider maps

hl(xz, xo, a;b;x ) and hr(xo,xr, c,d;x ) as in (2.7). Construct the rarefaction fans de-
termined by h/(x) and hr(x). Then through each point p (t, x) in the plane such that

xo+f’(c)t <=x <=xo+f’(b)t
there passes a unique rarefaction wave originating from the interval [xz, x0] and a
unique rarefaction wave originating from the interval [XO,Xr], thus defining respectively
the unique values ut(p) and ur(p).

Consider the curve (t, x(t)) defined implicitly by

(2.10)

where

dxx(t)=Xo+ --dt,

(2.11) -dT ut(t)_Ur(t )

with uz(t ) and u(t) determined from

(2.12) x( ) h- X( xl,xo,a,b; ut( )) +f’( ut( ))t
(2.13) x(t)=h-a(xo,x,c,d; Ur(t))+f’(u(t))t.
We remark that for { a, b } and { c, d } of type C1.A1, the set of equations (2.10) through
(2.13) are well defined for all and the curve (t,x(t)) is smooth.

P,OPOSITION 2.5. For the curve (t,x(t)) defined by (2.10) through (2.13):
1) dut(t)/dt<O, dur(t)/dt>O, ’t>0.
2) There exists g c, b such that ut( ) g, u( ) g as --, .
3) The curve defined in (2.10) through (2.13) considered as a curve ofpoints ofjump

ut( )--* Ur( ) obeys (1.4) and (1.5).
Proof. Note

f"(ut(t))>O, (h-X(u))’>O lu,(t) on [a,b],
f’(Ur(t))>O (h-l(u))’ >0 [Ur(t ) on [c,d].

Equations (2.12) and (2.13) yield

(2.14) [f’(ut(t))-f’(ur(t))]t=h-/l(u(t))-h-/l(ut(t)).
For > 0, the positivity of the right-hand side of (2.14) implies

(2.15) f’( ul( t))-f’( u( t)) > O.

By the requirement that { a,b } and { c,d } be of class C1.A1, (2.15) implies (using 2.11)

dx(2.16) f’(ul(t)) > >f’(u(t)).
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Therefore, the time derivatives of (2.12) and (2.13),

(2.17)

(2.18)

dx )t---]-= [(h;- (u,) +f"(u,)t]ut(t)+f’(u,)
dx -1( )t----[(h Ur) +f"(ur)t]u’(t)+f’(Ur)

lead to the conclusion

(2.19) u;(t) <0, u’r(t) >0

Further (2.16) and (2.19) imply the existence of g[c,b] such that as

Ul(t)"’>g, Ur(t)’-’>g ----->f’(g).

By construction, the curve (t,x(t)) considered as a curve of points of jump obeys (1.4).
It is easy to verify that the entropy condition (1.5) is also satisfied. From Proposition
2.5 note that the strength of the shock decreases monotonically to zero as ---> . rq

All rarefaction waves originating in the interval

h;l( g) <=x <__h-l( g)

for the construction in Proposition 2.5 intersect the curve (t,x(t)). Terminate these
waves at the curve. All rarefaction waves originating in the intervals

h-X(a)<_x<__h-l(g),
h-X( g) <_x <__h- ( d ),

propagate unimpeded for all > 0. The rarefaction fans and shock curve thus defined
by this construction shall be said to be determined by the functions h(xt, xo, a,b; x) and
hr(xo, x,c,d;x).

PROI’OSITION 2.6. Let { a, b } and { c, d ) be as in C1.A1. Then the generalized
Oleinik solution u(t,x) to (2.8) (2.9) is given by"

the constant state u=a for x <_xt+f’(a)t, t>=0;
the shock curve and rarefaction fans determined by h t(x) and h(x) for xt+f’(a)t <

x <x+f’(d)t, t>=0;
the constant state u=dfor x+f’(d)t <_x, t>=O.
The proof follows immediately from Proposition 2.5. D
A sketch of this solution is given in Fig. 2.2.
The generalized Oleinik solutions to Cauchy data of types C1.A2 through C1.A4

have exactly the same structure as for C1.A1. For each, the strength of the single shock
curve (t,x(t)) decreases monotonically to zero as t , and dx/dt f’(g) where for

C1.A2" c<g=<d,
C1.A3" a<g=<d,
C1.A4" a<g=<b.
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f(u)

f’(g)

x x0

2 u

if(d)

Xr

FIG. 2.2. A sketch of the solution (lower figure) for a particular case of initial data (upper figure) for a

generalized Riemann problem with f having no inflection point. The dark line is the shock wave. Important
rarefaction lines have been labelled by their speeds.

Class C3.$1: no inflection point. Let { a,b } and (c,d } be rarefaction intervals of
type C3.S1 such that for every o ( a, b }, w ( c, d }.

Then f’(v)>f’(w) for every choice v,w. Consider the curve (t,x(t)) implicitly defined
by (2.10) through (2.13). Statement 1 of Proposition 2.5 follows from (2.14) through
(2.19). However, the disjointness of the intervals implies there exists finite times tt> 0,
t,>O such that ut(tt)=a and ur(tr)=d. For all t> let ut(t)=a and for all t> let
Ur(t)=-d. With this extension, (2.10) through (2.13) are defined for all t. The curve
(t,x(t)) thus defined, considered as a curve of points of jump ut(t)u,(t ) obeys the
conditions (1.4) and (1.5). In contrast to class C1 data, the shock strength attains a
constant value, la- dl, as .

All rarefaction waves originating from the interval [XZ, Xr] intersect the shock curve
and are terminated there. The shock curve and rarefaction fans so defined (together
with the bounding constant states u a, u d will also be referred to as determined by
the functions h t(x) and h r(X) since their definition is merely an extension of the usage
defined after Proposition 2.5.

PROPOSITION 2.7. Let { a, b } and ( c, d ) be disjoint rarefaction intervals on f such
that for all v ( a, b ), w ( c, d )

Then the generalized Oleinik solution to (2.8) (2.9) is given by constructing the shock curve
and rarefaction fans determined by ht(xt, xo, a,b; x) and h(xo, Xr, C,d; x).
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Proof. The above construction proves this proposition for rarefaction intervals in
class C3.S1, where the condition f"> 0 was used implicitly in (2.17) and (2.18). With
trivial modifications, analogous arguments can be used to prove this proposition for
appropriate data in classes C3 and C4.

Class C3.$2: no inflection point. Data of class C3.$2 insures f’(b)<_f’(c).
PROPOSITION 2.8. Let ( a, b ) and ( c, d ) be rarefaction intervals off of class C3.

Further assume f’(b)<=f’(c). Then the generalized Olenik solution u(t,x) to (2.8) (2.9)
is:

the constant state u(t,x)=a for x <xt+f’(a)t, t>__0;
the rarefaction wave determined by h t(xt, Xo, a, b; x) for

xt+f’(a)t <x <xo+f’(b)t, t0;

the Oleinik solution to (b,c} centered on xo for xo+f’(b)t <x <xo+f’(c)t, t>=0;
the rarefaction wave determined by h r(xo, Xr, C,d; x) for

xo +f’(c)t <x <xr+f’(d)t, t>=0,

and the constant state u(t,x)=d for x <Xr+f’(d)t, t>=O.
Proof. The proof is trivial; the condition f’(b)<=f’(c) guarantees that the rarefac-

tion waves determined by h and h do not interact.
Thus all solutions for allowed Cauchy data with f restricted to have no inflection

point are piecewise smooth, with at most a single shock and at most a single irregular
point at (t=O,x=xo).

f has one inflection point. Restriction of f to a single inflection point implies initial
data from subgroups $3 or $4 of C3 and C4. We study data of C3.$3 and C3.$4; the
proofs for C4.$3 and C4.$4 follow analogously.

Class C3.$3.

LEMMA 2.9. Let f, { a, b }, and { b*, a* } be chosen such that" ( a, b } is a rarefaction
interval off on which f"(u)> 0, (b*,a*} is a rarefaction interval off on which f"(u) < 0,
a* < b, and

E(b,b*;u)=C(b,b*;u),

E(a,a*’u)=C(a, ,a*’u),,

f’(b*)

f’(a*)

dC(b,b*;u)

dC(a,a*;u)

For every v { a, b } there exists w( v ) { b*, a* } such that

e(o, w(o); u)=C(o,w(o); u), f’(w(v))= dC(o,w(o);u)

Then
1) w(o) is a 1-1 map from { a, b } onto { b*, a* },
2) f"(w(o))dw(o)/do=(f’(w(v))-f’(o))/(w(o)-o).
Proof. 1) This follows from the definition of w(v).
2) For all v (a, b), 8v sufficiently small,

(2.20)
(2.21)

f( w(v))-f(v) =f’( w(v)) w(v)-v
f(w(v+Sv))-f(v+Sv)=f’(w(v+Sv))[w(v+Sv)-v-Sv].
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Subtracting (2.20) from (2.21), arranging terms and taking 800

f’(w(o)) dw(V)dv f’(v)=f"(w(o)) dw(O)dv w(o)

+f’(w(v)) dw()do do v-f’(w(v)),

from which the conclusion 2) follows, t3
Let {a,b) and {b*,a*} be as in Lemma 2.9. Let hl(x,xo, a,b;x ) be the usual

map from the rarefaction interval ( a,b } to [xl, x0]. Consider the curve (t,x(t)) defined
by

(2.10) x( ) Xo + --dT dt,

(2.22) dx( ) =f,(w(ui(t)))dt

with w(ul(t)) defined in Lemma 2.9 and ul(t) defined by

(2.12) x( t) h-[ ’(xt,xo, a,b; ul( t)) +f’( ul( t)) t.

There exists a finite time tl>O at which ul(tl)=a and

dx
--=f’(w(a))=f(a*).

For every > tz let ut(t)=a. Then (2.10), (2.12) and (2.22) are defined for all t.
PROPOSITION 2.10. The curve defined by (2.10), (2.12) and (2.22) considered as a

curve ofpoints ofjump ul w(ut) obeys (1.4) and (1.5).
Proof. Follows from the construction.
Construct the rarefaction fan determined by h t. If a wave from this fan intersects

the above shock curve, terminate the wave on the curve. For a point (tb, x(tb)) on this
shock curve where 0 =< tb =< tl, there exists a uniquely defined ur(tb) W(Ul(tb)). Also
note from (2.22) and Lemma 2.9

f’(w(u,))-f’(ul)(2.23) x"(t)=f"(w(u,))w’(u,)u,(t)= w(u,)-u, u,(t)<0.

The rarefaction fan determined by this curve can therefore be constructed. Note further
that the "left bounding" wave (a*, t,x(t)) of the fan propagates parallel to the shock
curve.

The two rarefaction fans and shock wave, together with the bounding constant
state u= a, thus constructed from (2.10), (2.12), (2.22) and (2.23) shall be denoted as
determined by the function h t(x) and the state u b*.

Let f have a single inflection point and { a, b } and { c, d } be rarefaction intervals
of type C3.$3. Then there exists a rarefaction interval { b*, a*} as described in Lemma
2.9. Three possibilities exist for the orientation of { c, d } with respect to { b*, a*}"

Case 1. { c, d } and ( b*, a* ) are disjoint with d >= a*.
Case 2. ( c, d ) and ( b*, a* ) are disjoint with c =< b*.
Case 3. (c, d } and (b*,a*) are not disjoint.
For the case d>= a*, the generalized Oleinik solution u(t,x) to (2.8) (2.9) is given

by Proposition 2.7.
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For the case c =< b*, the generalized Oleinik solution u(t, x) to (2.8) (2.9) is given by
the following:

The constant state u a, two rarefaction fans and the shock curve determined by
the function h(x)and the state u=b* for x <=f’(b*)t, t>0.

The rarefaction wave determined at x0 by the interval {c,b*} for f’(b*)t <=x <_

f’(c)t, t>0.
The rarefaction wave determined by h,(x) for f’(c)t <=x <=f’(d)t, > O.
The constant state u d for f’(c)t <= x, > O.

This solution is sketched in Fig. 2.3.

f(u)

a b

f’(b*) f’(c) f’(d)
/

/

X XO Xr

FIG. 2.3. A sketch of the solution (lower figure) for a particular case of initial data (upper figure) for a

generalized Riemann problem with f having a single inflection point. The dark line is the shock wave. Important
rarefaction lines have been labelled by their speeds.

For the case in which (,d } and { b*,a*} are not disjoint we remark that the
generalized Oleinik solution can be described by a solution similar to case 1 above for
0 =< __< tg and by a solution similar to case 2 for tg < t. The time tg is determined by the
propagation of a rarefaction wave for some state u g where g ( b*, a* ) c3 ( c, d }.

Class C3.$4. Lemma 2.9 and Proposition 2.10 can be written analogously for data
of type C3.$4, with the arguments revolving around an interval { c*,d*). Again the
construction of a solution to the generalized Riemann problem can be broken into
three cases and dealt with as above.

The solutions for classes C4.$3 and C4.$4 follow in the same manner. Thus we
have shown that the solutions to the generalized Riemann problem for f having at
most a single inflection point are piecewise smooth and consist of at most a single
shock wave and at most a single irregular point (at x0).
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f has two inflection points. In the interest of brevity, we omit the solution for the
case of f having two inflection points. The method of proof is repetitive to that
presented above. The proof shows that in addition to solutions with a single shock,
either two shock waves can be present for all > 0 or three shock waves can appear in
the solution (i.e., a single shock which is present for 0 <_ =< t which then "splits", via
interaction with rarefaction waves, into two shocks which are present for t =< t).

2.2. A conjecture on loss of piecewise smoothness for more than two inflection
points. The constructive proof given for Theorem 2.3 is not readily extendable to f
having three inflection points since the number of cases to be considered is large. In
fact, we argue that for f(u) having three or more inflection points, the solution need
not be piecewise smooth. An example is sketched below in which a solution having a
countably infinite number of arbitrarily small smooth pieces may occur.

Let (a,b) and (c,d) be rarefaction intervals of f(u) as illustrated in the lower
left hand side of Fig. 2.4. f(u) has three inflection points in the interval [d, b]. Consider
the corresponding generalized Riemann problem (2.8), (2.9). Using the construction
methods of the proof of Theorem 2.3, it is seen that the generalized Olenik solution
initially has a single shock curve determined by ht(x ) and hr(x) starting at x0 with
slope dC(b,c; u)/du. The rates at which the left and right states ut(t) and ur(t) change

f(u)

ac d b’

t

FIG. 2.4. Formation of a single "bubble" in a solution. The dotted lines in the middle diagrams on the right
emphasise the nonlinearity of the convex envelope.
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along the shock curve depend on the functions h t(x ) and h r(x ). Given (c,d) (and
hence ( a,b )), [x0,xr] and h(x), it is possible to determine ht(x ) and [Xt, Xr] such that
for all time > 0

(2.24)
where

E(u,(t),u,(t); u)= C(ut(t),g(t); u)UC( g(t),u,(t); u),

(2.25) f,(g(t))=OC(ut(t),g(t);u) _i)C(g(t),u,(t);u)
Ot it

The convex envelope (2.24), though consisting of two chords, defines a single shock line
and represents a metastable balance between a single and a two shock configuration.
This construction can be perturbed to create a single "bubble"; that is a time interval
< < 2 over which the shock separates into two shocks as is illustrated on the right in

Fig. 2.4. This is accomplished by adjustment of the rate at which the rarefaction waves
(i.e. adjustment of the respective h functions) enter the shock waves from the extreme
left and right. The above construction can be iterated to produce a second bubble
starting at by adjusting (slowing) the rate h(x) appropriately. It has not as yet been
determined if, for a given set of intervals (a,b}, {c,d}, [xt, xo], and [x0,x], it is
possible to construct a sequence of generalized Riemann problems, where the th
problem is characterized by the choice of functions h(x), hir(X), for which the solution
to the th problem has such bubbles. If this was possible, the solution to the limiting
problem obtained as i m would not be piecewise smooth. We note it is certainly
possible to create an infinite sequence of such problems if only { a,b }, { c,d }, and
[x,x0] are held constant and the interval [x0,xt] is allowed to vary with i. It remains
to be proven that such a sequence of problems can be chosen such that [x0,xt] also
remains fixed.

3. The generalized Riemann problem for initial data with multiple points of discon-
tinuity. Let xt<xo <X < <X <Xr. Consider (2.8) with initial data

Ul, X < XI,

ht(xl,Xo,Ut,Uo;X), xt<x <x0,

(3.1) u(O,x)= h(x,x+,u,u+;x), xa<x<x+, j=O,1,..-,n-1,

hr(xn,Xr,Un,Ur;X), Xn<X<X
Ur, XrX,

where ht(x ), hi(x), h,(x) are as in (2.7), and {ut, u0}, {Uo, Ul},...,{u,,u,} are
rarefaction intervals of f. The Cauchy problem (2.8), (3.1) is an extension of the
definition of the generalized Riemann problem to include multiple initial discontinui-
ties.

THEOREM 3.1. The solution to (2.8) with initial data (3.1) forf C2: R-R having
at most one inflection point is piecewise smooth. There are no more than (n + 1)! shocks in

the solution and no more than (n + 1)! irregular points.
The restriction to either zero or one inflection point for f(u) guarantees that when

two shocks interact a single shock is produced. Thus given a finite number m of initial
discontinuities, the number of shocks in the solution remains bounded by m! and the
solution will be piecewise smooth. For f having two or more inflection points there is
no a priori bound on the growth of the number of shocks in time since an interaction of
two (incoming) shocks can conceivably give rise to two or more (outgoing) shocks (or to



RIEMANN PROBLEM IN TWO DIMENSIONS 1193

a single shock which later splits via interaction with rarefaction waves into two or more
shocks) and the possibility of generating a solution that is richer in structure than
piecewise smooth exists. It is only through the decrease in variation of the solution (ie.
the decrease in shock strength with in time) that such a bound may be possible. Such a
bound on the growth rate of shock number combined with a general statement for the
> 2 inflection point case of {}2 is required for a more general statement on the piecewise
smoothness of the solution to the generalized Riemann problem for initial data with
multiple points of discontinuity.

Theorem 3.1 will be proven by finite induction on n in (3.1). The case n 0 is the
generalized Riemann of {}2.1. The case n 1 is given below. It suffices to illustrate the
salient points of the general induction step.

Proof of Theorem 3.1 for n 1. Consider (2.8) under three possible cases of Cauchy
data:

(3.2)

II l, XXi,

hl(xt,Xo,Ul,Uo;X ), xt<X <Xo,U(X)=
ho(xo,xl,uo,Ill;X) Xo<X<X1,

Ill XI X

(3.3)

UO X <=Xo
ho(xo,Xx,Uo,Ux;X ), Xo<X<Xx,

U(X)’-- hr(Xl,Xr,Ul,Ur,X) x <x <Xr,

Ur Xr<X

(3.4) u(x)=

UI
ht(xl,xo,ut, uo;x), xl<x <x0,

ho(xo,Xl,Uo,Ul;X), Xo<X<X
h r( xa,Xr, Ul, Ur; X ), X < X < Xr,
U XrX.

From {}2, construct the solutions to (3.2) and (3.3), denoting them UL(t,x and UR(t,X )
respectively. Denote the solution to (3.4) as Uc(t,x ). The following four (exhaustive but
not mutually exclusive) possibilities exist for the solutions uL and uR: 4

P1) There exists a rarefaction wave (v,O, xo) common to both solutions with
v ( uo, u ), x (x0, x1) which propagates unimpeded for all t.

P2) Both u. and uR have a shock curve and there exists a point p2=(t2,x2)
common to the shock curve of each solution for some 2 > 0.

P3) UL has a shock curve, denoted (u(t),utr(t),x) and Ulr(13)’-Ua for t3>0.
2(t4) U for some > 0.P4) u R has a shock curve, denoted (u(t),U2r(t),x) and ur 0 4

4As x0 and x are spatially separated, intuitively Mc is expected to be composed thusly:

Mc left piece of M/ W piece due interaction of waves xo and x W right piece of MR

Conditions P1 through P4 characterize the interactions between waves from xo and x1.
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If P1 holds (if neither solution has a shock wave, then condition P1 holds) then

u(x,t) ifx
(3.5) =- us(x,t) ifx>xo+f’(c)t,

is the unique solution to (2.8) (3.1) obeying (1.4) and (1.5).
If P1 does not hold let mn denote the minimum of the existing values t:, t3, t4.

0If tmin=t:z then let XOL=--(u(t),Ur(t),O, Xo)and ,R=(U(t),u(t),O,x)denote
the shock waves propagating respectively from x0 in uz and x in uR. Then for =< t

if x<__h-(v)+f’(v)t,
(3.6) Uc(X’t)=-

u(x,t) ifx>hl(c:)+f’(cE)t,

where c:=u(t)=u(t2) is in the interval (Uo, Ux). For t>t:, Uc(X,t ) is the gener-
alized Oldnik solution to (2.8) with initial data (at t2)

where

x:=x,+f’(u,)t:z, xt:=x+f’(u)t.
h(x) is defined by the rarefaction interval { uz, u(t2)} where u(t) is the left limit of
u at (t2,x2) for the shock curve Y0 in uc propagating from x0 in (3.6). (Y0 is identical
with Y for 0 =< =< t2.) Similarly htr(X) is defined by the rarefaction interval ( U,Ur(t)}
where u(t_) is the right limit of u at (t,x) for the shock curve Y. propagating from

xx. (x is identical with yl for 0 < < t.)
If tmin= t3, let x3=x +f’(ul)t. There exist two possibilities for the solution uc if

u R has a shock wave. (If uR has no shock the solution for uc is deduced easily from the
discussion below.) These two possibilities are either that UR has a leftmost rarefaction
fan

a) centered at the point x (Fig. 3.1a),
b) determined by the shock wave Yx originating at (0,xx) (Fig. 3.1b).
We note that in either case this leftmost rarefaction fan in UR is a smooth

continuation of the rightmost rarefaction fan in the solution u for =< 3. For =< t3, let

[ u(t,x), x <=x +f’(u)t,
(3.7) Uc(t,x)= UR(t,x), X>=xx +f’(ux)t.
At (t3,)C3) the shock 0 originating from (0,x0) encounters the first rarefaction wave
from the solution for x > x3. For case a) above, the shock Y’0 is determined for > by
the rarefaction fan determined by h l(xl, Xo, ut, u0; x) and the rarefaction fan centered
on (0,Xx). Denote the curve followed by the shock Yo for t> as (t,xo(t)). Then, for
case a),

u,, x <Xo(t),
(3.8) Uc(t’x)=

uR, x>Xo(t ),
t>t3.
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(t3,x3)

X0 X1
(a)

(t3,x3)

X0 Xl
(b)

FIG. 3.1. Two possibilities encountered under case P3 described in the text. Dark lines are shock waves,

light lines are rarefaction waves.

In case b) the shock Y’0 is determined for > 3 by the rarefaction fan determined
by h/(xl, Iv, ul, u0; x) and the rarefaction fan determined by the shock line Yx- In either
case a) or b), the resulting shock, Y0 hits the shock "1 at some time 5 > or it does
not. If it does not, the solution for all > is given by (3.8). If it does, the solution for
t3<=t <=t is given by (3.8) and for t>=t5 by the solution to a generalized Riemann
problem of the type discussed in {}2.1. It is to be noted that the solution is C
continuous at 3 (ie. all waves propagate continuously from e to + e and all waves
except the interacting shock lines are C continuous at t.

If tmin t4, an analogous construction to that for case P3 holds.
In all cases the constructed solution uc is thus piecewise smooth. The general

induction step for Theorem 3.1 follows the above argument with a more complicated
notation.

4. The two-dimensional Riemann problem. For convenience we shall use the nota-
tion fl f, f2 =- g, Xl x, x2 Y for the discussion in two spatial dimensions.

DEFINITION 4.1. The Cauchy problem (1.1) with initial data piecewise constant on
a finite number of wedges focused on a single point in the x,y plane shall be referred to
as the two-dimensional Riemann problem. Without loss of generality, this point can be
taken to be the point x 0, y 0.

For the case g=f, under the 45 rotation 2=x +y, 2rl=y-x, (1.1) becomes

(4 1) 3u Of(u) =0.+
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From (4.1) we see that the solution can be obtained along each l=constant plane
independent of other ft. In particular, this implies the solutions obtained in the r/< 0
half space can be obtained independently of the solutions in the /> 0 half; by the
symmetry of the problem, no new solutions will be found in the < 0 half space that
are not found in the upper. We therefore restrict our discussion to the half space 1 > 0
(y > x). The solution in the plane r/= 0 is discussed in Lemma 4.4.

In the /> 0 half space, the solution in each r/= constant plane is just that for a
generalized Riemann problem in one dimension.

LEMMA 4.2. Let u(t,,lo) denote the generalized Riemann problem solution in the
l=r/o>0 plane. Then the solution u(t,,lx) to the generalized Riemann problem in the

1 plane (1 >0) isjust a similarity solution of u(t,,rlo) given by

(4.2) u(ct,ct+ b(c),rl)=u(t,t,rlo),

where c

Proof. If Oo() is the initial data for the generalized Riemann problem on /o, then
Wo(=c+ b(c))=Oo( ) is the initial data for the generalized Riemann problem on
where c=*lx/to and b(c) is given by the wedge pattern of the two-dimensional
Riemann problem. Further, the function u(r=-ct,=-c+b,,ll=-clo)=U(t,,,lo) is a
weak solution of the generalized Riemann problem on r/a having initial data w0. [3

Thus the solution to the two-dimensional Riemann problem (4.1) in the > 0 half
space is found from a mapping M: R R2 which is similarity transformation in t,
and therefore continuous onto the domain > 0, , r/> 0.

THEOREM 4.3. The unique (in the sense of Krukov) solution in the plane rl >0
(y > x), to (1.1) with initial data that is piecewise constant on a finite number of wedges
focused on a single point in the plane, with fl =-f2 =-f f C2: R -- R, f having at most one
inflection point, is

a) piecewise smooth,
b) composed of nonlinear waves and constant states which are the images under a

similarity map M defined by Lemma 4.2 of the rarefaction and shock waves and constant
states of a generalized Riemann problem in one dimension,

c) composed of curves of irregular points corresponding to images under the map M of
the irregular points in the one-dimensional Riemann problem.

Proof. Follows immediately from Lemma 4.2 and Theorem 3.1.
L.MMA 4.4. a) If the half line *1 O, < 0 is not a line of discontinuity of the initial

data (i.e., is not a wedge line) the waves incident upon the corresponding halfplane t > O,
l < O, rl 0 are continuous across the halfplane.

b) If the half line 1 O, < 0 is a line of discontinuity (constantjump) of the initial
data, it remains a halfplane > O, < O, *1 0 of (in general variable) jump discontinuity
in the solution.

Proof. a) Follows from taking the limit r/ 0 of the solution in either half plane.
b) Follows from taking the limit of solutions for which the wedge line in the initial

data is displaced slightly from the 0 axis.
Similar statements hold for the half line rl 0, > 0.
Although the map M provides a means of constructing the solution to the two-

dimensional Riemann problem, it is not a convenient method of doing so. In particular
it is a method that will not generalize to cases f4: g where no appeal to a one-
dimensional analysis can be made. We propose that the correct method of dealing with
the general solution to the two-dimensional Riemann problem is to identify the general
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two-dimensional nonlinear waves. In [4] we identify these waves for the case f= g and
use the construction method initiated by Guckenheimer [1] and Wagner [6] to piece
these waves together into entropy obeying solutions.

5. Concluding remarks. The condition fl =f2 =f, f C2: R-o R, f having at most
one inflection point has been shown to be sufficient to guarantee that the solution to
the two-dimensional Riemann problem is piecewise smooth. A construction has been
presented detailing a presumed mechanism for loss of piecewise smoothness if f has
three or more inflection points.

The Riemann problem in one dimension has been generalized to include a finite
number of discontinuities and smooth "rarefaction" variation in the initial data. Suf-
ficiency conditions based upon the number of inflection points in the convection
function f have been obtained which guarantee piecewise smoothness of the solution
to the generalized problem.

Acknowledgments. The author wishes to thank Professor James Glimm for sug-
gesting this problem and for his guidance on several issues of this paper. Thanks also to
Jonathan Goodman for several helpful discussions.
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Abstract. A method for the identification of parameters in a general class of variational inequalities from

the knowledge of the solutions is proposed. The method consists of embedding the original problem into a
sequence of regularizing equations. An a priori estimate is fundamental to prove that limit points of the
regularizing sequence are solutions of the original problem. The method is applied to various applications, in
particular, to the dam problem and to linear elasticity with friction.
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1. Introduction. Starting point for the present paper was the following identifica-
tion problem which is considered in [3]"

(1.1) Given u* //l(fl)tHl’() and f* H-l(fl), find a matrix a* =(a) with
entries aiy* L(fl), such that -X7 .(a*Vu*)=f*.

This problem is closely related to a problem which occurs in oil field exploration
(see [4]). In [3] a method for the solution of (1.1) was proposed which consists in trying
to obtain (1.1) as asymptotic steady-state of a regularizing system of approximating
parameter-dependent problems. The basic idea was to construct the regularized equa-
tions in such a way that a Lyapunov-type a priori estimate holds from which conver-
gence results can be derived.

In [3] this technique was specified and applied numerically. A slightly different
regularization was used in [6]. In [7] the above idea was applied to compartment models
for ordinary differential equations.

In this paper we give a general functional analytic framework for the technique
under which the results of [3], [6], [7] can be subsumed. Moreover, we show that the
method may be used for identifying the system coefficients of various other problems
involving partial differential equations, among those the problem of identifying the
permeability matrix in the dam problem from measurements of the pressure and the
problem of the coefficients of elasticity in linear elasticity from measurements of the
displacements.

The paper is organized as follows. In 2 our method is formulated in functional
analytic framework and is applied to general elliptic variational inequalities. Conver-
gence and stability results are proved. The method used here differs slightly from that
used in the previous papers [3], [6], [7]. In 3 we extend some of the results of 2 to the
problem of identifying parameters in evolution equations. The concluding 4 brings
various applications.

2. Stationary variational inequalities. We now define our general functional ana-
lytic setting. Let the separable and reflexive Banach space V be dense with continuous

*Received by the editors February 16, 1984, and in revised form February 14, 1985.
Universitt Augsburg, Memminger Strasse 6, 8900 Augsburg, West Germany.
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embedding in the Hilbert space H. Then VcHc V* with dense and continuous
embedding where V* is the dual of V. The dual pairing between elements of V* and V
is denoted by (.,.). By C we denote some nonempty, closed and convex subset of V.
Moreover, let X denote another Hilbert space with the inner product [.,. ]. The norms
of the above spaces are denoted by II" l[ v, II" II n, I[" II v,, II" [I x. Finally, we assume that
(Xo, II" II o) is another Banach space such that X0 is a dense subspace of X.

We then consider the parameter identification problem:

(P) Given u*-D(S)C and f*-V*, find a*_X with (a*,u*)-D(A) such
that there is a w* S(u*) which satisfies the variational inequality

(2.1) (w*+Al(a*)+A2(a*,u*)-f*, o-u*>+q(o)-q(u*)>O VvC.

Here and throughout we assume:
(A1) S D(S)c V---) 2v* is a maximal monotone graph with u* intD(S).
(A2) A :X V* is linear and bounded.
(A3) A2:D(A2)X V-) V* is a bilinear map such that

(i) (Xo V)cD(A2)
(ii) I(Az(a,u), o)l=<qllallxo Ilullvllollv, laXo, u,v v, for some ]t >0.

(A4) xI,: V--)R is continuous and convex.
Remark 1. u* intD(S) implies that S is locally bounded at u* (see [8, p. 31,

Lemma 2.3]).
Remark 2. From (A3ii) follows that A(a,,u,)A2(a,u) weakly in V* if (an, Un)

X0 Vand Ila,-allxo->O, Ilu.-ullv-)O.
In 4 the above assumptions are verified for various applications. We assume:
(a5) (P) has at least one solution a* X0 such that (A(a*, u- v), u- v) >

illu-vii:v, ’u, v C, for some >0 (uniform monotonicity on C).
We now introduce a sequence of systems of variational inequalities the solutions of

which shall for n---) converge to a solution of a finite-dimensional analogue of (P).
To this end, let Vu and WM be finite-dimensional subspaces of V and X0 such

that:
(A6) u* Vu.
(A7) (Al(a)+A2(a,u), v)=O, whenever aW#, uC, and vC-C. Here
w := (zXo:[z,l=OVW,}.

Whereas (A6) is easily verified, the compatibility condition (A7) is not obvious.
We refer to {}4.

Now let e > 0 be arbitrary. For fixed h > 0 we consider the problem:

(Ph) Given (ao, Uo) Wt(D(S)C Vu), find (a,,u,)- WM(D(S)Ct VN)
such that there exists w,

_
S(u,) (n = l) with

Un+l U
(2.2t e

h +Wn+ +A,(a.+l)+AE(an+l,Un+l)-f*, o-U.+l)
+ x( o ) xT ( U. + ) > O [ o C (") VN,

(2.3) Jan+I--an]( )h rl Al(l)+A2(rl’Un+l)’ Un+I--U* [’0 WM"

Let us postpone the question of solvability and assume that ((a,,u,,)},,>=o solves
(Ph). We derive an a priori estimate which is fundamental for all subsequent considera-
tions.
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To this end, put q." u u*, r" a a*.
Substitution of v’= u* into (2.2) and v’= U.+l into (2.1) gives:

q,,+x-q,,h + Wn+l +Al(an+a)+A2(an+l’Un+l)-f*’ q"+) + q’(u,,+)- q’(u*)

O/(Un+I)--(U*)-I- (W* +Ax(a*)+A2(a*,u*)-f*,qn+x),
whence

qn+l--q.(2.4) 0>= e
h qn+l

where the monotonicity of S and (A5) were used. Let P denote the [.,. ]-orthogonal
projection onto the closed subspace WM of X. Substitution of /"= an+l-Pa* into
(2.3) yields by (A7) and a*- Pa* W"

0=[a.+l-a. ] [a.+l-a.. *]h ,r.+ + h ,a -Pa

-<Al(rn+l)+A2(rn+l,Un+l), qn+l>

+ (A(Pa* a*)+A(Pa*-a*, Un+l), q. + 1)
, rn+l -(Al(rn+l)+A(rn+l,Un+l)qn+l).

Addition to (2.4) gives:

O>(e q.+-q. )[ rn+l-rn ]h qn+l + rn+l +Sllq.+ll2v-
Hence, from standard arguments, for all n 0,

and upon summation,

2 2
(2.6) --2h IIq.+xll+ llr.+l + E Ilq+l]lVs  llq01l + llr0

k=0

Hence we have proved the a priori estimate

(2.7) sup vC<,
n k=l

where C depends on e, a0, u0, u*, a*, but not on h, Vu, W.
Remark 3. Note that (2.7) holds for any solution a* X0 such that A(a*, .) is

uniformly monotone on C Vu.
THeOreM 2.1. Let the assumptions (A1)-(A7) hoM. Then there is an ho>0 such

that (Ph) has a solution {(a, un)} z o whenever 0 < h h o.
The proof uses the following general result on variational inequalities (see [8, p.

197, Satz 2.7]).
THeOreM 2.2. Let B be a reflexive Banach space and Kc B, K , be closed and

convex. Let g K be convex and lower semicontinuous. Moreover, &t P D(P)cB
2"* be maximal monotone, and &t Pz’K B* be continuous, bounded, pseudomono-

tone and coercive with respect to 0 B*. Moreover, let the following conditions hoM:

(2.8) intD(P)D(g)
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(2.9)

(2.10) Kt3 int D(P
Then there is a uK such that for somewP(u):

(2.11) (w+P2(u), v-u) +g(v)-g(u)>__O VoeK.

(The terms bounded, pseudomonotone, coercive have the usual meaning; cf. [8];
is the characteristicfunction ofK and the subgradient ).

Proof of Theorem 2.1. Let Wu’= span(9,...,’u} with [9,91=, Vi, j. We
conclude inductively. So let (ak, u), 0 k 5 n, already be constructed. We consider:

(212) [a-a,]h -(l()+A2(’u)’ U--U*)=0 VWM.

Given u e C, (2.12) has the unique solution
M

(2.13) a=a,+h E (A,(k)+A(k,u), u-u*>k.
k=l

Hence the solution of (2.2), (2.3) is equivalent to finding uD(S)C VN such that
with some w S(u):

(2.14)

e
h +w+Al(a)+A2(a,u)-f*,v-u +q(v)-q(u)0 VvCnVN,

with a given by (2.13).
We apply Theorem 2.2 with the following specifications"

B=V, K=CVu, P,=S, g(v)=(v)-u,+f*,v
M

Pz(U) "= u+A,(an)+h E (AI(qk)+Az(qk,u), U--u*)AI(k)
M

+A:(a.,u)+h E <A,(q)+A:(q,u), u-u*)A(q,u).
k=l

K is closed and convex, and u* K. Pt is maximal monotone. By (A1), u* int D(Pt)
and u* D(Og) from the continuity of q which yield (2.8). Moreover g and X are
proper convex functionals, and g is continuous at u* which lies in the effective
domains of g and X. Hence (2.9) holds (see [8, p. 125, Satz 5.16]). Finally, V= D(Og)
and thus D(Pt + g)= D(Px). Hence (2.10) follows from u* KintD(Pt).

It remains to show that P2 has the required properties.
a) Pz’K V* is bounded: This follows from (A3ii) and:

M

k=l

llu-u*ll { ,ll  ll ollull + Ax(+)Ilv, }.
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fl) PE:K V* is continuous: This follows from a lengthy but straightforward
computation which uses the bilinearity of A 2 and (A3ii) as essential tools.

V) P2 :K V* is pseudomonotone: Let (u,) cK be given with u,- u weakly in
V and limsup(P2(um), Um--U) <__0. From dim WM< o it follows that umu strongly
in V and hence by fl): PE(Um) P2(U) strongly in V*. Hence for all w V:

(PE(U), u-w)<=liminf(P2(um), Urn--W).
) P:" K---’ V* is coercive with respect to O B* whenever 0 < h =< h o, where
does not depend on n" Let u K. We then have by (A3ii)"

u>  llull / (Ax(a,), u) + (A:(a,,u), u)
M

+h E (AI(k)+A2(*k,U), U--U*)(AI(k)+A2(k,U), U)

8 2

+h E (AI(*k)+A2(k,u), u)--(Al(*k)+A2(k,U), u

M-- E (AI(*k)+A2(k,u), u*) "4=1
Since (a,,u,) solves (2.2), (2.3), the a priori estimate (2.7) yields that (a,) is bounded
in X by a constant which does not depend on n. This together with the finite
dimension of WM, Vu, the boundedness of A and (A3ii) yields:

e h M )(P:(u), u)>= Cl---’YlC2--"-’)t? Z II%ll ollu* Illl..
k=l

h M ) M

C --F --C4 Z vill’t’ ll = h E (Ai(qtk),
k=l

XIlU*[[2V []U[lv--
k=X

Now choose ho>0 so small that the expression in the first bracket becomes
positive, which is possible independently of n. Then it follows that (P:(u), u) >0 for
Ilull >_-R, R sufficiently large, which proves the coercivity. This concludes the proof.

THEOREM 2.3. Let (A1)-(A7) hold, and let 0<h=<h 0 (h0>0 as in Theorem 2.1).
Let ((an, U. ) } >__ 0 solve (Ph). Then it follows that:

(i) u, u*, strongly in V.
(ii) Every subsequence of { a, } has a cluster point a WM such that with some

wo S(u*)
(2.15)

(woo +Al(ao)+A2(ao,u*)-f *, v-u*) +

( i. e., a solves the finite dimensional analogue of (P)).
(iii) If ’--0, C=V, S(u*)={woo}, and [[u-vlln<const.llu-vl[ v Vu,v Vthen

the whole sequence { a, } converges to some ao WM such that (2.15) holds.
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Proof. Equation (2.7) implies (i). Moreover (a,}, and hence any subsequence
(a, }, is bounded in X and has a weak cluster point a X. From dim Wt< it
follows without loss of generality that Ilam-allXo0 and thus a Wr

By (A1) S is locally bounded at u* (compare Remark 1). Since Ilum- u*ll v- 0, we
may assume that w,,w V* weakly-star, and by reflexivity of V, weakly. The
maximal monotonicity of S implies w S(u*) (compare [8, p. 33, Lemma 2.12]).

We show the validity of (2.15). To this end, consider (2.2). From IlUm-U*llvO
and [la,,,-aollXo0 it follows by Remark 2 that A:z(am, U)--,A2(a,u) weakly in V*.
By (A2), A1" X V* is continuous, and thus A (am) A (a) strongly in V*. More-
over, q,(u,,+ 1) t,(u*), by (A4). Passing to the limit as m in (2.2) gives (2.15).

It remains to show (iii). Let t’ 0, C= V and S(u*)= {w }. Then (2.1) is equiva-
lent to the equation

(2.16)

and (2.15) reads

w +Al(a*)+A:z(a*,u*)-f*=O,

(2.17) (w +Al(a)+Ag.(a,u*)-f*, o)=0 Vv Vu.

The solution set L(Vu)’= {aX0: (2.17) holds} is an affine subspace of X0, and
a* L(VN). Moreover, for every gtL(VN) such that A2(&, .) is uniformly monotone
on C Vu, the a priori estimate (2.7) is valid (compare Remark 3).

Now let fi L(Vu) be arbitrary where Az(& .) is uniformly monotone on C VN.
Then by (2.5) there exists

(2.18) l’= lim e u,

But Ilu,,- u*ll0, and thus Ilu- u*ll0, i.e.,

(2.19) l= lim X"

Now let al,a2 W be any two lit points of (a. }. Then

(2.20) liar- x=[la-
2For ’= a*+ (a--a)L(VN) and sufficiently small Il>0 the operator A2(h, .)

is uniformly monotone on C Vu. Hence

,_) =lla -a X(a -a or Ila -a  l X 0

Thus ( a, ) has a unique limit point for n
Remark 4. For numerical puoses it is noteworthy that the convergence of

Ila,-all Xo can be accelerated by a proper choice of the scaling factor
Remark 5. Under the conditions of (iii) we have form u* Vu:

u*)=

Hence if A and u* , then (A2(a, u*), u*) > 0 which means that A2(a,.)
is positive definite at u*.
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Next we show that limit points a of (Ph) are stable against perturbations in the
initial data if Ag_(a,.) is uniformly monotone on C and a is unique. However, for
technical reasons we have to impose the assumption A O. Also, the admissible set of
parameters h has to be restricted.

THEOREM 2.4. Let (A1)-(A7) hold with A O. Assume initial data (aXo, UXo ), IX I=< , o,
are given such that

(2.21) aXo ---> ao, UXo ---> Uo as X --+ O.

Then there is an h(0,h0] such that for 0<h=<l the following assertion holds: If
(an, Un}n_>oxX solves (Ph) with initial data (aXo, UXo), [XI<Xo= and if ax is any clusterpoint
of {a x}n i-hen

(2 22) x a olim a ,
X--+0

0provided the whole sequence { a } converges to a and A2(a, .) is uniformly monotone
on C.

Proof. Let 0 < h _< h o. From (2.2), (2.3) there follows"

n+l--Un(2.23) e
h ( ) / (x x u +,I,(v)-,I, u,,++ Wff+ +A 2 an+l,Un+ -f* v- n+l

/

with some w.X+ S( u Itn+l)

(2.24) an+l-an x x ,
h ,ll A2 ll,U,+l ,u,+x-u =0 VWu.

o 2. ,Let u, u,, a, a,, q, u, u Then it follows:

Nn+l--e
h

whence

Vv Cn V,

+wX.+i+A2(ax ux )_f, x }+( x )-(u 1)n+l, n+l Un+l--Un+l Un+l n+

0 0 Uh 0=<0<= e n+lh Un "+’Wn0+l +A2 an+l’Un+l -f*’ n+l Un+l

)_,(uO )n+l n+l

) 0 ’Yff+lO> e.
y)+I-yff

Yff+l + (A_(a,+ih

( x ) YnX+l)+ A2(rnX+l,Un+l
Putting l "= rnh+l in (2.24) yields:

[O= r2+1--4 r2+ + n+’-an r2+h h

x )X ) Y+I) (A2(r+I Un+l qn+

--[ r:+l-r:, r:+l]-(A (r:+l uX 1) Y:+I) (A2(r:+l,Y:+l) oq.+ ’,
h 2 n+
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Addition gives:

_[_(m2( o ,yn+l)yn+l) (m2(Fn+l,y+l) 0 )an+l qn+l

From (A3ii) we have for every v V:

o o o ll2v.[( A2(a, v), v} ( A2(a.+ t, v), v}l__< VI[ a.+x-a [Ixol[ v
Hence there exists a t5 > 0 and an n o N such that"

(2.26) (A2( an+x ,YnX+ ), y.X+,) > y.X+[l---
Using dim Wt< o we obtain for n >= no:

( h YX+)+[ rx+x-Gxh GX+x]

Now we put

Then

and hence,

or

I n >= n o.

V -[- "Ylll rL oll Yn+lll 11 o
qn+l

< 11YnX+l = = 1 IIll o+ IlyLll+ --y12C1211 rnX+ qn+xll
2

V

=< c IlyLxlI,,/ lirLll Ilqn+llv’0

). e 112+ 1 2(nh+l Yff+l -l[r+lllx

e 1

" (Yn"h, Y+I) -[- "" [r,F+l] b+l,
n+l < (JO+l " "Yn+l where y.+x CI[ o

qn+l

bn+ (1--n 1)<tn ln>no+

By (2.7) we may assume that 0 =< 3,,+ =< x < 1, n >= n o. Hence @x+ ----< (1 "[- On+ 1)n, n >__ n o,
where

2"Yn+l oll q,O+ v for some o > 0.On+l" l n+
Induction yields for any p N"

P

o <51(1+ )@Xo"+P= Ono+k
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But

I-[ (1+O,o+,)=< II exp(O,o+,)=exp E Ono+,
k=l k=l k=l

)=<exp o E Ilqk112v
k=l

which is finite by (2.7). Thus

(2.27) @X=<const-x for all n>=no, IXl<_;ko.

Next we show that limx oXo 0. From (2.25) we have for any n =< n o"

qn+ I1"
By (2.7) the real sequences { II o oa+xllxo} and {11 vq+ II } are bounded. Thus

Choosing h <" 1/C yields

= C.,
and thus

@"o<= 1 Ch

whence lim x o ,Xo 0.
x is a cluster point of { a, } we haveThe proof is now easily finished: Since a

a,,X a xoo for some subsequence ( a,, }.
o) it follows that a a and thusSince ao is the unique limit point of (a, ,, o,

I1" 11 2Lm ll -all<c.,2o,aoo ao x an, nk x--

from which the assertion follows. []
o is uniquely determined under the assumptions of Theorem 2.3 (iii).Remark 6. a

Finally we discuss the situation as dim Vs o. To this end, let (Vs } s >__ 2 be a
sequence of subspaces of V such that u o, u* Vs, VN >_ 2. Assume to each N there is a
subspace WM(s) of Xo of (smallest) dimension M(N) such that ao Wt(s and such
that (A7) holds.

Let

(A8) Vsc Vs+, VN >= 2, U Vs is dense in V.
N--2

By Theorem 2.3 for any N>= 2 there exists an a NE?.oo WM(N) such that with some
w2S(u*)

( N) +A (aN * *)(2.28) w2+A,(aoo 2 oo, u )-f*, u +xI’(v) q’(u*)>__0 VoECF3Vu.
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NThe a priori estimate (2.7) gives that (a ) is bounded in X (recall that the constant C
does not depend on VN and WM). Thus a subsequence, again denoted by (aU},
converges weakly in X to some a X.

Let us assume
(A9) XX (u*)c.D(A2), and a,,a weakly in X implies A2(a,,,u*)A2(a,u* )

weakly in V*.
Then (a,u*)D(A2). We show that a is a solution of (P).
By the boundedness of S(u*) we may assume that w w* weakly in V* whence

w* S(u*) by the maximal monotonicity. Moreover, from a Na weakly in X
N A(a weakly in V* since every continuous linear mapping isfollows Al(a) ---)

weakly sequentially continuous. We assume further:
(AIO) (V, I1"11) is a Hilbert space, i.e., I1"11 is induced by an inner product (.,.)

on V.
Now let o C be arbitrary. By (A8) there is a sequence VN VN with Ilvu-Ol[vO.
Let Pc denote the (.,-)-orthogonal projection operator onto C. As C is closed and

convex, Pc is nonexpansive. Thus, []v-Pcvullv<_llv-vzvllvO, as N, and also,
PCUN U * -"> U U *, strongly in V.

We have

(w* +Al(ac)+A2(a,u*)-f*, v-u*) + (v)-(u*)

[(w+AI(aN)+A2( ,u*)--f*, PCON--U*) + (PcON)--(U*)]
[( U)+A (a u*)-A (aN u*) PCVN u*)]+ w*-wU+Ax(a)-Al(a 2 , 2 ,

+ (O)--(PcoN)+ [(w*+A1(a)+A(a,u*)-f*, o--PcoN} ].
The first bracket is nonnegative by (2.28), and the second and third brackets approach
0 as N o. Hence passing to the limit as N yields

(w*+Al(a)+A2(a,u*)-f*, v-u*)+q(v)-i’(u*)>=O VvC,

i.e. a solves (P).
Putting things together we obtain:

NTHEOREM 2.5. Let (A1)-(A10) hold. If {a } denotes a sequence of limit points of
the solution of (Ph(u)), then each subsequence has a weak cluster point in X which solves
(P).

3. Equations of evolution. We now extend some of the results of the preceding
section to equations of evolution type. The notations have the same meaning as in [}2.
The vector-valued Sobolev spaces L2(0, T; H), L2(0, T; V), L2(0, T; X), L2(0, T; V*)
and L(0, T; X0) together with their norms are defined as usual. Clearly L2(0, T; V)c
L2(O,T;H)cL2(O,T; V*) with dense and continuous embedding. The dual pairing
between elements of L2(0, T; V*) and L2(0, T; V) is denoted by ("l’); i.e., for we
L2(0, T; V*) and v L2(0, T; V) we have

(3.1) (wlo) fo (W(t), u(t)) dt.

The inner product [. l" in the Hilbert space L2(0, T; X) is defined by

(3.2) [wlo] "=/[w(t), .(t)] dt, w,oL-(O,T;X).
a0
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Finally we set

(3.3) WI(0, T; V,H)’= {u L2(0, T; V)’u has a

du L2(O, T; V* ).generalized derivative )

As is well known, WI(0, T; V, H) is a Banach space with the norm

(3.4)

Recall that u WI(0, T; V, H) implies u C(0, T; H) (possibly after a modification on
a set of zero measure). Now let

C "= {oWI(O,T; V,H)’o(O)---O).
An appropriate identification problem for an evolution process is;

(P) Given u*C and f*L2(O,T; V*), find a*L2(O,T; X)with (a*,u*)
D(A2) such that there exists w* S(u*) with

(3.6)

+w*+Al(a*)+Az(a*,u*)-f*v-u* +(v)-(u*)>=0 VvC.

In correspondence with the assumptions of [}2 we assume:
(A1)* S’D(S)c L2(0, T; V) 2L2’r;v*) is a maximal monotone graph with u*

intD(S).
(A2)* Ax" L2(0, T; X)L2(0, T; V*) is linear and bounded.
(A3)*A’D(A)cL2(O,T; X)Lz(O,T; V)--,L2(O,T; V*) is a bilinear map

such that
(i) L(0, T; Xo)XL2(0, T; V)c D(A2)
(ii)

V a L(0, T; X0), u, v L2(0, T; V), for some y > 0.
(A4)* if" L2(0, T; V)R is convex and continuous.
Remark 7. The condition u*(0)= O is merely a normalization.
Remark 8. The operator d/dt with D(d/dt)" { u W(O, T; V, H)" u(0)= O } is

maximal monotone from L(0, T; V) into L(0, T; V*).
But as D(d/dt) has empty interior in L2(0, T; V) it appears that the techniques of

[}2 do not apply unchanged.
Remark 9. If Ila.-allL<O,r;Xo)--,O and Ilu.--UlILO,r;v)--’O, then A2(a,,u,)

Az(a,u ) weakly in L2(0, T; V*).
We proceed in close analogy to 2. To this end, let VN and Wt denote finite-di-

mensional subspaces of W(0, T; V,H) and L(0, T; X0) with
(A5)* u* Vu.
(A6)* (Al(a)+A2(a,u) Iv) =0, la= Wt, u,v Vu.

Here W "= (zL(O,T; X0)" [zlrl]=0, Yrl WM}.
Condition (AS) is replaced by
(A7)* (P) has at least one solution a* L(0, T; X0) such that

(A2(a*u v) lu v)>-611u  112L2(0,T; V)
V u, v L2(0, T; V), for some iS > 0.
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Now let e > 0 be arbitrary and h > 0 be fixed. We consider:

Given (ao, Uo) Wt(D(S)C3CN VN) find (an, Un) WM(D(S)cqCc3 VN)
n , such that there exists w, S(u,) with

( un+x-un d
(3.7) e + u++w+l+Al(a+)+A:(a+,u+)-f* lO-Un+

(3.8) [ an+l--anl ( *) WM.h n Al(n)+A2(n,Un+l)lUn+l -u =0

With the same technique as in 2 one arrives at the inequality

q"+l-q"h ) [ r"+l-r"l0>e qn+l W rn+l W..qn+l..
2

L2(0,T; V)

1 2

Here it was used that q,+ (0)= O and thus

qn+qn+l qn+(t), qn+l(t) dt

1 rd 1 2

llq.+l(t) I[t= llq.+l(T)
As in }2 there follows:

(3.9) ellq,,+lll2t.:(o,r;m+ IIr.+,ll:=o,;x+ 2hl[q+ =
L2(0,T; )

and

(3.10) +28h E IIq ll
)

L2(O,T;V)
nl%l k=l

+h E IIq (T)ll n<=C<
k=l

where C depends on e, ao, Uo, a*, u*, but not on h, WM, Fv.
In analogy to Theorem 2.1 we have:
THEOREM 3.1. Let (A1)*-(A7)* hold. Then there is an ho>0 such that (Ph) has a

solution {(a n, u n) } o for 0 < h h o.
Proof. Let W’= span(l,-- .,} with [i[j]=ij, i, j. Let (a,,u), Ok

n, be already constructed. As in the proof of Theorem 2.1 the existence of (a,+ 1, u,+ )
is equivalent to the solvability of

U--Un du
e...

h +w+--f +Al(a)+A2(a,u)-f* Iv-u +qt(v)-qt(u)>=0,

V v VN C, for some w S(u), where
M

(3.11) a=an+h , (Al(Xk)+A2(Xk,U) [U--U*)Xt’k.
k=l
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We apply Theorem 2.2 with

,’= t:(0, v; v),
d

P "= S + -,
K’= CNVN,

g(o)=’(V) Un+f*

and

(3.12)

P2 K- B*,

P2(u) "= u+A(an)+A2(an,u )
M

+h E (il(*k)/i2(xk, u) [U--t/*)" (
k=l

Clearly K4: , and K is convex. Now C is closed in WI(0, T; V,H), and since
K= C (3 Vu is contained in the finite-dimensional subspace VN of WI(0, T; V, H), K is
a closed subset of B L2(0, T; V).

Moreover, S and d/dt are maximal monotone, and D(d/dt)fqintD(S) u*. Thus
P1 S + d/dt is maximal monotone. Finally it is easily checked that P2 is bounded,
continuous, pseudomonotone and coercive with respect to O (provided h 0 is suffi-
ciently small, compare the proof of Theorem 2.1). The assertion follows from Theorem
2.2.

THEOREM 3.2. Let (A1)*-(A7)* hold, and let 0<h__<ho. Let {(an, Un)}n>= 0 solve
(Ph)" Then it follows that:

(i) Ilu,- u*llLz(O,T;V)/llu,(T)-u*(T)llZH---)O, as n ---) o.
(ii) Every subsequence of ( a,) has a cluster point ao W such that with some

wS(u*)
(3.13)

w+A(a)+A2(a,u*)+---f* v-u* +(v)-(u*)>0 VvCOVu.

Proof. (3.10) implies (i). Moreover, any subsequence ( am } has a weak cluster point
a L2(0, T; X). Hence we may assume ama weakly in L2(0, T; X).

From dim WM< follows Ila,,-allL=(o,r;Xo)O and hence a WM. As in the
proof of Theorem 2.3 we may assume that w ---, w S(u*), weakly in L2(0, T; V*).
From Remark 10 we have

A2(am, Um)-’-)A(a,u*), weakly in L2(0, T; V*),
A(a,,)---)Ax(a), weakly in L-(0, T; V*), by (A2)*.
Relation (3.7) yields for every vC VN:

Um+I--U d
h + -um+l / Wm+l /Al(am+l)

+ A2(am+x,Um+)-f*lv-U,n+ ) //(V)--/I(Um+I)}
(wo +Ax(a)+A2(ao,u*)-f* Iv-u*) + *(v)-’(u*)

+ lim -Um+ V-- Um+l
m-- oo
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From v WI(0, T; V,H) and Urn/ C there follows:

-7(Um+I--U*) V -(Um+l--U*)(t), o(t ) dt

v(t), U+l(tl-u*(t ) dt

+

as m . Moreover,

Um+l Um+l [[Um+l(T) I1%-  llUm+l(0)I1%
1 ,( 1
llu T)II- [lu*(0) II- u,,

again by (i). Hence (3.13) holds.
It should be clear that a result which essentially resembles part (iii) of Theorem 2.3

can be proved. Also an analogue of the stability result of Theorem 2.4 is easily
established. For the sake of shortness we omit an explicit statement of the result.
Instead we turn over our interest to the applications.

4. Applications. In all our applications let c R N be open and bounded with a
sufficiently smooth boundary a. For the sake of shortness we confine ourselves to
only some typical examples. There are many other applications in wNch the developed
methods apply as well.

Example 1. Consider the problem:

* ) with(4.1) Given u* fll()H’() and f* H-I(), find a matrix a* =(ag
entriesaL() such that: V .(a*Vu*)=f*.

This problem was treated extensively in [3], [6]. We make the following specifica-
tions" V=fl(), H=L(), V*=H-I(), X={a=(agg)’ag;L(), Vi, j}, X0=
{aX:aggL(),Vi, j}, C=V, 0, A=O, S=O and A2(a,u):= -.(au).

Then (A1), (A2), (A4) are trivial. A is bilinear, and Poincar6’s inequality yields
(A3ii). (A5) is reasonable from the physical viewpoint. Now, for all a W:

o} f vo.( vu)ax=[ ,vovu l,
where the inner product [., of X is given by:

[a,b]:=
N_, fctijbijd.?.

i,j=l

Hence (A7) can be satisfied if only

(4.2). VvvuT WM lu, vu= VN.

This is possible if Vuc/:/(2)t3Hl’(2). Also (A8) can be satisfied since
H’(2) is dense in /:/(2). Finally, from u*H’(2) it follows that VVvu*Tx
whenever v/:/(2). This implies (Ag), since from v /:/1(2) and a,,--,a weakly in X
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we get

(A2(an-a,u*), v)=fvv.((an-a)Vu*)dx= [a-a,VvVu.7] -0.

(A10) is obviously satisfied as well.
Hence the theory of [}2 applies. Numerical calculations can be found in [3].

Physical applications are given by stationary states of time-dependent phenomena, such
as:

(i) fluid flow through porous media: u pressure, a permeability of the medium;
(ii) electricity: u potential, a conductivity;
(iii) heat conduction: u= temperature, a thermal conductivity.
Example 2 (other boundary conditions). Let o*L() be nonnegative with

o*(x)> o > 0 on F c Of where meas (F)> 0. O/On* is the outer conormal derivative at
Of with respect to the matrix a*. We consider

(4.3) Given u* Hl’(f), f* L2(f) and g* H-1/2()), find a* X such that
for all v Hl():

fo’t.(a’Vu’)dx+ fro’vu’ds=fd’t)dx+ fa "oog ds.

Note that from the trace theorems (see [9]) the injection Hl(2) H/2(Of) is continu-
OTIS.

Obviously (4.3) is a weak formulation of

U*(4.4)
On*

We set V=HI(2), H=L2(), V*=(HI())*, X, X0 as in Example 1, A=O, S=O,
C= V, and q,(v)’= -faug*ods, which is convex and continuous by the trace theo-
rems. Next we define A2 by

Since o* >= o > 0 on a set of positive measure,

IIV{]2"= flvvl2dx d fF(I*lol2ds
defines a norm on H(2) which is equivalent to [[’[[H(U). Hence (A3) follows from

I(Ag_(a,u),o)l<=c(SfiTv’Tuidx+ fr,o*iuv’ds )
__< cll u z oonst.. u I1-’ . 11

if aXo, u,v V.
The other conditions are satisfied as in Example 1. Hence the theory of 2 applies.
Example 3 (dam problem). We consider stationary fluid flows through a porous

medium g cN. Off is the union of three disjoint sets: F + (boundary to water re-
servoirs), F (boundary to the atmosphere) and F- (boundary to the impervious
ground). See Fig. 1. Let be inhomogeneous and unisotropic, and let F + be nonempty
and relatively open in F + F.
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I0

atmosphere

Impervious "’/

FIG.

(4.5)
and introducing

Assuming the boundary data for pressure u are given by

g* g*>=0,

M(g*)’= (vHl()’o=g* on F +, o<__g* on F),
the problem of finding the free boundary between the wet and dry parts of leads to
solving"

(4.6) Given a*Xo, find u*M(g*) with u*>__0 and y* L(f) with 0=<y*__<l
and v*=l in (u* >0) such that for all vM(g*):

+ vv) 0.

Here X0, X are as in Example 1, and Y= (0,. ,0,1) stands for the gravitational
direction. The problem (4.6) has a solution with u* M(g*)cL(f). For this and a
detailed description of the physical background we refer to [1], [2]. We remark that
(u*> 0) is the saturated region and that (,*= 0) is the dry part of

Now set

V’-- ( Ogl()" 0--0 on F + ), K’= (vV’v<=Oon F).
Then (4.6) can be rewritten as

(4.7) V(v-u*)’a*(Vu*+Vg*+y*Y)dxO VvK,

where u* K, u*>=-g*. The corresponding parameter identification problem is to
reconstruct the permeability matrix:

(4.8) Given u*KNL(f]) with u*>=-g* and ,*L(f) with 0__<,*=<1 and
y* 1 in ( u* > -g }, find a* X such that (4.7) holds.

We show that the theory of 2 applies. (V, [[" [[i’(u)) is a separable and reflexive Banach
space with dense and continuous embedding into H= L2(). X, X0 are as in Example
1. Moreover, f *= O, S , xI, 0, and C’= K is nonempty, closed and convex.
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Since g * H1,oo ( ), t * L (f) the linear mapping A defined by

(Aa(a), O) "= favv.(a(vg* +v*0"))ax vv v,

is bounded. Moreove, the bilinear mapping A,

(A2(a,u), v)’= favv.(avu)dx Vv V,

satisfies (A3). As in Example 1, condition (A7) is fulfilled if only

(4.9) VO(VU+Vg*+y*F)TWM VU, uVN.

This is possible if VucH’() which by (A6) necessitates u* Hl’().
Example 4 (linear elasticity). We follow the lines of [5] and use the notation

therein, in particular, the summation convention.
Let c R 3 be the region occupied by an inhomogeneous elastic body with (suffi-

ciently smooth) boundary . Assume is at equilibrium under the influence of forces
which are distributed over or act on b. We confine ourselves to the static (i.e.
time-independent) case. The equations are

(,))=/,, in U =a ,3(4.a0) (,,(),
Here

i=1,2,3,

are the components of the linearized strain tensor in dependence on the displacement
vector u=(ul, u,u3). The vector field f*=(f,f,f3*)(L()) represents a volume

* i, j, k h=l, 2, 3 are the space-density of prescribed forces, ah=aj]hk akhij,

dependent coefficients of elasticity which satisfy the ellipticity condition

(4.11) ajkh(X)ijkh>= 8qijqi, a.e. on f, for some i> 0, whenever (i9) is a (3 3)-
matrix.

Typical boundary conditions are (if no friction is present):

(4.12) Oa Fvu I F, Fv(3 FF= , meas(F) > 0,

(4.13) u,=Ui*H1/2()a) on r, i=1,2,3,

(4.14) oin=Fi*L2(Fv) on FF, i=1,2,3.

Here n (n 1, n 2, n 3) is the outer unit normal at Of, F* (FI*, F2*, F3*) represents a
surface density of forces prescribed on FF, and the components oj of the stress tensor
are linked to the components of the linearized strain tensor by

(4.15) o, aikhekh(U ), i,j=l 2,3

Now (HI())3--{O--(OI, O2, O3):oiHI()} is a Banach space when endowed with
the norm
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By the trace theorem, U* =(UI*, U*, U3* ) is the trace of a function in (Hl(f))
which is denoted by U*, too. The substitution u u- U* yields

(4 10)*
[1

)xj(a.kh(X)ekh(U-t- U*))-fi* in f, i=1,2,3;

(4.13)* ui=O onFU, i=1,2,3;

(4.14)* * * *aijkhekh(u+U )=F/ i=1,2,3 onFF.

Now we define:

H’=(L(a)),
v. "vi=O, on Fu, i=1,2,3},
X’= (a=(aijk)’aikL2(), lNi, j, k, hN3},
X0"= {aX’aokhL(a), 1Gi, j, k, hz3}.

X is a Hilbert space when endowed with the inner product

(4.16) [a,b]’= faahbihdx.
From Korn’s inequality it follows (see [5]) that

,,vllv:=

defines a norm on V which is equivalent to
Now easy calculations using Green’s formula (see [5]) show that (4.10)*, (4.12),

(4.13)*, (4.14)* is equivalent to:

Given a* X0, U* (H())3, f* H, F* (LZ(F))3, find u* V such that
for all v V:

Expression (4.17) admits a unique solution ([5, p. 118, Thin. 3.5]). The corresponding
identification problem consists in reconstructing the coefficients of elasticity from
measurements of the displacements:

(4.18) Given u* V(H’()), U*(H’()), f*H, F* (L(F)), find
a* X with (4.17).

It is easy to check that the assumptions of 2 can be satisfied with the specifications

S=O, C=V,

and At, A2 defined by putting for all v V

(Ax(a), o)’= faaiyheh(U*)eij(v)dx,
(A2(a,u), o)’= fa,j,hek,(u)e,ij(o)dx.
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In this case the assumption (A7) is satisfied if

(,()(u+ U*)) W, Vu, V.
This is possible for Vc (H’(fl)).

Example 5 (linear elasticity with friction). Let in Example 4 the boundary condition
(4.14) be replaced by a condition of friction type"

os F on FF,
(4.14)** Io l<rl  I u =O,

Ior F F I there is X >= 0 such that UT Xor.
Let meas(FF)> 0. F L(FF) is the friction coefficient, and F L([’F) is given. We
assume F(x)>_F0>0, a.e. on FF. The normal stress Ou=Oijnjn is a scalar, and or "=
(01r, OZT, O3) is given by oiT "= oijnj-oun i.

Moreover, for 0(H1(2)) we have

VN vin (normal displacement, scalar),
VT" V ONn (tangential displacement, vector).

Again replacing u by u-U* one obtains (see [5]) that (4.10), (4.12), (4.13),
(4.14)** are (formally) equivalent to:

(4.19) Given a*Xo, f*H, U* (Hl(f))3, FcL(FF) and FL(Fv), find
u* V such that

ff2a kh Ekh ( U * dr U * ) E j (1) 12 * ) dx drj( o dr U * ) -j ( u * dr U * )

Here j is the continuous and convex functional

(4.20) j(v)’= frlFT, IlVTldS.
It should be clear how the corresponding identification problem is formulated and

how it fits into the framework of 2.
Remark 10. We have not given any examples for equations of evolution. In [7] the

simplest case of identifying the system matrix of a system of ordinary differential
equations is treated, and numerical results are given.

It should be clear from the preceding examples how for example the problem of
reconstructing a time-dependent thermal conductivity matrix in a linear heat conduc-
tion problem can be fitted into the setting of 3.
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REAL CONTINUED FRACTIONS AND ASYMPTOTIC EXPANSIONS*

BURNETT MEYER"
Abstract. Let K(a,,(x)/b,,(x)) be a continued fraction, where a.(x) and b,,(x) are polynomials with

nonnegative coefficients, in a real variable x. Let the continued fraction correspond at x=0 to a formal
power series in x or at x= 0 to a formal power series in x-a. Conditions are given which insure that the
corresponding series are asymptotic expansions of the functions to which the odd and even parts of the
continued fraction converge as x

Key words, continued fraction, asymptotic expansion, correspondence of power series

AMS(MOS) subject classifications. Primary 30B70, 30E15, 40A15

In this paper the author continues his study of a question posed by Jones and
Thron [2, p.331]" Let a formal power series ECkz- be given, and let K(an(z)/bn(z))
be a continued fraction that corresponds to the above series at z o and that con-
verges to a holomorphic function f(z) in a region D with z o on its boundary. Is the
given series the asymptotic expansion of f(z) at z= o, with respect to D? A similar
question can be asked if the correspondence is at z 0.

1. Preliminaries. We use the notation Kn__ (a,,/b.) for the continued fraction

al a2 an
bl+b2+...+bn+..."

In the following two definitions, asymptotic expansions and correspondence will
be defined at a finite point zo, with the modifications necessary for Zo= put in
parentheses.

DEFINITION [1, p. 359]. Let f be a function defined on a set S in the complex
plane with z-zo (z-o) a limit point of S. Let L=F_,k=oCk(Z-Zo)k (L=F,k=oCkZ-k)
be a formal power series in z-zo (z-t). Let G,(z)=E=oCk(Z-Zo) (Gn(z)=
E,=oCkZ-k). Then L is the asymptotic expansion of f as z z0 (z- o), z S, if
f(z)-G,(z)=O((z-zo)n+l) (f(z)-G,(z)=O(z-’-t)), as z--->zo (z--->o), zS, for
n=0,1,2,. .

DEVINITION [2, p. 149]. Let {f, } be a sequence of complex-valued functions of a
complex variable z, each holomorphic at z=zo (z=o). Let L=Ek=oC(Z-Zo)
(L=Ek=oCkZ-) be a formal power series in z-zo (z-l), and let

Gm(Z) E Ck(Z--ZO) k Gm(z)’-" E CkZ-k
k=0 k=O

The sequence (f,} is said to correspond to L at z=zo (z= o), with order of corre-
spondence v,, if there exists a sequence { v, } of positive integers such that ,n -o o and

as z= zo (z o).

*Received by the editors April 15, 1985.
Department of Mathematics, University of Colorado, Boulder, Colorado 80309.
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A continued fraction is said to correspond to a formal power series if the sequence
of its approximants corresponds to the series.

THEOREM 1 [4, p. 48]. If an>O and b >0 for all n, then the even approximants of
K(an/b) form an increasing sequence, with limit k. The odd approximants form a
decreasing sequence with limit K, and 0 < k <= K<

The following lemma is probably not new, but the author is unable to find a
reference.

LEMMA 1. Let Ek=oCk(Z Zo)k be a formal power series and let Gm(7,)--
,km=OCk(Z--Zo) k. If f(z)-Gm(z)=O((z-zo)re+l) as z-+zo, zS holds for m=ml,
then it holds for all nonnegative m <= ml.

Proof.

[f(z)--Gml(Z) [---If(z)-G’-l(Z)-Cm(z-zo)m
So there is a constant ,,,1 + such that

If(z)-Gm, -(z) l-[Cm,(Z--zo)mXl<=’Ym +Iz-zolmi+I"
Hence, f(z)-Gm_l(Z)--O((z-zo)ml) as zzo, zS. The proof is completed by
repetition of the argument. []

The analogous lemma for z0 z is similarly proved.

2. The following theorem is an improvement on [3, Thm. 1].
THEOREM 2. Let {f, } be a sequence offunctions, holomorphic at zo and meromor-

phic in a domain D, with zo D. Let zo be a limit point of a set SoD. Let (f,}
correspond at zo to a formal power series L oo k,k=0C,(Z-- ZO) and let u <= ’2 <- <= ’<= ..., with , , where , is the order of correspondence. If there exist a function f,
defined on S, andpositive constants k ( n O, 1, 2,... ) such that

(1)

for z S and n O, 1, 2,. ., then L is the asymptotic expansion off as z --+ zo, z S.
Proof. Let G,(z)=.=ock(Z--Zo). Then

I<= If(z)-f.(z)I+ f.(z)- a.(z)

1+ 113(Z-Zo)""+ 1,
where ,=min(u,,n+l). Thus, f(z)-G,(z)=O((z-zo)’. ) as z-->zo, zS, for n=
0,1,2,....

So

Thus, f(z)-G,._i(z)=O((z-zo)’. ) as z-->Zo, zS, for n=0,1,2,.... Since
we apply Lemma I to obtain

f(z)-G,,_l(z)=O((z-zo)" ) asz-->z0, zS, form=0,1,2,-...

(In the above proof we assumed v, < n + 1. If v, >= n + 1, the proof is easier.)
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A similar theorem can be proved for the case z0 oo, considering expansions of
the form Ek=oCkZ -k.

Also, the right side of (1) may be replaced by k,,(z)-fn_l(z)l. See [3].

3. Real continued |factions. We now consider the real continued fraction
K(a,(x)/b(x)), where a, and b, are polynomials in a real variable x. We will obtain
simple "rules of thumb" for concluding that the corresponding power series at 0 or at

are the asymptotic expansions of the limits of the continued fraction as x 0 + or
as x ---, + , respectively.

Given the polynomial P(x)=ax+ +ao, a4:0, n>=O. Let d(P)=n, the
degree of P. Denote the degree of the nonzero term of P of lowest degree by I(P). We
call a polynomial nonnegative if all its coefficients are nonnegative.

THEOREM 3. Let a,(x) and b(x) be nonnegativepolynomials. If l(bn(x))=O for all
n and if E=l(ak(x))oo as n--,oo, then the power series corresponding to
K(an(x)/bn(x)) at x=0 is the asymptotic expansion of the limits of the odd and even
parts of the continuedfraction as x 0 +.

Proof. Let the n th approximant of the continued fraction be denoted by f,(x)=
A,(x)/B,(x). Since /(b,)=0, it is easily shown by induction, using the recursion
formula for B, [2, p. 20], that the constant term of Bn(x) is >0. Now, by the
determinant formula [2, p. 20]

"+ak(x) P(x)(2) A.+ A (-1)IIk=
Bn+l Bn B.(x)B.+l(x ) Q(x)’

where l(P(x))=E"+ll(a(x)) and Q(x) is a polynomial with constant term >0.
Therefore, the continued fraction corresponds to a power series, with order of corre-
spondence 7,+ 1 lk.

By Theorem 1, the odd and even parts of the continued fraction converge to
functions g and g_, respectively. The following inequalities hold"

f2n(x) -g2(X) Zgl(X) Zf2n+l(x)

for n 1, 2, and x > 0. Thus,

Ig(x)-L(x) !=<
for k 1, 2, n 1, 2,.- -, and x > 0. By Theorem 2 the corresponding series is the
asymptotic expansion of gl and of g2 as x

We note that Theorem 3 applies to all positive C-fractions (not just the regular
positive C-fractions), SITZ fractions, g-fractions, associated continued fractions for
which the k, are negative and the l are positive, and positive T-fractions. See [2, pp.
386-394] for definitions of these kinds of continued fractions.

THEOREM 4. Let a,(x) and b,(x) be nonnegative polynomials of degrees d and en’
respectively. Then the power series in z -1 corresponding to K(a(x)/b(x)) at x= c is
the asymptotic expansion of the continuedfraction as x + oo, provided

n n + 1

(3) h.=2
k=l k=l

as n o. If d.<= e. for all n, condition (3) may be replaced by the simpler condition

"+ e,- o as n --, o
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Proof. We use the notation of Theorem 3. Using induction and the recursion
formula for Bn, we can prove that d(Bn)>= e + e_ + + en. We again use formula (2).
We have d(P)=’"+Xdkz..,k= and d(Q)>2Z,=leg+e,+l.= Thus, the continued fraction
corresponds to a power series in z -1, with order of correspondence >=h,. The re-
mainder of the proof is similar to the proof of Theorem 3. []

Theorem 4 applies to modified S-fractions, H-fractions if all the bn are positive,
J-fractions if all the c, are negative and all the d, are positive, and positive T-fractions.
And, of course, Theorems 3 and 4 apply to many continued fractions that have not
been classified and given names.

4. An example. The continued fraction

1 x x 2x 2x 3x
1+1+1+ 1 + 1 + 1 +""

corresponds at x=0 to the series E0(-1)nn!x. [1, p. 519] By Theorem 4.58 in [2, p.
136], it follows that the continued fraction converges for all positive x. So, by Theorem
3, the series is the asymptotic expansion of the limit of the continued fraction, which is

i +xs’
as x 0+.
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BOREL SUMMABILITY AND CONVERGING FACTORS FOR SOME
EVERYWHERE DIVERGENT SERIES*

AVRAM SIDI

Abstract. In this work we deal with the problem of interpretation of certain classes of everywhere
divergent power series within the framework of Borel summability, and derive asymptotic expansions for
their partial sums and/or their converging factors when the number of terms in the partial sums goes to
infinity.

Key words, divergent series, Borel summability, converging factors, asymptotic expansion
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1. Introduction. Consider the formal power series F()"= Er__ ar whose terms
are of the form

(1.1) ar=rPw(r)(r!) m,
where p >= 0 and m >= 1 are integers, and w(r) is such that

(1.2) w(r) 0 _w_ as r for some o > 0,
i= Fi+

with w being some constants independent of r. Obviously F() does not converge for
any value of ’. In this work we shall be concerned with the interpretation of the "sum"
of F(’), and with the asymptotics of the converging factor of the partial sum A(’)=
E’__la’ in the limit n , for ’ fixed. This problem arises when one tries to apply the
or u transformation of Levin [4] to the sequence Aj.(), j=1,2,..., to obtain an

approximation to the "sum" of F(’), or to the anti-limit of the sequence (A(’)).
The and u transformations are nonlinear methods for accelerating the conver-

gence of a slowly converging sequence to its limit, or for effecting convergence of a
diverging sequence to its anti-limit. There is ample numerical evidence (see the numeri-
cal examples given in [10]) that suggests that in order for the (or u) transformation to
be efficient on a sequence Bi, 1, 2,..., Bi has to be of the form

(1.3) Br_l=B+Rrf(r),

where B is the limit or anti-limit of ( B }, and f(r) should be such that

(1.4) f(r)-- _, ft.__! as r oo
i--0 rt

and R rbr, where b B, br= Br- Br_ 1, r >= 2, and X 0 for the transformation
(or ? 1 for the u transformation). From the conjectured behavior of B in (1.3) and
(1.4), it follows that

(1.5) br+l=c(r)br,

Received by the editors October 19, 1982, and in revised form February 21, 1985.
Computer Science Department,Technion-Israel Institute of Technolgy, Haifa, Israel.
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where

o as r-(1.6) c(r)=(r+l)Xf(r+l) i= ri-V

with q being an integer. The solution of (1.5) and (1.6) is known to be, see [3, p. 70], of
the form b,=xrv(r)(rV) q, with v(r) being such that v(r)---E. vi/ri+ as r m for0

some a, cf. (1.1) and (1.2). With the help of [7, Thm. 6.1], it has been proved in [8, Thm.
2.2] that when q=0, and limi_B exists, i.e. Ixl> 1, the Bi satisfy (1.3) and (1.4).
When limi__, B does not exist, i.e., Ixl > 1 or Ixl>= 1, it is not known, in general,
whether (1.3) and (1.4) still hold, although, under certain circumstances, the techniques
of the present work can be used to show that they do. This will be indicated at the end
of 2. Using the technique of the proof of [8, Thm. 2.2], (1.3) and (1.4) can be shown to
hold for all integers q_< -1 and for all x, since for this case limi_B exists for all x.
For q > 0, in which case lim_, B does not exist for any x, no result like (1.3) and
(1.4) is known in general, and precisely this is the subject of the present work. For
q= 1, (1.3) and (1.4) have been shown to hold for two special cases, see [9].

In the present work we actually show that under certain conditions, A(’) is of the
form

(1.7) hr_l()=h()+arrg(r,),

where A(’) is the Borel-type sum of F(’) (to be defined later), and the converging
factor g(r, ’) has an asymptotic expansion of the form

(1 8) g(r,)-- E g’(’), as r,
=o r

with gg(’) being polynomials in -1. We also note that all of the numerical examples of
everywhere divergent series considered in [11, Tables A3 and A4] are of the form above
with q > 0, and for these examples Levin’s transformations produce accurate approxi-
mations to their Borel-type sums.

A similar but less general approach to the interpretation of divergent series has
been introduced by Dingle in a series of papers, and this approach is summarized in his
book [2, Chaps. XXI and XXII]. Dingle is concerned with summing the remainder
series Y’=rai for fixed r, whereas our main concern is with the asymptotics of it as
r . Olver’s book [6, Chap. 14] contains another approach to the estimation of
Ei=aii that was introduced by Stieltjes, and developed further by Airy and J. C. P.
Miller; see [6] for further references. Again our problem is different than that consid-
ered in Olver’s book.

2. Theory.
LEMMA 2.1. Define

(2.1)

Then

d), zQk(r,z) Zz l--Z-z.

(2.2) Q,(r,z)= 2Log,,i(r)z "+i

(l--Z) k+l
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where gk, i(r) are polynomials of degree k in r, satisfying

(2.3) gk’(r) r’ g’(r) (1-r)’
gk.i(r)=(r+i)g_l,i(r)+(k-r-i+l)g_x,i_l(r), i=1,-.-,k-1.

Proof. Equation (2.3) follows easily by induction on k, starting with k=0 and
go, o(r)= 1.

TH.OREM 2.2. Let a be expressible in theform
m

(2.4) ar=rPw(r) il-[ (ir+ ,i)!,

where we assume that p >= 0 is an integer,

r>__l,

for some function (t)such that f e-’l(t)ldt < , and p.i and , satisfy

(2.4b) i>O, i+,i>-l, i=l,...,m.

Obviously the power series F() := Y’. a diverges for all O. For 0 < 0o < r define
the bounded sectors S(O, 0o) in the -plane by

(2.5) S(0,0o) {-I’le" Iffl__<0, Oo<=O<=2r-Oo}.
Then F( ) is the asymptotic expansion of its Borel-type sum

as 0, uniformly in S(O, Oo), for each finite O, where =(tO, tl,---, t), and

i--1 i--1

II Cr,.
i-----1

The function o’() is analytic in the -plane cut along [0, m).
Remarks. (1) If qg(t) i__oqgit as 0 +, with o > 0, the application of

Watson’s lemma, see [6, p. 71], yields w(r)--F.i%oqi(i+o-1)!/ri+ as r, and this
is exactly of the form given in (1.2) with Wi--qgi(i +O--1)!, i--0,1, Furthermore, if
we take i= 1, ,;= 0, i= 1,. -, m, then we are back at (1.1) and (1.2).

(2) There is no loss of generality in assuming +,>-1 in (2.4b). For, if
/ti+,>-1 is not satisfied for all i, we can consider the series F’(’)’= E%a’r",
where a’= a+,, with k being chosen such that /+(k/+ ,)>-1, 1 _<i<m._ Note
that F(’)= A,()+*F’().

(3) The Borel-type sum (’) given in (2.6) is obtained by substituting (2.9) (see
proof below) in E%tar", interchanging the summation with all the integrations, and
then summing the geometric-type series M(z)=,=xrPz to obtain M(z)=
(zd/dz)P(z/(1-z)). It can be shown that the Borel sum of F(’), namely
fe !) [3, p.(E__latrr/r dt, see 78], is its Borel-type sum when m= 1 /-1 1 and
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(4) If in (2.4) rPw(r)=Crp’, where C is a constant and p’=p-l>=0, then the
Borel-type sum in (2.6) reduces to that obtained from (2.6) by omitting the integration
with respect to to after q(t0) in q(t-) has been replaced by C, p has been replaced by
p’, and the factor e-to has been deleted from z. This can be shown by observing that
actually w(r)=C/r, thus qO(to)=C, and performing the integral with respect to o,

reducing (2.6) to an m-dimensional integral.
Proof. Using the fact that

Z 2
Z q- Z 2 "Jt- "}" zr-1-]"

1(2.7) 1 -z -z

we have

r-1

(2.8) Zzz 1-z
j=l

Letting z be as in (2.6b), and substituting (2.8) in (2.6), and using the fact that

we obtain

(2.10)
where

(2.11)

From Lemma 2.1

oo {}
m

U(’)=fo ""fo +({)QP(r’z)il-Iodti"

(2.12) Qe(r,z)=

It is easy to see that

Y’.iP__ogp, ( r ) z +

(1 -z) p+I

(2.13) [1-zl>=sin0o, all S(p,Oo), all p>0.

Substituting (2.12) in (2.11), taking the modulus of both sides, and using (2.13), we
obtain

P

(2.14) IUr() l<= (sinOo)-P- 2 ]gp,g(r) ]lr+
i=0

x

which, for all f S(o, Oo), becomes

(2.15)
with K being independent of . This proves the first part of the theorem. The second
part of the theorem is obvious.

We now go on to analyze the "remainder" term U(f) in the limit r
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THEOREM 2.3. Assume that all the conditions of Theorem 2.2 are satisfied, and, in
addition, p(t) is continuous in a neighborhood of 0 except possibly at O, and satisfies

(2.16) q(t)--%ta-1 ast-oO +, forsomeo>O.
Then, for any integer k >= 0,

k-1

r-l-k-p) as r o(2.17) Ur(’)=- E ar-l-j 1-J+O(ar-l-,
j=0

uniformly in for S(p, 0o), for each finite p.

Proof. Expressing Qe(r,z) (see (2.1)) in the form

d) p z r-1
(2.18) Qp(r,z)= z-z 1-1/z’

and making use of (2.7) with z replaced by l/z, we have, for any integers k >= 1 and
N>_k,

N-1

(2.19) Qp(r,z)= E (r- 1 -j)pzr-l-J-Jr Qp(r-N,z).
j=0

Substituting (2.19) in (2.11), and invoking (2.9), we obtain

N-1

(2.20) Ur(’) E ar-l-jr-x-j’[- Ur-N()"
j--- 0

Now Ur_N() satisfies (2.14)with r replaced by r-N. By (2.16), we conclude that

rtp 1) /r as r- oo,e (t)dt--.epo(O-
(2.21)

fO e-rt[ep(t)[dt" !%1(o- 1)!/r as r-o ,
see [6, p. 81]. Also, gp,i(r)=O(rp) as roo, by Lemma 2.1. Consequently, for
s(o, Oo)

(2.22) Igr_N() I__<0 rP-[l
r-N I-[ [l(r-N+p)+va]! as r

j=

uniformly in ’. Similarly
m

(2.23) ar_N+p"-fpOrp- II [t,(r-N+p)+v]! as r

Comparing (2.22) and (2.23), we obtain

(2.24) [Ur_u(’) t<0(a -N+pllr-N) as r--

uniformly in " for all ’ S(p, 0o).
Finally, by choosing N k +p + 1, and recalling that (see (2.23) above)

ar-j
lim =0, j=l,2,.. -,(2.25)
r- a

(2.17) follows.
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COROLLARY 2.4. If Elm=lit i--it, where tt is a positive integer, and if q(t) also
satisfies

(2.26) p(t)’- E %ti+-I as tO+, for some o>0,
i=0

then U () is of the form

a(2.27) Ur()" r as r
i=0 ri+tt

with fli() being polynomials in -1. Furthermore (2.27) is uniformly valid in for
T=S(p, Oo)\(: I1<), for any e>0.
Proof. As mentioned in the remark following the statement of Theorem 2.1, (2.4)

and (2.26) imply that w(r)--Eio%(i+o-1)!/r+ as r . This, together with the
result

ci being some constants independent of x (see [1, p. 257, formula 6.1.47]), give

(2.29) a__
r-"(+ 1 + -- as r m,ar i--1

where d,. are constants independent of r. Upon substituting (2.29) in (2.17), we
obtain

(2.30) Ur ( ) a E fl ( --) + 0 as r c
i=0 ri+ /.g(k+ 1)

with B;(’) being given by

J
(2.31) fla,+i(’)=- E d(J-l)l’-J+l-1

lg+i b 0=<i__<it- 1, j=0,1,"
/=0

where d0(J)=l, j=0,1,...; hence fl0(’) _.-1. This completes the proof of the
corollary. D

Remark. Under the conditions stated in the corollary above, we have actually
shown that the partial sums of the everywhere divergent series F(’):= E a=1 r" are of
the form given in (1.7) and (1.8), with A(’)=o’(’), the Borel-type sum of F(’), and
g(’) 0, 0=<i=<it- 1.

As an example, consider one of the series given in [11, Table A3], namely
=(-1) -c/x, with c=2 and G=G_(2r-)2 r>2. Therefore, ( 1) -Cr/X

ar, with ’=-4/x and a=-[(r- /2)!]2/(2r), r>= 1. That is to say, Itl=it2=l,
t’ r2-- 3/2, and r(r)= Cr’’ with C= 1/(2r) and p’=p- 1 =0 in Remark (4)
following (2.6b). Consequently,

e (q+t2)(tlt2) 1/2

(’) 2r 1-tit2
dtldt2"
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By making the transformation of variables cos)0, 2 sin2 0, and perform-
ing the integral with respect to 0, we obtain

2 fo -to(’) --’-x e
(1 q-t211/2

[H0 (v/-ff) Y0 (v%-)],

where H,(z) is the Struve function of order , [1, p. 496, formula 12.1.8]. The numerical
result given in [11] for x=4 is another indication that the u-transformation produces
approximations to o(’).

Finally, we note that when/i=,i=0, 1 <i<m, in Theorem 2.2, o(’) converges
for I’]< 1 and diverges for 1’1> 1. Thus, (’) represents an analytic function u(’)
within the unit circle. Equation (2.6) now becomes

fo d P z
dt, z e-t.(2.32t o-(’) q)(t) Zzz 1-z

Since this time o(’) is analytic in the ’-plane cut along [1, oe), it represents the
analytic continuation of u(’) outside the unit circle. Furthermore, (2.10) holds with
(2.11) replaced by

(2.33) Ur(’) q)(t)Qp(r,z)dt.

Let us now assume that q)(t) satisfies (2.26). Then substituting (2.12) in (2.33), and
applying Watson’s lemma for r--, oe, after some manipulation of the asymptotic expan-
sions that arise, we obtain (2.27) with tt=0 there. Of course, in this case the fli() are
not necessarily polynomials in .-1. In addition, (2.27) with/z=0 holds for all
for which F(’) converges or diverges. The details are left to the interested reader.

3. Further developments. The results of the previous section have been based
mainly on the assumptions of Theorem 2.2, namely (2.4) to (2.4b). It is these assump-
tions that enable one to express the Borel-type sum o-(’) of F(’) as in (2.6) to (2.6b).
One important feature of (2.6) is the function Qp(1,z)=(zd/dz)P(z/(1-z)), which is
very easy to handle. Actually this function has simple expansions about z =0 and
z oe, and it is these expansions that lead to the results of Theorem 2.2, Theorem 2.3,
and Corollary 2.4. In this section we seek to generalize the conditions of Theorem 2.2 in
a way that will enable us to retain the function Qp(1,z). We note that the developments
of this section can readily be applied to generalized hypergeometric functions.

THEOREM 3.1. Let a be expressible in the form

(3.11 ar=rPw(r) i1-I1 (txir+ ’i)! B(jr+)tj+ 1,jr+tj+ 1),
"= j=l

where p, w(r), txi, and ’i are exactly as in Theorem 2.2,

and B( b, c) is the beta function defined by

(3.1b) B(b,c)=fol "rb-l(1-,r)C-ld= (b-1)!(c-1)!(b+c_l)! Reb>0, Rec>0.
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It is clear that the power series F(’) := Er=lar diverges for all q=O. Define S(p, Oo)
again as in Theorem 2.2. Then F() is the asymptotic expansion of its Borel-type sum

m n

fo fo fo fo iI-[o j1-I1(3.2) o’(’)
o /(’,)Qp(1,z) dt

"_

m + 1 times n times

as 0, uniformly in S(p, Oo), for each finite p, where/’=(t0,q,..-, tin), ’=(’1,"" ",

and

(3.2a) ({,’)=exp(--i=1 ti)(i=lt’)(t)(J=l [’x(I--’)X])
(3.2b) Z=ff-t(iit)(jX [J(1--’)])
with Ne integrals over t, 0 N N m being from 0 to m and those over 5, 1 Nj N n, from 0
to 1. The Nnction (f) is analytic in the f-plane cut along [0,

Proof. Similar to that of Theorem 2.2.
Remark. If in (3.1) rw(r) OF, where C is a constant and p’=p-1 0, then

the Borel-type sum of (f) in (3.2) reduces to that obtained from (3.2) by omitting the
integration with respect to 0 after (t0) in (f) has been replaced by C, and p by
p’, and the factor e-0 has been deleted from z. (cf. Remark (4) following statement
Theorem 2.2.)
ToN 3.2. Assume that all the conditions of Theorem 3.1 are satisfied, and, in

addition, (t) is as in Theorem 2.3. Then, for any integer kO,

(3.31
k-1

Ur()=()-Ar-l() E ar-l-jr-X-JWO(ar-X-kr-x-k-p) asr,
j=0

uniformly in for S(O, 0o) for each finite O.
Proof. Similar to that of Theorem 2.3.
COrOLLarY 3.3. If Eixi , where is an integer, and if (t) is as in Corollary

2.4, then U() is of the form gioen in (2.27), with i() beingpolynomials in -1 again.
(2.27) is uniformly oalid in for T.

Proof. Using Stirling’s formula, it can be shown that for r

e if>0, if>0,
i=o r

(3.4) B(xr+X,r+X)- (x+ + +/

e if>0, if=0,
i=0

where e and e are constants independent of r. With the help of (3.4), the proof of this
corollary can now be accomplished as that of Corollary 2.4. q

Note. The results above are applicable to series F(’) for which

(3.5) ar= rlw( r) -I-Iim’--l(eir + i)
I-Iin’= (iPnt-i)
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with p and w(r) as before, ei>0, ei+Si>-1, i>8, l<_i<n, >n. This is so since
a can be expressed as in (3.1), due to the fact that

(3.6) (er+3). =B(er+3+ l,-3)
(er+)! (-8-I)!

There is no loss of generality in assuming that a > i, 1 __< =< n’, for if ai__< a_ for some i,
say i=q, then (egrq-aq)! and rp in (3.5) can be replaced by [eqr+(keq+3q)]! and the
polynomial rPI-I=l(eor +jeo+) respectively, such that q= keq+ q> 3q. In general,
we can express a as a= Y’.-lh.h), where

1-I im__’ l(eir +
lNj<k,aJ)=rP+Jw(r)

i-i,f__(eir+i)
with i > , 1 < < n’. Now we apply Theorem 3.1, Theorem 3.2 and Corollary 3.3 to
each of the series ET=th.a) and add the results. The overall result is that Theorem
3.1, Theorem 3.2 and Corollary 3.3 hold for the series F(’)’= ErGar"r, even though
3; > is not satisfied for all 1 < < n’. Thus our results can be applied to the generalized
hypergeometric functions p Fq, where

pgq Pl,"’, [q VI l(Ph) k!k=0 k

with (c)k=F(c+k)/F(c), k=0,1,. ., see [5, p. 155], when p>q+l.
Note also that the representation given in (3.2) is somewhat related to the beta

transform described in [5, p. 160].
As an example, we consider the asymptotic series EaA" with

ar=(Ot)r_l(1 +ot--fl)r_/(n--1)! and ’= -1/x.

That is to say, a is expressible as

ar
(r+a- fl-1)!B(r+a- l,l-a)

(-a)!(a-1)!(a-fl)!

By the remark above, -(’) can be expressed as a double integral that can be reduced
to a one-dimensional integral, which, by using some relations among the confluent
hypergeometric functions of different parameters, can be shown to be -x IU(a, fl, x).
Again [11, Table A3] contains numerical results for different values of a, fl, and x, that
indicate that the u-transformation produces approximations to (’).

4. Concluding remarks. We have shown that under the conditions stated in
Corollary 2.4 and Corollary 3.3, the partial sums Ar_()=Erila of the everywhere

odivergent series F(’):= F.i__xai are of the form (1.7) and (1.8), where A(’) is the
Borel-type sum of F(’). As mentioned in the introduction to this work, most of the
examples of everywhere divergent series considered in [11] satisfy the requirements of
Corollary 2.4 and Corollary 3.3; furthermore, after some tedious calculations, involving
manipulation of (2.6) and (3.2), one observes for all these examples, that the numbers
obtained by applying Levin’s or u transformation to A(’), are approximations to the
Borel-type sum of F(’). In view of this observation, we conjecture that for the kind of
series considered in Corollary 2.4 and Corollary 3.3, Levin’s and u transformations
produce approximations that converge to the Borel-type sums of these series.
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NIELSEN’S GENERALIZED POLYLOGARITHMS*
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Abstract. Properties (in particular functional relations and special values) of the functions

1)"+P-l(n 1)!p!S,,.p(Z) f -1 dt
log" logp (1 zt -7’

(-1) +"-l(n-1)!p!L,,.p(z)= log"-ltlogp(1-t)---,

fo dt
(-1) -(n-1)!p!M.,p(Z)= log"-tlogP(l+t)-t-

which play a role in the computation of higher order radiative corrections in quantum electrodynamics, are
discussed for complex z and positive integers n and p. The first function is a generalization of the
well-known polylogarithms (p 1). The discussion is based on results published by Nielsen early this century
in a little-known monograph.

Key words. Nielsen’s generalized polylogarithms, polylogarithms, Spence functions, logarithmic integrals,
Riemann zeta functions, Stirling numbers of the first kind

AMS(MOS) subject classification. Primary 33A70

1. Introduction. A certain class of logarithmic integrals, the so-called polyloga-
rithms, defined by

(1 1) Li,(x)= (- 1)"-x fo dt

( n 2)!
log"-2 log(1 xt ) -7’ ( n >= 2),

has been investigated in the past by many mathematicians, including Euler, Kummer,
Abel and Spence. In particular, their properties with respect to transformations of the
variable were established for several special cases, for example, for the dilogarithm
(n 2) and the trilogarithm (n 3). A special property of these functions is the relation

(1.2) Li,,(1)=(n)

where ’(n) is the Riemann zeta function of integer argument.
At the beginning of this century, the Danish mathematician Niels Nielsen collected

the known results into a monograph [20], and introduced a new class of functions,
namely

(1.3) Snp(Z)_.(--1)n+p-lfo1 p( t(n ilT/i log"-X tlog 1 zt) --,

defined for positive integers n,p, and complex z=x + iy. The function log’ is under-
stood to lie on its principal sheet, and we define

(1.4) log= lim log(+ie)=logll+ir if <0.
eO+
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Because of the fact that

Sn_x,l ( Z ) tin( Z ),

these functions are generalizations of the polylogarithms (1.1). It is likely that Nielsen
undertook his research on Sn,p(Z) in the hope of finding expressions for ’(2k+ 1)
similar to those known for ’(2k), and results for

(1.5) /3(2k) E (- 1)a (k= 1,2, ...),
j=0 (2j + 1)2k

similar to those known for/3(2k + 1). At least he remarked [20, pp. 131, 204] that he
was not able to obtain such results from his relations for Sn,p(z).

Nielsen’s monograph [20] contains many formulae for Sn,p(Z ) and for two related
functions L,,p(Z) and M,,p(Z), in particular involving transformations of the argument
z. Although most of his formulae are correct (apart from misprints) for complex
z x + iy with y 4= 0, the direct replacement of z by real x may lead to discrepancies
when the functions involved are complex-valued for real x. This fact has been over-
looked in [12]. As far as the author knows, these formulae have never found their way
into any of the relevant handbooks, and it seems that the only reference to this
monograph until about fifteen years ago was in the book of Lewin [16]. About this
time, however, it became apparent that Nielsen, although he did not succeed in finding
results for ’(2k+ 1) and /(2k), had introduced a class of functions which are of
importance in certain applications, in particular in quantum electrodynamics (see, for
example, [2], [3], [6], [15], [18], [19]). With this application in mind, functional relations
for S,p(Z) were presented in [12], together with a method for computing S,p(z)
accurately (12-14 digits) for real z= x and n +p __< 5. Also some of Nielsen’s ideas, in
particular on the special values Sn,p=gn,p(1) and on a similar integral, have been
investigated further [12], [13], [14]. Jacobs and Lambert [11] have developed a method
for computing S,x(z) and S,x(z for complex values of z, and Barlow [4] has
considered the computation of S,,p(z) for complex z by continued fraction approxi-
mants.

An explanation for the fact that Nielsen’s monograph remained undiscovered for
so long lies perhaps in the fact that it was published in a journal which (at least for
mathematicians and physicists) was little-known and not easy to obtain. Further, it
contains an unusually large number of misprints and, as we shall see, genuine errors. It
is, however, far from being out-of-date or without interest. Integrals of this type or
even, in some respects, more general, such as

fl log’tlog"(1 -t)logP(1 + t) dt
J0

where m, n, and p are nonnegative integers, and D(t)= t, 1 t, or 1 + t, play a role in
the evaluation of Feynman and relativistic phase space integrals, as is indicated by the
recent publication of a table by Gastmans and Troost [7]. These authors also discuss
certain special values of the polylogarithms, a problem which Nielsen investigated in a
more general way for his functions, and give a table of infinite series related to
polylogarithmic integrals.

Therefore, for historical and practical reasons, it is perhaps worthwhile to give a
systematic and critical presentation of the more important part of Nielsen’s work on
generalized polylogarithms, which until now has not been generally accessible. For
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example, Lewin [17, p. 199], in a new edition of [16], remarked that it was not possible
for him to give a discussion of the general results obtained by Nielsen, although he cites
Nielsen’s monograph many times. Also, the table of Gr6bner and Hofreiter [9, pp.
71-73] contains a chapter on "Euler’s dilogarithm and its generalisations" and a
reference to [20], but only formulae for p 1 are given there.

In the presentation which follows, we shall follow the original monograph fairly
closely, but on some occasions we shall present new results or proofs; for example,
certain constants appearing in the functional equation relating Sn,p(Z ) to S,,,,(1/z)will
be expressed in terms of known constants. Special attention will also be given to the
correct representation of the functional relations for real arguments.

2. Basic tormulae. Nielsen’s generalized polylogarithms can be defined by [12],
[201

(2.1) S.,p(z)=
(--1)n+p-1 f01 dt
(n-)!p! lg"- lgP(1 z)-7

(2.2)
(- 1) JSP(P)+J

Zp+j (IZ[Z 1)
j=O (P+J)!(P+J)"

(--1)n-l[ on+P -1 l zF(a fl. fl+ l;z) ](2.3) (Zii 3fl;--]-ff;, ==0

where

Y(qt) fo tt- (1 --t)V-t- (1 --tz)-dt

is the Gaussian hypergeometric function, and

1 k-l+i 2k-m E (-1)S(km)--"
i=0

-. k-m+i k-m-i
j=0

k-m+i

are the Stirling numbers of the first kind in Schl/3milch’s representation [5, p. 216],
generated by [1], [5, p. 212]

(2.4) 1ogre(1 + X)= m! E S(m) xkk-7 (Ixl<l).
k=m

In this paper, we shall use Nielsen’s notation

S,( z S_,( z

instead of the notation Li,(z) introduced by Lewin [16], [17].
It follows from the series definition (2.2) that, for the polylogarithms,

o zj Z Z 2 Z(2.5) S.(z)= E
j=l j

For n 1 and n 0, we have as degenerate cases

(2.6)

([zl=<l) (n>l).

z (Izl<l)SI(Z)-- -log(l-z), So(z )- 1-z



NIELSEN’S GENERALIZED POLYLOGARITHMS 1235

For p > 1, the series (2.2) becomes considerably more complicated. By writing [5, p.
2171

(2.8)

j+l

S(2) j 1

k=l

s2-(-(+ Uk=l =1

we find, for example

(2.9)

(2.10)

Sn,2(z) 2n+l
+ 1+ ,+i + 1+-+-5 4n+l

+ "’’’
S,,3(z)= 1+- 1+ 3n+l

1[( 11)2( 11)] Z 4

+ 1++ 1+-+ .4n+1
From (2.1) and (2.2) one may easily obtain

(2.11)
(-1)

_
a p! logP(1 -az),
-z Sn’p OIZ )

1 (n>2),

(2.12)

1
Sn,p ( Olz ) -- Sn_ l,p ( Ol ) d, (n>=l),

1
Sn,p(Z)=p!pnZP+O(zp+l), (z-- 0),

and from (5.12) below,

(-1) p

S,p(Z)= (n+p)! lg"+P(-z)+O(lg"-X(-z))’ (z ).

In order to derive his relations, Nielsen introduces in addition the functions

(2.13) Ln,p(Z)=(-1)n+p-l dt
(n /;i lg"- lg*’(1 ’) -7- (n>= 1,p>__ 1),

(-- 1) n-x fo dt
Mn,p(Z)=(n_l--.! logn-ltlogP(1 +t)T,(2.14) (n>l,p>l).

Using the binomial theorem, it is easy to see that

lgjz (z),(2.15) Sn,p(Z)-- ’j! Ln_j,p
j 0

(2.16) Ln,p(Z)= (- 1) qog’’z
;=0 J! &_,,(z),
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and

(2.17) (-1)PS,,p(-z)= lgJz
j=0 J! Mn-J’P(z)’

(2.18) M,,p(z) (- 1)e (-1)JlgJz
j=0 J! S,_j,p(-Z).

In particular,

(2.19) Lx,p(z)=Sl,p(z), M,,p(Z)=(-1)PS,p(-z).
The values of S,,p(z) for z= 1,- 1 and 1/2 are of special interest. These values are

real, and we define

(2.20)

We also write

on,p= (- 1)eS,,p ( 1) M,,p(1),

--aSn’-Sn-l,1, On--On-l,1, an n-l,l"

Properties of S,,p, %,,, and an,p are discussed in 9. For the moment, we note only that
sn, p can be expressed in ’(k), that

(2.21)

which follows from the definition integral (2.1) by partial integration, and that

(2.22) s,= ’(n), % (1- 2x-")’(n),
which follows from (2.5), using well-known properties of the Riemann zeta function.

3. Some analytical properties of S,,,v(z), L.,v (z), and M.,v(z). With the general
definition of the logarithm function, S,,v(z), Ln,p(z), and M,,p(Z) are multi-valued
functions of z. By restricting log" to its principal sheet, using (1.4), and cutting the
z-plane appropriately, we obtain single-valued functions which are holomorphic at all
finite points z with the exception of the branch-cuts. In the remainder of this section,
we define these cuts along sections of the real axis z x and describe the behavior of
these functions on this axis, in particular on the cuts. These properties will be required
later.

3.1. S,,,v(z ). In this case, we have as branch points z= 1 and z= o, and we cut
the z-plane along the real axis from x= 1 to z. For x__< 1, S,,p(x) is real. For the
behavior on the cut, we have from (1.3) and (1.4)

lim S,,,p(x-ie)=S,,,1,(x ),
(3.1)

--,o+ (x> 1),
lim Sn,p(X+ie)--S* (X)n,p
eO+

where the asterisk denotes the complex conjugate. Therefore, Sn,p(Z ) is, on the cut,
continuous from below.
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3.2. L.,,(z) (n>l). Because of (2.19), we can make the restriction n>l. As
branch points, we find z =0, z 1 and z m, and we cut the z-plane along the real
axis from x=l to m, and from x=0 to -m. For 0=<x=<l, Ln,p(x ) is real. On the
cuts, we have from (2.16),

lim L,,,p(X+ie)=L,,,p(X),
(3.2)

lim Ln,p(X-ie)=L*n,p(X),
e--*O+

and

lim L,,,e(x-ie)=L,,,p(x),
(3.3)

,-,o+ (x> 1),
lim Ln,p (x + ie) L’n,p (x),

e---*O +

so that L,,,p(z) is continuous from above for x<0, and continuous from below for
x>l.

3.3. M,,p(Z). From (2.19) and (3.1), we find for n= 1 that the branch points are
z 1 and z z, and we cut the z-plane from x 1 to m. On the cut, we have

lim Ml,p(X + ie)=Ml,p(X),
(3.4) 0+ (x< -1),

lim M,p(X-ie)=M* (x)1,p
e-*O+

so that M,p(z) is continuous from above for x < -1. For x>_ -1, Ml,p(X ) is real.
For n > 1, we find from (2.18)

lim Mn,p(X+ie)=(-1)P (-1)qg(x+ie)
o+ j=0 J! S,_j,p(-x-T-ie).

Because of (1.4) and (3.1), it follows that M,,p(z) has branch points at z=0 and
z , and we cut the z-plane from x 0 to . Then

lim Mn,p(X+ie)--Mn,p(X),
(3.5) -,o+

(x<0).
lim M,p(X-ie)=M* (x)n,p
eO+

For x>=O, M,,,p(X) is real. Thus, Mn,p(Z ) is continuous from above for x <0 (n>= 1,p>=
1).

4. A lemma. In order to establish some of the functional relations for the gener-
alized polylogarithms, Nielsen needs the following

LEMMA. Let the complex quantities xj, yj (j= 1,..., n), and a, for n 1, 2, 3,...,
be related by

(4.1) x,,= -.y,_j..
y=O

Then

n--1
Olj(4.1a) Y,= E (-1)

j=O " Xn-j’
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and

(4.1b) ’l aJ ( n+r-j-1 ) mRm ( )j=0" r Yn+r_j (--1) n+r--m--1
r- m Xn+r--m"

m--0

Proof. The first result (4.1a) is well known. Nielsen obtains (4.1a) by using
relations between integrals (see Lewin [17, p. 266]), but mentions that it can be proved
directly. An elementary proof follows from the well-known binomial inversion theorem
[21, p. 45], namely

a,= , j b,_, bn-" (_ 1) j n

j=0 j-’0
J an-j’

by setting a o bo 0 and

ak k!ot-kXk, bk k !( kyk

Note that, for fixed p,L,,p(X), Sn,p(x), and Mn,p(x ), (-1)PSn,e(-x) are, according
to (2.15)-(2.18) pairs of functions related by this lemma.

In order to prove (4.1b), Nielsen uses a form of Vandermonde’s convolution
theorem (see, for example, Riordan [21, pp. 8-10]), namely

(4.2) (_l)(j)(n+r-m-1)=(n-j+r-1)
m=O m r-m r

in particular

(4.3) (-1)m(n+k)(n+r-m-1)=O, (O_<k<r-1)m r-m
rn O

Denoting the left-hand side of (4.1b) by An,r, we obtain, using (4.2),

(4.4) An,r (_1) j n+r-m-1
j=O -" m=O m r- m Yn+r-j

(_1) n+r-m--1 o "m=o -. r- m .=
Yn+-m-"

From (4.1), we have

(4.5)
n-m-1 ij r-1 k. --n-mE Yr-kE Yn+r-m-j Xn+r-m
j=o ,=o (n-m+k)!

Substituting (4.5) into (4.4), we find as coefficient for Yr-k the expression

(n+k)! (_1) n+k n+r-m-1
m=0

m r-m (O__<k__<r- 1)

which vanishes by (4.3). The result (4.1b) follows immediately.
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5. The transformations z--> l-z and z--> l/z. Nielsen was able to find many
formulae relating the functions Sn,p(Z), Ln,p(z), and Mn,p(Z for different arguments.
He proved these relations mainly by considering indefinite integrals for Ln,p(Z) and
M.,p(z), for example by writing

(n-i)!p! lgn-lzlgP(1-z) dZ+c
Z

and fixing the constant in the resulting expression by considering special values.
In the following, we shall prove these formulae of Nielsen by using the definitions

(2.13) and (2.14) of L,,,p(Z) and Mn,p(Z ). We start with

5.1. The reflection z---> l-z. We split the range of integration in (2.13), and
obtain by partial integration, for Imz 4 0, using (2.20),

Ln,p(z)--Snpq_(-1)n+P-lflZ(n-i)!p! lgn-XtlgP(1-t) dt

._Sn,p_[_
(-- 1) n+p-1

n!p! lgnzlgP(1-z)

(- 1) n+p-1 fo1-z dt
(p- 1)!n!

logp-I tlogn(1 t) --,
which gives

(-1) n+p

(5.1) Ln’p(Z)’ff Lp’n(1-z)--Sn’p- n!p! lgnzlgP(1-z)

as the reflection formula for the function Ln,p(Z ). Using (2.15) yields

(5.2) S,p(Z)=
j=o J! .Sn-j’p-Lp’n- (n----j-:j. lgn-JzlgP(1-z)

whence, using (2.16) and a well-known property of the binomial coefficients,

(5.3) Sn, p (z)
logj z (- 1) klogk (1 z) S,_ (1 z)

;=0 J" k’.

if_
(-- 1) p
n!p! lgnzlgP(1 z)"

Equation (5.3) is the reflection formula for the generalized polylogarithms. In the case
of polylogarithms (p 1), this equation reduces to

(5.4)
2 logz 1Sn(z)-- {s -S 1(l-z)}- 1ogn-Xzlog(1 Z)

y=0 J! -j ,n-j- (n- 1)!

Note that the reflection z--> 1-z for Sn,p(Z) as expressed by (5.3) remains within the
set of generalized polylogarithms (apart from known constants and-logarithms). Equa-
tion (5.4) shows, however, that it is not possible to represent the reflection for the
polylogarithms within the set of these functions if n > 3. Thus, for the trilogarithm, one
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has

S,(z )= s,- $1,2 (1 z)+ logz [s:- S(1 z )] 1/210g2 z log(1 z).

This relation contains the function $1,2(1-z ) which is not a polylogarithm. It is
interesting to note, however, that the reflection formula provides an expression for the
particular generalized polylogarithms S,p(Z) in terms of ordinary polylogarithms, since
we have

(-1) p dl (-1) P

(5.6) Sx,p(Z) fopV. log 1-zt)T=Sp+ 1+ p! logzlogP(1-z)

p-1 (1 -z)E (--1)klogkSp-k (l--z)k! +1
k=0

We now consider the case z= x real. By setting z x + ie it follows from (3.2),
(3.3) and (1.4) that, for x < 0, (5.1) remains unchanged, while for x > 1, both sides must
be replaced by their complex conjugate. From this and the fact that L,,p(X) is real for
0 <=x_<_ 1, we see that (5.1) remains valid, as it stands, for arbitrary real z=x. By a
similar argument, this is also true for (5.3) relating S,,p(Z) to S,o(1-z), and for the
special case (5.4). Therefore, the restriction Imz 4:0 made above is no longer necessary.

5.2. The inversion z l/z. This case is more complicated. We follow Nielsen in
first establishing an inversion formula for M,,p(Z) but instead of considering indefinite
integrals for M,,p(Z) and M,,p(1/z) as he does, we start with the definition integral
(2.14), which gives for Imz 4: 0, using (2.20),

(_ 1) "-1 fz dt
Mn,p(Z)=n,p+ (n_lp-! logn-XtlogP(l + t)"T-

1 f/ log"- [log(1 + t)-logt] pdt
=O,,p- (n- 1)!p! "1

1
p-

() dtE (-1) k p f/z log.+k_tlogP_k(l+t) T--O.,p (n--1)!p! k=O
k "1

(-1) p

fl/Zlog,+p-ltdt
(n- 1)!p!

p-1

--On,p--(--1)n

_
(n+k-l)

k=o
k On+k’p-k

p-1

+(_l),(n+k-1)M,+k (1)_ (-1) logn+pz"
=0 k ,P- z (n+p)(n-1)!p!

Denoting the constant part by C,,p, we have

(5.7)
p-1

Mn,p(z)=Cn,p+(_l)nE(n+k-1) (1) (--1)
k=0 k Mn+k’P-k - --(n+p)(n--1)!p! log n+pz

(Imz 4: 0, or Imz=0 and Rez >0).
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Formula (5.7) is also valid for real z= x >= 0, in which case it is real. For x < 0, we set
z- x + ie and obtain with the help of (1.4) and (3.5) the relation

(5.8) M,,p(x)=C,,,p+(-1)" Z n+k-1 M,*+, ,
k=o k ’P- x

(- 1)"
log" +,x (x real)(n+p)(n-1)!p!

This equation enables us to express the constants (where the sum is zero for p 1)
p-1

(5.9) C,,1:,=(1_(_1),)o,,p_(_1),,_ (n+k-1)
k=l k On+k’p-k

in terms of known constants. This will be discussed further in 7.
In order to establish the inversion formula for the generalized polylogarithms

S,,p(Z), we start from (5.7) and write, using (2.17)

n -j

1---lg"+ez E (-1)
p’ (n-j+p)(n-j-1)!j’j=0

The coefficient of log"+p z can be written as [8, No. 3.191 3]
(5.11)

1 nl (_ 1).-j
p!

j=o p -j 1)!j!

n-1 logJz+ E j! Cn-j,p.
j=0

p’(n-1)’ fo E (-1) "-J n-1 un_j+p_ldu
j=0 J

1 fop!(n-- 1)! uP(l--u) du=(n+p)!

We now apply Lemma (4.1b) and write, remembering that Mn,p(Z ) and (- 1)PS,,,p(-Z)
are related through (4.1),

whence, replacing z by -z in (5.10)

(5 12)
p k 1ogm(_z) n+k-m-1 S+k_,,p_ k zS,,p(z)=(-1)" (-1) k E m’ k-m
k=0 m =0

+(-1)P{ logJ(-z)
j=0 J! Cn_j,p +

1 log,+p(_z)}
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It is easy to see that (5.12) is also valid for real z= x if x __< 0. In this case it contains
only real functions. For x>0, we proceed analogously to the case of M,(z), set

z x / ie and obtain, using (1.4) and (3.1),

(5.13)
P- ’ log (-x) n+k-m-1 Sn,+k_m,p_ k XSn’p(X)=(-1)n -" (-1)k " m k-m
k =0 m=O

j=0 J!
log" +p ( X )} (X real)

Note that the imaginary parts cancel for 0 __< x __< 1. Further, since &,o(1/x) is real for
x > 1, it follows that the imaginary part of Sn,p(X) for x > 1 comes only from log(--x).
Using (1.4) in (5.13) and taking the imaginary part (with empty sums equal to zero)
gives

(5.14)

_1 ImS.,p(X) (-1)" E (- 1) ’ E n+k-m-1 Sn+k_m,p_k --X’77" k=l m=l k-m

[(m- 1)/21 2j
E (-
j=o (2j+l)!(m-2j-1)!

n-1 [(m- 1)/2]

"4-(--1) p E Cn-m,p E (--1) j

m--1 j=O

,B.2J

(2j+ 1)!(m-Zj-I)!
lg’-2-lx

[(n+p-1)/2]

+(-1) p y’. (-11 j

j=o

,.B. 2j

(2j+ 1)!(n +p- 2j- 1)!
logn+p-2j-lx"

Equation (5.14) shows that, for p > 1, ImS,,p(x) is expressible, apart from logarithms
and (known) constants, in terms of &,o() (n <__ v <_ n +p 2,1 <= O <=P 1) in the inter-
val 0<=<1.

For the polylogarithms, we obtain as a special case from (5.12), (5.9) and (2.22)

(5.15) S"(z)+(-1)"S’( 1)z
n. 2 -1 (1+(1) -’ log’(-z)log"(-z)- )(1-21-"+J)s,_j

j=O

where for real z x, S,(1/x) has to be replaced by S*(1/x).
As in the case of reflection, the inversion (5.12) has the remarkable property of

remaining within the set of generalized polylogarithms. In contrast to the case of
reflection, the inversion (5.15) for the polylogarithms also remains within the set of
these functions.

Note that this formula differs by a factor 1 from the expression given in [12], owing to the fact that,
for real z x, (5.12) had been erroneously used instead of (5.13), and a convention different from (1.4) had
been introduced in order to overcome resulting contradictions. Because of this, the function computed by the
Algol program for Sn.p(X in [12] is in fact Sp(X) according to our present definition. For n=p=l,
formula (5.14) agrees with Lewin [17, p. 2].
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6. Bilinear transformations of the argument. If we consider the reflection Pl(z)=
1-z and the inversion P2(z)= 1/z as belonging to the group of bilinear transforma-
tions

with real coefficients and a8 fl7 4= 0, we see that they generate a subgroup

1 1 z-1 z
Pj(z)=z, l-z, -,

z 1-z’ z z-1

(j= 0,1,..., 5). By repeated use of (5.3) and (5.12) it is then possible to find formulae
for

S,,,p 1-z S,,p z S,,,p z-1

which will contain, apart from logarithms and known constants, only generalized
polylogarithms. These formulae become soon very complicated, and we leave a more
systematic investigation to further research. By the above procedure one can, in princi-
ple, find a (complicated) expression for $2,2(z) in terms of polylogarithms. Lewin [17,
p. 204] has given a formula from which such an expression can be derived.

Nielsen also discusses the following bilinear transformations of the argument of
the function Ln,p(Z ).

6.1. The transIormation z 1/(1 + z). From the definition integral (2.13) we find,
for Imz : 0,

(6.1)

( 1 ) (--l_)+P-lfoX/(l+z)L,,p 1 + (n- )!p!
lgn-ltlgP(1-t) dtt

1 f0" lgn-X(1 + t)[log(1 + t)-logt] p dt
=Sn,p-(n-1)!p! l+t

1 (_1) p log,,+p__(1 + t)logt=S,p- (n-1)!p! --o k l+t

Using (2.14), and taking into account that

(n-1)!p!(n+p-k) (n+p)!

yields, after integration by parts,

(6.2)

=s,, )!
(_1) n+p-k-1 n+p logzlog+,_(l_z)Ln’p 1 +z ’P (n+ k=0 n-1 k

n+p-k-1

k= n 1 M,n+,
_ ( z ) (Im z 0, or Im z 0 and Rez >__ 1).
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Both sides of formula (6.2) are real for z x >= 0. Further, it follows from (1.4) and (3.3)
that (6.2) remains valid for real z--x if -1 __< x __< 0. For z x <- 1, however, we see
from (3.2) that L,,,p(1/(1 / z)) has to be replaced by Ln*,p(1/(1 / z)).

6.2. The transformation z z/(l + z). In this case, we have from (2.13) for Imz 4:0
and n>l

( z ) (--1)n+P-foZ/(l+z) dtlogn-l tlogP(1- t)--i-

(n- 1)!p!
[log(1 + t)-logt] logP(1 + t)--

[log(1 + t)-logt] ’-log’(1 + t) +t
Hence by comparison with (6.1),

--Sp+l,n_L,, 1 +z =Lp+I’n-1 i z
n-1

E+ 1 1og"+P-’- 1(1 + t)logk "-7

and, using (2.14) and (2.21),
(6.3)

( z ) ( 1 ) (n+p-k-l)Ln’p 1 +z -Lp+I’n-1 1/’ --Sn-I’p+I / Mk+l’n+p-k-l(Z)
=0 P

(Imz 4= 0, or Imz=0 and Rez>__ -1).
For n- 1, we have directly from (2.13)"

(6.4) Lt’P 1+) =. lgP(l+t)- lgP(l+t) i/t

1
=MI’p(Z)-(p+ 1)!

lgP+X(1 + z)

or, by (2.19),

(6.5) S,p( 1
z )=(_l)PS 1 logP+l(l+z)+z ’P(-Z)-(p+l)!

(Imz 4= 0, or Imz 0 and Rez >= -1).

As in the case of formula (6.2), we see by setting z= x + ie and using (1.4), (3.2) and
(3.3) that the left-hand side of (6.2) must be replaced, for real z x < -1, by

l+z -L;+l’n-1

Since Ll,p(z/(l+z))=Sl,p(z/(l+z)) is real for x>=-l, the formula obtained by
replacing the left-hand sides of (6.4) and (6.5) by their conjugates are valid for all real
Z Xo
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6.3. The transformation z (a + z)/(b + z). This transformation is a generaliza-
tion of the transformation z - z/(1 + z). The formula obtained by Nielsen [20, 13(7)]
is incorrect, and, as we shall see in [}9, it was this error which led him to wrong
conclusions on the nature of the special values %, ( 1) PSi,p ( 1).

We have from the definition integral (2.13) for a 4: b, Imz 4: 0, and n > 1,

( a+z ) (--l)n+p-l fo(a+z)/(b+z)
--Sn,pd"

=Sn,p+

dt
log- logP (1- ) --(--1) n+p fz ((n-liU .(b-a) log,_ a+.tb+t lgP

b+ (a+ t)(b+ t)

(n li log,_
a+t

logp
b-a dt

b+t b+t a+t

logn-1 logP
b+t b+t b+t"

Denoting the integrals by Jx and J2, and substituting r (b- a)/(a + t) and r

(b a)/(b + t) in Jx and J2, respectively, we obtain, using (2.14),

j1--- (_ l)n+p-l fo(b-a)/(a+z) log,_ 1(1 + r)logp (l+r)r dr
r

__(__l)n+p_lE (_l)k(p (b-a)/(a+z)

k=o
k

log"+p-- (1 + r)logkr dr

_(1) n+p-1 )! n+p-k-1 b-a
p!(n-1 E Mk+l’n+p-k-1 a+z",=o n-1

Similarly, by (2.13),

J2 fo(b-a)/(b+z) dr
log"- (1 r)logPr

P /’/-- "Lp+I’n-1 b+z

Therefore

(6.6)

Ln’p b nt- Z ’P
y, n+p-k-1
,=0 n-1

b-a
_[_Lp+l,n_ b+zMk+l’n+p-k-1 a+z

(Imz 4= 0).

This formula corrects Nielsen’s formula [20, [}13(7)], in which

b- a
reads Lthe term Lp+l,n_ b+z ’P b+z

For real z x, formula (6.6) has to be adjusted in accordance with the results of 3.
This will depend on the values of a and b.
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Comparing formula (6.3) with (6.6) for a=0 and b= 1, we obtain a relation
between M,p(z) and M,p(1/z), namely (n> 1)

(6.7) "za (n+p-k-l)M, (z)
k=o P +l,n+p-k-1

+ _, n+p-k-1 M, =S --S
k=0 /l1 +l,n+p-k-1 Z ,p -1,p+l"

(Imz 4: 0, or Imz=0 and Rez >= 0).
For real z x < 0,M, + X,n+p_k_l(1/Z) has to be replaced by Mff+ X,n+p_k_l(1/Z).

6.4. A sum containing L,,,t,(z/(l + z)). Nielsen closes his section on bilinear trans-
formations of the argument by considering a sum containing L,,,,(z/(1 + z)). This sum
can be expressed in terms of (ordinary) polylogarithms. To avoid divergent integrals,
we introduce the functions (0 < e < 1)

(6.8)
Len,p(Z) } (--1)n+p-lfez dt

( 1) pM,,p(z)e (n-- )!p!. log n-1 logP(1 -T- t)7
and write

(- 1)k!L_+ao() (- 1)k! dt(-1)* log,_j logJ(l_ t)_7(k-j)!j!

Thus, by summation,

-j+l,j() 2 (-1) a k dt

./’=0 j=0 J lg*-JtlgJ(1- t)--

log*
1-t 7"

Setting ’=z/(l+z), and making the substitution r=t/(1-t), we obtain, with e’=
e/(1 -e),

( z ) (-1)*iz drY’ (-1)JL]-+IO l+z k’
log*r

.i=o r(1 + r)

(- 1)* [log,+ 1Z log,+1 e,] (- 1)*
(k+l)! k!

By partial integration, using (6.8)

logkr
1 +r log* z log(1 + z ) log*e’ log(1 + e’) + ( 1)*k’.m,le’ ( Z )

Further, from (6.8),

L*+I’ 1 +z (k+l)! log*+1( z )-log*+le].
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Collecting these results, we see that the divergent parts cancel for e-o 0, and we obtain

(6.9)
k

(_l)gL ( z ) (--1)k [ ( )]k-j+l,j i+z (k+l)!
lg’+z-lg’+l z

./=
1 +z

k
logzlog(1 + z)-Mk,l(z )

or, using (2.18) and replacing k by n- 1,

(6.10) E (-- 1)mtn-m-l,m+l n!
m=0

1 (_ 1)qogJz
j=0 J! S_j(-z).

As in the case of formula (6.2), the left-hand side of (6.10) has to be replaced by its
conjugate for real z x < 1.

7. The constants C,,,,. We now return to the constants Cn,p defined by (5.9).
Because no relation seems to be known which expresses O,,p=(-1)PS,,p(-1) for
arbitrary n >__ 1, p >= 1 in terms of known constants, Nielsen did not, apart from giving a
formula for C2,-1,2 in terms of ’(q), investigate relation (5.9) further. For some small
values of n or p, however, expressions for C,,p are known [12] in addition to C2,-1,2,
namely

(7.1)

Cl,p--(p+l), (p 1,2, 3,4),

C2n,1-- 0 (n>__ 1),
7 7 4C3,1=-C2, 2=’(4) r

C2,3-- C3,2--

The question arises whether it is possible to express Cn,p for all n and p, in terms of
known constants. This is indeed the case, as is shown by the following

THEORFM 1. Let 6ij be the Kronecker symbol; let era= 1 if m is even, em=O if m is
odd, and let s,o=S,o(1). Then, for integer n,p (n> 1,p>= 1)

p-1

C.,p= (-1)"+P-X (- 1)k(1-- (-- 1)"Sko)(n + k- 1 )
k=0 k

[(n+k-1)/2]

jO
(-- 1) j qT"2J

(2j)!Sn+k-2j,p -k

+ (_ l)[(n+p)/2]+n qr n+p

e’+P(n+p)(n-1)!p!
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Proof. We set x 1 in (5.8) and obtain, using (1.4),
p-1

C,,?=M,,,p(-1)-(-1)" (n+k-1) (ir) "+p

k=0
k M’*+k’P-k(--1)+ (--1)(n+p)(n--1)tp!

From (2.18), we have

(7.3) M,,,p(-1)=(-1)P (-irr)J
j=0 J----T--" sn-J’P"

Therefore

(7.4)

C.,p=(-1) n+p-1

_
(--1) k

k=0
n+k-1)n-I (irr) j

k
j=0 J!Sn+k-j,p-k

n_l }1)"E( 1)J(i;!)J S -j,p
j=O

+(--1)
n+p

(n+p)(n-1)!p!

On taking the real part of (7.4), Theorem 1 follows. In addition, we obtain from the
imaginary part a relation between the s,, o, namely

p-1

Y’. (-1)*(1 +(--1)n,o)( n+k-1
,=0 k

[( n + k- 2)/2] 7r2j+1E (- 1)a-
j=0 (2j41)! +k-Zj-l,p-k

+ (- 1)t(o +, +. eff +p

-1)(n+p)(n-1)!p!
It has been shown in [12], [13], [20] that s, o can be expressed by a homogeneous

polynomial in Sq=(q) (2=<q__<v+O), with rational coefficients, where ’(q) is the
Riemann zeta function. This polynomial is of degree v + 0, if ’(q) is defined to be of
degree q and if the degree of a product is the sum of the degree of its factors. Since
even powers of r can, through [8, No. 9.616]

2,, (2m)!’(2m)
22m-llB2m

be expressed in terms of ’(q) and the Bernoulli numbers Bzm one has the remarkable
fact that C,,,p can be expressed by a polynomial in ’(q) (2 <= q <= n +p) which is of the
same type as the polynomial for

A short table of C,,, (1 <_ n =< 5,1 =<p _< 5) is given in Table 1. This table has been
computed by REDUCE [10] from the expressions for st, given in [13]. For the special
case n 1, we find from (5.9) and Theorem 3 in 9 that

p-1

(7.5) Cl,p-- 201,p +
k=l

which gives, with (7.2), another relation between the
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,if2
C, (2) =--
CI,2=(3)

C. ’(4)=

C1, (6) =--4-

T,LE 1

5 7
rC,2= 6’2(2)+’(4) -C2,3 ’(2)’(3)- ’(5)

25 21 1 2 163
C2,= 3(2)+(2)(4)- (3)-(6)

5 +(3)(4)C2.s= 2(2)(3)-(2)(5) 2(7)

8. Some integrals involving S,,,,(z). We now consider some integrals containing
S.,p(z) in the integrand which were discussed by Nielsen. From the differentiation rule
(2.11) for S.,p(X) we see immediately that

(8.1) f Sn X,p(Z)Sn,p(Z )dZ 1
S

_
(z) (n>2)",p

By repeated partial integration we obtain for k < n- 1, (note the misprints in Nielsen’s
formulae [20, p. 190])

k

f Sn-I’P(Z)Sn’p(Z)dZ--z E (-x)J-lSn-j,p(z)Sn+j,p( Z )
j=l

Sn-k-l’P(Z)Sn+k’P(z)
dZ
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Therefore

(8.2)
k

(_a)f Sn_k_l,p(Z)gn+k,p(Z)
dz 1 S2 (Z)+ E (-1)Jgn-j,p(Z)gn+j,p(z)

j=l

--7(-1 I2 (- 1%_/.,,(so/_.,,(.
j--O

Using the definitions (2.6) of So(z) and Sx(z), and rule (2.12), we obtain, by
repeated partial integration, for a 4:1 and ]z] < 1,

(8.3) f zagn(z)dz-’aa+lnLl(-1) j Sn-j (z)
j=0 (o+ 1) j+l

(- 1)", za+l dz4- (;i f l’z

=za+lni
2 (-1)a’Sn-j(z)

j=o (+ 1)+
(-1)".-]- ( ;-i (Za+ 1__ 1)log(1- z)

+ (-1) "-1

f 1-z"+
dz(aT{i- 1-z

and hence, using [8, No. 8.361 7], we obtain the definite integral

(8.4)

x"-’S,(x)dx=
Rj+Ij=O

+(-1) "-1

an [p(a+ 1)+71, (Rea> -1),

where q(x) is the logarithmic derivative of the gamma function and 3’ is Euler’s
constant. In particular, for a m > 0 an integer,

(8.5) fo n2 (_l)asn_j+ (_l)n-1 m 1
x"- lS. ( x ) dx Z -j=0 mJ+l mn k=l

Lewin [17, p. 308] gives (8.4) and (8.5) for n 2.
Equation (8.5), together with the power series expansion (2.5), allows us to com-

pute

(8.6) fo t Xmfo1(x) 1Sq(tx)Sn(t)--= - tm-ISn(t)dt.
m=l

Using (8.5) and the series (2.5) and (2.9), we obtain

(x)= Z (-1)as.- Z mq+j+l-(-1) E \,_.,]--- mq+n
j=0 m=l m=l k=l

n-2

Z (-1)Jsn-jgq+j+l(X)-(-1)n(gn+q+l(X)+Sn+q-l,2(x))
j=0

Some other integrals containing S,,(x) can be found in [12] and [15].
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9. Values of S,(z) for special arguments z.
9.1. The integrals s,=S,(l). As has been shown in [13], the homogeneous

polynomial in ’(q) for the integrals

(9.1) Sn,p=(_l)n+p lgn-ltlgP(1-t)
can be written in the form

Sn,p=(--l) n+p-1 obn-v-1 E
l+ O+ 1

0=0 P bp-oa+o+l

where [8, No. 8.321]

1 k 1 k

m.ak= k (-1)m(m)ak-m’ bk=- (--1) (m)b_m,

m=l m=l

are the coefficients in the power series for 1/F(1 + x) and F(1 / x) respectively, and
where a0=b0=l and ’(1)-= by definition. In order to derive this expression, the
well-known relation [8, No. 9.122 1]

(9.2) 2 Fl(O B’B+I’I) =F(1-a)F(I+B)r(1-a+B)
is essential.

9.2. The integrals o,,,p (- I)PS,,,p( 1). The problem of evaluating

(-- 1) n-1 f dt
(9.3) n’p=(n-li.i Jollogn-tlogP(l+t)---
seems to be far more difficult. This difficulty is related to the apparent nonexistence of
a relation for _Fl(a, fl; fl + 1;- 1) similar to (9.2). Nielsen claimed that he had suc-
ceeded in representing on,p by ’(q) if n+p is odd, but, as we shall see, his proof is
erroneous. Those relations between on,p and sn,p which can be deduced from relations
given in the previous sections are of such a special nature that it is not easy to see how
they could be used, for example, to derive an expression for On,p in terms of ’(k). On
the contrary, it seems likely that, in the general case, no such relations exist. (Barlow [4]
states, without giving a reference, that "Sn,p(-1), Sn,p(1/2) and Sn,p(1) are easily
evaluated analytically from equation [(2.1)]".)

Nielsen did, however, find a closed formula for the case p 2, n odd, which seems
to be the most general result known for on,p. He proved the following

THEOREM 2. Let (k) be the Riemann zeta function for integer argumnent. Then for
n>O

(9.4)
1 log2n log2(1 + t) --02n+1,2=2(2n)!

=l-[1-(2n+l)(1-Z-2n-2)]’(Zn+3)2

+ (1 21-2j)’(Zj)’(Zn- 2j + 3).
j=l

The sum is zero if n O.
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Proof. Nielsen’s proof, which is full of misprints, starts from the inversion formula
(5.12) for z 1 and p 2. After applying Lemma (4.1a), he obtains an expression for
C2,,-1,2. He then takes the real part and compares his result with the power series
expansion of both sides of the relation

r cscrx r cotrx cosrx + sinx.

Theorem 1 allows us to shorten this proof. From (5.9), we have

1 -(2n-1)o2. l]

Hence, for n 1, using (7.1) and (2.22),
1 1 1

o,2 (c,2- 03) =(s3- 3) g(3).

For n 2, we obtain, using (7.2),

1{ n- 2j

n_l }(2n 1) Y’ (- 1) j rr2j
(2n 1)o2

j=o (2j)! s2"-2J+x "+x

With the help of [13], [20],

(9.6) s,,,,_=- m+ 1)Sm+ 2- Z SkSm-k+2 (m>=2)
k=2

$1,2"-$3

(9.5) can be written as

1 ( n-1 2j

t E (- 1) j rr

n-2 2j 2n-2j-1 }E (-1) j r E sks2,,-2j-k+l+S2,,+i--(2n--1)oz.+
j=O (2j)! k=2

Noting the symmetry in the double sum, and reordering, gives

q./. 2j
j-1 2k ]2j(2j_2),

-2 E (-1)* (2k)i02n_1,2--"" j=l

XS2n-2j+I +s2.+-(2n-1)o2.+}.
Referring to (7.2), we see that the expression in square brackets equals C2j_1,1 2o2j
hence

(9.7)
n-1 1

02.-1,2 Z 02jS2.-2j+1+[S2.+1--(2n--1)O2n+1],
j=l

and Theorem 2 follows on replacing n by n + 1 and using (2.22).
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Formula (9.4) shows that 02. + 1,2 can be expressed by a homogeneous polynomial
of degree 2n+3 in ’(q)(2=<q<_2n+3), with rational coefficients. In contrast to the
expressions for S.,p and C.,p, however, all coefficients of terms which contain more
than two factors vanish. A short table of o2.+ 1, 2 is given in Table 2.

Let

Then

TABLE 2

1 f01 log 2,, t) --.I" 02"+ 1’ 2(2n)! /log2 (1 +
at

1
Io =- ’(3)

1 29

1 7 251.
7I2 ’(2)’(5)+- ’(3)’(4) --i- ’(

31 7 1529 .(913 ’(2)’(7)+-’(3)’(6) + ’(4)’(5)
1 127 7 31 8183

14 - (2)’(9) + ’(3)’(8) +- ’(4)(7)+-’(5)’(6)-2--6 ’(11)
511 7 127 31 40949

I5=-’(2)’(11)+’’(3)’(10)+-’(4)’(9)+-i’(5)’(8)+-3’(6)’(7)- 8192 ’(13)

For a discussion of Nielsen’s work on o,,,p for other values of n and p, it is
perhaps useful to quote his monograph [20, pp. 199-202, translated from the German].
He starts with formula (2.22) for o, and continues that

a similar result is not available for the more general numbers o,,,p , if p > 1. On the contrary, it
seems that these numbers cannot, in general, be expressed in closed form by the numbers s,. In
any case, have found such an expression only when n +p is odd.

After having proved Theorem 2, he continues

On the values o,,, p, we still have to prove that, for n >= 2,

p-2

(N1) p,,,=(-1)P-l(n+p-1)l.n+p-1 + E (-1)q(n+q)n n Sn+q+l’p-q-l"
q----0

For this purpose, we set x-- 1 in (2) and obtain

(n+p-q-l)(N2) Sn,p-- Oq+l,n+p_q_l,
q=0 n-1

which easily gives formula (N1) by induction. Setting n= 2 and p= 2n- 1 in (N1) yields
2n-3

(N3) 2n-1,2-" l,2nnt- E (1) q+2

q=0
q

Therefore, because of [(9.4)] and (N1), we can deduce the following theorem:
For n +p odd, the value O.,p is a homogeneous polynomial of degree n+p in s,s3,...,s.+p

with rational coefficients, provided s is of degree r.
In order to find the numbers O.,p also for n +p even, one needs only to express the numbers

O1.2n- by s,., in which did not succeed.

A numerical check for small n and p shows, however, that (N2) cannot be correct
as it stands. In addition, formula (N2), which represents, for given n +p, a system of
n +p- 1 linear equations in the n +p- 1 unknowns o, o, is not symmetric with respect

There is an obvious misprint in the equation number referenced.
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to n and p, as it should be according to (2.21). Further, for n 1 it contains a quantity
On+p, 0 which is undefined. However, it is easy to see the origin of (N2) in spite of the
misprint in the equation number referenced. It lies in Nielsen’s incorrect equation
corresponding to (6.6), which gives, for a 0, b 1, z 1, the relation (N2) as a special
case.

A correct relation between sn,p and o,,p is given by the following
THEOREM 3. The numbers sn,p=S,,p(1) and o,,p=(-1)S,,0(-1) are linearly re-

lated through

(9.8) s,,.p= 1 OJ’n+P-J+
n+p-j-1

j=l P-- j=l n- 1 Oj’n+p-J"

Proof. From (5.1), we obtain for z

Ln,p + Lp,n Sn,p-- np
and from (6.2) for z 1, using (2.21),

Ln’p +Lp’n =2Sn’p-- n-1 p-1 (n+p)l

n+p-j-1
o,

n+p-j-1

j=l p-- 1 "+P-
j=l n-- 1 oj, ,+p_.

Theorem 3 follows by comparison.
Note that (9.8) is symmetric in n and p. This relation for Sn,p was given in [12]

without proof. Note also that setting z 1 in formula (6.7), derived from the correct
equation (6.6) merely yields an equation equivalent to equation (9.8), as can be seen
from elementary properties of binomial coefficients.

It seems puzzling that Nielsen should have published such an obviously incorrect
equation as (N2), when the correct relation follows easily from his relations for Ln,p(2).
However, by introducing (N1) into (N2) and performing some manipulations with
binomial coefficients, it can be shown that (N1) is indeed the solution of the linear
system (N2) for o,o. Ts suggests that the more special formula (N3) for Ol,2, is also
incorrect, a fact which is easily verified by a numerical check using small values of n,
after correcting an obvious misprint in (N3).

By comparing (N2) and (9.8), we see that Nielsen was misled by the (wrong)
triangular structure of (N2), which enabled him to solve his system in closed form. On
the other hand, the correct system (9.8) does not allow a solution O,,p in terms of s,, 0

(and therefore of :(q)). For n +p 4, the system (9.8) consists of [(n +p)/2] equations
with either n +p 2 (n +p even) or n +p 3 (n +p odd) unknowns, so that for
n +p 6 there are more unknowns than equations. The cases n +p 4 and n +p 5,
where one has as many equations as unknowns, namely two, result in a vanishing
determinant, yielding the single equations

4 31 1(9.9) 201,3+ o,=72, 20, 4 + o, (5)- (2)(3)

The cases n +p 2 and n +p 3 are trivial.

One could imagine that Nielsen, or somebody else at the time might have recognized this error later.
However, a search through the volumes of Nova Acta Leopoldina and Oversigt Danske Vidensk. Selsk. Forh.
up to 1918 shows no published erratum or remark relating to Nielsen’s paper. As far as the author knows, no
collected papers of Nielsen exist (cf. the list of known collected papers in Struik [22, p. 196]).
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When examining other relations of [}[}5 and 6, one realizes that there seems to be
an inherent difficulty in getting relations which could be used to compute O,,p in terms
of sv, o. This is true in particular for the (singular) system (5.9) of linear equations for
the unknowns or, o. Therefore, it seems likely that, not only are Nielsen’s relations (N1)
and (N3) incorrect, but that no such relation exists. An unsuccessful computer search
through relations of the form

ou,’ 4 } P--A-x ’(2) ’(3) + P-2’(5)’PP4

with integers Pi in the range 50 _-<Pl =< 50, 1 =<p2=< 50, 0 =<P3 -_< 50, 1 =<p4=< 50 supports
this conclusion.

9.3. The integrals a,,,p= Sn,t,(-). The problem of evaluating

(--1)n+p-I fol ( 1 )t(9.10) an’p= (n-i.i logn-ltlOgp 1--t
apparently faces obstacles similar to those found for the evaluation of O,,p; in particu-
lar, because no closed expression seems to be known for 2Fl(a, fl;fl+ 1; 1/2). A result
which can easily be obtained from formulae treated in the previous sections is the
following

THEOREM 4. For n >= 1 and p >= 1, the numbers an,p can be expressed in terms of
and log 2, through the relation

(9.11) a n,p
y, (_ 1) j logS2 n +p -j- k- 1

j=0 J! p- 1 Ok +p-j-k + (- 1)" logn+p 2

Proof. From (6.2) with z 1 and (2.16) with z 1/2 it follows that

logJ2
i=0 J! l(n+p-1)log,,+p2an-j’p=Sn’p-- (n+p)! n-- 1

n+p-k-1

k=l n- 1 Ok’n+p-k"

Applying Lemma (4.1a) and using (5.11) yields

(9.12) a n,p
j=0 J! s_j,p p(E n+p-j-k-1

k=l n-j-1

logn+p2+ (- 1)" (-..
Replacing s,_,p by (9.8) gives Theorem 4.

As a special case, we obtain for p 1,

(9.13) a, ,2 (_ 1)/logg2 ,,-j-E
j=o J k=l

o,,,-j-,-(-1)
"lg’2

ni (n> 2).
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In particular, for n--2,

(9.14) a2= log 1--t --=01,1-1og22 1---log 2,

which is a well-known formula due to Euler (attributed to Landen by Lewin [17, p. 6]);
and for n 3,

(9.15) f01 ( 1)t 7 rr 2 1
a3= logtlog 1--t --=-ff’(3)--log2+log32.

For n 4, we have, using (9.9),

(9.16)
q./.4 q/.2

22 ’(3)log 2 1
a4 --- + --log --log4 2-- ol,3

The appearance of the quantity (I1,3, for which no closed formula seem to be known,
makes it impossible to compute

1 log(1 1a4"---fo 1og2t -t)
from (9.13).

From the power series (2.5) we have

(9.17) a,,

Therefore

(9.18) a2= E 1 7/.2 1,,o.2 212 2

(9.19) a3= E 1

j=l 2Jj
7 ,//.3 1
g’(3)--log2 + glog32

and, trivially, a 0 1, al log2. Formula (9.19) had been found by Legendre.
It seems puzzling that (9.17) should exist in closed form only for n=0,1,2,3.

Knowing a4 for example would allow us to obtain, from (9.16) and (9.9), expressions
for 01, 3 and (i2, 2. This in turn, together with a knowledge of a 5, would make possible a
computation of %,4 and 02, 3 from (9.12), (9.4) and (9.9). Levine et al. [15] and
Gastmans and Troost [7] therefore consider a4 and a5 as "new" constants. This makes
it possible to express more kinds of logarithmic integrals in "closed" form.

Another special case is n 1. Here we find from (9.11) that

(--1)P f01 ( 1 )t logp+12(9.20) al,p= p! logp 1 t Ol’P (p+l)!"
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Note that Nielsen’s remark [20, p. 203] that al,2p can be expressed in terms of log2 and
’(q) (2 _<q =<2p+ 1), is probably incorrect, being a consequence of the incorrect for-
mula (N3).

From (2.7), (9.4) and (9.20), one finds

al,2 E a
j=o (J+ 2)!(J+ 2) 2+2

’ 2j--- 1++..-+ j_l (3)-log 2
j=2

or

(9.21) 1 dt 1 1f0 lg2(1-t) -=-’(3)-lg 2.

Nielsen also gave two relations between al, and a,l. From (5.1) and (2.16), we
obtain for z -,

logJ2 1
(9.22) al’n-’Sn+l-- j! ’an-j+1 n! lgn+12"

j t3

With the help of Lemma (4.1a) and a well-known relation for the binomial coefficients,
(9.22) can be inverted to give

(9.23) an=2 (_ 1)Jlog2
j-0 J!

1ogn2(Sn-j-- al,n-j-1)--(-- 1) (--_’i
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p-ARY SEQUENCY AND ORDERINGS OF THE
CHRESTENSON FUNCTIONS*

ZHANG GONGLIf

Abstract. A physical interpretation of the concept of the p-ary sequency is presented. A definition of
p-ary sequency is given according to the interpretation. Expressions of p-ary natural (generalized Hadamard),
p-ary sequency, and p-adic ordered Chrestenson functions are established in a systematic way, and they are
related to the p-adic code and the p-ary Gray code. Mutual mappings of different ordered Chrestenson
functions are discussed.

Key words. Chrestenson function, p-ary sequency, ordering, Gray code, Walsh function

1. Introduction. Much interest in multiple-valued devices, logic, and digital cir-
cuits has been evidenced in the past decade. The Chrestenson functions [1], which take
multiple complex values, are compatible with p-ary numerical systems, and they have
been applied to the design and optimization of multiple-valued logic networks [2], [3],
[4]. In order to introduce the Chrestenson functions well to engineering, where p-ary
digital techniques are employed, the present author showed that the sums of the real
and imaginary parts of the Chrestenson functions also form a set of complete orthogo-
nal functions [5]. We call them the RMV Walsh functions. Because the RMV Walsh
functions take real multiple values, they are readily represented by physical means, e.g.,
voltage levels, as is necessary for system implementation. S-H Chang and T. Joseph [6]
introduced the generalized concept of symmetry and sequence for the Chrestenson
functions, and they presented orderings of the functions according to the symmetry and
sequency. However, further development is necessary.

2. The p-ary sequency. For the Walsh functions the sequency, which is gener-
alized frequency, is defined as "one-half the average number of zero crossings per unit
of time" [7]. However, the definition is not applicable to the Chrestenson functions. In
[6] sequency is generalized as the measure of oriented phase shift, but the physical
interpretation of the concept is not given. The phase number or sequency number has
not so obvious a meaning as the number of zero crossings.

It is known that for a given natural number m the Chrestenson functions [1]
CHPw(t) are defined as

(1) CHPw ( ) exp(2rip lw Tt)
where

m-1

w--O,1,’’’,Pm-l, W= E Wspm-l-s, W--[WoWI"’’Wm-I] T"

s=O

t[0,1), E tsP -s-1 t=[t0tl"’" 11T 2=

Jp- {0,1,..-, p- 1 }, t,, w J,, p is a fixed integer, p > 1.

*Received by the editors October 22, 1984. This work was supported in part by the Science Fund of the
Chinese Academy of Science.

Department of Information Engineering, Northwest Telecommunication Engineering Institute, Xi’an,
China.
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We would interpret variable as time measured in seconds. To interpret the
concept of sequency for Chrestenson functions, we begin by considering the physical
interpretation of frequency for the exponential and trigonometric functions. Speaking
more generally, we view that these functions are intimately related to the circular
motions of particles, with which Newtonian (classical) mechanics deals. The exponen-
tial functions exp(2riwt), w 0,1, 2,. ., mathematically describe circular motion of a
unit vector around the origin in the complex plane, as shown in Fig. 1. The unit vector
projected onto the real axis yields cos(2rwt), while the projection onto the imaginary
axis yields sin(2rwt). Whenever one uses the term frequency and angular shift of
exp(2riwt), sin(2vrwt) and cos(2rrwt), one refers implicitly to the circular motion
described by these functions. The usual physical interpretation of frequency is the
"number of cycles per unit time’" [7]. It is just the definition of frequency, and its unit
is "cps" or Hz. Note that the motion of the unit vector described by the exponential
functions is continuous and differentiable, and the motion can be understood with the
aid of Newtonian mechanics, which deals with forces, masses and motions of particles.
The time (function variable) is interpreted as the topology of continuum just as shown
in the expressions for exponential functions. In other words, has the same topology as
the real numbers. From the point of view of mathematics the exponential functions
represent a mapping of the real number on the number axis in the interval [0,1) onto
the unit circle in the complex plane as shown in Fig. 1. The time in the expressions for
exponential functions is a continuous (analogue) variable.

J
,’" "’.. exp(2iwt)

e

1
FIG. 1. The motion of the unit vector described by the exponentialfunctions.

Similarly the Chrestenson functions may be said to describe mathematically the
circular motion of a unit vector around the origin in the complex plane; but the circular
motion described by the Chrestenson functions cannot be understood with the aid of
Newtonian mechanics, if we view the motion as that of a particle. The unit vector
transitionally moves discontinuously around the origin while the variable increases
from 0 to 1. The angular shift 0 (in radians) of the position occupied by the unit vector
is only an integer times the basis O=2r/p, i.e., 0=0, 2r/p, 22r/p,.... For
example, if p 3 the three positions which the unit vector can occupy are shown in Fig.
2.

It is clear that the positions occupied by the unit vector are quantized. The unit
vector moves instantaneously from one position to another without spending any time.
The motion of the unit vector can be interpreted with the aid of quantum mechanics,
which shows us that the transition from one position, form, or state to another is
possible. The Chrestenson functions represent another mapping of the real number on
the number axis in the inverval [0,1) onto the unit circle, but in the expression for
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J

FIG. 2. The three positions of the unit oector.

Chrestenson functions the continuous time variable t, which has been quantized in the
p-ary numerical system, becomes a digital variable. The discontinuous and transitional
motion of the unit vector is related to the idea that the time is regarded as having a
p-adic topology for the Chrestenson functions.

The "cycle" for the Chrestenson functions thus has an obvious meaning according
to the above interpretation. We interpret the sequency of a Chrestenson function as the
"average number of cycles made by the rotating unit vector, the motion of which is
described by the Chrestenson function, per unit of time". It is also the definition of
p-ary sequency. The concept of p-ary sequency, which has a broader meaning, is
applicable to the trigonometric, exponential, Walsh, and RMV Walsh functions if the
function describing the motion of the unit vector is a corresponding function. The unit
of p-ary sequency is the same as the one of frequency, i.e., "cps" or Hz. It is easy to see
that p-ary sequency is a generalized concept of frequency and sequency.

We now show how the notion of p-ary sequency applies to the Walsh functions
(p 2). Because p 2, the unit vector occupies only two positions, which are 01 2nr
and 02=(2n+ 1)r, n=0,1,2,.... With 01 the value of the Walsh function equals 1,
and with 02 its value is -1. If a Walsh function has one sign change (from 1 to -1 or
the reverse) at 1, [0,1), the corresponding angular shift of the unit vector equals r
at 1. Suppose N is the average number of sign changes (zero crossings) of the Walsh
function per unit of time: according to the definition of p-ary sequency the sequency of
the Walsh function would be

(2) S= Nrr/2r= N/2.

It is just "one-half the average number of zero crossings per unit of time". Therefore,
with p 2 the p-ary sequency and the sequency for the Walsh functions are identical.

It will be proved later that if w=(w=0,1,..., pro--l) is the index of a p-ary
sequency ordered Chrestenson function, the p-ary sequency s of the Chrestenson
function is

(3) S= [(p-1)w/p]*

where [a ]* denotes the least integer >__ a.

3. Orderings of the Chrestenson functions. The question about the ordering of
Walsh functions has been investigated by some authors [8], [9]. The merits and disad-
vantages of different orderings are discussed by Yuen [10]. There are three orderings
for the Chrestenson functions, which correspond to the dyadic (Paley), natural
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(Hadamard), and sequency (Walsh) ordering of Walsh functions. They are p-adic,
p-ary natural (generalized Hadamard), and p-ary sequency.

Suppose wH, w, and we express the indexes of the generalized Hadamard, p-ary
sequency, and p-adic ordered Chrestenson functions respectively, and their p-adic
code, p-ary Gray code [11], and bit-reversed p-adic code are represented as (WOW1...
Wm-), (g0g gm-1), and (h0hl. hm_l) respectively. Then

(4) hs=wm_l_s,

(5) gs-- Wst) Ws_X,

(6) %= gk,
k=0

m-1

(7) WA= E WsP
m-l-s

s----0

where o denotes subtraction modulo p and E denotes summation modulo p.

A ( H, G,P ) and-wA =0,1,... pm_ 1.

3.1. Generalized Hadamard ordering. The generalized Hadamard ordering is the
one which was originally employed by H. E. Chrestenson [1]. The generalized Hada-
mard ordered Chrestenson functions CHPw,,(t) are expressible by using the bit-reversed
p-adic code (hoh hm_l) of wH as

(8) CHPw.(t)=exp 2ri/p) h._t_t
s=O

Substituting (4) in (8), we find

(9) CHPw,,(t) exp (2ri/p) wt,.
s=0

If [CH,,] denotes the matrix whose WHth row is [CHew,(0) CHPw,(p-m)
CH,,((pm- 1)p-m)] for wn=0,1,. ., pm_ 1, it is easily shown that [6]

(a0) [CHI [H],
where [Hm] is the generalized Hadamard matrix of order m

F 0 F 0 F 0

(11) [H]= r r’ rp-i

F 0 FP -1 F

(12) [n:] tHai In,I,
(13) Into] [n_](R) [n.]
where (R) denotes the Kronecker product and r exp(2ri/p).

3.2. p-Ary sequency ordering. The sequency ordered Chrestenson functions

CHw,(t) are defined by using the p-ary Gray code (g0g gm-) of Wa as

(14) CHPw, (t) exp((2ri/p) )gm_l_sts
s=0
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Substituting (5) in (14), we get

(15) CHPwa(t)=exp (2ri/p) (Wm_l_s(Wm_2_s)ts
s=0

Now we prove that the Chrestenson functions defined by (14) are ordered accord-
ing to the p-ary sequency. As already mentioned, the p-ary sequency S of a Chresten-
son function equals the angular shift (measured in radians) of the unit vector, the
motion of which is described by the Chrestenson function over [0,1), divided by 2r.
For CHPw(t), the angular shift 0 over [0,1) is determined by

Pro--2 ( m--1 m--! )(16) 0= E (2r/p) E gm-l-slq+l,s ( E gm-l-stq,s Wd
q=0 s=0 s=0

m-1 m-l-s,where q=E=0 tq,sP tq, Jp and q, is the angular shift at t=0. We have

pm--2[m--a 1(17) O=(2r/p) E gm-l-s(tq+l,s(tq,s) +*.
q=0 s=0

According to the construction of the p-adic code of t, as shown in Table 1 for p 3,
m 3, it is not difficult to see that

O= (2r/p)[( pm--pm-)go + ( pm-_pm-)(go gl)
(18) + +(p--1)(gogl2/gm_l)]+,
where denotes addition modulo p. Substituting (6) in (18), we have

(19)

(20)

y (7),

(2a)
Therefore,

(22)

O=(2/p)(p--1)(pm-lwo+pm-Zw + +Wm_)+dp
m-1

=(2r/p)(p-1) E wspm-l-s+*
s=0

O=2r(p-1)wo/p+.

S O/2r ( p- 1) wo/p + q/2r.

t, q o

0 0 0 0
0 0 1

2 0 0 2
3 0 1 0
4 0 1
5 0 1 2
6 0 2 0
7 0 2 1
8 0 2 2
9 1 0 0

10 1 0 1
11 1 0 2
12 1 1 0
13 1 1

TABLE 1

The values of ( q+ 0 Stq,s ) forp 3, m 3.

tq+ ) tq,s) t, q o

0 0 1
0 0 1
0 1 1
0 0 1
0 0 1
0 1 1
0 0 1
0 0 1
1 1 1
0 0 1
0 0 1
0 1 1
0 0 1
0 0 1

14 1 1 2
15 1 2 0
16 1 2 1
17 1 2 2
18 2 0 0
19 2 0 1
20 2 0 2
21 2 1 0
22 2 1 1
23 2 1 2
24 2 2 0
25 2 2 1
26 2 2 2

(tq+ @ tq,s)

s=O 1

0 1 1
0 0 1
0 0 1
1 1 1
0 0 1
0 0 1
0 1 1
0 0 1
0 0 1
0 1 1
0 0 1
0 0

s=0 1 2
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The angular shift q at =0 would be determined, while the Chrestenson function is
extended with period 1, i.e.,

(23) CH’ (t)=CHPw(t + 1)
G

It is easy to see that the q is the angle shift from 01 (corresponding to CHPw(1 _p-m))
to 0_ (corresponding to CHPw(0)). So

(24) S=[(p-1)w/p]*.

The formula (24) shows that the larger the index we, the larger the corresponding p-ary
sequency, and the CHw(t) (w=0,1,..., p’-1) are ordered according to the p-ary
sequency. The p-ary sequencies of the Chrestenson functions for p= 3, m= 3, are
shown in Table 2.

TABLE 2
The p-ary sequencies of the Chrestenson functions forp 3, m 3.

w; p-ary Gray (0 ) S wa p-ary Gray (0 )
code () code ()

0 000 0 0 14 101 28
001 2 1 15 111 30

2 002 4 2 16 112 32
3 012 6 2 17 110 34
4 010 8 3 18 210 36
5 011 10 4 19 211 38
6 021 12 4 20 212 40
7 022 14 5 21 222 42
8 020 16 6 22 220 44
9 120 18 6 23 221 46
10 121 20 7 24 201 48
11 122 22 8 25 202 50
12 102 24 8 26 200 52
13 100 26 9

10
10
11
12
12
13
14
14
15
16
16
17
18

3.3. p-Adic ordering. Using the p-adic code (WoWI"’" Win_l) of index we, we
define the p-adic ordered Chrestenson functions CHwp(t) as

(25) CHPwp(t)=exp (2ri/p) Wm_l_st
s--0

S-H Chang and T. Joseph [6] pointed out that the p-adic code (WoWl...wre_l) is the
p-ary symmetry index for the CHwp(t), and that the vector

[CnPwe(0) CnPw,(p-m) CHe((pm-l)p-m)]
can be written from left to right by using the p-ary symmetry index without referring to
any other member of the set of Chrestenson functions. In [6] the p-adic ordered
Chrestenson functions are called ordered according to the p-ary symmetry. We note
that for the otherwise ordered Chrestenson functions the p-ary symmetry holds true,
but the symmetry index is indifferent. The symmetry index of the generalized Hada-
mard ordered Chrestenson functions is the bit-reversed p-adic code, and the p-ary
Gray code corresponds to the p-ary symmetry index of p-ary sequency ordered Chres-
tenson functions.
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4. Mutual mappings of differently ordered Chrestenson functions. The exponential
functions exp(2riwt) are a character group of the topologic group of the real numbers.
Since we may consider real numbers to be points on the real line which has only one
dimension, the exponential functions have one ordering. On the other hand, the Chres-
tenson functions are a character group of the p-adic group, and the p-tuple vectors
which belong to the p-adic group form a space which has p dimensions. Therefore, the
Chrestenson functions can be ordered in many different ways.

Now we give a representation of the Chrestenson functions, ordering them accord-
ing to the parameter matrix QA

CHPwA (t) exp((2ri/p)wfQat),(26)

where A is an invertible symmetric matrix,

Q [qij], i,j=o,...,m- 1, qijJp;
m-1

WA E WsPm-l-s, WA= [WoWI"’" Wm-1] T t= [lOll’’’ 1] T

All multiplication and addition operations in the calculation of WArQat are performed
modulo p. The ordering of the Chrestenson functions is determined by the matrix Q;
the three matrices corresponding to the p-ary sequency, p-adic, and generalized
Hadamard orderings are shown in Table 3.

1
1

TABLE 3
The matrices corresponding to the three orderings.

p-1 1

.p-1 1

p-1 ."

1 I 11
Generalized Hadamard p-ary sequency p-adic

It is easy to see that the conversion from one ordering to another order is the same
as the conversion from one code to the other code. Suppose wH, wC, and we are vectors
formed by the p-adic code (WOW1... w,_) of the indices wH, wc, and Wp, respectively.
For example, if the p-adic code of w is (211), wn=[211] r. The mutual mappings of
the three orderings are represented as

(27) wff= wfQAQ- 1,

where A, B ( H, G, P }.
For example, let p 3, m= 3; then

Qn= 1 Q= 2 1 Qp-- 1
1 1 1

and

[ 11Qhl=Qn, QI=Qp, Q= 1 1
1 1 1
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Suppose wn= 8; then wn= [022] r,

wr=[022] 1 1 1 1G
1 1 1 1 1 1

w= [022] 1 1 =[220].
1 1

=[2111,

Using (7), we have w= 22, we 24.
The mutual mappings of other Chrestenson functions are analogous to the mutual

mappings of the foregoing three ordered functions.

5. Discussion. The Chrestenson functions correspond to the discontinuous cir-
cular motion of the unit vector around the origin in the complex plane. The p-ary
sequency of the Chrestenson functions is analogous to frequency. Among the orderings
of the functions there are three important orderings, which are generalized Hadamard,
p-ary sequency and p-adic. The merits and disadvantages of the three orderings are
analogous to those of the Walsh functions [10]. It is convenient to use the p-adic
ordered Chrestenson functions for mathematical discussions, while the generalized
Hadamard ordered functions are applicable to fast transform, p-Ary sequency ordered
Chrestenson functions, the indices of which have a transparent physical interpretation,
would be applied to communication engineering, p-ary sequency filtering, and so on,
just as sequency ordered Walsh functions [7].

Acknowledgments. The author is grateful to Prof. Fan Changxin of Northwest
Telecommunication Engineering Institute, China and Prof. Hu Zhengming of Beijing
Institute of Posts and Telecommunications for their helpful suggestions.
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ANOTHER CONJECTUREDq-SELBERG INTEGRAL*

MIZAN RAHMANf

Abstract. Using Askey and Wilson’s q-beta type integral, a q-extension of Selberg’s n-dimensional
integral is given as a conjecture and is proved for n 2.

Key words. Selberg’s integral, Askey-Wilson integral, Sears’ summation formula, basic hypergeometric
series, quadratic transformation-formula, Macdonald-Morris conjectures
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1. Introduction. In a little-known paper published in a Norwegian journal, A.
Selberg [14] gave the following important result"

-1 -1 i=1 l<i<j<n

fi2a+fl+l+(n-1)y

.j=

1 + (j-1),) F(B + 1 + (j-1))r(jr +1)
F(a+/3+ 2 + (n +j- 2) 7) F("/+ 1)

1 Re(a+l) Re(fl+l)Rea>-I Refl>-I Re,>- n’ n-1 n-1
n>2.

In view of the particular extension we wish to propose, we have expressed the
integrals on the interval [-1,1] instead of [0,1] and this explains an additional factor
2- ++1 +("-I)Y on the right-hand side.

Once an important result is found, it is natural to look for extensions. Selberg’s
integral is a mutidimensional beta integral, so there may be extensions in each of the
ways that Euler’s beta integral has been extended. One way to extend the beta integral
is as a sum, either like the hypergeometric distribution on an equally spaced set of
points, or on a set of points whose ratio is constant. Included in the latter is Thomae’s
q-integral representation of the q-gamma function and Ramanujan’s 11 sum. See [15],
[2]. Askey [3] discovered some extensions of Selberg’s integral of this type, and was able
to prove some of them in two dimensions. In a different direction, Macdonald [8]
conjectured some constant term identities that are truncated versions of some of his
earlier identities, Morris [9] made some further conjectures, and Macdonald refor-
mulated Morris’ conjectures so they made sense for the affine root systems [8]. For
affine BC,, Macdonald’s conjecture is equivalent to an integral with an absolutely
continuous measure that extends Selberg’s integral. For BCt Askey [4] proved this
conjecture and the related integral was a new extension of Euler’s integral. There is a

*Received by the editors July 10, 1984, and in revised form February 17, 1985.
Department of MathematiCs and Statistics, Carleton University, Ottawa, Ontario, Canada, KIS 5B6.

This research was supported by the Natural Sciences and Engineering Research Council of Canada under
grant A6197.
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similar extension of Euler’s integral with four free parameters in addition to q, which
was found by Askey and Wilson [5]"

(1.2)

h(x;l)h(x;-1)h(x;ql/2)h(x; _ql/2)
h(x; a)h(x; b)h(x; c)h(x; d)

2rr( abcd; q)o
( q; q) (ab; q)o (ac; q)o (ad; q)o (bc; q)o (bd; q) (cd; q)

=x(a,b,c,d), say,

where

(1.3) (a;q)o I-I (1-aq"), Iql<l,
n=O

and

(1.4) h(x;a)= I-I (1-2axq"+a2q2")=(aei;q)o(ae-i;q)o, x=cos0,
n=0

the parameters being subject to the restriction

(1.5) max(I q l, [al, [bl, Ic[, d"l) < 1.

It is natural to ask if this can be used to extend the Selberg integral. That (1.2) is
an extension of Euler’s integral can be seen by specializing the parameters in a number
of different ways and then taking the limit q 1. Following Askey and Wilson [5], we
take

(1.6) 0<q<l, a=qa/2+1/4 b=aqa/2 c=-qB/2+1/4 d=cq1/2 o ,8>-1

Then, using the notation

(1.7) (a;q),= (a;q)
(aq; q)

(1.2) can be written as

(1.8)

fl j(eiO, q)a/2+l/4(eiOql/2, q)a/2+l/4(_eiO" q)B/2+l/,(_eiOql/2, q)B/2+1/412 dx

-1 vll-x
a +B)/2( ql/2.2’n’(--ql/2;q)(,+#)/2(--q;q) ,q)(a+B+2)/2 Fq(a+l)Fq(fl+l)

Fq(1/2) Fq(a+/3+2)

In (1.8) we have used the identity

(1.9) ql/2; q)o ql/2; q)o q; q)o 1
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and the q-gamma function

(q;q)o (l_q)X-x lim Fq(X)=F(x) 0<q<l.(1.10) Fq(x) (qX; q)o qa

Observing that limq__, l(z; q)a limql-’n=o(q-a; q)n(Zqa)n/(q; q)n (1 Z) a,
and so

=2b(1.11) lim I(e’ q) 2"(1 cos0) lim (--qa, q) b
q-*l q--l

it is easily seen that (1.8) goes to the familiar beta integral in the limit q 1.
One can also see by similar arguments that

(1.12) lim I(qX/2ei+i’t’;q)v(ql/2ei-i’t’;q),/[
2

22Vlcos0 cosq!2v

q--,1

where y is a real number. This provides the important clue to a possible extension of
the discriminant 1-Izi<jz,,Ixj-xil 2"/ in (1.1). Note that the limit on the right-hand
side of (1.12) would be the same if we replaced q/2 by an arbitrary power of q. It turns
out, however, that the integrals do not reduce to a compact formula without the q/2. It
seems reasonable, therefore, to start with the following q-extension of the left-hand side
of (1.1)

(1.13) f
n

FI w(xj, a,aq b bq1/2)
-1 j=l

VI
<=k <l<n

I(q/2ei* + io,, q ) v ( ql/2eiO,-io,, q ) v ]2 dXl...dxn,
where

(1.14)
w ( xj; a, aqx/2 b, bq/2 )

h(xj; 1)h(xj;-1)h(xj;ql/2)h(xj; _ql/2) (1-x.) -1/2

h(x;a)h(xj;aqt/2)h(xj;b)h(xj;bq/2) xj=cosO,.

At the moment we are unable to handle the integral for a 3’ that is not a

nonnegative integer. So we shall assume that 3’- N, N-0,1, 2,.... We will show that

(1.15) fl fl w(x;a,aql/2,b,bql/2)w(y;a,aqt/2,b,bql/2 )
-1 -1

12[( qW2ei+i*" q) (qI/2ei-iq’" q) N dxdy

2 2rrFI
J= (q; q)(l_ab)(abqX/2+(j_)u; q)2oc(abql+(j_)N; q)2

2 (a2b2qjN+l;q)o(qN+l;q)o(q;q)o
1-I 2q1/2+(j-1)N (2-1)U;q)o(qjU+,q)j=l (a ;q)o(b2q1/2+

where x cos O, y cos q,.
We shall carry out the computations in two steps. In 2 we shall do integration

over y and complete the second integration over x in 3. In 4 we shall state the
n-dimensional result as a conjecture and examine the situation when we replace the
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parameters as in (1.6) but also replace eiJ by qiX. in the integrand and then take the
limit q 1.

2. Evaluation of a single integral. We shall start by computing a somewhat more
general integral

(2.1)

w ( y a b c, d ) ( zql/2e iq’ q ) ( Zql/2e- i’t" q ) ( qX/2e iq’/z q ) ( q/2e i’l’/z q ) dy

=Sr,(z;a,b,c,d ), say,

where z is arbitrary and r,s are nonnegative integers. The formulas that we shall
immediately need are the q-integral representations of Sears’ summation formula [12],
[], [71

(2.2)

fat’ (qu/a; q)oo(qu/b; q)oo(cu; q)oo
(fu;q)oo(gu;q)oo(-i-)oo dqu

b(1 q)( q; q) ( bq/a; q) (a/b; q) (c/f; q) (c/g; q)o (c/h; q)o
af q)oo ( ag; q)oo ( ah; q)oo bf q)oo ( bg; q)oo ( bh; q)o

where c=abfgh, and of Bailey’s formula [6, 8.5(3)] for the sum of two balanced and
nonterminating balanced 4q3’s in terms of a very well-poised 8q7"

(2.3)

f, (qu/a;q)(qu/b;q)(cu;q)(du;q)
d u

(eu;q)(fu;q)(gu;q)(hu;q) q

b(a q)( q; q) ( bq/a; q)(a/b; q)
(ae; q)oo(af q)oo(ag; q)oo

( cd/eh; q)oo ( cd/fh; q)oo ( cd/gh; q)oo (bc; q)oo ( bd;
(be; q)oo ( bf q)oo ( bg; q)o ( bh; q)oo ( bcd/h; q)oo

bcd/hq, q(bcd/hq) 1/2, q(bcd/hq)/2, be, bf, bg, c/h, d/h cd ]
87

[ ( bcd/hq ) l/2, (bcd/hq)l/2, cd/eh, cd/fh cd/gh bd, bc
q’ ]

where cd= abefgh; see also [7, (3.25)].
The q-integrals in (2.2) and (2.3) are defined by

fo f(u)dqu=a(1-q) f(aqn)q n,
(2.4) ,,=o

b
f(u)dqu=

b
f(u)dqu-- f(u)dqu,

and the basic hypergeometric series ,+ Xqr by

[ ax’a2’’’’’ar+l (ax;q)n(a2 ",q)n’’’(Or+x;q)n(2.5) r+lfl)r[ bl,’..,b, ;q,z z
n=0 (q;q)n(b;q),’" (b,,;q)

provided Izl < 1 if the series does not terminate.
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A third formula that we shall find useful is the integral representation of an 87
found by Nassrallah and Rahman [10]

(2.6) f_l
2r (X/,0; q)o (X/,o; q)o() ;q o

(q; q)o (X; q)o ()t’; q)o (XO; q)o (;ko; q)o (u; q)o (O; q)o

(’r; q)o ("r; q)o
(o; q)o (’P; q)o (’o; q)o (X"r; q)o

-1,q(Xurq_1)1/2 _q(Xurq_l)l/: u 0
"’7 (X.p,q_l)l/2 ,,X,XO,Xo

see also [111.
Using (2.2), we find that

h ( y; ql//z )(e.7)
y;fql/ /z)

--1 --I
’to

;q,po

(f-l; q) ( ql/2/zd; q)o
fqa/2z-X(1 q)( q; q) ( dz/fqX/2; q )o ( fq3/2/dz; q) ( dfql/2/z; q)o

Hence

ffqw2/z (qu/d;q)(uzql/V-/f;q)(uql/2/z;q)
dqu.

a (u/df;q)oh(y;u)

f h (y;ql/2/z)
dy(2.8) -llW(y;a’b’c’d)(zeiq’qX/2;q)r(Ze-iq’ql/)-;q)rh(y,fql/2/z)"

(f-l; q)o ( ql/2/dz; q)o
fql/2z- l(1 q )( q; q )oo ( dz/fqX/2; q )o ( fq3//dz q )o ( dfql/2/z q )o

ffql/2/z (quid; q)o(uzqX/2/f; q)o(uqX/2/z; q)o
dqu

"d (u/af;q)o

fa w(y;a,b c,u) h(y;zql/2)
dy.

-1 h(y;zq r+1/2)
By (2.6) we can now express the y-integral on the right-hand side as a very

well-poised 8q’7 which terminates because of the assumption that r is a nonnegative
integer, and consequently expressible as a balanced and terminating 4q’ via Watson’s
formula [6, 8.5(2)]. Thus the y-integral on the right of (2.8) simplifies to

2’n’(azqX/2; q)r(zqX/2/a; q)r(abcu; q)o
(2.9) (q;q)o(ab;q)o(ac;q)o(bc;q)o(au;q)o(bu;q)o(cu;q)o

q- r, ab, ac, au ]413 azq/2, aql/2- r/z abcu
q’ q
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Substituting this into (2.8) the right-hand side becomes

(2.10)
2vr( f-: q) q/2/dz; q) azq/2: q )r( zq/-/a: q )r

fql/2z_,( q)(q.q)2 (ab’q) (ac;q)o(bc;q)(dz/fq’/z",q)(fq /2/dz’q)(dfq":/z’q)

k q-- :! q )---! a_b’_, _q_) ( ac’, q
.j=o (q; q)j(azql/2; q)j(aq’/2-r/z; q)j

qJ

ffq’/2/z (qu/d; q)o(uzql/2/f; q)o(uql/2/2; q)o(abcuqJ; q)o
dqtt

d (bu; q)o (cu; q)o ( u/df; q )o ( auqJ; q
2r ( bq1/2/z; q )o ( cq1/2/7‘ q )o ( qf/z 2; q )
(q; q)o(ab; q)o(ac; q)o(bc; q)o(cd; q)o

( bcdfql/2/z; q )o ( azql/2; q )r ( zql/2/a; q)r
( dfql/2/7‘; q)o ( bfql/2/z; q)o ( cfql/2/z; q) ( bcfq/z2; q)

k (q-r;q)j(ab;q)(ac;q)(abcfql/2+/z;q)
j=o (q; q) j( azq1/2", q) j( aql/2-r/z; q) j( afql/2+/z; q)

q

bcf/z2, q( bcf/z2 ) /2, q( bcf/z2 ) 1/2 bfql/2/Z
"87 (bcf/z2)l/2, (bcf/z2)l/2 cql/2/z bqX/2/z

cfql/2/7‘ ql/2/dz bc ql/2 -J/az ]bcdfql/2/z qf/z2, abcfq1/2+
q’ adqi

_!

by (2.3). We now replace f by q’, use [6, 8.5(3)] and simplify to get

(2.11)
S,s(Z;a,b,c,d)

x(a b c d)
(azql/2; q)r(zqa/2/a; q)r(bql/2/z; q)(cqa/2/z; q)(ad; q)

(abcd;q)s
(q-r;q)j(ab;q)J( ac;)j(adq;q)j

qi
j=o (q; q)j(azql/2; q)j(aqt/2-r/z; q)j(abcdq; q)j

q-, bc, ql/2/dz ql/2-/az
43 bql/2/z, cq/2/z, ql-j-/ad

q’ q

The 4q series on the right is balanced and terminating, so we may apply Sears’
transformation formula [13]
(2.12)

4q
q

d,e,f
;q’q

(e; q)2(?ii 7 4*3 d, aql_,,/e,aql_,,/f;q,q,
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def= abcql-n, as often as necessary. Application of this formula twice in an order that
should be obvious from the reduction, yields the following:

(2.13)

q s, bc, ql/2/dz, ql/2 -J/az
4b3 bql/2/z cql/2/z ql-j-S/ad ;q,q]

( aql/2+J/z; q)s( ql/2/az; q)s( azql/2; q)j( abcdqJ; q)s
( bq/2/z; q )s ( cq/2/z; q )s ( azq1/2-s; q ) ( adq; q )s

q -is

q- s, abq, acq, adq
"43 abcdqJ, aql/2+y/z,azql/2-,+y

q’q

Substituting this into (2.11) and simplifying the coefficients, we obtain

(2.14)

S.,(z;a,b,c,d)

x ( a, b, c, d )( azql/2; q )r zql/2/a; q), (aql/2/z; q) ( ql/2/az; q)

k (q-r;q)J(q-;q)k(aql/-+S/z;q)(ab;q)+’(ac;q)’+’(ad;q)+k
j=o ,=0 (q; q)j(q; q)k(aql/2-r/z; q)j(abcd; q)j+k(aql/2/z; q)j+k(azql/2-s; q)2+,

qj + k-js.

We now transform the summation variables by setting j+ k= l, k=l-j. The
double sum in (2.14) becomes

(2.15)
r+, q-S.., ( ,q)t(ab’q),(ac;q)t(ad’q)t
t=0 (q; q)t(abcd; q)t(aqa/2/z; q)t(azq/9--s;

, [q-t,q-r, aql/Z+*/z ]q
aq/2-/z q +

q q

r+s !_q_-S; q)t(ab; q),(ac; q)t(ad; q)
,=0E ( q; q ),id-.,q)t(aql/2/z,q)(azqX/2_,;q) q’ (aql/2/z; q),(q-r-s; q)

(aql/2-r/z; q),(q-S;

q- , ab, ac, ad ]43 abcd, aq/2- r/z azql/2-
q, q

by Jackson’s formula [6, 8.4(1)] for the sum of a balanced and terminating 3q’2 series.
Thus we have

(2.16) Sr.s(Z;a,b,c,d)
x ( a, b, c, d )( azq1/2; q )r ( zq1/2/a; q )r ( aq1/2/z q) ( ql/2/az q)

[ q-r-s’ab’ac’ad
"43 abcd,aql/2-r/z,azql/2-

q,q
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Reversing the series on the right and simplifying, we find

(2.17)
Sr,s(Z’a b c,d)=x(a b c,d)

(ab;q)r+s(ac;q)r+s(ad;q)r+s
(abcd;q)r+s

a- r-sz, r-Sq(r+ s)/2-

[ q- s, ql S/abcd, zql/2-S/a ql/2- r/az
ql-r-S/ab, ql-r-/ac, ql-r-/ad ;q,q]

=x(a,b c,d)
(ab;q)r+s(bc;q)"+

z (r+s)/2-rs

i--a-b-c-i -- (bd; q)r+b-r Sq

q-r-s, ql-r--/abcd, zq/--S/b, q/--r/bz
q-r-s/ba, ql-r-/bc, qX-r-S/bd

the last line following from the previous one by (2.12). Replacing b, c,d by aq/2, b,
bq1/, respectively, we finally obtain

(2.18)

S. ( z a, aq /2 b, bq1/2 )

x ( a, aq1/2, b, bq1/2 ) ( a _ql/_; q )r+s ( abq/2; q )r+s ( abq; q )r+s
(a2b2q;q)r+s

43 [ q-r-s q-r-s/a2b2 zq-,/a q-r /az
qlz r- s/a 2, ql/2-r-s/ab, q-r-slab

a-r-s2r-sq-rS

The 43 series on the right of (2.18) has a structure that enables us to apply a quadratic
transformation formula due to Askey and Wilson [5, (4.22)]

-a aq,b2c2q 2
q2 q2 =43

q "’ aq"’ b-q’ c2
a,bcq, bcq

q’ q

Use of this in (2.18) followed by yet another application of (2.12) and some
simplifications leads to

(2.20)

St, ( z; a, aq /2 b, bq1/2 )

1. (a, aq1/2, b, bq1/2) (a2ql/2; q)r+s (abq1/2; q)r+s (abq; q)r+s
(a2b2q;q)r+s

(bq/4;qX/2),.+s(-q/2;q/Z)r+s
( aqX/4; qX/-)r+ (abq’r++ 1)/; ql/2)r+s

"43 [ q-(r+s)/2’ q-(r+s)/2/ab’ ql/4+(s-r)/2/r"’zql/4+(r-s)/2
ql/2, q/4-(r+s)/Z/a ql/4-(r+s)/2/b

ql/2, q1/2
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3. Proof ot (1.15). It should be clear from (2.1) and (1.15) that we now need to
evaluate the integral

(3.1) fl w(x;a,aql/2,b,bql/2)SN,N(ei’a, ,aql/2 ,bql/2)dx=-IN, say.
-1

From (2.20) we have

(3.2)
SN, N ( e iO; a, aqI/2, b, bq1/2 ) x ( a, aq1/2, b, bq1/2 )

(a2ql/2,q)2N(abql/2; q)2N(abq; q)2N(bql/4; q1/2)2N(--q1/2; ql/2)2N
(aZb2q; q)2u(--aql/4; ql/2)2u(abqU+l/2; ql/2)2u

"4’3[ q- N’ q- N/ab’ ql/4eiO’ ql/4e-iO ]ql/4- N/a ql/4- N/b ql/2
ql/2, ql/2

So we need to consider the integral

(3.3) w(x; a,aqX/2,b,bq1/2 )( qX/4ei; qX/2 )m ( qX/4e io; qX/2 )mdx
-1

=T,, say, m=0,1,2,...,N.
Using the identity

(3.4)
we find that when m is even

(a; q)2, (a; q2),,(aq; q2),,,

(3.5) I(ql/4ei;ql/2)ml-=l(ql/2ei;q)m/2(q3/4ei;q)m/212,
and when m is odd

12.(3.6) I(ql/4eiO. ql/2) 12= I(ql/4eiO. q)(m+X)/2(q3/4eiO, q)(m-X)/2
Using (2.20), (3.4) and the identity

(3.7) (a2;q2)n=(a;q)n(-a;q),,
we can easily show that

(3.8) Tm=Sm/2,m/2(q-1/4;a,aqX/2,b,bql/2), rn even

=S(m+t)/z,(m_t)/z(q-X/4;a,aql/Z,b,bql/2), rn odd

(a, aql/, b, bull)(aq/4; ql/)m (bull4; ql/)m (-- ql/; ql/)m
( abql/2; ql/2 ) m"

From (3.1), (3.2), (3.3) and (3.8) we then have

(3.9) IN=X2(a,aqX/2,b,bq/2) (aZq/;q)zN(abql/;q)zu(abq;q)zu
aZbq; q )zu

( bq/4; ql/2 )2N( q/2; q1/2 )2N
(_ aql/4; ql/2 )2N( abqN+ 1/2; q1/2 )2N

[ q- N, q- N/ab, aq/4, bql/4
43 abql/2, ql/4- N/a ql/4- U/b

q/2, ql/2 ].
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This 43 is summable. We have

(3.10)

q- N, q- N/ab, aql/4, bql/4
ql/243 abql/2, ql/4- N/a ql/4- N/b

ql/2

( a2ql/2; ql/2 )2N(abql/2; q1/2 )2N
(ql/4-N/a; ql/2)2N(ql/4-N/b; ql/2)2N q-N-l/4)2Na2b

[ q- N, a2b2qN+ 1/2, aql/4, aql/4
a 2ql/2, abql/2, abql/2

ql/2 ql/2 ] by (2.12)

(ql/’-N/a;ql/2)2N(ql/4-N/b;ql/2)2N a2b

[ q- N, a2qX/2, a2ql/2, a2b2qN+ 1/2

4b3 a2ql/2,a2q,a2bZq ;q,q] by (2.19)

(a2ql/Z; ql/2)2N(abq1/2; q/2)2N (q-N-I
2N

(ql/4-N/a;ql/2)2N(ql/4-N/b;qX/2)2N a2b

(ql/2; q)N(ql/2-N/b2; q)N
(a2q; q) N(q-N/a2b2; q)N

( aZq1/2; ql/2 )2w( abql/2; q1/2 )2N ( bZq1/2; q) w( q1/2; q )
(aq1/4;ql/2)2N(bq1/4;q1/2)2N (a2b2q;q)N(a2q;q) N

Substituting this into (3.9), using (3.4), (3.7) and the definition of x given in (1.2), we
obtain (1.15).

4. The conjecture for the n-dimensional integral and the limiting cases. Our conjec-
ture for the n-dimensional integral (1.13) is now clear from the form of (1.15):

(4.1) w a,a_/,b,b_l/
-1 j=l

H
l<_k<l<n

I(q/Zei(,+,),q)N(q/Zei(,-,) q)N]
2

dxldX2""dx,

j_x (q; q)2. (l_ab)(abql/2+(j_X)N;q)2, (abq+(j_l)U.q)2,

fi (a2b2q’+(n+j-2)U;q)(qU+l;q)(q;q)
j__ (a2q/2+(-; q)(b2q/2+(-ll-., q) (qUi
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If we now take 0 < q < 1, set a qa/2+ 1/4, b qt/2+ 1/4 and use (1.7), (1.9) and
(1.10), we can also express it in the form

(4.2)

f ...f fl ](eiO,.q)a/2+l/,t(ql/2eiOj.q)a/2+l/4(_eiOJ. q)B/Z+l/4(_ql,/2eiO,.q)B/2_i/4 (1 X ).-1/2
-1 -1

I-I I(ql/2e ""+’’;q)N(q1/2ei(Ok-O’);q)NI=dXldX2"’’dXn
<k

fi 2r(ql/2"q)2 2N(j-1)+(a+B+2)/2(--q;q)N(j-1)+(a+B)/2
.;=; r(/2)(1 + q(a+B+l)/2)

Fq(+I+(j-1)N)Fq(+I+(j-1)N)Fq(jN+I)
.=1 rq(a+B++(n+j-)N)rq(N+l)

In this form it is clear that the limit of (4.2) is the Selberg formula (1.1). It is also
clear from (4.2) that we have a conjecture for the constant term in the expansion of

(xi;q)(1/xi;q)(-x;q)(-1/xi;q)
i=1

(qxix;q2),.(q/xixj;qa),.(qxi/xj;q),.(qx/xi;q).
Ni<.jNn

However, there is no need for us to take b negative. We may, in fact, express the
integral on the left of (4.1) in the form... (eiO;q)

j=l (aei;ql/2)(bei;ql/)

[(ql/ei(O+’,q)u(ql/aei(-);q)" NladOldO"" dO,,
Nj<kNn

so that if we now set

(4.3) a=q"/2+1/4, b=qB/+1/4, 0<q< 1,

and transform the integral by setting e0 qgX, that is, 0= xlogq, then (4.1) gives

(4.4)

0 j=l (q/+l/4+iX;ql/)(qB/+l/4+i;ql/)

N.j<k<=n
I(ql/:z+ix,+ix,,q)N(ql/2+ix, iXk,q)NI2.- dxldxz...dx,

j=l (q; q)2 (l_q(,+B+l)/2)(q(,+B+2)/2+(j_OU; q)2 (q(,,+B+3)/2+(j_l)U; q)2
(q, +/+ _+(,+j-2)N; q) (qN+ 1; q) (q; q!fi qO-+-l-(fZ-lN; -i-1-- qjU+-./=1 ( q)(q i ( ;q)
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Using (1.10), this can alo oe written as

(4.5)

logq (_l),fAogq...f/logq
q-1 "o o

2
Fq( a/2 + 1/4 + ix;) Fq( a/2 + 3/4 + ix;) Fq( ill2 + 1/4 + ix;) Fq( ill2 + 3/4 + ix;)

Fq(2ix;)

I-I Fq(N+l/2+ixj+ix,)Fq(N+l/2+ixj-ix,) 12l<=.j<k <=n Fq(1/2 + ixj+ ix,) Fq(1/2 + ixj- ix,) dxl dX2 dxn

I-I 2rr(1-q)Fq((a+fl+2)/2+(j-1)U)F2q((a+fl+3)/2+(j-l)U)
j=l (1-q(’+ t + 1)/: )

I-I Fv(,+I+(j-1)N)Fv(fl+I+(j-1)N)Fq(jN+;)
.j=l Fq(a+fl+2+(n+j-2)N)Fq(N+l)

If we now take the limit q 1 and use the duplication formula for the gamma
function, we get the Mellin-Barnes type multiple integral

(4.6)

/- ( 1Zi F(a + 1/2 + 2ix;)r(fl + 1/2 + 2ix;)12
J0 Jo ..=’’ I’(2ix.)

1-[ 1(1/2 + ix,+ ix,) u(1/2 + ix,- iXk) N[2dxdx2 "dx,,
<=i<k<__n

.__2-2n(I+(n-1)N)]I-I rz(a+ fl+ 2 + 2(j-1)N)F(a+ l +(j-1)N)
i -7 3-7];i-7- ]) ]’- 7/3 + 2 + (n +j- 2)N )

r(/+ 1 +(j-1)N)F(jN+ 1)
(- + t + 1)r(N + 1)r( +/+ 2 + ( +j- 2)N)

as a conjecture which is true if (4.1) is.

Acknowledgment. I am grateful to Professor R. Askey for making many important
suggestions that I have freely used throughout the paper and for sending me a copy of
Dyson’s translation of Selberg’s paper.
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q-WILSON FUNCTIONS OF THE SECOND KIND*

MIZAN RAHMAN"
Abstract. The q-Wilson function of the second kind is defined as a Hilbert transform of the q-Wilson

polynomials and is shown to be expressible as a very well-poised 87 series. This is used to find the leading
terms in the asymptotic expansions of the q-Wilson polynomials and functions of the second kind on the
interval 1 < x < 1.

Key words, q-Wilson polynomials, functions of the second kind, very-well-poised basic hypergeometric
series, asymptotic properties

AMS(MOS) subject classifications. Primary 33A15, 33A65

1. Introduction. Let { p,(x)}___0 be a set of polynomials orthogonal with respect
to a positive measure da(x) on the real line having support within a finite interval
[a, b]. Then a corresponding function of the second kind is defined by

(1.1) q.(z)=L p.(t____) da(t) zq[a b]
Z,--t

We are interested in the functions that correspond to the q-Wilson polynomials
defined by

(1.2) pn=-Pn( x; a,b, c, d ) 4dP3
q-n, abcdqn-1 ae io, ae-i ]ab ac ad

q q

where 1 __< x cos 0 _< 1, and the basic hypergeometric series on the right is given by

al,a2,. ., ar+l ](1.3) r+ lq, bl,. br q,x
(al,a2,’’’,ar+l;q)k

,=o /;, )J x,

with

(1.4) (al,a2," "’,aj;q),=(al;q),(a2;q),’" (aj;q) k,

(a;q)
(a;q)= 1-I (1-aqn)(1.5) (a; q),=

(aq,;q) n=O

Askey and Wilson [1] showed that

(1.6) W(X)Pm( X)pn( X) dx= h-lm,n

*Received by the editors May 17, 1984, and in revised form, February 1, 1985.
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, KIS 5B6.

This research was supported by the Natural Sciences and Engineering Research Council of Canada under
grant A6197.
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where

(1.7)

(1.8)

W(X)__.(I__x2)_I/2h(X 1)h(x;-])h(x; V/-)h(x; -V)
h(x;alh(x;blh(x;clh(x;d)

h(x;a)= l-I (1-2axqn+a2q2n)=(aei,ae-i;q)oo,
n=O

(1.9) h,,=x-l(a,b,c,d) (abcdq-1;q)"(1-abcdqa"-l)(ab’ac’ad;q)"a-2"
( q; q) (1 abcdq-X)( cd, bd, bc; q).

with

(1.10)
2r ( abcd; q)x(a,b,c,d)= (q,ab,ac, ad,bc, bd,cd; q)oo

max(I q I, lal, [bl, Icl, Id[) < 1.

In {}2 we shall compute q,(z) by using (1.2) and da(x)=w(x)dx. Once the
computation is done for z [-1,1] we shall be able to define an appropriate q-Wilson
function of the second kind for -1 < x < 1 by making use of the well-known proper-
ties"

1(1.12) q.(x)=-[q.(x+iO)+q.(x-iO)],
1(1.13) p.(x)w(x)-

2ri [q.(x+iO)-q.(x-iO)].

In [}3 we shall discuss some asymptotic properties of p.(x) and G(x) when
x4= +_1.

2. q-Wilson function the seeon kin. In (1.1) let us replace z by (z + z-1)=x,
say, and assume that lzl < 1. If cos, then we may write

1 i, -i 1 h(t;z)(2.1) x-cos=(1-ze )(1-ze )=h(t;qz)"
Hence

(2.2) q.(x)=2z w(t;a,b c d.
h(t’qz)
h(t;z) Pn(t;a’b’c’d)dt

2z
( q-"’abcdq"-L q)q f w(t;aq b c d) h(t’qz)

dt.
k=o (q,ab,ac,ad;q)k h(t;z)

By [7, eq. (3.6)]

(2.3) w(t;aq b,c d)h(t,qz) dt
-1 h(t;z)

=x(a b c,d)
(bcdz,bzq,czq, dzq;q) (ab,ac,ad;q)k
(Tdz; q) (T3

[bcdz’q’-q’bc’bd’cd’q’zqx-k/a ]8 &q czq, bzq, bc& abcdq
q azqk
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where the symbol - indicates a square root over the top left-hand parameter which, in
this case, is bcdz. After some simplifications and an easily justifiable interchange in the
order of summations, (2.2) and (2.3) give

(2.4) q,,(x)=2zx(a b,c d)(bcdz,bzq,czq,dzq;q) (1-bcdzq‘)-(cdz-i-ffz-,7-z, dz; q) ,=o 1 bcdz

(bc, bd,cd,zq/a;q), (az), [q-",abcdq"-l,a/z. ]2()qq;z;-z-ic/7}, abcdq’, aq /z
q’ q

The 3’2 series on the right is balanced and terminating and so is summable by
Jackson’s formula [3, (8.4)] with sum

( ql- ,,+ , bcdzqZ; q)
( abcdqt,zql-"+ t/a; q )

which vanishes unless l_>_ n. Replacing by + n in (2.4) and simplifying, we obtain

(2.5) q,,(x)=2zx(a b c,d) (bzq,czq,dzq;q) (bc,bd,cd;q),, (az)"i-ff;]d-it) (bzq,czq,dzq;q),,

( q; q ) ( bcdzq"; q ,,+

( abed; q )9_,,

"adO7 -, -,czq,+ l,bzq,+ l,bcdzq,,,dzq,,+ l,abcdq,
q,za

Using Bailey’s two-term transformation formula [4, (4.3)] for a very well-poised 8q7
series, we transform the aq, v above to the following:

(bcdzq2"+1 qz 2 adq" abczq"" )
az, dzq" + abcdq" bcz 2q, + 1. )q

v /__, f_,czq,,+a,bzq,,+l, abczq",bcdzq ", qz2
q,adq"

Substituting this in (2.5) and simplifying the coefficients, we get

(2.6)

q,,(x)
4rz(qzZ;q)

( ab, ac, ad, az, bz, cz, dz; q)
( abczq, bcdzq", bzq "+ 1, czq,+ 1, adq"; q)

bcz2q",q/-, -q/-,bz,cz,zq/a,zq/d,,bcq" ]847 /_, [_,czq,+X,bcq,,+l,abczq,,,bcdzq,,qz
;q,adq"

We now define the q-Wilson function of the second kind"

(2.7) Q,,(z’a b c d) -1-z:z ( az, bz, cz, dz, a/z, b/z, c/z, d/z q)
4",rz (z2z-: )
( ab ac ad q )
( bc, bd cd q )

a-"q,(x)
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( abczq", bcdzq", bzq" + 1, czqn + 1; q) (a/z, b/z, c/z, d/z; q

( bc, bd, cd, abq acq q n+l, bcz 2qn+L, q) ( Z-2.,

[ bcz2q’’qf-’-q/--’bz’cz’zq/a’zq/d’bcq’
"87 /--, ,czqn+l,bzq,+,abczq,,bc&q,,qz

q,adq

Z

By (1.11), the 87 series is convergent for all z and so the second expression on the
right side of (2.7) defines Q,,(z;a,b,c,d) for all z, excluding the poles. The factors in
front of q,,(x) in the first expression may appear a bit mysterious at this stage, but the
eventual simplifications and symmetries will justify their use. It can be verified through
a set of lengthy but straightforward calculations that Q,,(z;a,b,c,d) satisfies the
second order divided difference equation of Askey and Wilson [1, (5.16)], implying that
it is the right q-analogue of the Jacobi function of the second kind.

Now, by Bailey’s formula [4, (5.1)],
(2.8)

bczZq qf-, q/-,bz, cz,zq/a,zq/d,bcq" ]8q7
/__, /__,czq,,+,bzq,,+l,abczq,,,bcdzq,,,qz2

;q,adq"

( bcz 2q , + bdq cdq "+ 2 ),q ,z ,ab,ac,bc;q

( abcz, bcdzq ", bzq" + 1, czq "+ b/z c/z a/z, dq "/z’, q )

abczq- , q/-, qf-, az bz cz abcdq"- , q-"
"8*7 [ /--, --, bc, ac, ab, ql-"z/d, abczq

q, q/dz ]
( bcz2q,,+ 1, abcq"/z, bcdq"/z, bq ’+ l/z, cq "+ /z, dzq", q-"/dz; q)

bcq"+ X/z 2 abczq", bcdzq" bzq "+ czq "+ dqn/z zql-n/d q )

(Z -2 qz/d, az,bz, cz’, q)
( z 2, q/dz, a/z, b/z, c/z; q)

bcq"z- 2, q/-, q/-, b/z, c/z, q/az, q/dz, bcq" ]"87 /-, /-, cq,,+ X/z, bqn+ /z, abcq,,/z, bcdq,,/z qz_ 2
q, adq"

and, by Watson’s formula [3, (8.5)],

(2.9) abczq -’ q/’- -q(- az bz cz abcdq"- q-"
87 /-- f--, bc, ac, ab q -"z/d, abczq" q,q/dz]

(abcz,ql-"/ad;q!,, [q-,,abcdq,,-aza/z q,q]"z/d a) 43
ab ac, ad

( abcz, ad; q)
i-c,-i",,-(az) p,,(x;a,b,c,d).

Using (2.8) and (2.9) in (2.7), we get

(2.10) O,,(z;a,b,c,d)= (ab’ac’ad;q)"
( bc, bd, cd; q) a-"p,,(x;a,b,c,d)-Q,,(z- ;a,b,c,d).
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The symmetry of this formula implies that this is valid for both Izl < 1, and Izl > 1.
Use of (2.7) in (1.12) and (1.13) now yields

(2.11) q,,(x;a,b,c,d)=riw(x)[Q,,(e’;a,b,c,d)-Q,(e-i;a,b,c,d)],

( bc bd cd q)
(2.12) p,(x;a,b,c,d)=(ab,ac, ad;q),a’[Q,,(ei;a,b,c,d)+Q,(e-i’a, ,b,c,d)]

where x=cos0, 0<0<r, and q,,(x;a,b,c,d) is the q-Wilson function of the second
kind on 1 < x < 1. Note that (2.10) is just the analytic continuation of (2.12) and so it
was not really necessary to use (2.8) and (2.9). However, it is interesting to see that
Bailey’s three-term transformation formula [4, (5.1)] for a very-well-poised 8q’7 series
produces the same result.

Askey, Koornwinder and Rahman [2] used a special case of q,,(x;a,b,c,d) by
defining the q-ultraspherical functions of the second kind as follows:

(2.13) O,,(cosO;lq)=

where

(2.14)

4 E b(k,n;fl)cos(n+2k+l)O,
wa(cosOlq) ,=o

w(cosOlq)_.cscOj-io
1- 2(2Cos:O--l_)_q_n._+_q:n

1 2(2C0S20 1)q" + :q:"’

(2.15) b(k,n;fl)= (fl,q;q) (2;q)n(q-l;q),(q;q)n+,,.
(q,flZ;q) (q;q),,(q;q),(q;q)n+,

Since there is no apparent similarity between (2.13) and the expression on the right
of (2.7), it is of interest to see how (2.7) and (2.11) give rise to (2.13) in the ultraspheri-
cal case.

Let us set z e iO, a d= f- and b c fl in (2.7) to get

(2.16)

Q,, ( em vf fl, fl, v/) ( fl :Zeq’+ /2, fl :Zeq" + W:Z, Beq"+ x, fleOq,, + q)
( flq,+ ,/, [qn+ 1/2 q.+l [2e2iOqn+ 1., q)

(vfe-i, re-i,e-i, -e-i; q)
(_f12, ,v,e-2iO; q)

,e

( fle,Oq,,+ 1, fle,Oq,,+ 1, [ 2q,,, e,Oq,,+ 3/2, e-,0, e-iO, fie-io fie-iO.,q ) _.
( fl 2, flvf, five’ flqn+ 1/2, flqn+ 1/2, q.+ 1, q n+l n+2e2iO -2i0. ),q ,e ,q

e’"" 8q7 [ q,,+ e2iO, q- q/- qe,O/fl qeiO/ qn+l V/-e,O, fe,O
f-, (--, fleiOq,,+ 1, fleiOqn+ X, qe:io, eiOqn+ 3/2 eiOq,, 3/2 q,fl2qn],
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by [4, (4.3)]. Now we shall need to use the following quadratic transformation formula
recently found by Gasper and Rahman [5].

[ ax2/b2’ q/-,-qf-,x,-x,xg/-/b,-xg/-/b,a
(2.17) q)v

/-, f-,axq/b2, axq/b2,axgC-/b, axf-/b,qx2/b2
q,aq/b

(q/bZ,aqx2/b2; q) (qxZ/bZ,qZa2/bZ,qa2/b2,q2xZ/b4; q2)
( aq/b2, qx2/b2; q ) ( q/bZ, qZ/bZ, qaZxZ/b2, q2a2x2/b4; q2)

[ a2,b 2/b4 ]2 a2q/b q qx

provided laq/b21 < 1, Iqx/b21 < 1. Setting a q"+ , b q/fl, x qei/fl in (2.17) and
substituting in (2.16), we get

(2.18) Q.(e’; ,fl, fl, )

2i sin 0
(2’ 2q2.+ 2,2e2iO,2e-2io; q2)

ei{"+ 1)0

4,q"+,ei, e-i; q )

[q"+’q/" flqa,+
q:,fl :eia

In deriving this we have made frequent use of the identities

(2.19)
( a; q) (a; q) ( aq; q),
(a:;q)=(a;q)(-a;q).

From (2.11) and (2.18) we then have

(2.20)

q.(x; ,fl, fl, )
fl:’fl:q:’+;q:) (q2n+2’q2/fl2;q2)k

fl2kCOS(n+l +2k)O((77’, q:) =o (q2,flVq2)k=4w

2 -2 2 2 2

-4
(fl2’fl2q2;qz) (q ;q )k(q ;q ),+

5 - g--- fl 2k cos(n + 1 + 2k) 0bS =o (q ;q )(flq ;q

( qZ; q2), (cosO D, fl: 2)Iq :) ( os0; lq.

3. Asymptotic propeies. Following Ismail and Wilson [6] let us denote

(az, z,cz, z; q)/(z:;
Then it is clear from (2.7) that

(3.2) Q,(z;a,b,c,d)-z’A(z-1)/(bc,bd,cd;q),,
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as n o, uniformly for x,a,b, c,d in compact sets avoiding the poles z e= q-k, k
O, 1, 2, . Using (2.12) we get

(3.3) a-"(ab,ac,ad;q),,p,,(x;a,b,c,d)

z ’A ( z + z "A ( z 2 A ( e O ) cos( n O dp ) n o

where ,l,=argA(ei), 0<0<r, ]ql<l. This agrees with (1.13) of [6] for x4:+1 and
inside the ellipse with loci + 1 and vertices + 1/2[Iql 1/2 +]ql-1/2]. By (3.2) and (2.11)
we also get the leading term in the asymptotic expansion of the q-Wilson function of
the second kind"

(3.4) ( bc,bd, cd; q),,q,(x; a,b, c, d) 2rw( x )l A( e
, ) Isin(n0- ’l,),

as n o9 for x restricted as above.
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ERRATUM AND ADDENDUM:
ANALYTIC FUNCTIONS RELATED TO THE DISTRIBUTIONS OF

EXPONENTIAL GROWTH*

RICHARD D. CARMICHAEL"
Abstract. Analytic functions in tubes which were previously shown to have distributional boundary

values on the distinguished boundary of the tube are now shown to have boundary values on the topological
boundary of the tube as well.

Key words, analytic functions in tubes, distributions of exponential growth, distributional boundary
value
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1. Correction. In the final printing of [1, p. 1063] the lines between equations (8.8)
and (8.9), which are correct as printed, were printed again after (8.9) to the end of the
paragraph. The lines in [1, p. 1063] directly after (8.9) to the end of the paragraph
should be as follows:

with this Fourier transform being in the L2 sense. But m > 0 is arbitrary in (8.9) and
independent of the arbitrary compact subcone C’c C. Thus it follows that (8.9) holds
for z Tc’, C’ being an arbitrary compact subcone of C, since for arbitrary z Tc’ we
can choose m>0 such that z T(C’; m). Since we now know (8.9) holds for z Tc’,
then (8.1) follows immediately from this. Now that we have (8.1), the conclusions (8.2)
and (8.3) follow by exactly the same type of analysis used in the proof of Theorem 7.1
to prove (7.3) and (7.4).

The remainder of [1, p. 1063] is correct as printed beginning with the paragraph
which starts at line 11 ’.

2. Addition. Let C be an open connected cone in R and let C’ be an arbitrary
compact subcone of C. If a function f(z) is analytic in TC’=Rn+iC for every
compact subcone C’ of C then f(z) is analytic in the whole of TC=n+ iC; for if
z x + iy Tc, there exists a compact subcone C’ of C such that z Tc’ with y Im(z)
on the interior of C’ since C is open. Thus an equivalent definition of the functions

Fp(A; C) of [1, p. 1053] is that f(z)Fe(A; C) if and only if f(z) is analytic in Tc

and satisfies [1, (6.4), p. 1053] for every compact subcone C’ of C and for all rn > 0. In
[1, Thm. 8.1, p. 1062] we have [1, (8.1) and (8.2)] holding for z x + iy Tc’, C’ C.
But the n-tuple a of nonnegative integers, the function g(t), and the distribution
V=Dff(g(t)){( in the proof of [1, Thm. 8.1] are all independent of compact
subcones C’ c C (and of the arbitrary rn > 0) as noted in [1, p. 1063, lines 22-23 $ ]. We
have that the right side of both [1, (8.1) and (8.2)] are well defined for all y C. Thus
[1; (8.1) and (8.2)] holding for z Tc’ for every compact subcone C’c C implies that

*Received by the editors March 18, 1985. This material is based upon work supported by the National
Science Foundation under grant DMS-8418435.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003.
Permanent address: Department of Mathematics and Computer Science, Wake Forest University, Winston-
Salem, North Carolina 27109.
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[1, (8.1) and (8.2)] hold for all z Tc since f(z) is actually analytic in the whole of Tc
here. Additionally [1, (8.3)] holds for y Im(z) C with ]y[ __< Q.

Now let Yo denote any point in R n. An easy adaptation of the proof of [1, Lemma
5.9, p. 1052] yields that if Vr/, r>= 1, then

(1) lim exp(-Zr(y,t))Vt=exp(-Zryo,t))V
YYo
yR

in the strong (and weak) topology of ’. (Ve’, r>= 1, implies (exp(- 2r(y,t))V)e

’ for any y e n" because exp(-2r(y, t)) is a multiplier in , r >= 1, as a function
of e".) But the Fourier transform defined by [1, (4.2), p. 1044] is a strongly
continuous mapping from ’ onto Kr’; thus by (1) and the fact that [1, (8.2)] actually
holds for all z x + iy Tc, as noted in the preceding paragraph, we have

(2) lim f(x+iy)=[exp(-2r(yo,t))Vt] K;, r> l,
Y Yo
yC

in the strong (and weak) topology of K’, r >= 1, for Y0 being any point on the topologi-
cal boundary of the cone C. The limit (2) is obtained unrestrictedly, that is indepen-
dently of how y Y0, Y C, and is also obtained uniquely. Thus the boundary value
conclusion [1, (8.4)] can be replaced by the more general boundary value conclusion
obtained in (2) above which yields that the functions f(z)F(A; C), A>=O, con-
sidered in [1, Theorem 8.1] obtain strong K’, r >= 1, boundary values on the topological
boundary of the tube Tc as well as on the distinguished boundary
y=0} of the tube. (If y0=0, the origin in ", (2) reduces to [1, (8.4)].)

The conclusions in [1, Thms. 8.2, 8.4, 9.1, and 9.2] corrersponding to [1, (8.1), (8.2),
and (8.3)], where applicable, also hold for z Tc ( TC)), and [1, (8.10) and (9.2)]
hold for all z Tc. In each of these theorems the boundary value result can be replaced
by the more general conclusion (2) for Y0 being any point on the topological boundary
of C (O(C)).

REFERENCE

[1] R. D. CARMICHAEL, Analytic functions related to the distributions of exponential growth, this Journal, 10
(1979), pp. 1041-1068.



SlAM J. MATH. ANAL.
Vol. 17, No. 6, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
001
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Abstract. The periodic solutions, their basins of attraction and invariant manifolds are considered for
periodic systems of differential equations which are cooperative or competitive following Hirsch. Competitive
and cooperative mappings are introduced which possess the essential features of the Poincar6 map for such
systems. The geometrical properties of these mappings and the discrete dynamical system they generate are
the objects of study. The main tools in this study are the Perron-Frobenius theory of positive matrices and
invariant manifold theory. A complete description of the "phase portrait" of the discrete dynamical system
generated by an orientation preserving planar cooperative map is obtained.
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Introduction. Many mathematical models in the biological sciences give rise to
systems of differential equations

(0.1) xi=Fi(x,t), l <_i <n,

which have quite special properties. Two types of systems which have recently received
considerable attention in the literature [10], [11], [12], [15] will be referred to as
cooperative and competitive following Hirsch [5]. System (0.1) is cooperative if

Xj " O, 4:j

and competitive if the reverse inequalities hold. Applied mathematicians working with
particular cooperative or competitive autonomous systems typically found that the
asymptotic behavior consisted of convergence to equilibrium (particularly for coopera-
tive systems, e.g., [11] but see [15] for a counterexample in the competitive case).
However, any thoughts that competitive and cooperative systems might be immune to
the plague of ever more complex and chaotic attractors which the dynamical systems
people have discovered had to be scrapped following the note of Smale [12]. Smale
showed that any vector field on the standard (n- 1)-simplex in R can be embedded in
a smooth competitive vector field on R" for which the simplex is an attractor. Discour-
aging as this result might seem for proving any general results for competitive or
cooperative systems, it suggests that these systems can behave no worse than general
systems in one fewer dimension. In essence, this is what Hirsch showed in [5], [6]. In
this series of important papers, many key ideas were introduced.

The above-mentioned work focuses on autonomous systems. We are interested in
(0.1) when F is periodic in the time variable (of normalized period 2rr). Periodic
systems (0.1) arise naturally in population biology when day-night cycles or seasonal
variation in parameters are accounted for.
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Autonomous systems are, of course, periodic and hence all the limitations of
Smale’s result on any general theory for periodic competitive or cooperative systems are
present. Indeed, one expects periodic systems to be less well behaved since they may be
viewed as an autonomous system in one more dimension, S Rn. The first important
results for periodic competitive systems were obtained by de Mottoni and Schiaffino
[10] who considered periodic two-dimensional Lotka-Volterra systems. They translated
properties of competitive planar systems (0.1) to properties of the associated Poincar6

map, T, defined by: x(0) x(2rr). The most important properties are that T-1

preserves the usual partial ordering on R2 and T is orientation preserving. They then
analysed the discrete dynamical system xn+ Txn, showing that all orbits { Tx ),,>= o
tend to fixed points of T. In other words, all solutions of (0.1) are asymptotic to
2 r-periodic solutions. In addition, they showed that the nontrivial fixed points of T lie
on a separatrix curve" a monotone invariant curve for T forming part of the boundary
of the domain of replusion of the trivial fixed point. While de Mottoni and Schiaffino
considered only the periodic Lotka-Volterra equations, their arguments were quite
general, as pointed out by J. Hale and S. Somolinos [3].

The purpose of this paper is to study the periodic solutions of periodic competitive
and cooperative systems (0.1), their respective domains of attraction and invariant
manifolds. Following [10], our approach will be to study the geometrical properties of
the discrete dynamical system generated by the Poincar6 map for (0.1). In the language
of discrete dynamical systems, the focus of our work is on fixed points and periodic
points of what we term competitive or cooperative mappings. In this sense, the scope of
our work is much less ambitious than that of Hirsch [5], [6] since we do not consider the
more general problem of determining properties of the limit set A(x)= { y’y=
limi_, T",x, {T"’x} a convergent subsequence of {Tnx}n>=O) of an orbit {T"x},>__0
(see {}2, Proposition L for an exception). In future work we intend to consider this
much deeper problem.

The organization of this paper and our main results will be briefly described. In 1
we introduce the Poincar6 map for competitive and cooperative periodic systems (0.1)
and present some more or less known results concerning these maps, the most im-
portant of which are derived from results of Kamke (see [2]) and Hirsch [6]. For a
cooperative periodic system (0.1), these properties are, in the above order, that T
preserves the usual coordinate wise ordering on R" (x <y if and only if xi<Yi,
1 <_i =< n) and, if DxF is an irreducible matrix, then DxT is a positive matrix (all entries
are positive). If (0.1) is a competitive system, then T-1 enjoys the above properties.
Proofs are presented for some of the less well-known results for completeness.

In {}2, we introduce the class of cooperative mappings. These maps are diffeomor-
phisms defined on a neighborhood of R_, the nonnegative orthant, which map the
interior, R /, of R/ into itself, preserve the usual coordinate wise ordering and have the
property that the Jacobian derivative of the map evaluated at every positive fixed point
is strongly positive (some positive power of the matrix has all positive entries). Included
in this class of mappings are the Poincar6 maps of cooperative periodic systems (0.1)
provided DF is irreducible. Nontrivial cooperative maps are shown to have a minimal
fixed point which, if it lies in R/ and is hyperbolic, must be asymptotically stable. We
examine the geometry of the basin of attraction of stable fixed points x of a coopera-
tive map T obtaining useful results on the intersection of the basin of attraction of x
with the two cones x + R_ and x-R_. One of these results (Proposition 2.3) implies
that if the intersection of the basin of attraction with x + R_ is bounded then the
boundary of this set, relative to x + R_, contains at least one fixed point of T.
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Generically, these latter fixed points are unstable. Our main contribution in {}2 is the
application of a result of the author [13, Thm. 2.2] concerning unstable fixed points of
order preserving mappings to cooperative maps. The Perron-Frobenius theory of
nonnegative matrices [7], [14] plays a fundamental role in this result and others in this
work. Essentially, this result asserts that to each unstable fixed point x >0 of a
cooperative map T there are two invariant curves C+c xx + R + and C-c (Xx R+)CR+
issuing from x and parametrized by monotone increasing, respectively decreasing,
functions of the half line [0, oe). C- connects x to another fixed point x0, x0 <xx,
which is generically stable and C+ either connects x to infinity or to another fixed
point x 2, x_ > xl, which is generically stable (the latter necessarily occurs if all orbits,
(Tnx},>=0, are bounded). In addition, x0 attracts all points in [x0,xx] except xx and
x 2 attracts all points of [xx, x2] except x under iteration by T (if x =<y, [x,y]= ( z’x <=
z __<y}). In other words, an unstable fixed point x of T must lie on the common
boundary of the basins of attraction of two distinct stable fixed points x0 and x2,

x0 < xl < x 2. This result, Theorem 2.5, together with earlier mentioned results, indicates
that the fixed point set of T together with the invariant curves C+ and C- associated
with each unstable fixed point form a tree-like structure with the minimal fixed point at
the base.

The results of 2, while providing useful information about the fixed point set of a
cooperative map, provide an incomplete description of the dynamics generated by
cooperative mappings. This is inevitable, of course,*in view of Smale’s result. For
orientation preserving cooperative mappings in two dimensions, however, we can com-
pletely describe the "phase portrait" for the discrete dynamical system under the

"2following reasonable conditions" (A) the minimal fixed point is positive (lies in R +),
(B) all fixed points are hyperbolic and (C) all orbits { T"x }>_ 0 are bounded. This
complete description is possible because (i) every orbit tends to a fixed point of T and
(ii) the structure of the fixed point set, including basins of attraction of stable fixed
points, can be completely described. Both results rely heavily on the Jordan curve
theorem. The fact that in two dimensions every bounded orbit of a cooperative map
tends to a fixed point was first recognized by de Mottoni and Schiaffino [10] (see also
Hale and Somolinos [3]). Although they observed the property for competitive maps,
their arguments are easily transformed to the case of cooperative maps. Our ability to
completely describe the structure of the fixed point set as well as the basins of
attraction of stable fixed points stems from the earlier mentioned result on monotone
invariant curves issuing from unstable fixed points together with a description of the
stable manifold of a saddle fixed point. The stable manifold of a saddle fixed point x
of T lies in the second and fourth quadrant centered at x and can be divided into two
pieces, one lying in each quadrant. Each piece emanates from x in such a way that it
can be parametrized by a map of an interval of the real line into R 2, the components of
which are monotone, one increasing the other decreasing. Each of the pieces of the
stable manifold either connects the saddle point to a fixed point (repeller), becomes
unbounded, or intersects a coordinate axis. This global result, Theorem 4.5, provides
the component parts of the "separatrix" curves forming the common boundary of the
basins of attraction of two stable fixed points. Our main result, Theorem 4.8, synthe-
sizes the earlier results and provides the complete description of the fixed point set and
basins of attraction. This description goes roughly as follows. The stable fixed points
make up a totally ordered finite or infinite set (Yk }, 0 <Yl <Y2 < <Yk < "". Each
interval [Y,Y+I] contains an odd.number of unstable fixed points (saddles and
repellers) lying on a smooth curve S. The curve S can be parametrized by either of
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the coordinate variables in terms of the other in a monotone decreasing fashion and Sk

separates R2+ into two components. The odd number of fixed points lying in [Yk,Yk+l]
can be ordered x, , x2+xk from left to right on Sk with the odd indexed x being
saddles and the even indexed x being repellers. S consists of the union of the stable
manifolds of the saddle fixed points x2z+ 1, 1 < < n k, together with the repellets x2,
1 =<j =< n k. Finally, the Sk, k >= 1 are pairwise nonintersecting and S forms the upper
boundary of the basin of yk (see Fig. 4.8).

The above results for orientation preserving planar cooperative maps are presented
in {}4. In {}3, immediately following our results on general cooperative maps in {}2, we
introduce the class of competitive maps. These are diffeomorphisms defined on a
neighborhood of R/ which map R/ into itself, map the boundary of R/ into itself and
whose additional properties are most easily, but somewhat inaccurately, described by
stating that its inverse is a cooperative map. In fact the results of {}3 are obtained by
applying the results of 2 to the inverse of the competitive map. The main difficulty
with this approach is that the domain of the inverse of a competitive map may not
include R_. The inverse of a competitive map is a cooperative map which maps the
boundary of R_ into itself and hence must fix the origin (Proposition 3.1). In addition,
one expects that there will be nontrivial fixed points of a competitive map on the
boundary of R_ and that these will be important (recall the competitive exclusion
principle of population biology). Despite this fact, we consider primarily the positive
fixed points of competitive maps. The reason for this is that in applications, competi-
tive systems (0.1) typically have the property that each portion of a subspace of R
spanned by a proper subset of the standard basis vectors which makes up the boundary
of R% is itself invariant for (0.1). In other words, the Poincar6 map for a competitive
periodic system (0.1) preserves each of these "faces" of R_ and, when restricted to any
particular face, is a competitive map. Such maps we term "competitive in each face"
Since a fixed point of a map, which is competitive in each face, that lies on the
boundary of R_ must lie in the (relative) interior of some lower dimensional face of
R_, our results on positive fixed points of competitive maps will apply to the restriction
of the map to the appropriate face.

A positive fixed point x of a competitive map T will be an unstable fixed point of
T-1 if any part of the spectrum of DT(x) lies interior to the unit circle. This simple
observation indicates that the main result of 2 on stable fixed points of cooperative
mappings, will apply quite generally to positive fixed points of competitive maps. One
of the consequences of the main result of 3 (Theorem 3.5) will be that, if all fixed
points are hyperbolic, every positive fixed point xx is either a repeller (all eigenvalues
of the Jacobian exceed unity in modulus) or there is a repeller x0 in R_, x0 < Xl and a
monotone invariant curve for the map T joining x0 and xx. Moreover every point of
[x0,xl] except Xl lies in the domain of repulsion of x (the basin of attraction of Xo
under T-1). An important class of competitive maps consists of the Poincar6 maps of
competitive periodic systems (0.1) for which the divergence of the time dependent
vector field F= (F) is nonpositive. For these maps, Liouville’s theorem [4] implies that
det DT(x)=< 1 for every positive fixed point x of T. As a consequence, T cannot have
any positive repelling fixed point and hence a positive fixed point x of T can exist
only if there exists a repeller x0, x0 < x, lying on the boundary of R%. One can also
show in this case that no two positive fixed points can be related (more generally, two
positive fixed points can be related only if the smaller is a repeller or a repeller lies
between them).

We have not attempted in this paper to describe the complete phase portrait of a
planar orientation preserving competitive map. While the results of 2 and 4 would be
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useful in such a description, the complete description does not immediately follow from
the analogous description for the cooperative case (Theorem 4.8) because of our
assumption there that the minimal fixed point is positive. One of the reasons for not
attempting in this work a description of the dynamics of planar orientation preserving
competitive maps is that such a description would depend on both the stability proper-
ties of the zero fixed point and on the number of nontrivial fixed points on each of the
two coordinate axes neither of which are constrained. It would be reasonable from an
applications viewpoint to assume the existence of at most one nontrivial fixed point on
each coordinate axis. In any case, the description would break down into several cases.
One such case has essentially already been treated by de Mottoni and Schiaffino [10]
and Hale and Somolinos [3]. In a future paper, we plan to consider the phase portrait
of orientation preserving maps which are competitive in each face in both two and
three dimensions in much more detail. The results of our work here will provide the
necessary tools for this future study.

1. Competitive and cooperative systems: The Poincar map. Consider the 2r-
periodic system of differential equations

(1.1) x’=F(t,x)=F(t+2r,x), xR

to be defined for (t, x) R U where U is some open neighborhood of R

_
( x" x;>= 0,

1 _< =< n ). We assume F is continuous on its domain and F is C 2 in x for each R.
Following Hirsch [5] and Hale and Somolinos [3], we call (1.1)

(strictly) competitive if =< 0

(strictly) cooperative if >= 0

for i4=j, (<),

fori4=j, (>).

The inequalities are assumed to hold for all (t,x)RR+. Note that if (1.1) is
competitive (cooperative) then the time reversed system

(1.2) y’= -F(-t,y)

which has solutions y(t)= x(-t) where x(t) satisfies (1.1), is cooperative (competitive).
It is convenient to introduce the following notation. For vectors x and y in R" we

write x<__y (x<y) if x<=y (x;<y), l<i<n. If x<=y, let Ix,y] denote the set (z
R"’x<__z<_y}. We let Rn+=(xR"’x>O) and n+=(xRn’x>O). We say x and y
are weakly related in case x __<y or y =< x, related if x <y or y < x, and unrelated if they
are not related. If A is an n n matrix we write A >__ 0 (A > 0) if every aj. >__ 0 (a > 0).
Let q(t,s,x) be the solution map for (1.1), i.e., x(t)=(t,s,x) is the maximally
extended solution of (1.1) satisfying x(s)= x.

In the applications, it is typical for cooperative systems to have the property that if
x(O)R+ then x(t)jn+ for t>0 but x(t)qR+ for t<0, that is, typically boundary
points of R_ are strict ingress points of R_ (see [4]). On the other hand, it is typical of
competitive systems that each coordinate axis and each of the faces of various dimen-
sions making up the boundary of R% are invariant sets for (1.1). Hence, in so far as
solutions exist in both forward and backward time for (1.1), R+ is invariant for (1.1) in
the competitive case but only forward invariant (t > 0) for the cooperative case. We will
make this difference a part of our hypotheses.
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Standing hypothesis (SH). If (1.1) is competitive, sR, x0>0 then domain
(.,S, Xo) contains Is, ) and (t,S, Xo)>O for all in the domain of qs. If (1.1) is
cooperative, s R, x0>0, then domain q(.,s, x0)contains [s, ) and ch(t,S, Xo)>O for
all > s.

In particular, we are assuming the solutions of (1.1) in both cases can be extended
into the future but no assumptions are made concerning their extendibility into the
past.

Our goal is to draw general conclusions about how periodic solutions of (1.1) are
situated. It is important, in order to make our conclusions as generally applicable as
possible, to restrict our consideration to solutions of (1.1) which lie in R +. While this
restriction may appear to ignore important (and sometimes all) the interesting periodic
behavior, we point out that our results can usually be applied to the lower dimensional
hyperplanes forming the boundary of R_ (see 3).

The fundamental result for competitive and cooperative systems is due to Kamke
which we state as follows [2].

THEOREM A. Let x(t) andy(t) be solutions of (1.1) on [a,b].
(i) If (1.1) is cooperative and x(a)<y(a) then x(b)<y(b).
(ii) If (1.1) is competitive and x(b)<y(b) then x(a)<y(a).
Note that (ii) is equivalent to the corresponding versions in Hirsch [5] or Hale and

Somolinos [3]. It follows from Theorem A and continuity of solutions with respect to
initial conditions that the strict inequalities in (i) can be replaced by inequalities; a
corresponding result may be obtained in (ii). In two dimensions, Theorem A has the
following corollary, the proof of which the reader may easily supply.

COROLLARY B. Let n= 2. Let z(t) andy(t) be solutions of (1.1), yi(t)=zi(t)+hi(t).
(i) If (1.1) is cooperative and hl(a)h2(a)<O then it cannot be the case that

h(a)h(b)<O and h2(a)h2(b)<O.
(ii) If (1.1) is competitive and hi(a)>O, h.i(a)<_O, then hi(b)>=O and hj(b)<O,

( i,j } ( 1, 2 ). If h l(a) h 2 (a) > 0 then it cannot be the case that h(a)hl(b) < 0 and
h2(a)h2(b)<O.

Another corollary of Theorem 1 will be useful in our study of competitive systems.
COROLLARY C. Let (1.1)be competitive, t>=0, xoR+ and x=q(t,O, xo). Then

4,(t, 0, [O, xo]) [O,x].
Proof. Let x[0,Xx] and let z(t) be the maximal solution of (1.2) satisfying

z(--tx)=X. Since y(t)=-q(-t,O, xo), -t__<t__<O, and z(t) satisfy (1.2) and y(-t)=xa
>__ x- z(- t), Theorem A together with (SH) imply that z(t) is defined on [- tl, 0] and
y(t)>=z(t), -t <__t<O. One easily shows that Zo=z(O)<=xo satisfies (tx, O, zo)--x.

Note that Corollary C implies that (t,0, 0)=0.
We now consider the variational equation for (1.1) corresponding to a solution

q (t, 0, x), x > 0, namely

(1.3) X’=DxF(t,q,(t,O,x))X, X(0) =I.

Let tI)(t, x) be the (fundamental) matrix solution of (1.3), i.e., tI)(t,x)= DqS(t,O,x).
The result below appears in Hirsch [6] but a slightly weaker version may be found in
Krasnosel’skii [8]. An nn matrix A=(aij) is irreducible if whenever the set
(1,2,.--, n } is expressed as the union of two disjoint proper subsets S, S’, then for
every S there exists j and k in S’, such that aj. 4:0 and a gi 4: 0. This means that the
linear transformation A does not map into itself any nonzero proper linear subspace
spanned by a subset of the standard basis vectors.
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THEOREM D. (i) If (1.1) is cooperative (competitive) then (t,x)>=O (-l(t,x)>=0)
fort>=O.

(ii) If DxF(t,z ) is irreducible for all and z>0 and (1.1) is cooperative (compe-
titive) then P(t,x)>O(dP-l(t,x)>O) for t>0.

Actually, only the cooperative case appears in Hirsch [6] but the competitive case
of Theorem D follows immediately from applying the results of the cooperative case to
the adjoint equation corresponding to (1.3), which is cooperative if (1.1) is competitive,
thus deducing that the transpose of (t,x) -1 is nonnegative (positive).

It is worth noting that DxF(t,z ) is irreducible if (1.1) is either strictly competitive
or strictly cooperative.

We will refer to (1.1) as "cooperative (competitive) and irreducible" if (1.1) is
cooperative (competitive) and DxF(t,z ) is irreducible for R and z > 0. Actually, we
do not require the strong result that (t,x)>0 for t>0, x>0 but only that for each
x > 0, (t,x)> 0 for large t. This property is referred to by Hirsch [6] as "(t,s,x) has
eventually positive derivatives". Similarly, if (1.1) is competitive we need only require
that (t,x)-l>0 for large t. While there are advantages to assuming the weaker
condition (the property is inherited by nearby systems), it does not appear to be readily
verifiable in applications.

As noted by Hirsch [6], systems (1.1) which are cooperative (competitive) and
irreducible possess stronger monotonicity properties.

COROLLARY E. Let Xl 0, X2 > 0 be distinct and X X2.
(i) If (1.1) is cooperative and irreducible, then (t, 0,Xl)< rk(t, O, x2) for > O.
(ii) If (1.1) is competitive and irreducible, then (O,t, Xl)<rh(O,t, x2) for t>0.
Proof. For (i), note that

q(t,O,x)-q(t,O,Xl)= folp(t,sx2-+’(l-S)Xl)dS(x2-xl).
For (ii), note that x=q(O,t,(t,O,x)) so

dp(O,t,x2)--d?(O,t,Xl) foldp-l( t,dp(O,t,sx:z + (l --slxll) ds(x:--Xlt.

In either case, the result follows from Theorem D.
Another property that (1.1) may possess in either the competitive or cooperative

case is that

(1.4) div F( t, x ) <= O, ( t, x ) R ’_
where div denotes the divergence of the time-dependent vector field F. In case (1.4)
holds, Liouville’s theorem [4] states that

(1.5) 0 < dettb(t,x) =< 1.

We will see that (1.5) has particularly strong consequences for competitive systems.
We are now ready to define the primary object of study in this paper, the Poincar6

map. The Poincar6 map for (1.1) is defined for x R_ as follows

T(x)=q(2r,O,x).

It is well known that T is a C orientation preserving diffeomorphism defined on a
neighborhood of R_ whose fixed points and periodic points (x is a periodic point of T
of period p if TPx=x and Tx4x for l <=j <=p -1) correspond to 2r, periodic
solutions or 2rp-periodic solutions of (1.1).
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Theorem A and Corollary E have the following implication for the Poincar6 map
T.

COROLLARY F. (i) If (1.1) is cooperative and O<=xl <x2 then T(xl)<T(x2). If
(1.1) is also irreducible, the conclusion holds if 0 <= x <= x 2, x14 x 2 and x

_
> O.

(ii) If (1.1) is competitive, xi>=O, i= 1,2, and T(xl)< T(x2) then xl <x2. If (1.1)
is also irreducible, the conclusion holds if Tx2 > 0 and Txl <= Tx 2, x14: x 9_.

One can view (ii), which we will do, as asserting that T-" T(R+)Rn+, T-l(x)--
q(0,2r,x) is monotone in the sense of (i). It will be important to have the following
information concerning the domain T(R), of T-1 which follows from Corollary C.

COROLLARY G. Let (1.1) be competitive, Xo>=O, and xl= T(xo). Then T([0,x0])3
[0, X1].

In other words, if x T(R) then [0, Xx C T(R_) and if x T(R_) then y
T(R +) if y>x.

Theorem D(i) or Corollary F imply that the derivative, DT(x)=d(2r,x), of T
satisfies DT(x)>=O in the cooperative case and [DT(x)]-I=D(T-1)(Tx)>=O in the
competitive case.

LFMMh H. Let (1.1) be cooperative (competitive) and irreducible. If (t,0,x0),
Xo>0, .is a 2rj-periodic solution of (1.1) for some positive integer j, i.e., T(xo)=Xo,

then

(a) [D(T)(Xo)] >0 if (1.1) is cooperative,
(1.6)

(b) [D(T-)(Xo)] >0 if (1.1) is competitive.

Proof. Assume first that (1.1) is cooperative. Then T(x)=q(2jr,O,x) so by the
chain rule and the fact that T(x0) Xo we have

(2fir, Xo)= Dx(2jr O,xo)= D(TJ)(xo).
The matrix on the left is assumed to be positive.

If (1.1) is competitive and TJ(xo)=Xo for x0>0 then it follows that O(t,0,Xo) is
defined for all R. Hence T- is defined in a neighborhood of xo. Since T-J(xo)= xo
we have

[D(T_2)(Xo) [D(TJ)(xo) -1__ [(2jrr,x0)]-1>0
We remark that if in Lemma H, irreducible is replaced by "q, has eventually

positive derivatives" then 1.6 (a) and (b) are modified only by the need to raise the
bracketed matrix to a sufficiently large positive integer power in order to have positiv-
ity.

Lemma H has important implications for the stability of 2 rj-periodic solutions of
(1.1). The primary reason for the usefulness of Lemma H is that it allows the applica-
tion of the Perron-Frobenius theory of positive matrices [7], [14].

THEOREM I. IfA >= 0 is an n n matrix for which Ap > 0 for some positive integer p
then p(A), the spectral radius of A, is a positive simple eigenvalue ofA strictly exceeding
in modulus all other eigenvalues of A. Moreover, there exist x > 0 such that Ax= p(A)x
and x is the unique eigenvector ofA (up to scalar multiple) which lies in R+.

Recall that a fixed point x0 of a smooth map T is asymptotically stable if the
spectral radius of DT(xo), p(Xo) p(DT(xo)), is less than one and unstable if p(Xo) is
larger than one. If (1.1) is cooperative and irreducible, then Lemma H implies that the
derivative of the Poincar6 map T at x0 satisfies DT(xo)>O if x0>0 and by Theorem I,
p(Xo) is a simple eigenvalue of DT(xo) with corresponding eigenspace spanned by a
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positive vector. This property will prove to be important in our study of cooperative
maps in 2. If (1.1) is competitive and irreducible, then the derivative of the inverse of
the Poincar6 map will have the property that its spectral radius is a simple eigenvalue
with positive eigenvector.

We have now accumulated the results which will be essential in our study of
periodic solutions of competitive and cooperative systems (1.1). Our approach will be
to study the Poincar6 map T. The cooperative case will be considered in greater detail
since the competitive case can be treated by applying the results of the cooperative case
to T-1. We do, however, consider an important result for the competitive case where
(1.1) satisfies the nonpositive divergence condition (1.4) (see 3). In addition, we will
largely restrict our attention to fixed points of T and consider explicitly periodic points
of T only briefly. The rationale for this is that the conditions we place on T in the
results to follow will apply also to Tj for each positive integer j. Thus, by replacing T
in the results of 2, by TJ one obtains results concerning periodic points. Having said
this, we make some remarks concerning periodic points of T. First, in dimensions one
and two, all periodic points in either the competitive or cooperative case are fixed
points, i.e., all periodic solutions whose period is an integer multiple of 2r are in fact
2 r-periodic. In one dimension this is trivial, all periodic scalar equations are coopera-
tive and T is strictly increasing. In two dimensions the result is not so trivial. It is
contained in results proved by de Mottoni and Schiaffino [10] and in greater generality
by Hale and Somolinos [3] (see 4). Our second point is the following.

PROPOSITION J. Let (1.1) be competitive or cooperative, let xo be a periodic point
of period j>l for T (i.e. q(t,O, xo) is 2jrr-periodic), and let xi--Ti(xo)(Xi(t)
q(t + 2irr,0,x0)) i=0,1,2,. ., j-1. Then no two distinctpoints x and x can be weakly
related (no two distinct solutions xi(t) and xj(t) can be weakly related for any t).

Proof. Consider the cooperative case (the competitive case may be treated by
considering T- 1). If xr__< xs for distinct integers r, s (0,1,. ., j 1), say r < s, then
on applying T-r to the inequality we obtain Xo<_ TP(xo), p=s-r (1,2,..., j- 1}.
But then Xo < TP(xo)<= T2p(xo)<= <= Tnp(xo) and equality cannot occur in
any inequality. On the other hand, the points Tnp(xo), n=1,2,.., all belong to

( x )o so they must repeat, i.e., there exists n, m, n m > 1 such that

=<
This implies that

a contradiction.
For dimensions larger than two, cooperative or competitive systems (1.1) can have

periodic solutions of minimal period 2rj, j > 1, as well as far more bizarre attractors.
This is a consequence of a result of Smale [12] which states that any smooth vector field
on the standard (n- 1)-simplex in R_ can be extended to a smooth competitive vector
field on

Our final comment on periodic points is to point out that a positive stable
2r-periodic solution of a one-parameter family of cooperative irreducible systems can
participate in only two types of bifurcation, namely, it can coalesce with another
2 r-periodic solution and disappear at a critical value of the parameter or it can persist,
throwing off another 2r-periodic solution as it loses stability at a critical value of the
parameter. The other possible bifurcations are forbidden by Lemma H and Theorem I:
the largest characteristic multiplier in modulus is necessarily positive.
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We close this section with two results which are obvious modifications of similar
results of Hirsch [5], [6] for the autonomous case. Let T be the Poincar6 map for (1.1).
If x0>__0 we write O+(xo)=(Tn(xo)’n=0,1,2, } for the forward orbit and A(x0)
for the set of limit points of O+(xo), that is, A(xo)={x’x=lim_Tn,x, where
( n }i is a subsequence of the natural numbers).

PROPOSITION K. Let (1.1) be cooperative and O+(xo) be a bounded orbit and
suppose T(xo) Tin(Iv) for distinct nonnegative integers n, m. Then either O+(xo) is a
periodic orbit or A(Iv) is a periodic orbit.

Proof. If T(x0) Tm(xo), then O+(xo) is a periodic orbit. Suppose T"(xo)<=
Tin(Iv) but equality does not hold.. Then by Proposition J, O+(xo) is not a periodic
orbit. We assume n>rn, i.e., n=rn+p, the other case is similar. Then TP(Tm(xo))<=
Tin(Iv) so TIP(Tm(xo))<_T(I-1)p(Tm(xo)), /=1,2,.... Since O+(xo) is bounded,
y= limt_ TIp+m(xo) exists. By continuity of T, TP(y)=y, and limt_ Tzp+m+r(xo)

Tr(y) for r- 1,2,. ., p- 1. It follows that A(x0) is the periodic orbit (Tr(y)}rP_.
The following result generalizes Proposition J.
PROPOSITION L. Let (1.1) be cooperative and O+(xo) be a bounded orbit. Then no

two elements of A(Xo) can be related.
Proof. We may assume O+(xo) is not a periodic orbit by Proposition J. Suppose

x,y A(x0) and x <y. It follows that there exist two distinct integers n and m such
that T"(x0)< T"(Xo). By Proposition K, A(x0) is a periodic orbit. But then we have a
contradiction to Proposition J.

If (1.1) is cooperative and irreducible, then "related" can be replaced by "weakly
related" in Proposition L. This follows since TA c A and if x =<y then Tnx < Ty for
some positive integer n.

2. Fixed points of cooperative maps: Invariant manifolds and basins of attraction.
In this section we consider C2 diffeomorphisms defined on a neighborhood of R_
which map/_ into itself and satisfy

(M) 0 =< x <y implies Tx < Ty, and
(SP) x > 0 and T(x)= x implies DT(x)P> 0 for some positive integer p depending

on x.
We will call such maps cooperative. It will be assumed without further mention

that all maps T in this section are cooperative but in one of our results we will assume
the stronger monotonicity assumption

(SM) O<x <=y, xSy and y>0 implies TP(x)< TP(y) for large positive integers p.
Recall that if T is the Poincar6 map of a C2 cooperative system (1.1), then (M)

holds. If, in addition, (1.1) is irreducible (or has eventually monotone derivatives) then
(SM) and (P) hold for T by Corollary F and Lemma H respectively.

The focus of this section is to describe the manner in which the positive fixed
points together with their domains of attraction and invariant manifolds are situated in
R_. We begin by observing that, in the interesting case, a cooperative map has a
minimal fixed point though it may not be positive.

PROPOSITION 2.1. Either IT"xl -, as n for every x >= 0 or T has a minimal

fixed point x limno Tn0, i.e., Tx=x implies x>= xm. T"x---)x as n--. for all
x [0,x,].

Proof. We have 0 =< TO __< T20__< =< T’0 __< . The first alternative occurs if

IT01- oe while the latter occurs if { T0} >= 0 is bounded. If 0 =< x__< x then TPO
TPx x for every p so TPx x as p --, oe.

The following result will be useful. It follows immediately from (SM) but we prefer
to assume only (M) and (SP).
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LEMMA 2.2. Let x0 > 0, x > 0 be distinct points and assume Txo Xo. If x >__ xo
(x <=Xo) then TPx > xo (TPx <x0) for large positive integers p.

Proof. Suppose x>=xo and let h=x-xo>=O. Since TP(xo+ th)=xo+ tD(TP)(xo)h
/o(t) as t-0, it follows that t-l(TP(xo/th)-xo)-(DT(xo)Ph/O(t)) for small
positive so by (SP), t-l(TP(xo + th)-xo)>O for small positive t, p as in (SP). Hence
TP(xo + th)> xo for small and x0 < TP(xo + th)<= TP(xo + h)- TP(x).

Lemma 2.2 implies that two nonnegative fixed points of T, at least one of which is
positive, are related if they are weakly related. This observation will be important.

We begin our study of positive fixed points of T by establishing some notation.
Let x0>0 be a fixed point of T and let B(x0)= (x>=O" T"xxo as n ). Let
B+(xo)=B(xo)N(xo+R+) and B-(xo)=B(xo)f[O, xo] denote respectively those
points in B(xo) for which x>__xo and x<=xo. Let S+(xo) denote the boundary of
B+(xo) considered as a subset of the space x0 + R" and S-(xo) denote the boundary
of B-(xo) considered as a subset of the space [0,x0]. We drop x0 from the notation
when no confusion will result. Each of the sets B, B +, B-, S + and S- is mapped into
itself by T. In the following result, some simple properties are derived concerning the
sets B, B +, B-, S + and S-. We do not assume x0 is asymptotically stable but in that
case, B contains a neighborhood of x0.

PROPOSITION 2.3. Let xo > 0 be a fixedpoint of T. Then
(a) Ifxi B, i= 1,2, X X2 then [xl, x2] B.
(b) If x2S+ and Xo<=X<X2 then xB+. If xS- and x<x2<=xo then

x2B-
(c) If B + contains the intersection of a ball centered at xo with xo + R+ then either

B + is unbounded or S + is homeomorphic to the n- 1 simplex and contains a fixed point of
T. IfB- contains the intersection of a ball centered at xo with xo- R+ and if 3R+ (q [0,x0]
is contained in the interior of [0,x0]-B- relative to [0,x0] then S- is homeomorphic to
the n- 1 simplex and contains a fixed point of T.

Proof. (a) follows from T"Xl < Tx _-< Tx2, n 1, 2,- which holds if xl =< x =< x 2.

The first assertion in (b) follows from the observation that there exists a ball
centered at x 2 with the property that all of its points x satisfy x > x. But one of these
points necessarily lies in B + so, by (a), x B+. The second assertion is proved
similarly.

If B + is bounded, then S + is nonempty. In fact for every h > 0, Ihl 1 there is a
unique (by (a)) value, th, of > 0 such that xo + thh S +. It is easy to see that h th is
continuous so S + is homeomorphic to the n- 1 simplex. Since T(S+)c S +, the Brouwer
fixed point theorem implies S + contains a fixed point of T. The assertion concerning
S- is proved in a similar fashion.

If (SM) holds for T then S + and S- can be continuously parametrized by points
of the set obtained by projecting S + (S-) orthogonally along a standard basis vector
onto an (n- 1)odimensional face of OR%. For the statement of the result, we require the
following notation. For i= 1,2,..., n, let Hi(xo) (x" xi=(Xo)i), H+(Xo)=Hi(xo)
(Xo + R+), H-(xo)= Hi(xo)O(xo- R+) and Pi" R Hi(xo) be the orthogonal projec-
tion onto Hi(xo) along the ith standard bases vector e (see Fig. 2.1). We drop x0 from
the notation when it is clear to which fixed point we refer. In the following result we
assume x0 is an asymptotically stable fixed point in order to avoid a more lengthy
statement. All that is required is that B + (B-) contains the intersection of a ball about
xo with xo + R + (xo R+).

PROPOSITION 2.4. Let (SM) hold and xo > 0 be an asymptotically stable fixed point
of T. If S+4:h (i.e., B+4:xo+R"+), then no two distinct elements of S + can be weakly
related nor can they have the same projection onto H along e for 1 <_ <_ n. For 1 <= <= n,
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Pi(S +) contains [xx, x2] whenever xx <=x 2 belong to Pi(S+). There exists a continuous

function h’Pi(S+)R+, strictly decreasing in the sense that xl <=x2, x4=x2 implies
h-(x)>h-(x.), such that S+=(x+h-(x)ei’xPi(S+)).

If OR_O[0,x0] is contained in the interior of [0,x0]-B- relative to [0,x0] then no
two distinct elements of S- can be weakly related nor can they have the same projection
onto H along e for l <=i<=n. For l <_i<=n, P(S-) contains [xl, x2] whenever x <__x 2
belong to Pi(S-). There exists a continuous function h c,’Pi(S-)--* R-, strictly decreasing
in the sense that x<=x2, xx4=x implies h(x2)<hc,(x), such that S-=(x+
h;(x)ei’xPi(S-)).

Proposition 2.4 implies that Pi" S+- Pi(S+) is a homeomorphism, the inverse of
which is the monotone map x- x + h-(x)e. Figure 2.1 below depicts the geometry of
the sets S + and S- for a two-dimensional competitive map T satisfying (SM).

B,/ s+(
x0 X

B-

ea

FI3. 2.1. A possible configuration of the sets B+, S+, B- S- for the stable fixed point xo of T which is
consistent with Proposition 2.4 in two dimensions.

Proof. Suppose x,x S+, x 4= x2 and Xl <__x. Then TPx, TPx2 S+ and x0__<
TPX < TPx 2 by (SM). This contradicts Proposition 2.3 (b). Note that if xS+ and
x0_< x __< x2 where x is distinct from x then the above argument shows (by Proposi-
tion 2.3 (b)) that Tex B/ for large p and hence x B +. Suppose now that x and

x are distinct points of S + and Pxl-Px for some i. Then it follows that x and x
are related which contradicts the assertion proved above. Let xg= Py where y S+,
j= 1,2, are distinct points. Suppose x Nx and write y=x+ h)(x)e, j= 1,2, where
h[(x)O since xNy, j=l,2. If h[(Xl)h[(x) then clearly yNy contradicting
the assertion proved above. Hence h)(x1)> h [(x) proving h) is strictly decreasing.
Note that if xy then xaNy so xB+. If x[x,x] is distinct from x, then it
follows that xB+. If xP(S+) then x+teB+ for all t>0. But y=x +h[(x)e
x + te for large t, implying that y B+ (Proposition 2.3 (a)). This contradiction

proves xP(S+) whenever xNxNx and x,xP(S+). All that remains to be
proved is the continuity of hi. Let x,x as n m where x,, xP(S+), n=l,2, .
Let h/(x)[0, m) as n m where {x} is a subsequence of {x}. Since S + is
closed, x+eS+. But then =h/(x). One sees that limsup.h/(x,)<m as
follows. If > h [ (x) then x + te S+ u B +. Since S + u B + is closed, it follows that
x,+teS+UB+ for all large n. One then must conclude that h[(x)<t for these
large n. It follows that h [ is continuous. The arguments for S- are omitted since they
parallel those above.
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We now turn our attention to fixed points x>0 of T satisfying 0(x)> 1. Recall,
p(x)=p(DT(x)) is the spectral radius of DT(x). Such fixed points are unstable. The
following theorem is one of the main results of this paper. In large part, its proof is
contained in [13].

THEOREM 2.5. Let x >0 be a fixed point of T with pl= p(x)> 1 and DT(x)el=
plel where e >0. Then there exists a C function y+ "[0, )/_ satisfying
(A+) y+(t)=Xl+te+O(t 2) astO.
(B+) 0=<t <t impliesy+(t)<y+(t2).
(C+) y+(t)=T(y+(p{Xt)), t>=O.
(D+) Either limt_ly+(t)l= or limty+(t)=x>x1. In the latter case, Tx2

=x2, p(x)=<l and lim,(y’+(t)/ly’+(t)l)=e>O where DT(x)e=
P(x2)e2.

(E+) If limtly+(t)l= then lTxlc asn forallx>=xl, Xx.
If limt_y+(t)=y2 then Txx2 as n-,c for all x4=x1, x[Xl, X2].

There exists a C function y_ "[0, c)--,/ satisfying
(A_) y_(t)=xx-tel+O(t 2) as tO.
(B_) 0=<t <t2 impliesy_(t)<y_(ta).
(C_) y_(t)= T(y_(p{t)), t>O.
(D_) limt_y_(t)=xo>O exists, Txo=xo and p(x0)=<l. If DT(xo) satisfies (SP)

(e.g. Xo>0 then limt(y’_(t)/ly’_(t)[)=eo>O where DT(xo)eo=p(xo)eo
(E_) x=/=Xl, x[xo,x]impliesTxxoasn.

Essentially, Theorem 2.5 asserts that a positive unstable fixed point x is joined by
two smooth monotone curves, each invariant under T, to two semi-stable fixed points
xo and x2 where 0=<x0<x <x__< o. Moreover, the basin of attraction of x0 includes
[XO, Xl] except for x and the basin of attraction of x2 includes [Xl, X] except for x1.

The two fixed points x0 and x2 are asymptotically stable if they are hyperbolic.
Observe that if all orbits O/(x) are bounded then x2=limt_y+(t) is finite.

The functional equation which y /(t) satisfies can be interpreted as follows. Let
C+=(y+(t)’t>=O} be the invariant curve joining Xx to x (or infinity). Then (C/)
asserts that the following diagram of mappings commutes

T
C+ C+

[0,) [0,)
--)pl

In other words, the parametrization y + of C+ affects a linearization of T on C+. We
write C- for the curve parametrized by y_. Similar comments apply to C-.

Proof. As mentioned above, most of the assertions of Theorem 2.5 are contained in
[13, Thm. 2.2]. We consider here only those assertions which are not contained in [13].
Of the assertions concerning y+(t), the strict inequality y+(tl)<y+(t2) in (B+) re-
quires proof. In [13] we proved y+(tl)<=y+(t2). The stronger inequality certainly holds
for small by virtue of (A+). But then, by (C+), y+(t2)-y+(tl) Tn(y+(p{nt2))-
T"(y+(o{"t1)) for n 1,2, and since T preserves the strong inequality and
y+(p{"t2)>y+(o{"tl) for large n, we deduce that y+(t_)>y+(t). The assertions
concerning y_(t) follow for the most part from [13] and the above (apply [13, Thm.
2.2] to F(x)--x1- T(Xl-X)). One assertion which does not follow from [13] is that
y_(t) exists satisfying (A_), (B_), (C_) for all t>0, that is, the assertion that to= + z
of [13, Thm. 1.1 (iv)] needs to be verified. Assume to.< , i.e., assume y_ is defined on
[0, to) satisfying (A_), (B_) and (C_) with y_(t) R+ holding for 0=<t < p-lt0. Since
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o is maximal with this property [13, Thm. 1.1(iv)], we have y_(plto) R+, but then
since y_(o{ito)=T(y_(o;Zto)) by continuity of T and y_(p;2to)>O we have a
contradiction to the invariance of R+ under T. It follows that o and that 0 <
y_(t)<x for t>0. Since y_(t) is bounded below limt_,oy_(t)=xo>O exists. Txo-xo
by continuity of T. (E_) follows from limt_,oy_(t)=xo as in [13]. If x0>0 then
O(Xo)< 1 for otherwise Theorem 2.5 applied to x0 yields a contradiction to (E_). If
xo R

_
one must work harder to show p (xo) =< 1. In this case we know that DT(x0) is

nonsingular and DT(xo)>_O. By a simple argument involving the normal form of a
reducible matrix, we can extend [14, Thm. 2.7] to conclude that there exists a nonzero
vector v >= 0 such that DT(xo)v= p(Xo)V and v does not lie in the range of DT(xo)-
O(Xo)I. Now one can apply [13, Thm. 1.1] to conclude that if O(Xo)> 1 there exists a
monotone curve z" [0, o) [x0, Xl], z(t)= xo + tv + O(t 2) as 0, z(t) =< z(t2) if < 2

and satisfying (ii), (iii) and z(t)--,x as t o. Note (iii) implies that to= o, z(t)
[Xo,X] and z(.) is monotone. Again we have contradicted (E_).

The positioning of the stable manifold of x, W(Xl)=(xk+’Tn(x)xl}, if
nontrivial, was considered by Selgrade [11] for cooperative autonomous systems. Below
we state the analogue of this result for mappings which follows immediately from
Theorem 2.5.

PROPOSITION 2.6. Assume x is a hyperbolic, positive fixedpoint of T with P(Xl)> 1
but assume part of the spectrum of DT(xx) lies inside the unit circle in the complex plane.
Then

WS(xl)() [(x -b R+)kA(Xl-Rn+)] (Xl)

i.e., no point of WS(x) is weakly related to x other than x itself.
Note that if x is a hyperbolic positive fixed point of the Poincar6 map for a

cooperative system (1.1) which satisfies the nonpositive divergence condition (1.4) and
if p(x)> 1 then it follows immediately that WU(x) is nontrivial in case n> 1 since
detDT(x)<= 1.

If in Theorem 2.5 we make the generic assumption that x0 and x 2 (if it exists) are
hyperbolic fixed points of T, then it follows that they are asymptotically stable. Even in
the case that, e.g., p(x2)= 1 one can obtain information about the stability of x2. The
reason for this is that x possesses a one-dimensional monotone, center manifold which
is tangent at x 2 to a positive vector. Our results are contained in the following.

THEOREM 2.7. Let x 2 be a positive fixed point of T and suppose P(X2)---1. Then
exactly one of the following holds"

(i) T has fixedpoints x > x2 arbitrarily near x2.
(ii) B +(x2) contains the intersection of a ball centered at x 2 with x 2 -at- R n+.
(iii) There is a C curve C+c x 2 + R+ emanating from x2 which coincides near x

with a portion of a center manifold of T at x 2. C+ is a strictly increasing curve
(x 4:y, x, y C+ then either x <y or y < x) which is invariant under T and
Tx > x for every x C+, x 4: x. Either C+ is unbounded in which case ITnx[
o as n for every x > x2 distinct from x2 or C+ is bounded and there exists
a unique point x satisfying x lim,-o T"x, independent of x C+ distinct
from x2. Moreover x is a fixedpoint of T, p(x3)=< 1, and x3= lim, Tnx for
every x x 2, x distinct from x2.

Some remarks concerning Theorem 2.7 are in order. In order that its statement not
be prohibitively long, Theorem 2.7 describes the situation for x 2 + R_. An analogous
set of alternatives holds for x2 R (note x 2 is not necessarily the x2 of Theorem 2.5).
The main difference is that for the analogous assertion corresponding to (iii), C-c x2-
//_ cannot be unbounded and hence must connect x2 to a fixed point x < x2.
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In case x2 arises from Theorem 2.5 (D +) and if (ii) of Theorem 2.7 holds, then it
follows from the center manifold theorem [1], [9] that x 2 is asymptotically stable, that
is, B(x2) contains a neighborhood of x2. A similar statement can be made concerning
xo of Theorem 2.5.

Of course, a one-dimensional center manifold for T containing x 2 exists regardless
of which of (i)-(iii) hold. It is most useful in case (iii). It is well known [9] that, in
general, there is not a unique center manifold for T corresponding to the fixed point
x2. Our proof of (iii) actually shows that each local center manifold can be extended for
x > x2 to a curve C+. Thus C+ is not unique. However, Theorem 2.7 implies that if one
C+ is unbounded, then all are unbounded and if one C+ joins x to x then all such
C+ join x2 to x3.

Proof. Suppose (i) does not hold. By (P) and Theorem I there is a positive vector e
such that DT(x)e=e. Since one is a simple eigenvalue and there are no other
eigenvalues of DT(x2) on the unit circle in the complex plane, it follows from the
center manifold theorem [1], [9] that there is a C1, one-dimensional center manifold,
tangent at x to e which is locally invariant under T. It follows that we may find a C

"" :(0) :’(0) e, aparametrization (e.g. by arclength) [0,e)xI+R+, =x, of portion
of a center manifold which lies in x 2 + ,/_. We assume e has been chosen so small that
x’(t) > 0 on [0, e). Since T satisfies (M) and the center manifold is locally invariant for
T, there exists e0=< e sufficiently small so that for each (0, Co) there exists a unique
s=-h(t)(O,e) such that T(x(t))=x(s). One easily sees that h’[O, eo)-[O,e) is strictly
increasing and C1. Our assumption that (i) does not hold implies that either h(t)< for
0 < < eo or h (t) > for 0 < < e0. In the first case, it is clear from the monotonicity of
T that Tn(x(t))---)x2 as no monotonely for every fixed t[0,eo). It follows that
B+(x2) contains x(t) for 0=<t <e0. It must also contain [Xz,X for each x B+(x2) by
a familiar argument. Since x(t) > x2 for 0 < < e0, we see that the first case, namely that
h (t)< t, 0 < < e0 implies that (ii) holds. The last assertion of (ii) follows from Proposi-
tion 2.3.

We now show that the second possibility, h (t) > t, 0 < < e0 implies that (iii) holds.
Fix to(O, eo) and for each n=0,1,2,..., define cn’[O, to]x2+R+ by :,(t)=
T"((t)), C,=(x’x=c,(t), O<_t<=to) and C+=[O,>_0Cn. Observe that is C and
increasing for each n since is C and increasing arid T is C2 and satisfies (M). We
show that Co C1 C C,.... Since C,= T"(Co) it suffices to show that C0
C1. But Co=(X’X=C(t), O<=t<=to) and Cl-{X’x=T(c(t)), O<=t<=to)=(x’x=
c(h(t)), O<=t<_to)=(x’x=c(t), O<=t<=h(to)) where h(to)>to. It follows that C+ is
a C curve. Let x4:x 2, xC+. Then x=T"(c(t)) for some n>=0 and t[0,t0] so
Tx= T"+X((t))= T"c(h(t))> T"(c(t))=x since h, k and T are increasing. Let y:/: x,
y C+, be distinct from x. Then there exists an integer rn and distinct values of t,
and ty such that x= T’(c(tx)) and y= Tm(fc(ty)). Since t and ty are related, it
follows that x and y are related. If C+ is unbounded, then it follows that [T"x[ o as
n for x C+ distinct from x2. We want to show that this also holds for x>=x2

distinct from x. Let x>__x 2 be distinct from x2. By Lemma 2.2 there is a positive
integer n such that T"x > x. It then follows that there exists y C+, y 4: x2, such that
Tnx>y and hence Tn+px> TPy. The desired conclusion follows from [TPy[ --) otz as
p o. If, on the other hand, C+ is bounded and x C+, x 4: x 2, then x < Tx < T2x <

so lim, T"x exists. Let y C+ be distinct from x and x. If y > T"x for every
n then y >= lim,_o Tnx. Since lim,_o T"x is a fixed point of T it follows that C+

contains a fixed point distinct from x2 which contradicts that Tx> x for x C+,
x 4: x2. Hence it must be the case that y < T"x for some integer n and so lim TY
_< lim T"x. The symmetry in the argument above implies lim Tx < lim Tny and so
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the limit, x3, is independent of x C+, x 4: x 2. By continuity of T, x is a fixed point.
Let x[xz,x], x4:x2. By Lemma 2.2 and monotonicity of T it follows that x: < T"x
__<x for large n. But then, for such an n, T"x>y for some yC+ so TPy< Tn+p<__x3.
Since TPy x3 it follows that T’x x.

Consider how the results of this section can be combined to give a geometric
description of the set of fixed points of a cooperative map T, their domains of
attraction and their associated invariant manifolds. We briefly sketch such a descrip-
tion in the case that all fixed points are hyperbolic, there are no unbounded orbits and
x,,, the minimal fixed point, is positive. If x,>0, it follows from Theorem 2.5 that
P(Xm)<l SO X is asymptotically stable. If B+(xm)--xm+Rn+ then B(x,,)---R+ by
Proposition 2.3, x is a global attractor. If B+(xm)4:xm+Rn+, one expects that the
boundary S+(x,,) will contain fixed points of T. If B+(xm) is bounded then by
Proposition 2.3, S+(x,,) will contain at least one fixed point. Such a fixed point Xl
must be unstable with p(x)> 1. In case p(x) is the only point of the spectrum of
DT(x) exceeding one in modulus, then the (n-1)-dimensional stable manifold W(x)
must form part of S+(x,,). Every fixed point of T on S+(x,,) must be connected to x
by an invariant monotone curve C- emanating from the fixed point and belonging to
B+(x,,,). The curve C- must be tangent at x,, to the positive eigenvector for DT(xm)
corresponding to the simple eigenvalue p(x,,). If there is more than one fixed point on
S+(x,,), each of the curves C- are thus tangent at x,. Each fixed point x of T on
S+(xm) is connected to another asymptotically stable fixed point x>x by an in-
variant monotone curve C+ emanating from Xx and contained in B-(x) by Theorem
2.5. Moreover, [Xm,Xl]\(Xl}CB+(xm) for every such fixed point XlS+(Xm) and
[xl, xz]\(Xl)CB-(x). It may happen that more than one fixed point on S+(Xm) is
connected by a C+ to the same fixed point x2. In that case, each C+ connecting a fixed
point on S+(x,,) to x is tangent at x: to the positive eigenvector for DT(x:).

Now each of these secondary stable fixed points x 2 can take the place of Xm in the
previous scenario. Thus one obtains a cascading sequence of these stable-unstable-sta-
ble cells forming a tree-like structure with x at its base. In 4 we will obtain
additional information for two-dimensional cooperative maps which will allow us to
describe completely their "phase portrait".

3. Fixed points of competitive maps. In this brief section we examine how the
fixed points of competitive maps and their invariant manifolds are situated by applying
the results of the previous section to the inverse map. A map T will be called a
competitive map if T is a C 2 diffeomorphism defined on a neighborhood of
satisfying Tx > 0 if and only if x > 0 and

(MI) xl, x2_ 0 and Tx < Tx2 imply x <x2

and
(SPI) x>0 and T(x)=x implies DT(x)-P>O for some positive integer p de-

pending on x.
(MI) and (SPI) will be assumed without further mention but we will briefly note a

result requiring the stronger monotonicity assumption
(SMI) x >= 0, x: > 0 and Tx < Tx: implies Xl < xa.
If T is the Poincar6 map of a C competitive system (1.1) then (MI) holds. If, in

addition, (1.1), is irreducible then (SPI) and (SMI) hold for T by Corollary F and
Lemma H respectively. Of course, (MI), (SPI) and (SMI) imply that T-, the inverse of
T, satisfies (M), (SP) and (SM) of the previous section except that T-1 is defined only
in a neighborhood of T(R). In case T is the Poincar6 map of a competitive system
(1.1) then Corollary G implies that [0, x c T(R% ) whenever x T(R

_
).
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We note that competitive maps necessarily fix the origin as might be expected
from the remark following Corollary C.

PROPOSITION 3.1. Let T be a competitive map. Then T0=0. If x and x 2 are
distinct fixedpoints of T, at least one of which is positive, then x <= x 2 implies x < x2.

Proof. T(OR+)c OR+ together with the smoothness of T and the fact that DT(O)
is nonsingular imply TO 0. The second assertion follows from Lemma 2.2 applied to
T-1.

As previously mentioned, the results of the previous section concerning coopera-
tive maps can be immediately applied to T-1 to obtain results for competitive maps. It
is not our intention to translate each of the results of the previous section to a
corresponding result for competitive maps. Instead, we select a few such results which
are likely to be of interest for competitive Poincar6 maps. Keep in mind as we proceed
that if T is a competitive map and Tx x then T-1 is defined in a neighborhood of x,
T-lx=x and the spectrum of D(T-1)(x) is obtained from the spectrum of DT(x) by
inverting: X---> X-1. If x is a positive fixed point of T, let l(x)=[p(D(T-1))(x)] -1. By
(SPI) and Theorem I, /(x) -1 is a simple eigenvalue of D(T-1)(x)=(DT(x)) -1 with
positive eigenvector and all other eigenvalues have smaller modulus. It follows that
/(x) is the (strictly) smallest eigenvalue of DT(x) in modulus and it has a positive
corresponding eigenvector.

If x is a positive fixed point of T with /(x)> 1 then, of course, x is a totally
unstable fixed point of T and it is an asymptotically stable fixed point of T-1.
Consequently, Proposition 2.3 (and Proposition 2.4 if (SMI) holds) can be applied to
obtain information concerning the domain of repulsion for x and its boundary. It is
much more likely, however, that (x)< 1. In fact, if a competitive system (1.1) has a
nonpositive divergence ((1.4) holds) then every positive fixed point of its Poincar6 map
satisfies/ < 1.

LEMMA 3.2. If n > 1 and x > 0 is a fixed point of T and det(DT(x))<= 1 then
/(x)< 1.

Proof. If/(x)>__ 1 then since (x) is the (strictly) smallest eigenvalue it follows that
the products of the eigenvalues of DT(x) with corresponding multiplicities strictly
exceeds (n > 1) one which contradicts det(DT(x))<= 1.

If/(x) < 1 for a positive fixed point x of T then the spectral radius of D(T- 1)(X
exceeds one and Theorem 2.5 can be applied to T-1 to obtain the following result.

THEOREM 3.3. Let x be a positive fixed point of T with /.tl--/Xl(Xl)<l and
DT(xl)el llel where el>0. Then there exists o, 0<t0=<o, and a C function

"n satisfyingy/ [0,t0)R/
(A+) y+(t)=Xl+tel+O(t) astO.
(B+) 0<tl<t<t0 impliesy+(tl)<y+(t.).
(C+) T(y+(t))=y+(tlt), 0<t<t0.

(D +) Either limt_to+ly+(t)l oe or limt_to+y+(t)=x. In the latter case, to=
Tx2=x, t(x)>= 1 and limt_.(y’+(t)/ly’+(t)[)=e>O where DT(y.)e2=
(x2)e2.

(E +) If lim o+IY + (t)] then for all x >= Xl, x 4= xl, either there exists N such
that T-xT(R+), O<=<=N and T-+I)xT(R+) or T-xT(R+) for
all and [T-xl as --*. If limy+(t)=x then T-x--,x2 as

for all x4= x1, x[xl,xa].
There exists a C function y_ "[0, )--*/_ satisfying

(A_) y__(t)=xl-te +O(t 2) as t--,O.

(B_) 0=<t <t2 impliesy_(t)<y_(tl).
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(C_) T(y_(t))=y_(llt), t>__O.
(D _) lim Y (t) xo >= 0 exists, Txo xo and i(xo) >= 1. If DT(xo) satisfies

(SPI) (e.g. x0>0) then limt_-(y’_(t)/ly’_(t)l)=eo>O where DT(xo)eo
(x0)e0.

(E_) xq=xa, x[xo,X] implies T-"xxo as no.
As an immediate corollary of Theorem 3.3 (E_) observe that no positive asymptot-

ically stable fixed point x of T can exist unless T possesses a corresponding fixed
point Xo<X which satisfies/(x0)> 1. Ignoring the nongeneric possibility/(x0)= 1,
one may say that x0 is a repeller" all of the eigenvalues of the Jacobian at x0 exceed
unity in modulus.

In view of the fact that/(x)< 1 is typical for a positive fixed point (and necessary
if det DT(x)<= 1), Theorem 3.3 will play a more fundamental role for competitive maps
than its counterpart, Theorem 2.5, played for cooperative maps. The assertions
(A_)-(E_) will be most useful in general. Let us write C+={y+(t)’O<=t<to} and
C-= (y_(t)’t >_ 0} for the two invariant curves the existence of which is asserted in
Theorem 3.3. We call special attention to the fact that assertions made in (E+) and
(E_) concern T-a and not T itself. For example, in (E_) the set [xo, Ix] is mapped into
itself by T-1 and the orbit, under T-, of every point except x of [Xo,X] limits on x0

but [Xo, X] is not necessarily mapped into itself by T. It is also important to reem-
phasize that when either of the curves C+ or C- connect xx to a fixed point x or x0,

then that fixed point must be quite unstable since the smallest eigenvalue of the
Jacobian must be greater than or equal to one. One might expect that for a typical
application there are few such (>__ 1) unstable fixed points. Indeed, suppose that T is
the Poincar6 map for a competitive irreducible system satisfying the nonpositive diver-
gence condition (1.4). Then by Lemma 3.2, every positive fixed point x of T has
/z(x)< 1. This observation excludes the possibility that limt_oy+(t)=x in (D +) and
that x0 > 0 in (D_) of Theorem 3.3. One can, in fact, say slightly more.

PROPOSITION 3.4. Let T be a competitioe map with the property that (x)< 1 for
each of its positit;e fixed points. Then no pair of positioe fixed points of T can be weakly
related and eoery positive fixed point x is joined by the curoe C- to a fixed point Xo of T
on 3R"+. Moreover, tz (Xo) >-_ 1 and T-x xo as oz for eoery x xo, x1] distinct
from X lo

Proof. If 0<x0<x where x0 and x are fixed points of T, then Xo<X by
Proposition 3.1 and Theorem 3.2 (D +) applied to xo implies the existence of a fixed
point x [Xo,X_ with /z(xa)>__l. Indeed, the curve C+ obtained from Theorem 3.2
applied to xo must satisfy C+[Xo,X] by Remark 3 following Theorem 1.1 in [13].
The first assertion is established. The second assertion is a restatement of Theorem 3.2
(E_).

Anyone who. has worked with competitive systems (1.1) in applications knows that
typically each face H- { x >= 0" x; 0, 1}, 1_ {1, 2,.-., n }, making up the
boundary of R_ is invariant under (1.1). In such a case, the Poincar6 map will map
each H- into itself. We will call a competitive map T "competitive in each face" if T is
a competitive map when restricted to each face H- (where <_ and < are now relative
to HI). Of course, each of the results of this section may be applied to each of the faces

H if T is competitive in each face. For example, if T is competitive in each face, then
no face H- can have a fixed point x belonging to the interior of Ht+ (relative to HI)
which is asymptotically stable for T Itt? "H- H unless T H,+ possesses a fixed
point Xo<=X in /-/+ which satisfies lrl?(xo)> 1 where/zu;(x0) is the smallest eigen-
value of D(T m+)(x0) DT(xo) I? HI HI.



PERIODIC SOLUTIONS OF PERIODIC SYSTEMS 1307

If T is competitive in each face, then each of the coordinate axes is invariant under
T. It follows that DT(O) is a diagonal matrix. In many applications to ecology where
competitive systems arise, each coordinate of x represents the population density of a
particular organism and typically each organism is assumed to be viable in the sense
that if none of its competitors are present, then it will grow, at least when it is scarce.
The mathematical translation of this last statement is that if DT(0)=
diag{ X x, X 2," ", )x ) then X; >__ 1, 1 < < n. Typically, one expects 0 to be the only fixed
point of T for which/ > 1 and thus all fixed points of T will be connected to 0 by a
curve C-.

An immediate corollary of Theorem 3.3 is the following.
PROPOSn:ION 3.5. Assume xo is a hyperbolic, positive fixed point of a competitive

map T with (Xo) < 1 and 0(Dr(xo)) > 1. Then no point of the unstable manifold
WU(xo) ( x" T-x xo as oe } is weakly related to xo except xo itself.

In future work we intend to consider in greater detail the dynamics generated by
maps which are competitive in each face in low dimensions (n- 2 and 3).

4. Cooperative planar maps. In this section we continue our investigation of coop-
erative maps, focusing on the two-dimensional case. The results obtained in this section
may be applied to the inverse of a competitive planar map.

In addition to the results of 2, we will show that the dynamics of a planar
orientation preserving cooperative map are "trivial" in the sense that all bounded
orbits tend to fixed points. This result was obtained by de Mottoni and Schiaffino [10]
for competitive maps and we essentially reproduce their proof with minor modifica-
tions. We also show that the center-stable manifold of every fixed point contains two
monotone invariant curves each of which either tends to infinity or limits on another
fixed point of T. Armed with these additional results together with those of 2, we will
be able to describe completely the "phase portrait" for a planar orientation preserving
cooperative map which satisfies (A) the minimal fixed point x is positive, (B) all fixed
points are hyperbolic and (C) all orbits are bounded. A rather rich structure will
become apparent for the set of fixed points and their basins of attraction. These results
are contained in Theorem 4.8, the main result of this section.

Some additional notation will prove useful. Let Q, 1,2, 3, 4 denote the usual
open quadrants in R2 in counter clockwise order with increasing i, e.g., Q=
((Xl, X2)’xi>O, i=1,2). For x>0 denote by Qi(x) the set (x+Qi)t")R2+, that is, the
portion of the th quadrant centered at x which lies in R+.

The manner in which orientation enters the study of cooperative maps may be seen
in the following result. First, observe that if T is cooperative then T(Q(x))c Qi(Tx)
for 1, 3.

LEMMA 4.1. Let T be cooperative and x > O. If T is orientation preserving, then
T(Q2(x))C3Q4(Tx ) and T(Q4(x))C3Q2(Tx ) are empty. If T is orientation reversing,
then T(Q(x))C3Q2(Tx ) and T(Q4(x))Q4(Tx) are empty.

Proof. The result is easily established by considering the images under T of the
following curves. E ((t, 0)" >__ 0}, E {(0, t)" >__ 0}, H {(t, b)" _>_ 0} and H2

{(a, t)’t >__ 0} where x- (a, b). Each of the curves has been parametrized in such a way
as to be monotone nondecreasing. Each of the image curves T(E), T(E2), T(H1) and
T(H2) are monotone nondecreasing and T(H), 1, 2 lie in Q1(rx) Q3 rx ). The
proposition follows easily from the fact that the boundary of T(Q2(x)) consists of a
portion of each of the curves T(H), T(H2) and T(E2) and the fact that the relative
relation of the pairs of curves T(E), T(E2) and T(H1) and T(H2) are preserved or
reserved depending on whether T is orientation preserving or reversing.
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PROPOSITION 4.2. If T is a cooperative orientation preserving map and x > 0 then
r(Qi(x))cqQi(rx ) i=1,3 and r(Qj(x))Qk(Tx)=, j4:k, j,k (2,4).

Proposition 4.2 has the important implication that the orbit of x, 0+(x) has
eventually monotone (with respect to n) components. This line of argument was first
used by de Mottoni and Schiaffino in the competitive case and our proof below is
merely a mirror image of theirs.

THEOREM 4.3. Let 7" be cooperative and orientation preserving, x =(xl, x2)> 0 and

x= Tx=(x),x)), n=0,1,2,.... Then there exists N=N(x), a positive integer,
such that for n >= N both x) and x 2n) are monotone sequences.

Proof. Either there exists a nonnegative integer M such that TMx <=
TU+ x(TU+ x TNX) or it must be the case that T + ix Q2(Tnx) Q4(T"x) for all
n >= 0. In the former case, Tnx <= T + ix(T + ix <= T"x) for all n >_ N and the theorem
follows. In the latter case we may assume Tx Qz(X) (the case Tx Q4(x) is treated
similarly). It follows from Lemma 4.1 that Tx T(Q(x)) does not lie in Q4(Tx) and
so must be an element of Q(Tx). Proceeding by induction on n, one shows T"+ ix
Q(T"x) n 0,1, 2, . The result follows easily in this case (in fact N= 0).

The upshot of Theorem 4.3 is that the dynamics of cooperative orientation preserv-
ing maps is "trivial", all bounded orbits are either fixed points or tend to fixed points.
Though the dynamics may be "trivial", we will show that the fixed point set of an
orientation preserving cooperative map together with their domains of attraction have a
rich and beautiful structure.

COROLLARY 4.4. Let T be cooperative and orientation preserving and let x > O. Then
either ITxl as n or there exists a fixedpoint x >= 0 of Tfor which Tx --, x as
n---)o.

If T is a cooperative map, it may not be the case that T2 is cooperative. The
problem is that (SP) may not hold for T 2. In case (SP) holds for T 2 so it is cooperative,
then T2 is cooperative and orientation preserving. Hence T2 has trivial dynamics. In
this way, one can treat orientation reversing cooperative maps" their bounded orbits
approach period two points (which might be fixed points) of T.

Let x > 0 be a fixed point of an orientation preserving cooperative map T. Since
DT(x) satisfies (SP), the spectrum of DT(x) consists of distinct positive eigenvalues ,
p where O=o(DT(x)) is the spectral radius and l<p. Corresponding to p there is a
positive eigenvector e x. This eigenvector, being (to within scalar multiple) the unique
nonnegative eigenvector of DT(x) by Theorem 1, it follows that we may select an
eigenvector e2 corresponding to l which lies in Q or Q4 as we please. In case p > 1,
Theorem 2.5 implies the existence of two monotone invariant curves for T" C+ Q(x)
and C- Q3(x)- The following result states that if < 1 then there are two monotone
invariant curves for T" Ct Q(x) and C Q4(x).

TI-IORM 4.5. Let x be a positive fixed point of an orientation preserving coopera-
tive map T and suppose 1 rl (xl), the smaller positive eigenvalue of DT(x) satisfies
x < 1. Let DT(xl)e =le2 where the eigenvector e2 Q2. Then there exist t, 0 < t<= o
and a C function y" [0, tt) Q2(xl) satisfying

(At) yt(t)=x+te2+O(t 2) astO.
(Bz) O<t<s<tt impliesy(s)-y(t)Q2.
(C) T(yt(t))=yt(llt), O<=t<t, and either t= or yt(t+) lies on the vertical

coordinate axis.

(Dr) If tt= then either limt__,y(t)= or limt__,y(t)=x Qz(Xl). In the
latter case, Txt=x and, if xt>O, then l(xt)>= 1 and limt_,o(y;(t)/ly;(t)l)
is an eigenvectorfor DT(x) corresponding to l(xt).
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(Et) Ifx>yt(t) for some t(0,t) then T"x>=y(q’t) for n=l,2,....
If x <yt(t ) for some t(O, tt) then Tnx<=yt(nt) for n=l,2,....

There exist tr, 0 < tr< o and a C function Yr" [0, tr)--- Qn(Xl) satisfying
(Ar) Yr(t)=x--te2+O(t 2) as t--O.
(Br) O<t<s<t implies yr(s)-yr(t)Q4.
(Cr) T(yr(t))--yr(llt ) O<=t <tr, and either tr= Or yr(tr/ ) lies on the horizontal

coordinate axis.

(Dr) If tr=OZ then either limt_Yr(t)=o or limt_yr(t)=xrQ4(Xl). In the
latter case, Txr=x and, if xr>O then *l(Xr)> 1 and limt__,(y(t)/ly(t)l)
is an eigenoectorfor DT(xr) corresponding to *l(Xr).

(Er) Ifx>____Yr(t ) for some t(O, tr) then Tnx>yr(lt) for n=1,2,.-..
If x <----Yr(t) for some (0, tr) then Tx >-_Yr(’t) for n 1, 2,....

Before proceeding to the proof of Theorem 4.5 we comment on its assertions which
clearly parallel those of Theorem 2.5. Figure 4.1 illustrates the possible configurations
of the curve Ct-- ( yt(t)" 0 __< < tt ) which lies in the center-stable manifold of the fixed
point x of T. The curve Cr= (yr(t)’O<=t <tr) has a similar set of possibilities which
are independent of those of Ct. In case the curve C connects x to a positive fixed
point xt, see Fig. 4.1 (b), (Dr) asserts that the smallest eigenvalue of the Jacobian of T
at x is larger than or equal to one. In other words, x is a repeller if it is hyperbolic.

x1

(c)

C

(b)

FIG. 4.1. The possible configurations of CI. In (a) tt=oz and limt_yt(t)=c’ in (b) t=o and
limtyt(t)=xt. (c) illustrates two possibilities" either t= and limt_y(t)=xOR2+ or t< and

Yt tt + ), which cannot be a fixed point, lies on 3R2+.
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The assertions (Et) and (Er) will prove to be especially important. Since yt(’t) x

as n---, , if x>=yt(t) then any limit points of (Tnx}n>__0 must lie in Qx(xl). Similar
remarks hold for the other cases.

Proof. Let E1 and E_ denote the horizontal and vertical coordinate axis respec-
tively. Since T satisfies (M), T(Ei), 1, 2, are monotone curves forming the boundary
of T(Q1). See Fig. 4.2 depicting these sets. Consider T-:T(Q1) 01 which fixes xx
and for which p(D(Z-1)(Xx))--l{ > l. Applying [13, Thm. 1.1] to T- with eigenvec-
tor e2O2(Xl) we obtain t, 0<tz=< and a C function y: [0,tz) T(Q) satisfying
yt(t)=x + te2+O(t 2) as t0, yt(t)= T-l(yt(rllt)), 0=<t<tt, and tz= or t is maxi-
mal with the property that y(t) T(QI), O<=t <xtz. Since y(t) Q2 for sufficiently
small t>0, yz(t)Q2(Xl) and (Bt) hold for small t. Suppose O<t<s<tz and yz(t)
and yt(s) are weakly related, e.g., y(t)<=yz(s). Then T(yz(t))<= T(yt(s)) so yz(/lt)=<
yz(lS). After n applications of T one has yz(rtt)<yt(l’s) which contradicts, for large
enough n (/<<1), that Bt holds for small t. Now let F’{(t,s)’O<t<s<tz)
R2\{0) be defined by F(t,s)=yt(s)-yz(t). F is a continuous function satisfying
ImageFc Q2t..)Q4 by the argument just presented. Since Bz holds for small t,
ImageF Q24: . But ImageF must be connected and so it must be the case that
ImageFc Q2- Hence (Bt) holds and yz(t)Q2(x), 0<t<t. Now, if tz< then (Bt)
implies the existence of yz(tz+ ) Q2(x) and since tz > 0 is maximal with the property
that yz(t)T(Q1), O<=t<ltz, it follows that yz(lxtz)3T(QI)=T(Ex)tT(E2). Since
yt(lltt)O2(xa), yt(’Olt)T(L) (see Fig. 4.1). Hence yz(tz+)E2. This completes
the proof of (Cz). If tz= c then (Bt) implies the first assertion of (D). Clearly Txz= x.
Before proving the remainder of (Dz) we observe that (Ez) follows trivially from (Cz)
and (M). Now suppose xz>0 and (xt)<l. But then we could apply Theorem 4.5
(Ar)--- (Er) to x t. This contradicts (E) (draw a picture!). The last assertion of (Dz) can
be verified as in [13, Thm. 2.2]. The proof of (Ar)-- (E) follows a similar pattern.

Theorem 2.5, Corollary 4.4 and Theorem 4.5 can be used to describe the "phase
portrait" for a planar orientation preserving cooperative map satisfying

A. The minimal fixed point, Xm, is positive.
B. Every fixed point is hyperbolic.
C. All forward orbits, O/(x), are bounded.

E

T(E2)

T(E1
TO

E

FIG. 4.2. The configuration of T(Ei), 1, 2 and T(Qx). Note TO need not be positite as depicted. Each
curve T( Ei) is monotone.
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In view of B, a fixed point x of T must be either (i) stable: 0 < < p < 1, (ii) a saddle
point: 0 < ,/< 1 < p, or (iii) a repeller: 1 < /< p. If x is a positive fixed point of T and
either stable or a saddle point, we will write Ct(x) and Cr(x) for the two monotone
invariant curves emanating from x which are asserted to exist by Theorem 4.5. Simi-
larly, if x is a saddle point or a repeller, we write C-(x) and C/(x) for the monotone
invariant curves emanating from x described in Theorem 2.5. Observe that, by B and
C, a C-(x) and C+(x) always lead to a stable fixed point while if a Ct(x) or Cr(x)
lead to a fixed point, then that fixed point must be a repeller. We will establish the
following propositions assuming that A-C hold.

PROPOSITION 4.6. Ify is a stable positivefixedpoint then either B+(yl) Q(y) or
S+(y) is the graph of a C monotone decreasing curve in QI(yl)- S+(yl) contains an
odd number offixedpoints xx, x2,..., x2n/ orderedfrom left to right on S+(yx) (see Fig.
4.3). The odd indexedpoints are saddles and the even indexedpoints are repellers. S+(y)
consists of the curves Ct(xi), Cr(Xi), i= 1,3,5,’" ",2n--1 together with their limit points

X2X4" . X2n.

(a)

Yl

C

(b)

(c)

C

X1

C

x2

C
B+

B
C

FIG. 4.3. The set S+(y) in case 2n+ 1=3.
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PROPOSITION 4.7. If Yl is a stable fixed point, B+(yl)4Ql(y), and
x,x2,..., x2,,+ are the fixed points of T on S+(x) as in Proposition 4.6, then each of
the curves C-(xi), 1<i<2n+ 1, is asymptotic to y and tangent at yl to the positive
eigenoector for DT(yl) (corresponding to p(y)). All the curves C+(xi), 1=<i__<2n+1,
are asymptotic to the same stable fixed point y2 > xi, 1 < < 2n + 1. Each curve C+ (xi) is

tangent at Y2 to the positive eigenvector for DT(y2). The curve Ct(y)c Qz(Y:) either

leaves QI(yl) by crossing its vertical boundary or remains in Q(y) tending to infinity.
The curve Cr(y2)c Q4(y2) either leaves Q(yl) by crossing its horizontal boundary or
remains in Q(yl) tending to infinity. (See Fig,. 4.4.)

C

FIG. 4.4. The curves C+(xi), C-(xi) Cr(y2) and C(y2) are added to Fig. 4.3(a). The reader may easily
supply these curves to Fig. 4.3(b) and (c). Note that no two distinct pair of the various curves can intersect so if
C(xl) is unbounded in QI(Yl) then so is C(y2).

Propositions 4.6 and 4.7 describe what we might refer to as a basic cell [Yl,Y2] with

Ya and y: being stable fixed points. Inside the cell there are an odd number of unstable
fixed points lying on a smooth monotone decreasing curve (only part of which may lie
in [Y,Y2]). The proofs of Propositions 4.6 and 4.7 will be deferred to the end of this
section while we consider how to construct the global phase portrait. We will show that
the fixed point set of T consists of a finite or infinite totally ordered sequence of such
basic units and we will describe precisely the basis of attraction of each of the stable
fixed points. In order to achieve this goal, we proceed from the bottom up, so to speak,
beginning with the minimal fixed point Yl---Xm" In Fig. 4.5 below, we indicate the
possible configurations of the curves Ct(yl) and Cr(yl). Observe that since all fixed

points x of T satisfy x>_yx, the quadrants Q2(yl) and Q4(Yl) are fixed point free
while Q3(y) B-(y).

By Propositions 4.6 and 4.7, either B+(yl)=Q(yl) or we can add one of our
basic units as in Fig. 4.4 to Fig. 4.5. In case B+(yl)=Ql(yl), then B(yl)=, all
orbits tend to y. If B+(yx)4: Qx(yl) so that Propositions 4.6 and 4.7 apply, there are
two issues to consider. First, where do the curves Ct(x), Ct(y2), Cr(x2n+ 1) and Cr(y2)
go if they leave Ql(yl)? Secondly, are there unaccounted-for fixed points of T belong-
ing to the various regions partitioned by the curves which we have described so far?
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(a)

(b)

(c)

FIG. 4.5. Configurations of Ct(yl) and Cr(yl) for the minimalfixedpointy1. Q2 y ), Q3 yl and Q4 yl
are fixed point free.

Beginning with the first question, recall that Cl(xl) either leaves QI(yl) through the
vertical boundary or remains in Qx(yl)OQ2(xl) tending to infinity. In the latter case
there is nothing more to say but in case Ct(xx) leaves QI(y), Theorem 4.5 and the fact
that Q2(Y) is fixed point free leave only two alternatives. Either Ct(x) tends to
infinity in Q2(y)Q2(Xl) or Ct(Xl) terminates on the vertical coordinate axis. Since
Ct(xx) cannot intersect Ct(yl), the latter alternative can only occur if CZ(yl) terminates
on the vertical coordinate axis as in Fig. 4.5(a). The three other curves are treated in
similar fashion. The number of possibilities for each of these curves prevents a cata-
logue of all possibilities. In Fig. 4.6 below we combine Figs. 4.5 and 4.4 together with
the observations above.
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C

Y

X1 S

C

C

FIG. 4.6. Figs. 4.5(a) and 4.4 are combined. The curves Cl(Y2) and Cr(y2) are also featured. Note the
curve sl=Ct(xa)kJCr(xx)toCt(x3)kJC(x3) forms the boundary between the B(ya) and B(y2).

Let S denote the curve consisting of C(x) 0 Cr(x1) (..) Cl(x3) Q) Cr(x3)
3 t3 C(x2/) (see Fig. 4.6). S is a C monotone decreasing curve which discon-
nects Ra+ into two components, a lower one, Lx, and an upper one, U. We will soon
see that B(y)= Lx. First though we must address the second question raised above.
Consider the lower left-hand component whose upper boundary is C(y2)ucr(y2).
This region may be further partitioned into 4n + 5 separate regions formed by C(y),
Cr(yl), C(y2), Cr(y2) and the C+(xi), C-(xi) for odd i. Can there be a fixed point in
any one of these open regions? We argue that there cannot be any fixed points in these
regions. A formal proof would proceed case by case through each region, systematically
using (E+) and (E_) of Theorem 2.5 and (El) and (Er) of Theorem 4.5. We proceed less
formally considering a sample case and leaving the remainder to the reader. Consider
the open region, V, bounded by CZ(Xl), a portion of the vertical coordinate axis, Cl(y2)
and C+(xl) (see Fig. 4.7 below). This region is mapped into itself by T. There can be
no fixed points of T in V[Xl,Y2] by Theorem 2.5 (E+). There can be no fixed points
in Vf3 Q2(x) by Theorem 4.5 (El). There can be no fixed points of T in Q2(y) V
by Theorem 4.5 (El). This exhausts the region. Indeed, one can show that the orbit of
every point of V tends to Y2 by using the above arguments. The other regions can be
treated in similar fashion; note that each is mapped into itself by T.

We show LI=B(yx) as follows. Each of the (4n+ 5) regions are mapped into
themselves by T. Corollary 4.4, the fact that each open region is fixed point free, and
the fact that Yl is the only stable fixed point in L complete the argument.

We now state the main result of this section, completely describing the dynamics
of an orientation preserving cooperative map in the case that A., B. and C. hold.

THEOREM 4.8. Let T be an orientation preserving cooperative map satisfying A., B.
and C. and assume B(xm)4: R2+. Then the set of fixed points is either infinite or odd in
number and can be described as follows. The subset of stable fixed points is totally ordered
0 < Xm =- Yl <y2 < <yn" In each order interval Yk,Yk + x], k 1,. ., there are an
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;’ x lying on a C monotone de-odd number of unrelated fixed points xi, x2,.. 2n, +
kcreasing separatrix curve S and orderedfrom left to right on S. For each fixed point x

C-(x) and C+(x)) tend to y, and y,+ respectively and are tangent at these points to
the positive eigenvector of DT(yk) or DT(yk+). The odd indexed fixed points xi+l are
saddle points and the even indexed fixed points are repellers. S C(x) tJ Cr(x1) tJ

CI(x3)I,.JCr(X3)[,_) [,_) Cl(x2n+ l)l,.,JCr(x2n+ l).) ( Xa,X4,. ., X2n } andS" separates R2+
into two components. IfLk denotes the lower left component ofR+ and U the upper right
component ofR+ the boundary of which is S then B(yl)=L1, B(y)=L(3 U-1, k> 1,
unless the sequence of stable fixed points terminates at yp. In the latter case B( yp)= Up- 1.

See Fig. 4.8 below for a possible scenario.

c (xl)

Xl

FIG. 4.7. The region V in the case that Ct xl) intersects the vertical coordinate axis.

8

S

FIG. 4.8. A phase portrait consistent with Theorem 4.8. There are three stable fixed points Yl, Y2, Y3 with

separatrices S and S separating B(yl), B(y2) and B(y3). The interval [Y,Y2] contains three unstable fixed
points on S and [Y2,Y3] contains one unstable fixed point on S2.
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Theorem 4.8 is proved by successively employing Propositions 4.6 and 4.7 together
with arguments using Theorem 2.5 (E+), (E_) and Theorem 4.5 (Ez) and (Er) to insure
regions bounded by the various curves are fixed point free. For example, the region
lying above Cl(y2) in Q_(y2) must be shown to be fixed point free as well as the region
lying above Cr(y2) in Q4(Y2). Theorem 4.5 (Ez) and (Er) respectively can be used to

show that these regions are fixed point free. Now only Q1 (y2) needs to be considered
and Propositions 4.6 and 4.7 can be applied.

We end this section with the proofs of Proposition 4.6 and 4.7.
Proof of Proposition 4.6. Suppose B+(yl)4:Q(y). Let xS+(y) and =

limn_,o Tnx (the limit exists by C. and Corollary 4.4). Then S+(y), T=Y and ff
is a saddle point. Observe that ff Q(y) and C’()cQ.(yl) and cr(y)cQ(y) are
contained in S+(yl). If CZ(ff) has a limit point z in Qx(yl), then it is a repelling fixed
point which lies in S+(y) and C(ff) is tangent at z to the eigenvector for DT(z)
corresponding to (z). A similar statement holds for cr(y,). The first assertion of
Proposition 4.6 is established by piecing together the curves C() and cr() keeping
in mind Proposition 2.3 (note that every ray y + th, h > 0, intersects S+(y) in one
point). S+(y) is C because where a Cr(:) meets a CZ(ff2) at a repelling fixed point,
the two curves are tangent to the same eigendirection by Theorem 4.5.

Now, either S+(yx) intersects both boundary lines of QI(y), in which case
S+(yx) contains a finite number of fixed points by B. none of which can lie on the
boundary lines, or S+(yl) is unbounded. In either case the set of fixed points on
S+(y) must lie discretely on S+(yl), they cannot accumulate, and they must alternate
between saddle and repeller. Now each such fixed point has O > 1 and so by Theorem
2.5 and C. each fixed point on S+(y) has a monotone invariant curve C+ emanating
from it and connecting the fixed point to a stable fixed point. In Proposition 4.7, we
will show that all of the curves C+ tend to the same fixed point. Since each of these
curves C+ is monotone, it would be impossible for the set of fixed points of T on
S + (yl) to be unbounded.

Proof of Proposition 4.7. In view of Theorem 2.5 and C., only the assertion that all
the curves C+(xi) are asymptotic to the same fixed point and the final assertion
concerning CZ(y2) and Cr(y) require proof. Consider a particular xi S+(yl) and the
limit point zg of C+(x) which exists by C. The fixed point z; is stable and the curve

Cr(Zi) must, by Theorem 4.5, lie in On(zi) and either (a) tends to infinity monotonely
in Ol(yl), (b) leaves Q(y) be crossing the horizontal boundary or (c) has a limit point
which is a fixed point and lies in Qx(y). We rule out the possibility (c) as follows. If
Cr(Zi) limits on a fixed point ug Ql(y)(qQn(zi) then u; is a repeller (Theorem 4.5) so
consider C-(ui). C-(ui)c Q3(ui) cannot intersect S+(yl) nor can it leave Q(yx).
Moreover C-(ui) can not have its limit fixed point on S+(y) because this limit point
must be stable. It follows that the limit point of C-(u) lies outside B/(y)S+(yl)
but in Qx(yl)- Let this point be v, a stable fixed point, and consider Ct(vi). In Fig. 4.9
below we sketch the curves and fixed points discussed above. The curve CZ(v) cannot
cross any of the previously mentioned curves so it must have a limit point w Q(v)
below C/(xi). Since w; is a repeller and C/(w) cannot cross any of the curves
previously mentioned, it must limit on a stable fixed point. We may clearly continue
this reasoning producing an inward spiral C /, C r, C-, C, C/, C r, C-, C. (see Fig.
4.9). The limit fixed points on these successive curves must accumulate. This violates B.
Hence we see that possibility (c) cannot occur. Similar reasoning applies to CZ(zg):
either it tends to infinity in Qi(yl) or leaves Q(yx). See Fig. 4.10 below. But now, in
view of Fig. 4.9, consider z;_ and zi+ the limit points of C+(xi_) and C+(Xi+l)



PERIODIC SOLUTIONS OF PERIODIC SYSTEMS 1317

respectively. These curves cannot cross C’(zi) or C"(zi). If z_ 14: z then z_l must lie
in the region bounded by S+(yx), C+(xi) and Ct(zi). Since C"(zi_) cannot cross any
of these curves, we have a contradiction to the fact that Cr(z_) must be either
unbounded or leave Q(yl). Thus we must have zi_=zi=zi+ .

zi

FIG. 4.9. Inward spiral C+, Cr, C-, Cl, C+,

C

x

\
S+ (yl)

FIG. 4.10. The sets Cl(zi) and Cr(zi). Where can Cl(zi+t) and Cr(zi_t) go?

Acknowledgment. The author is grateful to the referee for pointing out a paper of
Hirsch [16] in which Propositions K and L appear as well as other results pertinent to
this study.
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PERIODIC SOLUTIONS OF FORCED NONLINEAR SECOND ORDER
EQUATIONS: SYMMETRY AND BIFURCATIONS*

M. F1DRKOTTERf AND H. M. RODRIGUES:

Abstract. The authors are concemed with the equation +u=g(u,p)+lzf(t), where p, / are small
parameters, f is an even, continuous r-periodic function, g is an odd smooth function of u, such that
g(u,p)=O(Ipul+lu3[), as p and u go to zero. The main results are that, under certain conditions, the small
2r-periodic solutions maintain some symmetry properties of the forcing function f(t), when /4:0. Some
other interesting results describe the changes in the number of such solutions as p and /z vary in a small
neighborhood of the origin. The authors use the approach of altemative problems.

Key words, periodic solutions, symmetry, bifurcation, nonlinear equations, small solutions

AMS(MOS) subject classifications. Primary 34A34, 34C15, 34C25

1. Introduction. We are concerned with the equation

ii+ u=g(u,p)+lf(t)

where p, / are small parameters, f is an even continuous periodic function and g is
sufficiently smooth.

Our main results are that if g is odd in u and small near (u,p)= (0, 0), f is
r-periodic and some conditions are satisfied, then the small 2r-periodic solutions of
(1.1) maintain some symmetry properties of the forcing function f(t), when 4:0. We
also find the bifurcation curves and describe the changes of the number of such
solutions as (p,) varies in a small neighborhood of the origin.

Hale-Rodrigues [3], [1] studying Duffing’s equation, +u=pu-u3+lcost,
showed that the only small 2r-periodic solutions are even functions of t, if/ 4: 0. They
also stated the same result for a general even forcing function with minimal periodic 2r
under the condition fof(s)cossds4:0.

Rodrigues-Vanderbauwhede [4] generalized this result for equations like (1.1),
where f satisfies the former hypothesis and g(u,p)=O(Ipu[+u 2) as (u,p) goes to
(0,0). They also presented an abstract version for equations in Banach spaces.
Vanderbauwhede [5], [6] also considers problems related to the above ones in an
abstract form.

Many authors look for solutions of nonlinear equations in classes of functions
defined by symmetry conditions. For instance, some of them consider equations similar
to (1.1) with f 2r-periodic, and just prove that there are 2r-periodic solutions u(t),
which are even functions of t, or equivalently,/t(0)= 0. But Hale, Vanderbauwhede and
Rodrigues in the cited papers went further and proved that, under certain conditions,
these are the only small 2r-periodic solutions.

Taking the same attitude of the last three authors, we study the small 2r-periodic
solutions of (1.1), but assume that f has minimal period r. In this case the condition of
Hale-Rodrigues, ff(s) cossds4:0, no longer holds and in addition to the even
solutions, solutions with other symmetries may arise. The main features of this paper
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are to find a set of small 2r-periodic solutions of (1.1) and to prove that these are the
only feasible solutions.

In 2, using the Lyapunov-Schmidt method, we show that symmetries in (1.1)
imply symmetries in the solution of the auxiliary equation.

In 3, under the conditions

g(u,p)=pu+au + ( .;Uf )( t)] 2cos 2t dt 4: O,
"0

we prove that the only small 2r-periodic solutions of (1.1) are such that either u(t) or
u(t-r/2) is even in t, if tt4:0, where )fff indicates the r-periodic solutions of
+ u=f(t). As an example we analyse the equation/+ u=pu+u +t(1 + cos2t).

However, our main results and the harder part of this work are in 4. If f(t + r/2)
-f(t) the condition, of 3 on g’f is not satisfied. In this case f(t-r/2) is even and

f(t +_+_ rr/4) is odd in t. We show that, if a certain coefficient is not zero, the only small
2r-periodic solutions u(t) of (1.1) are such that u(t) or u(t-r/2) is even or u(t + r/4)
is odd in t, if/z 4: 0. This is stated in Theorem 4.2 We call special attention to Theorem
4.1, which was not easy to state and plays an important role in the proof of Theorems
4.2 and 4.3. The calculations indicate that the bifurcation equations are more degener-
ate when more symmetries are presented in (1.1). As an example we analyse the
equation/ + u=pu + u +/cos 2t.

In 3 and 4 we give, in Theorems 3.2 and 4.3 respectively, a complete description
of the bifurcation curves and of the number of small 2r-periodic solutions, as (p,)
varies in a small neighborhood of the origin.

It is not our aim to discuss all the possible cases, but at the end of [}4 and below we
give some indications of what can be expected when some of our assumptions are not
satisfied, for example, when g is not odd and when f has other periods.

An application which can be reduced to (1.1) is the equation of a forced pendulum
) + (g/L)sin o of(wt) where o is small, w is close to w0 g-, f is r-periodic and

def def
we look for 2r/w-periodic solutions. If we let u(t)= o(t/w) and Wo/W2= 1-p we

get an equation like (1.1).
It is convenient to point out that the conditions to be verified in our main

theorems usually do not involve hard calculations, because they can be computed as
long as one knows the forcing function and a few terms of Taylor expansion of the
nonlinearity.

Equation (2.5b) is important for the determination of the admissible phases. After
this is done the problem is reduced to the analysis of the equation (2.5a) which will
provide the "amplitude" r and the bifurcation diagram.

If g(u,p) is odd in u and f is 2r/n-periodic, even, and not odd harmonic, our
conjecture is that, in general, there exists an integer m= m(n), with m(1)=0, re(n)> 0
if n > 1, such that (2.5b) is given by

r’/xsinnq,(t,+ )
G ( r ’l’ P t ) m2r sinnO(0n "q- )

if n is odd,

if n is even,

where 0n t%(f,g), tn does not depend on q and depends only on finitely many
coefficients of the Taylor expansion of g(u, 0) around 0.

If g(u,p) is odd in u, f is even and f(t+r/n)=-f(t), our conjecture is that
generically, there exists an integer m=m(n), with re(l)- 0, re(n)>0 if n> 1, such that
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equation (2.5b) is given by

r m/. sin nq (/, + ) if n is odd,
G ( r’ ck’P’ lX ) m2r sin2nq(/n + ) if n is even,

where n=n(f,g), /n does not depend on q and depends only on finitely many
coefficients of the Taylor expansion of g(u, 0) around 0.

The analysis of some examples indicates evidences that if g is odd in u and factor
term is sin nq the the factor term in r is r 1, that is m n- 1.

If we do not assume that g is odd in u, a broader conjecture is that, generically, if

f is even and 2 r/n-periodic then there exist integers m, p, q, which depend on n such
that

G ( r dp p lx ) r mlx P sin qdp (n + )

where n depends only on finitely many coefficients of the Taylor expansion of g(u, 0)
around 0 and m > 1 if n > 1.

When 0n (n or n) does not vanish, we can discuss the existence of some special
solutions.

In any of the above cases, for n > 1, r=0 would give rise to the 2r/n-periodic
solution.

2. The auxiliary and the bifurcation equations. Consider the equation

(1.1) + u=g(u,p)+lf(t)

where (p,/) varies in a small neighborhood of the origin, and the following hypothe-
ses"

(A1) f is a real r-periodic, even function, continuous on R.
(B1) g is a C real function defined in a neighborhood of (u,p)= (0, 0), odd in u,

and g(u,p)=pu+au3+O(Ipu31+luSI) as (p,/z) goes to (0,0). In fact it would be
enough to assume that g is sufficiently smooth.

If u(t) is a 2 r-periodic solution of (1.1), then there are r R and ( r/2, r/2],
such that u( ) r cos( )+ x( ), where

2X(t) costdt= f2x(t)sintdt=O.
"o

def
If we let u(t + q,) r cos + o(t), then o(t) is a solution of

i)+o=g(rcost+o, p)+txf(t+q),
(2.1) fo2O(t) costdt= fo2o(t)sintdt=O.

Let be the space of all 2rr-periodic real functions, continuous on R, with the
norm Ilwll=supot<_2lw(t)l, and let (2) be the space of all 2r-periodic real func-
tions, with the second derivative continuous on R, with the norm Ilwll-sup(Iw)(t)l,
0 =< t=< 2r, j=0,1,2}.

On these spaces we consider the projection

(2.2) (Pw)(t) def_ cOSter of=w(s) coss ds + sin___tr fo=w(s sins ds.
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The Fredholm alternative implies that the equation/ + u h(t), with h in , has
a solution in (2) if and only if Ph =0. Moreover, if Ph =0 then there exists a unique
solution u(t) in (2), of this equation, such that Pu=O. We indicate this solution by
h. From the variation of constants formula, we obtain

(2.3) h=(I-P) cos(" ) fo(’)h (s) sins ds + sin(-) fo()h (s) cos s ds

Following the usual procedure of the Lyapunov-Schmidt method (see [2]), the
problem is reduced to that of finding v in (2) for the following system of equations,

(a) v=,Y’(I-P)[g(rcos(.)+v, p)+lf(" +0)],

(b) P[g(rcos(.)+v, p)+lf(" +)] =0.

The equations (a) and (b) are called the auxiliary and bifurcation equation, respec-
tively. It follows from the implicit function theorem that (2.4a) has a unique small
solution for (p,/) in a small neighborhood of the origin. We denote this solution by
v*(t) v*(r, ,p,l)(t). If we substitute in (2.4b), we obtain the following equations:

(a) F(r,q,,p,t)
def 1 fo2,g(rcoss+v.(r ,p,t)(S) p)cossds=O

(b) G(r’q’P’) def= --rl fo2rg(rcoss+v.(r, ,p,l)(s), p)sinsds=O

The following lemma gives information about some symmetries and estimates
of v*.

LEMMA 2.1. If hypotheses (A1) and (B1) are satisfied, then the solution v* of (2.4a)
has the followingproperties:

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

v*(r, 0,p,/)(t) v*(- r, O,p, )(t- r),

v*(r, q,p,/)(t) v*(r, q,,p, -/)(t- r),

v*(O, q,p,t)(t) is r-periodic in t,

v*(O,O,p,l)(t-q) is even in and independent of
v*(r,O,p,l.t)(t), v*(r,r/2,p,)(t) and v*(r,q,p,O)(t) are even functions oft,

v*(O,q,p,l)=lf( +)+O([p/l+[tl 3) as (P,t) goes to (0,0),

v*(r,q,p,)=v*(O,4,p,)+rS(r,q,p,) where S(r,O,p,l)=O([r]2+]l[) as
r,p, #) goes to (0, 0, 0).

Proof. Properties (2.6) to (2.10) follow essentially from the fact that the auxiliary
equation is invariant under certain transformations.

To prove (2.11) it suffices to observe that

=0,
0v* (0 0 0)=Uf(. +)

(0, 0 o) 0
2

(o ,/, o o)=o
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To get (2.12) we define

S(r q,p t*)def r- [v*(r,+,p,l)-v*(O,q,p,l)] if r4:0,

S(0 qb p )def 0U*
(0, qb,p )

and observe that S(r,q,p,O)=O(r2). []

The next lemma is related to the bifurcation equation (2.5).
LFMM, 2.2. Suppose hypotheses (A1), (B1) are satisfied. Then F and G given in (2.5)

are odd in r, even in t* and G(r, q,p, O)=-O, for (r,p, ) in a small neighborhood of the
origin.

Proof. The first part follows from (2.6) and the second part is a consequence of
(2.7) and (2.10). rq

LEMM, 2.3. Suppose hypotheses (A1), (B1) are satisfied. Then, for (r,p, !*) in a
small neighborhood of the origin, G(r, q,p,/,) r/x2sin 2q(p + ), where

3a(2 rr ) lf02r(Off( r )) 2COS 2 r drP

and indicates terms of order O([pl+ltzl+lrD, uniformly with respect to q, as (r,p,t,)
goes to (0, O, 0).

Proof. From (2.10) it follows that

(.3) G(r,O,e,)--O and G r, -,, --0.

Applying (2.13) and Lemma 2.2 we obtain G(r,,p,l)=rlesin2q,H(r,q,p,t), where
H is a smooth function.

From (2.12) and (B1) it follows that

-[ fo qrCOS2SU*(S)sinsds+3arfo (v*(s))sin dsG(r,q,p /)=r 3ar
2 2rCOSS S

+a v*(s))3sinsds+o(r+lz)

By (2.11) and (2.12),

33G 3a
sin 2q ( OFf( r ))2cos 2 r dr.

From this expression we obtain the value of p and this completes the proof of our
lemma. []

3. The non odd-harmonic case. In this section we give conditions on the nonlinear
term and on the forcing function in such a way that the only small 2r-periodic
solutions u(t) of (1.1) are such that, either u(t) or u(t--r/2) is an even function of t.
We also descibe the bifurcation diagram. As an example we consider the equation
i + u=pu + u +/z(1 + cos 2t).

THEOREM 3.1. Suppose hypotheses (A1) (B1) are satisfied and that
afo (sgf(r))2cos2rdr 4: 0, where oUf is the r-periodic solution of i + u f( ). Then the
only small 2r-periodic solutions u(t) of (1.1) are such that either u(t) or u(t-r/2) is an
even function of t, for ( p, t in a small neighborhood of the origin and I 4: O.
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Proof. By Lemma 2.3, G(r, ck,p,)=rt2sin2ck(p+ ). We see that r=0 solves
G(r, ck,p, bt)=O. Since in this case, u(t)=v*(O,q,,p,t)(t-q,), it follows from (2.9) that
u(t) is even in t. For/ 4:0, since p4: 0, the only left possibility is that sin2=0. This
implies = 0, r/2, because we have assumed that q, is in (-r/2, r/2]. Recalling that
u(t)=rcos(t-)+v*(r,,p,#)(t-), it follows from (2.10) that for q,=0, u(t) is even
in t. For q,= r/2, we have, from (2.7) that v*(r,r/2,p,l)(t-r)=v*(-r,r/2,p,)(t).
Then u(t r/2) r cos(t r) + v*( r, r/2,p, I)(t) is an even function of t, as a conse-
quence of (2.10). []

We should point out that the above theorem still does not prove the existence of
2or-periodic solutions, because the first bifurcation equation was not solved yet. It only
states that if some solution exists it must have the mentioned properties,

def
Now we turn to (2.5a). By using hypothesis (B1) we let g(u,p)=pu+au3+

pU3hl(U,p)+ uShz(u), where h 1, h 2 are smooth functions. If we write

hl(rcost+v*(r,,p,t.t)(t ), p)=hl(v*(O,,p,l.t)(t ), p)+O(r),

h2( rcost + v*(r,q,p,# )(t)) h2( v*(O, q,p,l)( t)) + O(r )

and use (2.12), (2.8), (2.11), we can show that, F(r, rk,p,l)=r[p+ -]otr2nt- 3aXl2+o(lPl
+ r 2 + 2)], where

1 [ + cos =0 = ](3.a)

It is clear that r= 0 solves F(r, ,p,/)= 0 and we already know that this will give rise
to a v-periodic solution of (1.1).

def def
Let J(r,,p,t)= r-lF(r, ck,p,t) if r4:0 and J(O, ck,p,l)= Fr(O, ck,P,t). In order

to find the multiple roots of J 0, we must solve the system

3 2J(r, ok,P, ) =P + -ar + 3aXl.t + O,

3
Jr ( r rk,p - ar + O,

where indicates higher order terms.
Since det(3J, Jr)/3(p,r))= -a for r=p=/=0 from the implicit function theorem,

it follows from (3.2) that for a 4: 0, p and r can be solved for as functions of/ in a
neighborhood of the origin, for =0 and O=r/2. But Lemma 2.2 implies that
F(r,O,p,#) is an odd function of r. This shows that Jr(O,O,p,bt)O. Thus r--0 is the
function of/ given above. The functions p =p(/)can be found by solving J(O,O,p,l)
=p + 3a)k/x2 + o(Ip[ + I/l)-)= 0, and we obtain p= 3a)t/ + O(4).

If we assume that afo2COS2[(f)()]2d4=O, an analysis of (3.1) shows that
def def

X X(0) and )t
2 X(r/2) are nonzero and distinct. Then we have two bifurcation

curves, F and F2, for q, 0 and r/2, respectively, given by

11 p= 3a)ka/2+

F2: p 3a)k2/:z+ O(/x4).
Using the fact that J is quadratic in r, we can prove that when we cross each

bifurcation curve we gain or lose two solutions. In Fig. 3.1 we show the bifurcation
diagram with the number of 2r-periodic solutions of (1.1), in a neighborhood of the
origin, when kl, 2 and a are positive. Thus, we have proved the following.
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THEOREM 3.2. Suppose (A), (B1) are satisfied and that afo2’ cos2’[(cUf)(’)]2d
4= O, where o*g’f is the r-periodic solution of + u=f( t). Then there exist two bifurcation
curves F and F2, in the plane (p,l), given by p= 3a)t1/2+ O(4) andp= 3a)t2/z2
+ O(4), respectively, where and )t 2 are obtainedfrom (3.1), for if=0, and ff=rr/2,
respectively. These curves dioide a neighborhood of the origin into three regions, as shown
in Fig. 3.1. In S there is only one 2or-periodic solution which is in fact or-periodic. In S2

there are two solutions with minimum period 2r and one with period rr. In S there are

four solutions with minimum period 2rr and one with period rr. In F we have only one
2rr-periodic solution, which is in fact rr-periodic; and in F2 we have three 2rr-periodic
solutions, but one of them is rr-periodic. All of the above information is concerned with
small solutions, for ix 4: O.

Example 3.1. Let us consider (1.1) with f(t)=l +cos2t and g(u,p)=pu+u 3. In
this case we have Duffing’s equation. The calculation shows that 1 ) ;k(0)- 3

t 2 (r/2) 25 2 ]4and the bifurcation curves are given by F p +O( ),
F2.p= 2+ O(/4) and the picture is shown in Fig. 3.1.

3
S1

5 3 NNF1
S3

FIG. 3.1

4. The odd-harmonic case. This section contains our main results and is the most
difficult part of this paper. The reason for the difficulty is that more symmetries are
present in (1.1) and as a consequence, the bifurcation equation is more degenerate.

In this part we will assume more restrictive conditions on the forcing function and
on the nonlinearity.

(A2) f:RR is an even continuous function and f(t+r/2)= -f(t), for all in
R.

(B2) g is a real C function, defined in a neighborhood of the origin, g(u,p)=pu
+ au / ,u + O(Ipu3l/luVl) and g is odd in u.

Besides the information given by Lemma 2.1, we have in this case the following
properties of the solution of the auxiliary equation (2.4a).

LEMMA 4.1. Suppose (A 2), (B) are satisfied. Then, for all in R,

v*(0, q,,p,/)(t + rr/2) o*(0, q,p, )(t).

Furthermore, v*(r, r/4,p,lx)(t-cr/2) is odd in t.
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The proof follows the same ideas as for Lemma 2.1.
Remark. Besides the above information, we need in this section the following

properties which follow easily from Lemma 2.1 under the assumptions (A1), (B1).

(4.2)
)v* )v*
Or (O,O,p,/)(t+r)- )r (O’O’P’t)(t)’

(4.3)
12v*
)r2

(O, eo,p,l)(t is r-periodic in t.

It was not easy to discover the representation stated in the next theorem. It plays
an important role in the proof of our main results.

THEOREM 4.1. Suppose (B1) and (B2) are satisfied. Then (Ov*/Or)(O,q,p,lz)(t-q)
=a(t)cos(t-q)+b(t)sin(t-q), where a=a(p,), b=b(p,) are r/2-periodic func-
tions, independent of q and with mean oalue zero. Furthermore a a ( and b b ( ) are,
respectively, even and odd in t.

clef
Proof. Let M,= y(.,q)(2)’y(t,)=a(t)cos(t-q)+b(t)sin(t-q), where a

and b are C(2), r/2-periodic functions, with mean value zero, a is even and b is odd).
Next, we prove that M, is a closed subspace of (2). Let yn(t,q)=an(t)cos(t-q)

+ b ( )sin( q) be such that Yn ", q) Y(’, b) in (2). An easy calculation shows that

(4.4)
a (t) =Yn (t, q)cos(t- q) -Yn (t + r/2, q)sin(t- q),
b (t) =y,( t, 4)sin(t-q) +yn(t + r/2, ,)cos( t- q).

Then (an) and (bn) are convergent in (2). Let a and b be their limits.
Relations (4.4) imply that y(t,)=a(t)cos(t-)+b(t)sin(t-q). The other prop-

erties which define M, are easily verified.
Now we observe that (3v*/3r)(O, ck,p,l)(t-q,) is a solution of the equation

2+x=(I-P) u(V*(0,q,p,/)(.-q), p)(cos(--q)+x)

We define H" (2) by

Hy=(I-P) --u (v*(0,q,p,/.t)(.-q), p)(cos(.-q)+y)

Our next purpose is to prove that H leaves Mo invariant. As a first step we claim
that if a(t), fl(t) are C (2), r/2-periodic functions, a(t) is even, fl(t) is odd and if we
assume that/3 has mean value zero, then

def
z(-, q,) I- P)( a(. )cos(- q ) +/3(. )sin(. 4 ))

is an element of M. This follows from

z(t,,)= a(t)-(2r)-lfo2a(s)ds cos(t-)+(t)sin(t-4,).

Using the above claim, (B1), Lemma 2.1 and Lemma 4.1, we can prove that

(I-P) -u (v*(O,q,p,/)(.-,), p)(cos(.-qS)+y(.-4’))

belongs to M if y(.-q,) is in M.
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Now, we prove that if y(.,q) is in M, the Jd’y(-,q) is in Mo. Since J{ is linear
we will prove it for y(t, q)= a(t)cos(t q) and the other part follows in a similar way.

By computing Jg’y(.,), we obtain y(.,)(t)=A(t)cos(t-)+B(t)sin(t-),
where

1{[ ’a cos2sdsa(u)sin2uduA(/)= -cos2t (s)sin2sds-(2) -1

l 2dsa( u )sin 2 u du]cos2t

+ sin2t a(s)cos2sds- sin2sds a(u)cos2udu

B(t)= a(s)ds- sin2t a(s)sin2sds- sin2t (u)sin2udu

-cost a(s)coss&.
With the identity

1
ds a(u)sin2udu= /a(s)sin2sds2

we prove that A (t) and B(t) are /2-periodic. The remaining properties, which define
M,, follow in a natural way. This concludes the proof that y(.,) belongs to M, and
so H leaves M, invariant.

Moreover, H is a uniform contraction with respect to (p,) in a neighborhood of
the origin and in (-/2/2].

From the contraction fixed point principle it follows that H has a unique fixed
point in a small neighborhood of the origin in (. Since M, is itself a Banach space
and it is invariant under H, it follows that the fixed point must be in M, and this
completes the proof that (Ov*/Or)(O,,p,)(t-) has the desired form.

LNNa 4.2. Suppose hypotheses (A ), (B) are satisfied. Then for (r,p,) in a small
neighborhood of the origin

a(r,,,p,)=rsin4(n+ ),
where

1{ .o
--" --27"20 [,(I--P)((,f(’))2COS(’))I(s)cos3sds

2742fo2r( oUf )(r) oU [( a’Uf )(. )COS 2(. )1 (S)COS 2S ds

+ 27c2fo2 ( OUf)(r) )U (5Uf) (.)sin 2(. )] (s)sin2sds

q- O2- 15v Jg"f(r)]2cos4rdr

aU is given by (2.3) and indicates terms of order O(IPl+ltxl+lrl), uniformly on q, as
( r,p, t* ) goes to (0, O, 0).

Proof. From the last statement of Lemma 4.1, and (2.10), it follows that

(4.7) G(r,q,,p,t,)=O for q=0, rr/2, rr/4.
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Now we claim that

(4.8)

In fact, from Theorem 4.1,

a6 (0,+,p ,)=0.

Since gu(u,p) is even in u, from (4.1) it follows that gu(v*(O,,p, lx)(s-q,), p) is
rr/2-periodic in s. If we add to this the fact that a and b are rr/2-periodic and that
sin2(s-q) and cos2(s-q)change sign, when we change s by s + rr/2, we conclude
that the last but one integral vanishes. To prove that the last integral vanishes we use
(2.9) and the fact that b is odd. This completes the proof of (4.8).

From Lemma 2.2, G( r, q,p,l, ) is odd in r, even in and G(r,,p,O)--O. If we use
this information with (4.7) and (4.8), we can prove that there is a smooth function
S( r, ,p, l ) such that G( r, q,p, l)= r312 sin 4qS( r, ,p, l ).

Since g(u, 0)= au + vu + O( uV), we obtain

(4.9)

5 fo2 O3v*G(0 ,0,0)=-x 18a (0, +, 0,0)(s)cos2 s sins ds

But

(4.10)

(4.11)

(4.12)

(4.13)

(O,+,O,O)=6a,U(I-P)[(,Uf(. + +))2cos(.)],

30*
i;-2 (O,,O,O)=6aoU(l-P)[Jf(. nt- )COS2(’)],

(o, +, o, o) 3
)r -i a cos 3(-).
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If we substitute (4.10)-(4.13) in (4.9), use the change s r-q in the integrals and
take into account that ((I-P)f)(t-)=((I-P)f(.- q))(t) and (f)(t- if)=
f(. q))( ), we obtain

{,rG(0,,0,0) sin4 -27’ -P

27a22(f)( z ) [(f)(. )cos 2(-)]

+ 27af2(f)()[(f)(-)sin 2(. )]( )sin 2 z dz
0

This completes the proof of the lemma and gives the expression for
Remark 4.1. It should be pointed out that the expression (4.6), which defines

can be computed as long as we know the forcing function and the coefficients
respectively of third and fifth order, of the Taylor expansion of g(u, 0) in u, around 0.

The next theorem is our main result. It claims that, under certain conditions, the
small 2-periodic solutions of (I.I) maintain some symmetry properties of the forcing
function.

THEOREM 4.2. Suppose hypotheses (A), (B) are satisfied and 0, where is

given by (4.6). Then the only small 2Teriodic solutions of (I.I) are such that u(t) or
u(t-/2) is een or u(t/4) is odd in for (,) small and 0.

Proof. From Lemma 4.2, G(r,@,p,)=rasin4@(+ ...). We see that r=0
solves G(r, @,p, )= 0 and we already know that it will give rise to a -periodic solution
u(t) of (I.I). Since 0, for 0 the only possibility left is that sin4@=0. Ts
implies @= 0, /2, /4, because we have assumed that @ is in (-/2, /2].

As in 3, Theorem 3.1, we can show that for @=0, the solution u(t) is even in
and for @ /2, u(t- /2) is even in t.

For @=/4 since u(t)=rcos(t-/4)+v*(r,/4,p,)(t-/4), from the last
statement of Lemma 4.1 it follows that u(t-/4) is odd in t. The case @= -/4 is
similar. This completes the proof of our theorem.

Now we turn to the analysis of the first bifurcation equation.
If we proceed as in the proof of Theorem 3.2, we see that bifurcation curves will be

obtained by solving J(0,f,p,)=0. The next lemma helps us to understand that
equation.

LEMMA 4.3. Suppose (A), (B)are satisfied. Then J(O,@,p,) is independent of
Proof. Using the definition of J,

p)

If we let s r- and proceed as in the proof of (4.8), by using (4.1) and Theorem
4.1 .e obtain

J(o...e.,) g(v*(o...p.,)(, -.).

f2rg+ Jo u( v*(0 ,,p,/.t 1(r-,la(r) dr),
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where a(-) is given as in Theorem 4.1. Using (2.9) and Theorem 4.1, we see that
J(0, ,p, ) is independent of . []

The next theorem is very interesting and it describes the changes of the number of
the small 2 r-periodic solutions of (1.1) as (p,) crosses the bifurcation curve.

THEORF=M 4.3. Suppose (A2), (B2) are satisfied and 7, given by (4.6), is nonzero.
Then there exists a unique bifurcation curve F, given by p--3a;k2+O(bt4), where

(2r)-lf02 (Y"f(s)))ds and oUf is the r-periodic solution of ft+ u=f(t). The curve F
divides a neighborhood of the origin, in the plane (p,) into two regions $1, S)., as shown
in Fig. 4.1 for a,X>0. For (p, lx) in SI there is a unique 2r-periodic solution of (1.1),
which is in fact r-periodic. In S2 there are nine 2 r-periodic solutions; only one of them is
r-periodic. In F there is a unique 2 r-periodic solution of (1.1), which is in fact r-periodic.

9

FIG. 4.1

All of the above information is concerned with small solutions of (1.1), for 4: O.
Proof. We proceed as in the proof of Theorem 3.2, by solving the equation

J(O, + ,p l =P + 3aX + 0

where X is given as in (3.1).
From (Aa) it follows that 9Uf($+r/2)= -9Uf(), and then

x=x(+)=

which shows that ;k is independent of q. Since, from Lemma 4.3, J(0,q,,p,/) is
independent of q,, we conclude by implicit function theorem, that the bifurcation curve
is the same for +=0, r/2, +r/4 and it is given by p= 3<;kg2 + O(g4).

Since J(r,+,p,l) is quadratic in r we see that for each phase, g,=0, r/2, +r/4,
when we cross F, we gain or lose two solutions, u(t)=rcos(t-q,)+v*(r,q,,p,l)(t-q,),
of (1.1) of minimum period 2r, besides the r-periodic one. This completes the proof of
our theorem, rq

The bifurcation is not so degenerate as it appears. In fact the above proof shows
that, besides the r-periodic solution, for each fixed phase q, 0, r/2, + r/4, we have a
quadratic bifurcation in r.

Example 4.1 Consider the equation +u pu+u3+lcos2t. In this case 7
1, , all the assumptions of Theorem 4.2 and Theorem 4.3 are satisfied and F is given

by p -t2 -}- O(4).
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Example 4.2. Consider the equation of a forced pendulum +(g/L)sinv=
o cos2wr, where w varies near Wo=/g/L and o is small. With the changes

def def def
u(t) v(t/w), w/w2 1-p and/ o/w the above equation is reduced to/ + u=
g(u,p)+tcos2t, where, g(u,p)=pu+(u3/3!)-(uS/5!)+O(lpu3l+[uVl). In this case
/= , -, all the assumptions of Theorem 4.2 and Theorem 4.3 are satisfied and
F is given by p= -/:+ O(/4).

5. Final remarks. As we said in the Introduction, we do not intend to exhaust all
the possible cases, but we give below some indications about what can be expected
when some of our assumptions are not satisfied. Some preliminary calculations show
that the ideas of our work can be used to solve other cases not included here.

1. Suppose that g is not odd in u, but g(u,p)=pu+auZ+O(lpuZl+lu3[). Some
calculations indicate that the bifurcation equations are given by

F(r,q,p,lx)=r[p+ arZ+akl+ ]=0,
G ( r e,p l ) rt sin 2e ( + )=0,

where

Thus, if 4:0 the only small 2r-periodic solutions u(t) of (1.1) must satisfy either
u(t) is even in or u(t r/2) is even in t, for 4: 0.

The analysis of the first bifurcation equation furnishes the bifurcation curves.
2. Our approach should help to explain the case when the forcing function is even

and (2r/n )-periodic, where n is a positive integer. For instance, some calculations for
the example t + u =pu + u + cos 3t, show that the bifurcation equations are given by

F(r,q,p,lx)=r[p+ -]re+ 1-2+ ]--0,
G(r,q,p,l)=r21sin3( +... )=0

and the only small 2r-periodic solutions u(t) must satisfy either u(t) is even or
u(t + r/3) is even in t.

Acknowledgment. We are grateful to a referee for valuable comments, in particular
for a remark about the conjecture presented in the Introduction.
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Abstract. Sharp results for the number of solutions of a one-dimensional nonlinear Neumann boundary
value problem are given, in terms of the range of its linearization, and the projection of the source term onto
the principle eigenfunction.

Key words, nonlinear Neumann problems, jumping nonlinearities, multiple solutions, bifurcations, scal-
ing, perturbation, phase plane
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1. There have been many investigations in recent years of nonlinear boundary
value problems for equations of the form

() Au+g(u)=h()

under assumptions on the behavior of g at infinity:

(2) lim g(X)=a and lim g(x)-b,
x- o X x+oe X

called asymptotically sublinear, linear, or superlinear if a and b are zero, finite, or
infinite. Let Xa < X 2 -< X denote the eigenvalues of the linear problem

(3) Av+)v=0

with, for example, Dirichlet boundary conditions. One may then investigate the effect
of relationships between a, b and the (X }. We suppose a < b (so that g is what Fuik
[8] terms a "jumping nonlinearity"); the cases a <b and b<a are equivalent under
change of variables. If h < a __<g’ <_ b < Xn+ for some n, then there is a unique solution
of the Dirichlet problem (or the Neumann problem) for (1), for any smooth g and h;
see, for example [5, Chap. 3].

Amann and Hess [1] and Dancer [6] have shown that if we decompose h as

sa + hi, where b is the positive normalized eigenfunction for Xa and ha is orthogonal
to q’a (in L2), then there exists So--So(hi) such that no solution exists for s<So, but
(at least) two solutions exist for any s > S0, if a < hi < b. If also b < X 2 and g C 2, with
g"> 0, then Berger and Podolak [4] have shown that there are exactly two solutions for
s > SO (and exactly one at s= So); this extends to an earlier result of Ambrosetti and
Prodi [2].
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In [12], Lazer and McKenna conjecture that whenever a <Xl, ,n<b<Xn+l and h
is as above, then for sufficiently large s there are at least 2n distinct solutions. Some
partial results are given in [7], [10], [14], [17]. They have proved this for the one-dimen-
sional case in [13]. The present authors have extended that result in [9], to show that if
a(X,X+) and b(X,X,+I), for some integers n>k>l (and a technical "non-
resonance" condition on a, b is satisfied), then the number of solutions of

(4a) u" + g(u)= ssint + hi(t),
(4b) u(0) u(rr) 0,

for large positive s, plus the number of solutions for large negative s, is at least
2(n-k+ 1).

In this note we discuss the corresponding one-dimensional Neumann problem,

(5a) u"+g(u)=s+h(t),
(5b) u’(0) 0 u’(r).

The eigenvalues of the corresponding linear problem (3) are then just the squares of
integers. We verify the conjecture, and show that the estimate for the number of
solutions is sharp in the asymptotically linear or sublinear cases, for any smooth h.

We assume without further mention a nondegeneracy condition, in the statement
of our theorems" that g’ does not vanish on an interval. If this condition were violated,
the theorems would remain true if the phrase "any s" were replaced throughout by
"any s such that g(u)-s does not vanish on an interval." Our main result is the
following.

THEOREM 1. Suppose gC(R), that limu_,_g’(u)=a, limu__,+g’(u)=b,
where b ((n 1) 2, n 2) for some integer n > 1. If a < O, then for any h C1([0, r ]), there
exists So>0 such that for any s> So, (5) has exactly 2n solutions. If a((k-1)2,k),
for some integer k, 0 < k < n, and a-1/:z + b -1/2 is not twice the reciprocal of an integer,
then for any hCl([0,r]), there exists S/>0 and S_<0 such that the number of
solutions of (5) for any s < S_ plus the number of solutions of (5) for any s > S+ is exactly
2(n-k+ 1).

Note that we include the equilibrium solutions in our count. Our method is to use
scaling arguments to reduce the asymptotically linear case to a perturbation of the
autonomous piecewise linear case, which we analyze by phase plane methods.

For the superlinear case, we have the following.
THEOREM 2. Suppose gCI(R), that limu_g’(u)=a, for some a[-ee, ),

and that lim,__, +g’(u)= + . Then for any positive integer n there exists S such that
for s > S,, there exists *l > 0 such that if h C([0, r]) and [Ihllc < /, then (5) has at
least 2n solutions. Further, there exist S_< 0 such that s < S_ implies, for small enough
h, at least 2k solutions when a ((k 1) 9-, k ).

If we do not assume that limu_ +g’(u) exists, but only retain the idea that g’(u)
increases from negative to positive as u increases, we still have the following.

THEOREM 3. Let g Ct(R ), and suppose there exist numbers R < Rb and a < 0 < b
such that u<R implies that g’(u)<a, and tl> R b implies that g’(u)> b. Assume that
b > (n 1) 2 for some integer n > 1. Then there exist S > 0 such that for any s > S, there
exists *l > 0 such that Ilhllc < *l implies that (5) has at least 2n solutions.

Finally, we note that these results would not be altered by the introduction of a
"sufficiently small" dissipative term, eu’, in (5). The plan of the papers is as follows: in
{}2, we establish the lower bounds on the number of solutions as given in Theorems 1, 2,
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and 3. In 3, we establish the upper bound on the number of solutions as given in
Theorem 1 for piecewise linear autonomous equations. In 4, we show that we can
reduce the general situations of Theorem 1 to perturbations of the problem treated in
3.

2. Solutions to the autonomous equation (h constant)

(6a) u"+g(u)=s,

(6b) u’(0) 0 u’(r),

lie in the level curves of the conserved "energy" E= 1/2(ut)2q V(u), where the "poten-
tial" V(u)=f"[g(t)-s]dt (see for example [3] or [11]). Solutions of the Neumann
problem (6) are simply segments of 2r-periodic trajectories. Any periodic solution lies
in a "well" of the potential, that is, a neighborhood of a local minimum of V. These
minima, in general, are just the solutions of g(u)=s such that g’(u)>0 (see Fig. lb).
At such an equilibrium point C (a "center"), the period tends to 2qr(g’(c)) -1/2, the
period of the linearization of the vector field

(7) u’=o,

(a) s< 0. (b) s>0.

FIG. 1
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at the constant solution u C. Note that if g’ is monotone there can be only one such
well, so just one center C. Further, by choice of s we may drive C toward positive or
negative infinity (for a,b not zero), and so control g’(C). Note also that the nondegen-
eracy hypothesis, that g’ does not vanish on an interval, implies that g(u)-s does not
vanish on an interval but at discrete points; this is the only use we make of this
hypothesis.

Suppose that the hypotheses of Theorem 3 are satisfied; for some numbers R < Rb,

g’(u)<a<O if u<Ra, and g’(u)>b>O if tl>Rb, where b>(n-1) 2 for some positive
integer n. Then there must be at exactly two equilibria for s large, since g(u) as
u---, +_ ; let C be the larger, and S the smaller. Then as the energy E increases from
V(C) to V(S), the periods go from 2r(g’(C)) -x/2 to infinity; hence if s is such that
g’(C)>(n-1) 2, there exists a (2r/k)-periodic trajectory (uk(t),vk(t)) of (7) for each
integer k between 1 and n-1. Hence the Neumann problem (6) has at least 2n
solutions (including the constant solutions u C and u S), obtained by requiring that
vk(0)=0. Let ch(t, Uo, Vo)=(u(t, Uo, Vo), v(t, Uo, Vo)) be the time-t map (the flow) for the
solution of (7) with initial conditions u(0)= u 0, v(0)= v0. Then for some neighborhood
of uk(0), where uk(t) is a solution of the Neumann problem (6), #,(r) carries the u-axis
across itself, with a zero at u(r). If h is C-small, then the time-r map for (5) must
also carry the u-axis across itself, and thus (5) also has a solution (near the solution
uk (t) of (6)). The persistence of the constant solutions follows from the inverse function
theorem, in the standard way [5]. This proves Theorem 3, and Theorem 2 for a < 0.

We now treat the case a>0 of Theorem 2. If limu__g’(u)=a((k-1)2,k 2)
for an integer k>=l, and limu+g’(u)= +, then g(u)=s has a unique solution
C-C(s) for large positive s, and also for large negative s; all solutions are then
periodic. Choose S such that g’(C)> n 2 for s> Sn; then the periods of (6) approach
some value less than 2r/n, as the solutions approach C. Since n may be arbitrary, we
need only show that the greatest period is bounded below. Let x= u-C and f(x)=
g(x + C)-s, so that (6a) becomes x" +f(x)= 0, where f(0)= 0. Introduce polar coordi-
nates by x= rcos0, y=x’/to= rsin0, where we treat as a free parameter. Then

(8)
2x F

Let the right side of (8) define -F(,r, 0). Take -, and consider a segment of
a trajectory with 0(0)=5r/4, O(T)=3r/4, so x/r is bounded below, and take R
so large that ]l-f(x)/ax[<l, for x<x(0)=-R/v/. Then ]0’1=<--(1+
II-f(x)/axlcos20)<=2v/- and the time T elapsed on this trajectory segment exceeds
r/4--. The range of periods for (6a) contains (2r/n, r/4-), so as n increases, the
number of solutions of (6) increases without bound.

We now take S _<0 so that for s < S_, I1-f(x)/ax <e, for all x =<0. We want to
show that k- 1 2r-periodic solutions exist when (k- 1) 2 <lim_g’(u)<k 2. The
periods of trajectories near C approach 2r(g’(C))- x/z, so exceed 2r/k for e suffi-
ciently small. On the other hand, we claim that as the energy goes to infinity, the
periods become less than r/(k-1) since (i) the time-elapsed for x <0 is less than
r/(k- 1), and (ii) the time elapsed for x > 0 is going to zero. The first assertion may be
seen from (8), with 0= f- again; we have ]0’]=Tr-(1-ecos20), and if e is so small
that k-1 < v/(1- e), then T<r/(k-1).

We now show (ii), that the time T+ for x > 0 may be made arbitrarily small. Note
that T+=2f/2dO/F(co, r,O), where F was defined in equation (8). Thus if g is
increased (keeping g(0)=0) then F is also increased, so that T+ is decreased. Now
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define xj by requiring g’(x)>(j+ 1) 2 for all x>=xj, and define Oj(r)=cos-l(xj/r) for

r>=x. If g is monotone, then xk_ <0<xk (since g’(0)((k-1)2,k2); let j* denote
the least j>=-I such that xj.+l>=0). Notice that 0j.+l<0J. and 0j.0 as j, for
fixed r, and that O(r)r/2 as r , for any j. Given e>0, choose n>j, such that
r/n < e/2; then choose R so large that for any r> R, r/2-0n <e/4. Since If’(0)-al
< e, the time for 0 to go from r/2 to 0 is less than e/4a, on a trajectory with
r(0) > R; the time from 0 to 0 is less than e/4; and thus T/ < e.

Finally, a C-small nonautonomous perturbation h is treated as in the case a < 0
above. This completes the proof of Theorem 2.

3. Consider now the piecewise linear function g(u)=au for u <0, g(u)= bu for
u > 0; we write g(u)= bu/- au-. Then (6) becomes

(9a) u" + bu/- au-= s,

(9b) u’(0)=0=

We consider two cases, (i) a<0 and (n- 1) 2 <b<n 2, and (ii) (k- 1) 2 <a<k 2, (n- 1) 2

<b<n 2.
In the former (a <0) case, the graphs of g(u)-s, V(u), and the phase portrait are

as in Fig. 1. There are no periodic solutions if s < 0. If s > 0, the period of the strictly
positive orbits is 2r/v/-; we show below that as the energy increases from zero, the
period tends continuously and monotonically to infinity. Hence there are n- 1 nonsta-
tionary 2r-periodic solutions if n-1 < <n, and the Neumann problem (9) has
exactly 2n solutions.

In the case v/-d (k 1, k) and v- (n 1, n) for some integrals n > k > 1, the
situation is as depicted in Fig. 2. All solutions are periodic and consist of solutions of
the two linear problems, pieced together along x 0. If s 0, all have period r(a-1/2
+b-l/2). There are positive solutions for s>O, which have period 2rb -1/2, and
negative solutions for s < 0 with period 2ra-1/. Using (8), one finds the period of a
solution of both signs passing through (u,u’)=(O,I), I>0, to be 2((r-Oa)a-i/2+
Obb-/2), where tan0a= -Ia/2/s, and tan0b= -Ibl/2/s (0 and 0b are in [0,r]). The
period is then easily seen to be continuous and strictly monotone (increasing with I for
s>0, decreasing for s<0), with range (2"n’b-1/2,,n’(a-1/2+b-1/2)) for s>0 and
(,n’(a-1/2 + b-1/2), 2ra -a/2) for s<0. Since we have assumed that a-a/2+ b-/2 is not
twice the reciprocal of an integer, the number of solutions of (9) for s positive, plus the
number for s negative, is therefore exactly 2(n- k + 1), as claimed.

4. We treat the asymptotically linear problem (5) as a perturbation of the autono-
mous piecewise-linear problem (9), via rescaling. Let u= Islo, so that (9a) becomes

(10) v" + by+- av-= +_ 1

and (5a) becomes

(11) v"+bv+-av-(bv+-av--g(lslv)/lsl)= +1 +h(x)/lsl.

We want to show that (11) differs from (10) by a Cl-small term for Isl large, since then
their solutions are Ca-close. If Oe(t ) is the angular coordinate on the solution of (9)
with energy E and with 0(0)=or, then near solutions of the Neumann problem, 0e(r )
carries the negative x-axis to a smooth curve which is differentiably transverse to the
positive x-axis. Hence any map C-close to 0E does the same. We therefore see that for
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any given a, b and s, any C perturbation of (9) has the same number of solutions. (We
remark that the permissible size of such a perturbation decreases as a or b approach an
eigenvalue n 2, for fixed s, or as b is increased.)

(a) s<0. (b) s>0.

FIG. 2. (k- 1) <a<k, (n- 1) <b<n.
If v is a solution of (10), the trajectory (v, v’) in phase space is bounded away from

the center (C/[s[,O) if s is bounded above, and its size is bounded above if s is
bounded below. We require ]sl to be so large that I]h]]c <,//2[s[, and likewise [[by +-

av--g(lslv)/lslllcl <,//2]sl, for any v in an annulus r <ll(o,o’)-(C,0)ll <r=. We will
treat s > 0; the other case is similar. For v > 0, we then have by+- av-- g(so)/s
v(b-g(sv)/sv). Since v is bounded (for s>So, say, where So is such that g’(C)
exceeds n 2 by 1/2(b- n -) for all s > So), and g(u)/u b as u z, it follows that
[Iv(b-qg(sv)/sv)[[clO as s o. Likewise for v<0, v(a-g(sv)/sv)O. This gives
C-smallness (for large positive s); Cl-smallness follows, as v > 0 implies (by+-av--
g(sv)/s)’=b-g’(sv)O as s , similarly for v<0. Thus (5) has exactly as many
solutions as (9), and the proof of Theorem I is completed.

The term h(x) is of course no problem above, under the assumption that

lim + g’(x) exists and is finite. Under the assumptions of Theorem 2, however, the

Isl required above increases as ,/ decreases, as b increases; so if g’(x) is unbounded,
then for fixed [[hllcl, we may be forced to choose s large to arrange that [[hllcl/lS <
but then find g’(C) (the "b" above) so large that must be still smaller.
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GLOBAL BIFURCATION OF POSITIVE SOLUTIONS IN SOME
SYSTEMS OF ELLIPTIC EQUATIONS*

J. BLAT"t" AND K. J. BROWNt

Abstract. In this paper the structure of the nonnegative steady-state solutions of a system of reaction-
diffusion equations arising in ecology is investigated. The equations model a situation in which a predator
species and a prey species inhabit the same region and the interaction terms are of Holling-Tanner type so
that the predator has finite appetite. Prey and predator birth-rates are treated as bifurcation parameters and
the theorems of global bifurcation theory are adapted so that they apply easily to the system. Thus ranges of
parameters are found for which there exist nontrivial steady-state solutions.

Key words, reaction-diffusion equations, multiple steady states, global bifurcation, predator-prey
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1. Introduction. In this paper we study the nonnegative steady-state solutions of
the reaction-diffusion system

(1.1) ut(x,t)-dlAu(x,t)=au-axu2-a2uv/(1 + mu),

vt(x,t)-d2Av(x,t)=bv-blvg-+ buv/(1 + mu)
for xD and t>0 where D is a bounded region in n (n=1,2,3) with smooth
boundary together with boundary conditions

(1.2) u(x,t)=O=v(x,t) for allxODandt>=0.
Equation (1.1) models a situation in which a prey and a predator species with

population densities u(x, t) and v(x, t) respectively inhabit the region D. It is assumed
that both species diffuse, i.e., move from points of high to points of low population
density; the Laplacian terms in (1.1) correspond to this diffusion, the constants d and
d2 giving the rates at which the species diffuse. It is also assumed that in the absence of
other species and of diffusion that both species would grow logistically. Thus, in the
absence of other factors, the rate of increase of the prey population is given by
au- au2. If u is small, this increase is approximately equal to au and the constant a is
termed the birth rate of the prey. Because of limited natural resources, the prey
population will decrease in size if it becomes too large; we assume throughout that the
constant a > 0 so that au- au 2 < 0 for sufficiently large u. Similarly the constant b is
termed the birth rate of v and we assume that the constant bl > 0. The term auv/(1 +
mu) represents the rate at which the prey is consumed by the predator and is usually
referred to as the Holling-Tanner interaction term; as is reasonable this term increases
as either u or v increases. In the classical equations of ecology the corresponding term
is simply a2uv. This classical interaction term has the defect that for a fixed predator
population lim a2uv which implies that predators must be capable of consum-
ing prey at an infinitely great rate. For the Holling-Tanner interaction term, however,
lim,_a2uv/(l+mu)=av/m and this difficulty does not arise. We assume
throughout that the constants a2,b2 > O.

*Received by the editors January 2, 1985.
Department of Mathematics, Heriot-Watt University, Riccarton, Currie, Midlothian, Scotland, EH14
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In [2] we used a decoupling technique to study the steady-state solutions of the
classical equations of ecology, viz.

(1.3) dlAu au- alu2- azUO, dzAo by- blv2-at- bzuv
with Dirichlet boundary conditions. The general idea is to regard v as a fixed function
in the first equation in (1.3) and solve for u, denoting the solution by u(v), i.e., u(v) is
the solution of

(1.4) -dAu+avu=au-au on D, U[aD=0.
The solutions of (1.4) are easy to describe and a suitable u(v) can be defined. Then
u(v) is substituted into the second equation in (1.3) to give a single equation for v.
Treating b as a bifurcation parameter and using the results of global bifurcation theory,
fairly detailed results are obtained about the solutions of (1.3).

If we fix v in the first equation with the Holling-Tanner interaction term, it seems
considerably harder to analyze the solutions of the corresponding equation for u, viz.,

dlAU au alu2
a2uv on D, UlOD-- 0l+mu

and we are no longer able to use our decoupling technique. In this paper we study
nontrivial steady-state solutions of a simplified version of (1.1), i.e.,

(1.5) -Au=au-aiu-auv/(l+mu) onD, ulo=O
-Ao=bv-blv2+b2uv/(l+mu) onD, olao=0

by applying bifurcation theory directly to the system (1.5). Note that we assume

d--d2 1; this is done simply for notational convenience and it is straightforward to
adapt our proofs to deal also with the general case of unequal diffusion coefficients. If
we assume that all the other constants in (1.5) are fixed and treat a as a bifurcation
parameter, we can show that (1.5) is equivalent to an operator equation of the form
w T(a, w) 0 where w (u, v). In the existing literature global bifurcation theorems
of the type we require seem only to apply in the cases where the Fr6chet derivative
Tw(a, 0)= aAw (see Rabinowitz [11]) or Tw(a, 0)= aAw +A2w (see Chow and Hale [4])
where A, A and A 2 are linear operators. In some situations which we encounter
Tw(a, 0) depends on a in a more complicated way and in 3 we give a formulation of
some standard theorems on bifurcation which can be applied easily to all the cases in
which we are interested. In {}2 we discuss results we shall require later on linear
problems and on the trivial solutions of (1.5). In {}{}4 and 5 we treat b and a respec-
tively as bifurcation parameters.

We work throughout with Dirichlet boundary conditions. Our results also apply to
the more ecologically reasonable cases of Neumann and Robin boundary conditions.
However Dirichlet boundary conditions present the hardest mathematical problem and
so we concentrate our attention on these. In the case of Neumann boundary conditions
all the steady-state solutions we obtain are spatially homogeneous.

A number of other studies have been made on the existence of steady-state
solutions of the classical equations of ecology. In Dancer [7] index theory is used to give
necessary and sufficient conditions for the existence of nontrivial solutions. Leung [9]
has obtained existence and uniqueness results by using iteration methods. Local bifur-
cation methods for the classical equations describing competing species are used in
Cantrell and Cosner [3].
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2. Preliminaries. It is well known that the linear eigenvalue problem

-Aq=kq onD, q=0 onD

has an infinite sequence of eigenvalues ( n such that 0 < kl < k 2 =< k with corre-
sponding eigenfunctions ql, q2, q3, where q(x)> 0 for x D. Suppose that q’D
R is smooth. Then the linear eigenvalue problem

(2.1) -Au+qu=,u onD, u=0 onOD

also has an infinite sequence of eigenvalues which are bounded below. We denote the
ith eigenvalue of (2.1) by ki(q). It is known that k(q) is a simple eigenvalue and that
the corresponding eigenfunctions do not change sign on D. Clearly k(0)=k and

1(q) is an increasing function of q.
If 0 is not an eigenvalue of (2.1), then we can define a corresponding solution

operation K, i.e., Kf is the unique solution of

-Au+qu=f onD, u=0 on3D

i.e., K is the inverse of the differential operator L -A + q associated with Dirichlet
boundary conditions. It is well known (see e.g. Amann [1] and Sattinger [12]) that
K" CI(D)--- CI(D) and K" L(D)L(D) is a compact operator and that K" Ca(D)
Co+(D) is an isomorphism (C+(D) (u C2+(D)’u(x)=O for x 3D )).
Consider now the nonlinear boundary value problem

(2.2) -Au+qu=au-alu onD, u=0 onOD

where q is as above and a and a are real numbers with a > 0. It is known that if
a =< kx(q) then u 0 is the only nonnegative solution of (2.2) whereas if a > ?(q) then
(2.2) has a solution u which is positive on D. Since u(au-alu2)/u is a decreasing
function, it follows that (see Cohen and Laetsch [5]) for each fixed a> k(q) there is a
unique solution of (2.2) which is positive on D.

Suppose now that q 0. We denote the unique positive solution of

(2.3) Au au- alu:z on D, uloD- 0

where a> 1 by u. In the (a,u) plane, i.e., R CI(D), the curve of solutions a-u
bifurcates from the zero solution when a Xi- The linearized operator corresponding to
u is the differential operator L where

Lu(x) Au(x)-au(x)+ 2alUa(X)U(X )

associated with Dirichlet boundary conditions.
LEMMA 2.1. All eigenvalues ofL are strictly positive.
Proof. Since

(2.4) -AUaq-(alUa-a)ua=O on D, UoI3D=O,

Ua is a positive eigenfunction of A + (alua- a) corresponding to the eigenvalue 0 and
so Xx(alua-a)=O. Hence l(2alUa-a)>O and the result is proved.

We now show that u depends continuously on a. Define F" (?1, o) Co2+(D)
C’(D) by

F(s,u)= -Au-su+alu2.
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Clearly F is a C function and F(s, Us) 0 for all s > Xx. Choose and fix a > t1. If we
denote the Fr6chet derivative Fu(a, u) by L, then L C02 +"(D) C(D) such that
Lu- -Au-au + 2auu. By Lemma 2.1 L is an isomorphism and so by the Implicit
Function Theorem there exists a C function :N Co2+(D) defined on a neighbour-
hood of a such that q,(a)=u and F(s,(s))=O. However, F(s,u)=O has the unique
solution (s,u,) close to (a,u) and so ff(s)=u. This su, is a C map from N to

Co2 D ).
Let rt,=duJda. Differentiation of (2.4) with respect to a and interchange of

order of the smooth derivatives involved show that

Ala + (2alUa- a ) la= tla> O on D,
ioe,

Lla>O on D, ,IOD=0.
Since by Lemma 2.1 the principal eigenvalue of L on D is positive, there exists a region
) containing such that the principal eigenvalue of L with Dirichlet boundary
conditions on b is positive; the corresponding principal eigenfunction q is such that q
and Lq are strictly positive on D. Hence it follows from the generalized maximum
principle (see [10, Chap. 2, Thm. 10]) that r/a/q does not have a nonpositive minimum
in D and so a " 0. Thus we have

LEMMA 2.2. The map a U is a C map from Xl, 00) to Co2 + "(D and, if
la dua/da, then ,/,(x)> 0 for all x in D.

In a similar way we can define and establish the corresponding properties of vb,

the unique positive solution of

-hv=bv-blv2 on D, V[aD=O
when b > X.

We now discuss the trivial solutions of (1.5). Clearly for all values of a and b there
is the zero solution i.e. u= 0 and v 0. When a > 1, there is the semi-trivial solution
u u and v 0 and, when b > ), there is the semi-trivial solution u 0 and v va. We
prove the existence of nontrivial solutions by studying the bifurcations which occur
from branches of semi-trivial solutions. For this purpose it is necessary to obtain some
a priori information about solutions of (1.5).

LEMMA 2.3. /fa>)kl, then (a-)kl)qb/a <=ua<=a/a where dp is the principal eigen-
function of A such that maxq 1.

Proof. It is easy to check that (a-Xl)rk/a and a/a are sub and supersolutions
of (2.3). But u is the unique positive solution of (2.3) and so must lie between the sub-
and supersolution.

LEMMA 2.4. If (U,V) is a nonnegative solution of (1.5) such that u is not identically
zero, then a > Xl.

Proof. Since u satisfies the first equation in (1.5), it follows that -Au < au on D.
Multiplying by u and integrating over D shows that flx7uldx <afD u2dx. But by
Poincar6’s Inequality fo IV Ul 2 dx >_ )tlfD u 2 dx and so a > )k

1.

The above lemma shows that the prey cannot coexist with the predator if its birth
rate is too low. The next lemma gives a priori bounds on the population densities in
terms of the birth rates.

LEMMA 2.5. Suppose (u,v) is a nonnegative solution of (1.5) such that uO and
v O. Then

(i) u<=u, andv<=b{X[b+b2a/(al +ma)];
(ii) if b > X 1, then v >= v.
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Proof. (i) Since u 0, it follows that a > ?1 and so (2.3) has the unique positive
solution u. Clearly u is a subsolution of (2.3) and there exist arbitrarily large super-
solutions of (2.3). Hence u must be greater than or equal to the subsolution u.

As o satisfies the equation

(2.5) Ao= [b- blO + b2u/(1 + mu)] o on D

and u <= u <= a/a1, we have that

Av <__ b blv + ab2/(a + ma)] v

and so Av > 0 whenever v > b-l[b + b2a/(a + ma)] (= B say.) Thus it is impossible that
v has a local maximum at x0 where v(x0)> B and so we obtain the required upper
bound for v.

(ii) Regarding u as a fixed function, v is the unique positive solution of (2.5) with
Dirichlet boundary conditions. Clearly v is a subsolution of (2.5) and, as there are
arbitrarily large constant supersolutions of (2.5), it follows that v >= Vb.

Finally in this section we make a preliminary investigation of bifurcation from the
branch of trivial solutions of the form u u, v 0. Writing u= u,- U and v V, it is
easy to check that (u,o) is a nonnegative solution of (1.5) if and only if 0=< U<=u,
V>= 0 and (U, V) satisfies

(2.6) -AU=aU-2alUaU+a2uaV/(1 +mu,)+f(a,x, U, V),
AV= bV+ b2uaV/(l + mua) + g( a,x, U, V)

where f and g are smooth functions on ?1, m) D R R such that

f(a,x, U, V)=alU:Z+ a:z[(u U)V/(I + m(ua- U))-blaV/(1 --[-mu,)],
g( a, x, U, V) blV2 + b2 [(ua- U) V/(1 + m u, U ) ) u,V/(1 + mua )

for U<=u,(x)+ 1/2m -. Let F’(, )CX(D)C(D)C(D) be defined by

[F(a, U, V)](x)=f(a,x, U(x), V(x))
and let G be the similar operator corresponding to g. Clearly F and G are continuous
and the Fr6chet derivatives Fu,v)(a,0,0 and G(u,v)(a,O,O) are zero. Then equation
(2.6) can be written as

(2.7) U=aKU-2atK(uU)+a2K[uV/(1 +mu)] +KF(a, U, V),

V= bKV+ bzK uV/(l + mu)] + KG( a, U, V)

where K is the inverse of -A with Dirichlet boundary conditions. Clearly (2.7) has the
solution U=0, V=0 for all values of a and b and to find possible bifurcation points
from the branch of zero solutions it is necessary to investigate the linearisation

(2.8) U=aKU-2aK(uU)+a2K[uV/(a + mud)I,
V-- bKV+ bzK uV/(1 + mu)]

3. Bifurcation theory. Since the dependence of the linearisation (2.8) on a and b
is quite complicated, it is necessary to reformulate some of the standard theorems of
bifurcation before we can apply them to our equations.
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Let X be a Banach space and let T: N xXX be a compact, continuously
differentiable operator such that T(a, 0)-0. Suppose we can write T as

T(a,u)=K(a)u+R(a,u)

where K(a) is a linear compact operator and the Fr6chet derivative Ru(a,O)=O. We
investigate bifurcation phenomena for the equation

(3.2) u= T(a,u)

treating a as a bifurcation parameter.
THEOREM 3.1. Suppose (a, O) is a bifurcation point of (3.2). Then
(i) K(a) has eigenvalue 1;
(ii) if ((a,,,un) } is a sequence of nontrivial solutions such that anna and uO,

then there exists a subsequence of (u }, again denoted by (u }, such that UnAlUnll--’ UO
where uo is an eigenvector of K(a) corresponding to the eigenvalue 1.

Proof. Since u,- T(a,,un)=O for all n, we have that

u.- T.(a,O)u.= [T.(a,,,su.)u.- T.(a,O)u.] ds.

Let v. un/llu.I I. Then

fov,,-K(a)v,,= [ru(a,,,su,,)v.- r.(a,O)v.] ds.

As nora, the integral term 0 and so limn__,(v,,-K(a)v,,)=O. Since (v,} is
bounded and K(a) is compact, there exists a subsequence such that {K(a)v,,} is
convergent. Hence there exists a subsequence of ( v } converging to u 0 say. As Ilvnil 1
for all n, uo4:0 and clearly uo-K(a)uo=O.

We now give a sufficient condition for bifurcation to occur and at the same time
obtain a global bifurcation result. First we recall the notions of multiplicity of an
eigenvalue and the index of a fixed point.

Let K:XX be a compact linear operator and let X 0 be a nonzero eigenvalue of
K. Then the null space of K-)to/denoted by N(K-toI) is nonempty. We define the
generalized null space of X 0 as M(K; Xo)=U=IN(K-XoI) p. It is well known that

N(K- XoI )
_
N(K- ;k oi)2 __c N(K- Xoi)3 __c

and that there exists P such that N(K-XoI)PN(K-AoI)P+I for p<P but
N(K-XoI)e=N(K-XoI)P+=N(K-XoI)e+2 and so

P

M(K; )to)= [,.J N(K-)toI) p.
p=l

Thus dimM(K; X0)< oe and we define the algebraic multiplicity of X 0 as equal to

dimM(K; Xo). If )t o has algebraic multiplicity 1, we say that )t o is a simple
eigenvalue. Clearly )t o is a simple eigenvalue if and only if dimN(K-)toI)=
dimN(K-XoI):Z=l. It is easy to show that N(K-XoI)=N(K-XoI)2 if and only
if N(K-XoI)R(K-XoI)={O} where R(K-XoI) denotes the range space of

K-XoI. Thus X 0 is a simple eigenvalue of K if and only if dimN(K-XoI)= 1 and

N(K- XoI)CR(K- XoI)= (0}.
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Suppose now that I- K: X X is a bijection. Then it is well known that the Leray
Schauder degree deg(I-K,B,O)=(-1) p where B is a ball centre 0 in X and p=sum
of the algebraic multiplicities of the eigenvalues of K which are > 1 (see Krasnoselskii
[8]). Suppose T:XX is a compact differentiable operator. If x0 is an isolated fixed
point of T, we define the index of T at x0 as i(T, xo)=deg(I-T,B, xo) where B is a
ball centre xo such that x0 is the only fixed point of T in B. If x0 is a fixed point of T
such that I- T’(xo) is invertible, then x0 is an isolated fixed point of T and

i(T, xo)=deg(I- T,B,xo)=deg(I- T’(xo),b,O)

where B is a sufficiently small ball centre x0 and is a ball centre 0.
We now state the result we shall use on global bifurcation. Suppose T:R XX

is as given by (3.1).
THEOREM 3.2. Let ao be such that I-K(a) is invertible if O<[a-ao[<e for some

e>0. Suppose i(T(a, .),0) is constant on (ao-e, ao) and on (ao, ao+e) such that, if
a o e < a < ao < a 2 < ao + e, then (T(a1," ), O) 4: (T(a ., ), 0). Then there exists a con-
tinuum C in the (a-u)-plane of solutions of (3.2) such that one of the following alterna-
tives holds

(i) Cjoins (a o, O) to (gt, O) where I-K(gt) is not invertible.
(ii) Cjoins ( a o, O) to o in X.
The above results can be proved by using exactly the same argument as in

Rabinowitz [11]. The index i(T(a, .),0) can be calculated by investigating the eigen-
values of K(a).

4. Structure of solutions with b as bifurcation parameter. In this section we shall
regard b as a bifurcation parameter and suppose that all other constants are fixed. For
all values of b we have the branch of zero solutions of (1.5) So= {(b,0,0)" b).
When b crosses , there bifurcates from SO the branch of semi-trivial solutions
S ((b, 0, Vb)" b > Xl )" Lemma 2.4 shows that, when a is fixed =< X, then all nonnega-
tive solutions of (1.5) lie on either So or S1. For the rest of this section we suppose that
a is fixed > X so that we also have the branch of semi-trivial solutions S=
{(b, u, 0)" b N }. We show that there is a continuum of nontrivial solutions (i.e. in
which neither u nor v is identically zero) joining S and $2.

First we use the result of Crandall and Rabinowitz [6] on bifurcation from a
simple eigenvalue to obtain a local result on bifurcation from S2. Motivated by (2.7),
we define T" N x CI(D)C(D) CI(D) C(D) by r(b,u,v)=(aKu- 2aK(uaU)+
aK[UaV/(1 + mUa)]+KF(a,u,v), bgv+ b2K[uaV/(1 + mua)l+gG(a,u,v)) where g is
the inverse of A with Dirichlet boundary conditions. Let H I- T. Then H(b, u, v) 0
with 0 <= u <= u and v >__ 0 if and only if (b, ua--U, V) is a nonnegative solution of (1.5). It
is easy to see that H is a C function with H(b, 0, 0)= 0. Straightforward computations
show that H has Fr6chet derivative

H(u,o)(b,O,O)(*,+)
(,- aK, + 2alK( uach)-a2K ua//(1 + mUa)] /- bK+- baK ua//(1 + mUa)] ).
For notational convenience let q(x)=ua(x)/(1 + mu(x)). Let bo=l(-b2q) and

let +1 denote a corresponding nonnegative principal eigenfunction corresponding to

principal eigenvalue b0 of

Aq- b2qq= bq on D, /]OD O.
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It is easy to check that N(H(,,,,)(bo,O,O))=span((Ol,ql) ) where Ol=a2K1[q+1] and
K denotes the inverse of -A-a+ 2alu, with Dirichlet boundary conditions. Thus
dimN(H(,,,,)(bo, O, 0))= 1. It follows from the properties of compact operators that the
codimension of R(H(,,,,)(bo, O,O))= 1.

Using (4.1), it is easy to see that the Fr6chet derivative

H,,(.,,,)(bo, O, 0)(1, 1)-- (0, K+l ).

Suppose that (0,- Kql) R(H(.,,,)(bo, O,O)). Then there exists + CI(D) such that

+-bK+-bzK[qq -K+I
and so

(4.2) A+- b+- b2qd/= -+1.
Multiplying (4.2) by +1 and integrating over D shows that fD +2xdx=O and this is
impossible. Thus (0, KI) R(H{,,o)(bo, O, 0)).

We have shown that H satisfies all the hypotheses of Theorem 1.7 of [6]. Thus
there exists a real interval (-e,e) and functions b (- e, e)--+ R, u,o’(-e,e)oCl(D)
such that the nontrivial zeros of H close to (b0,0,0) lie on the curve {(b(s),sq1+
su(s),sb +so(s))"-e<s<e} where b(0)=b0, u(0)=o(0)=0. It follows that for the
system of equations (1.5) bifurcation occurs from the branch of semi-trivial solutions $2
at (b0, u,, 0) and close to the bifurcation point the nontrivial solutions lie on the curve
{(b(s),u,-sql-SU(S),S+l+SV(S))" -e<s<e). Points on the curve with s>0 corre-
spond to nontrivial, nonnegative solutions of (1.5).

We now investigate the global nature of the above curve of nontrivial, nonnegative
solutions in the b-(u,v) plane, i.e., in R CI(D) CI(D). Theorems 4.1 and 4.2 give
limitations on the values of b for which such solutions can exist.

THEOREM 4.1. If (b,u,o) be a nontrioial, nonnegatioe solution of (1.5), then b> bo
(i.e. b>Xl(-b2q)).

Proof. We have that

Ao- [bzu/(1 + mu)] v= bv- 6102.
Since u =< u,, it follows that

Ao- b2qv <__ bv b1v2.

Multiplying by o and integrating over D, we obtain

fD( AV + b2qv ) v dx < bfDV2 dx.
By the spectral theorem

fz)( Av + b2qv ) v dx >-_ bofz)v2 dx
and so it follows that b > b0.

The above result shows that the bifurcation of nonnegative solutions from &_ at
(bo, u, 0) must be to the right. The next result shows that the branch of nontrivial
solutions cannot extend too far to the right.

THEOREM 4.2. There exists M> 0 such that, if (b, u, v) is a nontrivial, nonnegative
solution of (1.5), then b <__ M.
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Proof. By Lemma 2.3 vb>=(b-l)/b where is the principal eigenfunction of
A with sup 1. If a is a positive constant, it follows that lira b Xl(avb)- (see

[2, Thin. 3.4]). Choose M such that Xx(ala2vb/(ax + ma))> a whenever b > M.
Suppose (b, u, v) is a nontrivial, nonnegative solution of (1.5). Then u is a nontriv-

ial solution of

-Au+ [a2v/(1 +mu)]u=au-alu 2

and so a>Xl(a2v/(l+mu)). Since v__<vb and u<__a/a1, it follows that a>
Xx(axa2Vb/(al + ma)). Hence we must have that b< M.

We now show that T satisfies the hypotheses of our global bifurcation result, i.e.,
Theorem 3.2. We can write T as

(,u,)=K()(u,)+(,u,)
where K(b)is the compact linear operator such that K(b)(u,v)=(aKu-2axK(uaU)+
a2K(qv), bKv+ bK(qv)) and K(b) and R(b,u,v) satisfy the conditions given at the
start of 3.1. In order to show that the hypotheses of Theorem 3.2 are satisfied, we must
calculate the index i(T(b, .),0) when b is close to b0. This index is equal to (-1)/
where/3 is the sum of the algebraic multiplicities of eigenvalues of K(b)> 1.

Suppose that > 0 is an eigenvalue of K(b). Then there exists a nonzero function
v such that

bKv+ b2K( qv) tzv

and so

(4.3) iAv- b2qv by on D, v=0 on )D,

i.e. b is an eigenvalue of (4.3). Conversely, if/ > 1 and b is an eigenvalue of (4.3) with
corresponding eigenfunction v, then (u, v) is an eigenfunction of K(b) corresponding
to the eigenvalue where u is the unique solution of

-pAu-au+2aluu=aqv onD, u=0 onD.

Note that, since all eigenvalues of A- a + 2alu are positive by Lemma 2.1 and/> 1,
it follows that -tA-a + 2alu is invertible. The eigenvalues of (4.3) form an increas-
ing sequence "1(t)<,/2(/)__<,/3(/)=< and the variational characterisation of eigen-
values shows that ;() is a continuous increasing function. Thus >__1 is an
eigenvalue of K(b) if and only if b /;(/) for some/. Clearly ",{i(1)=i(-b2q).

Suppose that b < b0, i.e., b < 1(- b2q). Hence b <’f1(1) and so b < ;() for i=

1, 2, and/ >__ 1. Hence K(b) has no eigenvalues > 1 and so i(T(b, ), 0)= 1.
Suppose bo<b<(-b2q). Then yl(1)<b<’r(1). Since /---,q(/) is increasing

with lim, 3,1(/) o, there exists a unique > 1 (/1 say) such that b=’1(/1). Since
b<3,2(1), it follows that b<’i(/ for i=2,3,.-, and />1. Thus 1 is the only
eigenvalue of K(b) which is greater than 1. We now show that/1 is a simple eigenvalue
of K(b). The discussion above shows that N(K-ilI)=span{(q,q)} where q is the
principal eigenfunction corresponding to the eigenvalue b of

-ttlAv-b_qv=bv on D, v=O on }D

and q-- a2Kl[qb and K denotes the inverse of -IIA a + 2alu a. Thus
dimN(K(b)-lI)=l. Suppose that (,,q)R(K(b)-lI). Then there exists v such
that

bKv + bK( qv) -Ilv= +.
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Hence

Av by b2qv A+ -{(bq + b2q/) on D.

Multiplying by + and integrating over D shows that fD (b+bq)+dx=O which is
impossible. Hence R(K(b)-II)CN(K(b)-II)= (0} and so/ is a simple eigen-
value of K(b). Thus i(T(b, .),0)= -1 whenever bo<b<z(-b2q).

Therefore Theorem 3.2 can be applied to T. Thus there exists a continuum Co of
solutions of (u, v)= T(b,u,v) in the b-(u,v) plane, i.e., in C(D)C(D) emanat-
ing from (bo, 0, 0) and either joining with (, 0, 0) where I-K() is not invertible or
joining with . Close to the bifurcation point all solutions lie on the curve whose
existence we proved by using the Crandall and Rabinowitz theorem. Let C be the
maximal continuum of solutions contained in Co- ((b(s),sq + su(s),sq + sv(s))" -e

<s__<0). Then close to the bifurcation point (b0,0,0) C consists of the curve
((b(s),sq,+su(s),sq+sv(s))’O<s<e} and it can be shown by a reflection argu-
ment exactly as in Rabinowitz [11] that C either satisfies one of the same alternatives
as Co or contains a pair of points of the form (b, u, v) and (b,- u,- v) where (u, v)4:
(0, 0). Let C ((b, u, u, v)" (b, u, v) C ). Clearly, if u, v > 0 and (b, u, v) C, then
(b, u, v) is a solution of system (1.5). Let

and let

P,= ( u C’(D)" u(x) >0 for xD and Ou/On(x) <0 for xOD )

P= ((b,u,v):b and u,oP).
Clearly C P in a neighbourhood of the bifurcation point (b0, u a, 0). However

THEOREM 4.3. C ((b0, u, 0) ) is not contained in P.
Proof. Suppose C- ((b0, u, 0)) is contained in P; we shall obtain a contradiction.

By the previous discussion the continuum C ((b0, u, 0)) must
(i) contain points of the form (b, u u, ) and (b, u / u, ) or
(ii) join up with a bifurcation point of the form (,u,0) where b0 and

I- K(b) is not invertible or
(iii) join (b0, u, 0) with .
Since the continuum is contained in P neither (i) nor (ii) is possible. By Theorem

4.1 and Theorem 4.2 we must have that b0 <b<M whenever (b,u,o)c C. Therefore by
Lemma 2.5 there exists a constant M >0 such that [u(x)l, Io(x)l=<Mx for all xD
whenever (b,u,v)C. It follows from standard bootstrapping arguments that C is
bounded in C(D)C(D) and so (iii) is also impossible. This is a contradiction
and so the continuum is not contained in P.

THEOREM 4.4. Cjoins with Sx.
Proof. Since C- ((b0, u, 0)) is not contained in P, there exists (, ft, b)

[C-((bo, ua, O)}]fqOP which is the limit of a sequence {(bn, un, Vn))C_.CP. As
(, f, b) OP, either f }P1 or )el.

Suppose bOP. Then (x)>0 for xD and either b(x)=0 for some xeD or
)b/)n(x)=O for some x OD. It follows from the second equation in system (1.5) that

-Ab+[M-b+bb-b/(l+m)lb=Mb>O on D

where M is a constant chosen sufficiently large so that the term in the square brackets
is positive for all x D. It follows from the maximum principle that b=-0. A similar
but simpler argument shows that if OP then ft -= 0. Thus ft =- 0 or b =- 0.
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Suppose that ft 0 and b--0. Then (, ft, b) lies on the branch of trivial solutions
So ((b, 0, 0) b ). The only nontrivial, nonnegative solutions which are close to So
lie on the semi-trivial branch $1= ((b,O, Vb):b>=kl) and so there cannot exist a
sequence in P converging to (, 0, 0). Hence either tt or b is nonzero.

Suppose that ft is nonzero and b 0. Then (, ft, b) lies on S2 ((b, Ua, 0)" b }
and so is a bifurcation point on S2 from which bifurcate nontrivial and nonnegative
solutions. Therefore by Theorem 3.1 is such that 1 is an eigenvalue of K() with
corresponding eigenfunctions which are nonnegative on D. If (u, o) is a nonnegative
eigenfunction corresponding to ,, then o satisfies

Av- b2qv v on D, v 0 on )D

and since o is nontrivial and nonnegative, it follows that ?1(- bq)= bo and this is
impossible.

Thus the only remaining possibility is that b is nonzero and ft---0. In this case
(, f, b) must lie on S. Hence C joins up with S1.

It is possible to use our methods to analyze the bifurcation which occurs when C
joins up with S. The arguments involved are very similar to those we develop in the
next section and so we omit the details here. In fact C joins S when b is such that
a=l(a:vb) (when b=b say). The argument in Theorem 4.4 shows that, if (b,u,o) C
hOP, then (b,u,o)S1. Thus C provides a continuum of nontrivial, nonnegative
solutions joining (bo, u., 0) on $2 to the point (bl, 0, b) on S. In particular we can
conclude

THEOREM 4.5. The system of equations (1.5) has a nontrioial, nonnegatioe solution
provided bo < b < b1.

5. Structure of solutions with a as bifurcation parameter. We now treat a as a
bifurcation parameter and assume that all the other constants are fixed. The decoupling
technique of [2] works in this case. Suppose b > 1. Then (1.5) has a continuum of
semi-trivial solutions S= ((a,O, Vb)"a) and it can be proved as in [2] that there is
a continuum C of nontrivial, nonnegative solutions bifurcating from S at
(X(a:Vb), O, Vb) such that C does not join up with any other continuum and goes to
as a--> . Thus the following result holds.

THEOREM 5.1. If b > , then the system of equations (1.5) has a nontrivial, nonnega-
tire solution provided a > (a 2vb ).

The above result could also be established by using an argument similar to that of
the preceding section.

Suppose now that b <. In this case we have the continuum of trivial solutions
SO ((a, 0, 0)" a } and the continuum of semi-trivial solutions S1 ((a, u a, 0)" a >
’1 )- In [2], using decoupling techniques for the classical predator-prey equations it was
shown that the stability of the semi-trivial solution (Ua, 0) changes as a is increased and
this indicates that a continuum of nontrivial, nonnegative solutions bifurcates from S1.

We now use bifurcation techniques similar to those of the preceding section to make a
direct investigation of this continuum for the more complicated system (1.5).

As we are linearizing about the same solution as in the previous section, bifurca-
tion seems likely to occur at values of a such that b= k(-bua/(1 + mu,)). Modifying
our notation slightly from that used in the previous section in order to highlight the
dependence on a, we let qa(X)=U(X)/(1 + mUa(X)). Since u is an increasing func-
tion of a, q is also an increasing function of a. Clearly qa(X)<__ m- for all a. Hence
k(-b.q) is a decreasing function of a and k(-b_q)>=ka-b/m for all a. Thus
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lim,__,,(-b2qa) exists and lim,,_,hl(-b2qa)>=l-b2/m. By Lemma 2.3 u con-
verges uniformly to on any compact subset of D and so b2q converges uniformly to
b/m. If denotes the principal eigenfunction of - with zero boundary conditions
such that f 2dx 1, then fo IVl 2 dx x. Since lim fo b2qa2 dx bz/mfo 2dx
bz/m it follows that

12fo(l  -b2qa2)dx=l-b2/m
Hence by the variational characterisation of eigenvalues limaXl(-b2qa)X1-
b2/m.

Thus we have shown
LEMMA 5.1. lima b2qa) b2/m.
Our first theorem shows that if the predator birth rate is too low then no nontrivial

solutions exist. This result differs from what occurs in the classical case where, however
negative the predator birth rate, nontrivial solutions exist provided the prey birth rate is
sufficiently large.

THEOREM 5.2. If ( a, u, o) is a nonnegative solution of (1.5) with v O, then b > 1-

Proof. Since

it follows that

Ao- [bzu/(1 + mu)] v by- bxv2,

At)- b2/mv <= by- b102.
Multiplying by v and integrating over D, we obtain

fAv.vdx-b2/mfzv2dx<bfv2dx.
Since fo Av. v dx _> X fo 02 dx, it follows that b > X b2/m.

The above theorem shows that, if we fix b <= , b2/m, there can be no bifurcation
of nontrivial solutions from S. From now on we suppose that b is fixed such that
b>X-b2/m. Since a-,X(-b2qa) is a decreasing function which equals when
a X1 and tends to A- b2/m as a , there is a unique value of a > A, say a, such
that b ’x(- b2q,). We show that bifurcation from S occurs at (a, u, 0).

Motivated by equation (2.7) as in the previous section but now interested in
varying a rather than b, we define T’ CI(D) CI(D) CI(D) CI(D) by

-(aKu- 2aK(uu)+a2K(qv)+Kr(a,u,v), bKv+ b2K(qv)+KG(a,u,v))

and let H=I-T. Then H(a,u,v)=0 with 0=<u=<ua and v>__0 if and only if
(a,u-u,v) is a nonnegative solution of (1.5). Clearly H(a,O, 0)=0 and it follows from
Lemma 2.2 that H is a C function. The Fr6chet derivative with respect to (u, v) is

Hu,,) ( a, O, O)(,+ ) ( ck- aK+ 2aK( uaCk ) a:zK( qaq.’ ), /- bK/ bzK( qab ) ).
We have that N(Htu,o)(a,O,O))=span((q,l,q)) where +1 is a nonnegative eigenfunc-
tion corresponding to the principal eigenvalue b (= Al(-bzq) of

-Aq- b2qq=bq on D, +!o=0
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and dpl=a2Kl(qoAbl) where K denotes the inverse of -A-a+2alu with Dirichlet
boundary conditions. Thus dimN(H( u,,) ( a, O, 0))= 1 and it follows that the codimen-
sion of R(H(u,v)(a, 0, 0)) 1.

It is easy to check that further differentiation with respect to a gives

(-gl + 2alK(U’adpl)-a2K[lUPa/(1 + mu)2], -b2g[tlUPo/(1 + mu,)2])
where u’= dua/da. Suppose that Ha,(u,,)(a, O, 0)(1 11) R(H(u,o)(a, O, 0)). Then there
exists v such that

v-bKv-b2K(qv)= -b2K /lU’/(1 + mu)2]
and so

Av- bv- b2qaV= b2hblU’,,,/(1 + mu,)2.

Multiplying by q and integrating over D shows that

0 b2 uall/ 1 + mu dx.
aD

is positive on D and so we have a contradiction.But by Lemma 2.2 u
Thus the hypotheses of the Crandall-Rabinowitz theorem are satisfied and so

there exists a curve of nontrivial, nonnegative solutions of (1.5) bifurcating from S at
(a, u, 0). We shall investigate the global nature of this continuum. First we show that
bifurcation of nonnegative solutions is to the right.

THEOREM 5.3. If (a,u,o) is a nontrivial, nonnegatioe solution of (1.5), then a> a.

Proof. Suppose a<a. Then b=?x(q)<_k(qa). But by Theorem 4.1 system (1.5)
has nontrivial, nonnegative solutions only when b > ’l(qa)" Thus, if (a,u,o) is nontriv-
ial, a > a.

We now compute i(T(a, .),0) so that we can apply our global bifurcation result.
This index is (- 1) a where/3 is the sum of the algebraic multiplicities of the eigenvalues
of K(a)> 1 where K(a) is the compact linear operator

K(a)(u,v)=(aKu-2alK(UaU)+a2K(qaV ), bKv+b2K(qaV)).

If > 0 is an eigenvalue of K(a), then b must be an eigenvalue of

(5.1) -lAV -b2qav=kv on D, VIaD=O.
Conversely, if # >__ 1 and b is an eigenvalue of (5.1) with corresponding eigenfunction o,
then (u,o) is an eigenfunction of K(a) corresponding to the eigenvalue where
u=(-lA-a+2alu)-xo, the inverted differential operator corresponding to zero
boundary conditions.

Suppose that a < a and/ >= 1 is an eigenvalue of K(a). Then b is an eigenvalue of
(5.1) and, since />__ 1, it follows that b> the least eigenvalue of -A-b2qa, i.e. b >
l(-b2qa). But b--l(-b2q,)<,l(-b2qa) and this is a contradiction. Hence, if a <a,
K(a) has no eigenvalues > 1 and so i(T(a,. ), 0)= 1.
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Now suppose that a is such that hl(-b2qa)<b<:z(-b:zqa), i.e. a lies in an open
interval with left-hand end point a. An argument similar to that used in the preceding
section shows that K(a) has a unique eigenvalue #1 which is greater than 1 and that
this eigenvalue is simple. Therefore i(T(a, .),0)=- 1 and so Theorem 3.2 can be
applied to T.

By arguments similar to those used in the preceding section it can be proved that
there exists a continuum C in R CI(D) CI(D) emanating from (a, u, 0) such that

(i) if (a,u,v)C, then (Ua--U,V)= T(a, Ua-U,V);
(ii) if (a,u,o)C and u,o0, then (a,u,o) is a solution of (1.5);
(iii) close to the bifurcation point (a, u, 0), C consists of the points (a, u, v) on the

curve given by the Crandall and Rabinowitz theorem with 0.
We now show that C does not join up with any other continuum but extends to

THEOREM 5.4. (i) If (a, u, v) C ((a, u, 0)), then u, P1, i.e. u, > 0 on D and
u/n, v/n < 0 on OD.

(ii) (a’(a,u,v)C)=[a, ).
Proof. (i) Suppose that C contains a point (a, u, v) (a, u, 0) which lies outside of

P. Then there exists a point (, , b) C- {(a, u, 0)) OP which is the limit of a
sequence of points ((a,,u,,v,)) in CP. It follows as in the previous section that fi0
or b0.

Suppose that 0 and b 0. Then (, , b) (fi, 0, 0) and so (, , b) lies on the
trivial branch of solutions S0. The only nontrivial, nonnegative solutions which are
close to So lie on the semi-trivial branch $1 ((a, u, 0)’a 1) and so there cannot
exist a sequence in C P converging to (, , b). Therefore it is impossible that both
and b are identically zero.

Suppose that 0. Then

Ab bb blb2 on D, b]aD= O

and so, since b < 1, b 0. Therefore is not identically zero.
Suppose that b 0. Then (fi, , b) S and there bifurcate from (, , b) nontrivial,

nonnegative solutions. Therefore by Theorem 3.1 is such that 1 is an eigenvalue of
K(3) with corresponding eigenfunctions which are nonnegative on D. Thus fi must be
such that b (-bq) when a . Hence a and (, fi, b) (a, u, 0) which is
impossible.

Therefore, if a, u, v ) C (( a, u, 0) ), then ( a, u, v ) P.
(ii) C must satisfy one of the three alternatives discussed in the preceding section.

Because of (i) above, C contains no pairs of points of the form (a,u-u,v) and
(a,u+u,-v) and C cannot join up with another bifurcation point of the form
(a,u,O) on S. Hence C joins (a,u,0) to . By Theorem 5.3 we have that a a
whenever (a, u, v) C. Lemmas 2.3 and 2.5 show that there exist a constant Ml(a) such
that, if (a,u,v) C, then ]u(x)], [v(x)]< Ml(a) for all xD. Bootstrapping arguments
imply that there exists a constant M(a) such that [[u[[, [[v[[<M(a) where [[ denotes
the norm in CI(D). Hence the only way for C to approach in R x CI(D)x C(D) is
by a becong unbounded. Since ( a" (a, u, v) C ) is connected, it must equal a, ).

Thus we obtain the following theorem on the existence of solutions of (1,5) to
complement Theorem 5.2.

ThEOReM 5.5. Suppose b>Xl-b/m. Then (1.5) has a nontrivial, nonnegative
solution if and only if a > a where b= XI(-bq) i.e. if and only if a is sufficiently large so
that b > XI(- b2q).
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FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM*

ALLAN BENNETTt

Abstract. Let f be a bounded domain in I N for which the following boundary value problem has a
classical solution: A(Au)=-1 in 2; u=Ou/On on )2; Au=c (constant) on 3f. We show that 2 must be
an open ball and that u must be radially symmetric about the center of 2. This result is analogous to that of
Serrin (Arch. Rat. Mech. Anal., 43 (1971), pp. 304-318) and Weinberger (Arch. Rat. Mech. Anal., 43 (1971),
pp. 319-320) for the problem Au=-1 in 2, u=0 and Ou/3n=c on Of. Our result is obtained from a
maximum principle for fourth order elliptic equations and several applications of Green’s theorem. We then
obtain two characterizations of open balls by means of integral identities--the first depends on our result and
the second on that of Serrin and Weinberger.

Key words, maximum principle, radial symmetry
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In 1971, J. Serrin [3] and H. Weinberger [4] proved that if 2 is a bounded domain
in R N with smooth boundary and if the solution to the problem

(la) Au=-I in

(Yt) u 0 on

has the property that Ou/On is equal to a constant c on 2, then f is a ball of radius

INcl and the solution to (1) is radially symetric about the center.
Serrin’s proof is based on the Hopf maximum principle [2] and on a device of

moving parallel planes to a critical position and then showing that the solution is
symmetric about the limiting plane. This method can be extended to a more general
second order elliptic problems. Weinberger’s argument, however, is much more elemen-
tary. It also uses the maximum principle but relies on Green’s theorem to establish
certain identities which make it possible to solve for all second derivatives of the
solution to (1). Unfortunately, Weinberger’s argument does not extend to the more
general results of [3]. However, the argument in [4] can be modified to establish the
following theorem:

THEOREM. Let be a bounded domain in Ru with C4+e boundary 8f, and suppose
that the following overdeterminedproblem has a solution u in C4():
(2a) A(Au)=-I in ,

3u(2b) u 0

(2c) Au c on ( c constant).
Then f is an open ball of radius [IcI(N : + 2N)]/a, and

-1(1 Nc 2 1
(2d) u(x)=--- -(N+2)(Nc)2+---r + 4(N+2)

r

where r denotes the distance from x to the center of

Received by the editors January 22, 1985 and in final form September 30, 1985.
Department of Mathematics, Cornell University, Ithaca, New York 14853.
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This result has a corollary which allows a characterization of open balls in s by
means of an integral identity:

COROLLARY. Let D be a bounded domain in u with C4/ boundary OD, and
suppose that there is a real constant M so that

(3) BdX=MD

OB

holds for any function B in C4() satisfying A(AB)=0 in D and B=0 on OD. Then D is
an open ball, and

(4) lfo 2

where IDI is the N-dimensional volume ofD and satisfies Ab= 1 in D and +=0 on OD.
Before proving these results, let us make some remarks about notation to be used.

We shall use u, and u,o. to denote, respectively, Ou/Ox and O2u/OxOxj. A superscript
will denote a vector coordinate--for example, n is the ith coordinate of the (outward)
unit normal vector to a surface at a given point. Finally, repeated indices indicate a
summation with respect to that index, for example,

N 02U
i=

Proof of Theorem. Suppose that u C4() is a solution of the overdetermined
problem (2). We first consider the following lemmas:

LEMMA 1 [1]. The function
N-4 N-4

(5) "- N+ 2
u + 2(N+ 2) ( Au): +

assumes its maximum value on
LEMMA 2. The following identity holds:

(6) udX
N+ C

-vu.v( u)

To prove Lemma 1, it suffices to show that A >= 0 in 2. Routine calculation gives

6 12(7) M,=2u,,;u,,;, N+2 Iv(Au)

To show that the right side of (7) is nonnegative, note that for any real number ,"

(8) E [U’ijk "{(Au),ijk’nt-(Au),jiknt-(AU)’kij}] 2
>=0

i,j, k

or

(9) U,ijkll,ijk 63,[v(Au)12+ 33,2(N+ 2)Iv(Au)12
The discriminant of this quadratic expression in 3’ must then satisfy

(10) 361V(Au) [4 12(N/a)IV(Au)!
2
U,ijkU,ijkO

which is equivalent to A >= 0. This yields the conclusion of Lemma 1.
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The proof of Lemma 2 requires several applications of Green’s theorem and the
boundary condition in (2). First note that

(11)
}U

G [a(au)] +4a(au) -4,

where r is the distance from a fixed origin. From (11) we obtain:

(12) Ou Ou Ouf [4u- rr dx=f [-uA ( r-r ) +rr //ul dx

-c r-nOr O2Un-; dS= C23 Or
r-3-n dS c2N.

An application of Green’s theorem gives

(13) our-r dX N u dx

so that (12) and (13) yield Lemma 2.
Our next step is to show that is constant in f. We note that on ,

(14) U,ijU,ij On 2
n

On 2
n

On 2

Lemma 1 and the boundary conditions (2) give

3Nc2 3Nc2

(15) = 2(N+2)
on

By Lemma 2 and Green’s theorem, we see that

3(N+ 4) 3Nc2

(16) dx=
2(N+ 2)

udx=
2(N+2) ]l"

Thus, by (15) and (16), b=-3Nc2/(2(N+2)) in . This implies that A vanishes
identically in f. Therefore each term of the sum in (8) vanishes when - 1/(N+ 2). By
differentiating each term with respect to Xk and adding, we obtain

(17)
1 [2(Au)-30.Id,ijk k (/l.,l )’ij- N+ 2

or

(18)

Now by (17) and analyticity of solutions of (2a), we have Au(x)=(1/2N)(A-Ix
-al 2) in , where A is the maximum value of Au in and Au(a)=A. By the
boundary conditions (2c), we see that is an open ball of radius (A 2cN)1/2 centered
at a. The boundary conditions (2b) then yield the radially symmetric solution (2d) and
the additional relation A -cN 2. This completes the proof of the theorem.
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Proof of the corollary. Let u C4() be the solution of the problem

0U(19) A(Au)=I in D, u=-3--n=0 on OD.

Then for any function B satisfying the hypothesis of the corollary, we have

(20) MfD )B )B

The last equality in (20) follows from several applications of Green’s theorem and from
the boundary value problems satisfied by u and B. We see now from (20) that

(21) 0= --n (M+ hu).
D

Let B be the solution of class C4() to the problem

)B
(22) A(AB)=0 inD, B=0 and -a-n-n =M+Au on0D.

It is immediate from (21) that Au -M on OD, so that the theorem implies that D
is an open ball. The exact value of M can be determined by replacing B in (3) by q in
(4) and using an argument similar to the one above. Q.E.D.

To conclude this note, let us consider the analogue of the preceding corollary for
harmonic functions. If D is an open ball in R u and h C2() is harmonic in D, then
the mean value theorem for harmonic functions implies that the average value of h over
D and the average value of h on D are both equal to the value of h at the center of D.
Using the Serrin-Weinberger theorem, we can prove the following proposition: If [2 is
a bounded domain in RN with C2+-boundary and if

(23) la-- h=[- u

for each function in C2() satisfying Ah=0 in 2, then f is an open ball. (Here, 101 is
the surface area of 3f.)

Proof. Let u C() satisfy Au= 1 in 2 and u=0 on 12. Then:

(24) h= hAu uA h +
a

h -n U -n

Therefore, we see that

(25) 0=ah
Now choose hC()so that Ah=0 in a and h--Ou/On-Il/lOa on 0. Then (26)
implies that Ou/Onl--Ifl/lOl on , and the Serrin-Weinberger result completes the
proof of the proposition. Q.E.D.
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ON A SINGULAR NONLINEAR ELLIPTIC PROBLEM*

S)NIA M. GOMES"
Abstract. Elliptic boundary value problems of the form Lu=k(x)u in f and u=0 on the boundary

of f are studied where L is given in the divergence form, a > 0 and k(x) is a nonnegative measurable real
function. Existence in C1() and uniqueness of a solution u>__ 0 are established for the equivalent fixed point
problem u(x)= f G(x,s)k(s)[u(s)]-" ds, where G(x,s) is the Green’s function for the Dirichlet problem
associated to L in 2. Various inequalities for G(x,s) are proved and a study is made of the action of the
integral operator defined by the kernel G on unbounded functions with a prescribed growth near the
boundary.

Introduction. This paper concerns positive solutions of elliptic boundary value
problems of the form:

Lu(x)=- ai:(x)-x/U(X ) =f(x,u(x)) for
(0.1) i,j=

u(x)=0 forxOf,

where 2 is a bounded region in R", n> 3 and Of is the boundary of f. We will
consider nonlinearities of the form:

f(x,u)=k(x)u -’, t>0

where k(x) is a nonnegative measurable real function.
The main point of study here, besides the existence and uniqueness, is the behavior

of solutions near Of, where f is singular.
We say that u(x) is a solution of (0.1) if u satisfies

(0.2) u(s)] -as

where G(x,s) is the Green’s function for the Dirichlet problem for the equation Lu= h
in 2.

In 1 we establish various inequalities for G(x,s). Using these inequalities, we will
study in 2 the action of the integral operator defined by the kernel G on functions
h (x) which tend to infinity as x )f in a way we will make precise later.

The fixed point problem (0.2) may not have solutions in H(f). However, under
appropriate assumptions, we will prove in 3 the existence and uniqueness of a solution
u(x) of (0.2), continuously differentiable in 2. For this purpose, we seek a solution
written in the form u(x)=(x)ag(x), where CI()C2(f)satisfies LtI)(x)=l
forx and (x)=0 for x Of. The new unknown (x) must satisfy

(0.3) f, [,i,(,)]-oa,.

*Received by the editors March 30, 1984, and in revised form February 25, 1985.
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Consequently, instead of (0.2), we have a new fixed point problem, that is, ,t’ T F(q,),
where F()= [9(x)] and T is the operator defined by the kernel

N(x,s)

We determine C(2), bounded away from zero.
With this process we are "avoiding the nonlinear singularity" but, on the other

hand, we have to deal with an integral operator with a "bad" kernel. However, we still
have that T" C(2) C(2) is a completely continuous operator.

By using this idea, in [5] we have already proved analogous results for the particu-
lar case of the sphere and L A.

Singular differential equations like (0.1) arise in the theory of heat conduction in
electrically conducting materials as discussed in [3]. In that paper the authors treat the
existence question for the equation

ut-Au=f(x,t,u), xn, t>0,

coupled with initial and boundary conditions for a class of functions f which are
nonincreasing in u. Assuming that f(x, t, r) f(x, r) as , they obtain classical
solutions of the corresponding elliptic boundary value problem upon letting .

Later, the existence of classical solutions was obtained in [9] for elliptic operators
L more general than the Laplacian and for a class of functions f(x,r) with no
monotonicity assumption. The uniqueness was also obtained under appropriate as-
sumptions.

In [2] the authors considered generalized solutions by means of a nonlinear eigen-
value problem. They assume the continuity of the coefficients of L and f, that f(x,r)
is bounded from above for r> 1 and that f(x,r) z as r0+, uniformly for x.
For f(x,r)=f(r) they obtained bounds for the rate at which u(x)-O when x
and for [[grad u(x)

It is also interesting to observe that for 2 (0,1) R, the problem (0.1) appears in
the study of similarity solutions of one-dimensional initial value problems for diffusion
equations of the type Ut=(k(x)[Ux[N-lUx)x, N>0 (cf. [1]).

Singular equations like (0.3) have been treated in [8] where the existence of
solutions of

U(X) =folK(x,s)[ u(s)] -ads

is studied for a 1 and for positive semidefinite symmetric kernels K(x,s) satisfying
fK(x,s)ds>=6>O. That work was generalized for a>0 in [6] but, in both papers,
K(x, s) is supposed to be continuous for 0 __< x, s __< 1.

1. Inequalities for the Green’s function. Let 2 , n >= 3 be a bounded region of
class C 2. We consider a linear differential operator L defined by

i=1

where a,. C’X() for some 0 <X < 1 and a=a.
The operator L is assumed to be uniformly elliptic in the sense that there exists a

constant 7 > 0 such that

i--1 i,j=l i--1

for all x a and R".
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In what follows C is a generic constant which may be different at different places.
The function d(x) will denote the distance from x to

Let G(x,y) be the Green’s function of the Dirichlet problem for the equation
Lu h in f. Under the above hypothesis the function G can be shown to exist with the
following properties (el. [7]):

(a) G(x,y) is continuous in the variables x and y, x and y in f, with x4:y,
together with its first and second derivatives with respect to x

(b) LxG(x,y)=O in for x4:y.
(c) G(x,y)=O for x.
(d) G(x,y)= G(y,x).
Furthermore,

(1.1) (e) G- O([Ix-yll)2- uniformly in .
First we will prove the following further properties of G(x,y).
THEOREM 1.1. For x,y ,x 4:y, the Green’s function G(x,y) verifies:

(1.2)
(1.3)
(1.4)

G(x,y) <= Cd(x)[lx- yll 1-",
grad G (x,y) =< C[I x y ][1 n,
grad G (x,y) =< Cd ( y)l] x y

where the constant C depends only on and L.
In [10, Thm. 2.3], the author proves these inequalities for L=-A in

Lyapunov-Dini regions. We will use the same idea of his proof.
Proof of Theorem 1.1. First we observe that if D is the region defined by

D {x (x’ x.);x Rn-1 IIx II<land 1+1 IIx 2 )<Xn <2

then there is some so < 1 such that regions D congruent to D shrunk by a factor 1,/s
can be placed at every point xo Of in such a way that the bent part intersects Of at
this point only and the symmetry axis is along the normal, for all s < s0.

Let y be fixed. If d(x) >= s0 we have

d(x) Cllx-y

where d= diameter of f. Hence, by (1.1),

2-n
G(x,y)<= CIx-y <_ Cd(x)ltx-yll-

The same type of argument holds if d(x)<so but I[x-yll<2d(x). Thus it is sufficient
to consider the case d(x)<so and d(x)< 1/2[Ix-y[]. Let Xo Of be such that d(x)=
Ilx- xoll. At xo we place a region Ds as above, where

f IIx-yl[/4 if IIx-y[l<4So,
S--

so otherwise.

We may assume that x0 =(0,s/2) and that the direction of the normal to 2 at x0

is the x,-axis. In this way B N fl ( x0 ) where B is the ball B/2(0).
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3s/2

en-1

FIG. 1

We will construct "local barriers" at x0 as follows. For suitable positive constants
/3, and p, the function

Ws(X) s[(S/2) -p- IIx II-’]
satisfies:

Indeed:

L% >=O in

%>__ 1 in OD, n f,
%_>0 in 02nDs.

Lw,(x)=,pllxll-P-4{(p+2) aij(x)xixj
i,j=l

Ilxl[ _. a(x)+ _. a (x)xj
i=1 i,j=l OXi ij

Since the coefficients of L are bounded, there is a positive constant A such that

tw,(x) >= B, pll x II--[( p + 2) v_ A (1 + 2s)].
Now, if p is sufficiently large so that (p+2)-A(l+2s)0 for all SNSo, then
L%(x)O in D as asserted. If xDOa then [[x[ls and thus %(x)
B,s-P(2p- 1)= 1 provided =sP/(2p- 1). If u is the unit normal to at the boundary
point xo in the inward direction, then we also can see that

Ws(Xo+t ,)<__Cts
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where the constant C is independent of s. Indeed,

ws(x0 + t,) fls [(s/Z)-P- (t + s/2)-P] =f(t);

fs’(t)= flp(t + s/2)-p-l >= O and f"(t)= flp(p + 1)(t + s/2)-P-2 <= O. Hence fs(t)/t
_<f’(O)=ps-p-12p+1sp/(2p- 1)=ps-12+1/(2p- 1)=<4ps -1. It is easy to see that the
distance from y to D is greater than [[x-yl[/4 which implies that

(z,y)<=cll-yll-n fo zOO.
Now, we define o(z)=ws(z)-G(z,y)/Cllx-y[I 2-n. In view of (1.5), we have

Lv=Lw>=O in Dsnf, o>0 in3(DCqf).
Hence, o(z)>__O in Dcqf. In particular, for z=x=xo+d(x), we have that w(x)<=
Cd(x)s- and hence

G( x,y) <_ CIIx-y 112-"w, (x) <_ Cllx-y 112-"d(x)s -a.
If IIx -yll < 4So then s- 4/llx-yll and

Otherwise,

G(x,y) <= Cd(x)llx-yll-".

G( x,y) <_ Cd(x)llx y [ll-nllx-y II/So <= Cd(x)llx-y
1-n

and (1.2) is proved.
To prove (1.3), we consider first the points x such that d(x)> ]lx-y]]. Let B= Br(x )

where r--llx-yl]/4. Since G(x,y) belongs to C2,X(B) (cf. [4, Thm. 6.13]) and in view
of [4, Cor. 6.3], we can assert that

x-y grad G (x,y) c sup G (z,y)
zB

where C depends on the ellipticity constant 3’ and on the Ca(O) bounds on the
coefficients of L (as well as on n).

Hence,

grad G (x,y) =< CII x y
zB

cII x y II- 111 x y
2-"

If d(x)<=llx-yll we consider B=Br(x) with r=d(x)/4. By the same argument we
have

IlgradxG(x,y) II<= c[ d(x)]-1 sup G( z,y)
zB

Z C[d(/)] -1 sup d(z)II z-y
1-n

zB

=< C sup z -y
1-"

zB

CIIx-yll 1-".
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To prove (1.4), we first show that for fixed x fl

Ox--(x,y)--,o as y-, a.

Let p > 0, small enough such that

G (x,z) >= x z for x z p.

Now, let with t p/2. Hence, for lx- ll p and for some in the segment
Ix, x tei] we have

G(x te,)-G(x,) = grad G( z)l=

Since this difference quotient is zero for , this inequality holds also for fl B
where B B(x). Therefore, if y fl B we have that

I: lim
t0

Hence

G(x,y)O asd(y)O.Ox

Next, since LyO/OxiG(x,y)=O and using (1.3), the inequality (1.4) follows as in the
proof of (1.2).

2. Consider the integral operator defined by the kernel G(x,y). The proof of the
following lemma is analogous to that of [4, Lemma 4.1] and it is a consequence of (1.1)
and (1.3).

LEMMA 2.1. Let h 2 R be a bounded measurable function. If v(x) is the function
defined by

then

v(x)=G(x,s)h(s)ds,

/) C1(),

foOxiV(x)= ,,-xG(x’s)h(s)ds for allxa.

As we said in the introduction, we will study here the behavior of the function
v(x) when the function h goes to infinity on the boundary. More precisely, the
inequalities (1.2)-(1.4) will allow us to consider unbounded functions h with the
following condition on their growth near

(2.1) There is some 0=<<1 such that [d(x)]’h(x)L(f).
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THEOREM 2.2. If h’2-R is a measurable function that satisfies (2.1) and
o(x)= f G(x,s)h(s)ds, then:

(2.2) oC1(),

(2.3) xiV(X) =J-xG(x,s)h(s)ds for all xf.

Proof of Theorem 2.2. By virtue of (1.1) the function o is well defined. In what
follows, we will use several times the inequalities (1.2), (1.3) and (1.4). Let w(x)=
f8/SxiG(x,s)h(s)ds. First we will prove that w is well defined for xf.

(i) If x 2 and r < d(x), we have:

(ii) If x 02 and r > 0, we have:

Iw(x) l C[ fllx_sll< [d(s)] 1-11 x s II-nds + fl[x_s[l>r[d(s)]-llx-sllX-nds]
C fllx- s[[ < [Ix-sl[1-"-ds+rl-"fllx- s[[ >__

[d(s)]-rds

Next, we define h(x)=h(x),l(d(x)/e) where ,/ is the characteristic function of the
interval [1, + 0); that is, ,/(t)= 1 if t> 1 and /(t)=0 if < 1. Now h is bounded and
thus, the function

v(x)=fG(x,s)h(s)ds
is in C1() and /XiUe(X)= feO/OxiG(x,s)h(s)ds=w(x) for all x.

o(x)-o(x)= G(x,s)h(s)ds where 2= (xf; d(x)<e).

Hence,

Iv(x)-v(x) IL G(x,s)lh(s) IdsL [d(s)l-llx-slll-nds

< CE -z.

NOW,
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Thus,
(i) If d(x)> 2e ands then IIx-sll>=e>d(s)and

Iw(x)-we(x) [_< Cf
<_ cf IIx- II-"-’d

=< c x s p(1-E-’>ds t ( ae)1/q
x-sll<d

where p> 1 is such that p(n-1 +)<n, q=p/(p-1), d= diameter of a and is the
Lebesgue measure.

(ii) If d(x) we shall consider a partition of a as follows:

= {sea; llx-sll<2(x) ana (s)<(x)},
A= {sa; lx-sl<2d(x) and d(s)ad(x)}, and

A=-(AUA).
In this way we have:

Iw(x)-w(x) I<=11 + I_ + I where !j=L, ds.

I, <= C[d(x)ll-"-fA ds<= C[d(x)ll-" <= Ce1-,,

I:<= c d(s)]-’llx-sll-"ds<= C[d(x)l-"fAllx-slll-"ds<= C[d(x)] -,
<_

13"-CfA [.(s)]l-’rllx-sll-ndsCfA
<__ C x s llP(1-"-’ds

x-sll<d

For the last inequality we used the fact that if sA3, that is IIx-sll>__ 2d(x), then

d()- Ils-s011_-< IIs-xoll__< IIx-x
=< IIx- I1+ 1/211x-sJl= s/211x- II,

where x0 and so are in Off.
So, we have proved that Iv(x)-v(x)l<_Cd and ]w(x)-w(x)l<=C#(f)/q.

Consequently v and w converge to v and to w respectively as e-0. Hence,v C()
and O/Oxiv= w and the theorem is proved.

Remark. The first assertion of Theorem 2.2 above is well known under more
restrictive assumptions; for example if h LP(f), p > n. Assuming also that h satisfies
the condition (2.1) the Holder continuity of the gradv is stated in [10] for v C2(fl).
However, in the proof of Theorem 3.1 below, we will need, not only the regularity
condition (2.2), but also an integral representation for grad v, as stated in (2.3).
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3. The main theorem. In view of Theorem 2.2 above, we observe that if u(x) is a
solution of (0.2) and k(x)[u(x)] verifies the condition (2.1) then u C1(). In this
case, since O/Ovu(x)>O for all xO2, there are positive numbers/9 and O such that
Od(x) <= u(x) <= Od(x). Consequently, k(x)[d(x)] <= Ck(x)[u(x)] and
k(x)[d(x)] also verifies (2.1). Conversely, we will prove in the present section the
existence and uniqueness of a solution u(x) of (0.2), u(x) continuously differentiable
in f, provided that k(x)[d(x)]-" verifies (2.1).

Let C1()nC2(2) be the solution of

L(x)=l forxfl,
(x) =0 for xO.

We observe that (x)= fn G(x,s)ds and that 0/0v(x)> 0 for all x 3f.
As mentioned in the introduction, we will seek a solution in the form u(x)=

t(x)xP(x) where xI,(x) must satisfy (0.3); that is, the fixed point problem xI,= T F(q’)
where F(xI,)(x) q’(x)] and

f.rw( ) w(s)a .

We will determine the existence and uniqueness of the fixed point ,I,/ where
/= {vC(); v(x)>0 for all x} is the cone of the positive functions. For this
purpose we will prove first the following theorem"

THEOREM 3.1. If k(x)[d(x)] verifies the condition (2.1), then T" C(f)C(2) is
a completely continuously linear operator that preserves f.

Proof of Theorem 3.1. The complete continuity of the operator T in C(2) is
satisfied if it can be represented in the form

Tw(x ) fN(x,s )w(s ) ds

where the kernel function N(x,s) verifies the following condition:

(3.1) lim felN(x,s)-N(y,s)Id -O for all xO.
y--x

For this purpose we define for s f

N(x,s) O/avG(x,s)k(s)

for x ,
for x

LEMMA 3.2. Under the hypothesis of Theorem 3.1 andfor all x f we have:

(3.2)

(3.3)

lim N( y,s ) N(x,s ),
y--x

lim fuN(y,s)ds= fN(x,s)ds.y--x
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Proof of Lemma 3.2. Since e C2() and G e C2( { S }), we need to verify (3.2)
only for x e )f. By virtue of the continuity of grad and grad G up to the boundary of
f, we have"

G(x + G(x,s)t + El(X,t);

+ +

where limt_,oEi(x,t)/t=O uniformly for xe32. Therefore, given e>0 there exists

81 > 0 such that for all x e 3f and for 0 =< _< 61:
[N(x+tv,s)-N(x,s)[

8/v(X)El(X,t)/t-)/ivG(x,s)E2(x,t)/t

<e/2.
Since the direction of the normals is a continuous function on 2, there exists 82 > 0
such that [N(y,s)-N(x,s)[<e/2 for x and yeq with IIx-yll<82. Hence, given
x e ) and e > 0, let y e Fa be such that I[x -y[[ < 8, where a min{ 81, 82/4}. If
verifies d(Y)=IlY-I] then,

[Ix-y II=< Ilx-y II/ Ily-yll<-_21[x-y[[<26 <=/2<.
Thus,

IN(x,)-N(,) I<__ IN(x,)-N(Y,)1+ IN(Y,)-N(y,)
To prove (3.3), we proceed as in the proof of (3.2) observing that faN(x,s)ds=

F(x)/(x) for xef and faN(x,s)ds=O/OvI’(x)//OvO#(x) for xe0a, where

F(/) =fa G(x’s)k(-ds) C

Completion of the proof of Theorem 3.1. Now, (3.1) follows as a consequence of
(3.2) and (3.3) and the fact that if the functions g and gm e L(a) are such that
gm(x)g(x) a.e. and flg(s)lds--’flg(s)lds thenofalgm(s)-g(s)lds-,O. To con-
clude the proof of Theorem 3.1, we consider w(x)e K. Tw(x)= faN(x,s)w(s)ds is a
continuous function in f, Tw(x) _> 0 and Tw(x) 0 if and only if N(x, s)-- 0. But this
takes place only if k(x)--0. So, Tw is a strictly positive continuous function in f, that
is, Tw e 2, and the Theorem 3.1 is proved.

Now, for 0<e__<l we define f(t)=e-" for t<_e and f(t)=t for t>e. If
F" C(a) C(a) is such that Fw(x)=f(w(x)), then it follows immediately from the
Theorem 3.1 above, that T F’KK is a continuous and compact nonlinear opera-
tor. Under these conditions we will prove"

LEMMA 3.3. There exists a unique function ’ e such that

T F(I,) ,I,.
Furthermore, if 0 < e <__ <= 1 then ql <=

Proof of Lemma 3.3. Let R >__ 1 be a number such that 1/R <__ fa N(x, s) ds <_ R, for
all xe. For all weir, To F,(w)<Re-. If we define w(x)=Re-, then To F(w)>=
-1R e and if wl(x)=R-X-%, then To F(wl)w2. So, To F.[w,wE][wl, w]

where [w, w.]= (we C(fl); wl(x)<_ w(x)<_ w2(x ) for all xe }. Now, the existence of
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ff’[wx, w2], fixed point of To F, is a consequence of Schauder’s Theorem. The
uniqueness of q, is a consequence of the Maximum Principle (cf. [4, Thm. 8.8]).
Indeed, if q’.l and q’,2 are two fixed points and h(x)=d(x),l(X)-(x)q’,2(x ),
then h H(f) (in fact, h CX(), cf. Theorem 2.2) and

Zh ( x ) k ( x ) (x ) -a[L( xe,I ( X ) ) --L( xte,2 ( X ))

Let A be the open set {xf; xIte,l(X)> xIte,2(X)). For xOA h(x)=0 and Lh(x)<=O in
A. Hence, h (x)_< 0 in A. But this is a contradiction, unless A .

In the same way, if 0<e=<_<l, A=(x2; q(x)>xI,(x)) and h(x)=
b(x)xt’(x)-b(x)qg(x) then h H(f) and

Hence, h(x)=0 for xOA and Lh(x)<=O in A and so, h(x)__<0 in A which is a
contradiction, unless A .

We are now in a position to prove our main theorem"
THEOREM 3.4. If k(x)[d(x)] verifies the condition (2.1), then the problem (0.2)

has a unique solution u and u C1().
Proof of Theorem 3.4. As a consequence of Lemma 3.3 above we have that

q’(x ) >= q’l(x) > R for 0 < e =< 1. Therefore, if e R and q, q,,, then F(q,)
F(q,) and To F(q,)=To F(q,)=I,. Now, if u(x)=d(x)(x) then u verifies (0.2).
The uniqueness of u follows from the uniqueness of q’. In view of Theorem 2.2 we
conclude that u C().
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ELLIPTIC PROBLEMS ON UNBOUNDED DOMAINS*

RAINER JANIEN

Abstract. This paper considers elliptic boundary value problems on unbounded domains with possibly
unbounded boundary using the variational method. Since a nonvanishing harmonic function is not square
integrable on R", the construction of solutions in the usual Sobolev spaces, so successful for bounded
domains, must fail. Kudrjavcev [8], [9] showed how to circumvent this difficulty by introducing weighted
Sobolev spaces. See Besov et al. [3] for a survey on this method. Benci, Fortunato [2], Cantor [4], Janl3en [5],
Mulen [10], Owen [15], Vogelsang [16], and others, apparently independently, have seized upon this method
for treating elliptic problems on unbounded domains. This paper generalizes the method in two directions: 1)
We treat operators of all orders with Dirichlet, Neumann and mixed boundary conditions. 2) We impose
none of the usual restrictions on the coefficients of the operator (e.g. that they should converge to a constant
as Ixl ). The main tools are variants of the Poincar6 and Friedrichs inequality, respectively, and compact
embeddings in weighted Sobolev spaces.

Key words, elliptic boundary value problems, unbounded domains, weighted Sobolev spaces
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1. Introduction and notation. As mentioned in the abstract, we consider elliptic
boundary value problems in weighted Sobolev spaces. Before we give the definition of
these spaces let us fix some notation.

From now on let f denote an open set in R with boundary . Furthermore, let

C := (f: 2 R If infinitely often differentiable with compact support in f ),
C := {f: 2 R lf infinitely often differentiable in f },

Dif. Of
3xi,

i=l,. .,n,

Daf Ox OXn i=
,, where a=(al,...,a,,)(No)",

A positive-real valued, function p is called a weight function. If O is a weight function
and k N, then

(f g ) k’" -" fa o
lal=<k

:+ :zl’lD’fD"g dx

defines a scalar product on C’(f). The completion with respect to the appropriate

norm is called l}k,0(f); hence

Similarly we define

*Received by the editors December 19, 1984, and in revised form June 30, 1985.
Wissenschaftliches Zentrum der IBM, Tiergartenstrasse 15, 6900 Heidelberg, West Germany.
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where C(Rn) [ denotes the space of restrictions of functions in C(R) to f. For
X (Xl," ", Xn) Rn we need the following three norms

Ixll Ix, I, Ixl=- Ixl -max
i=l,...,n

Lq() denotes the usual Lebesgue space with IlJ]lq’- (f[l]qdx)1/q.

Remark 1.1. It is clear that 1’c Wf,o c W,o. The functions in Wf’ need not

vanish on the boundary as the functions in 1’ but contrary to W’ there is a kind
of growth condition at infinity.

Let us now sketch the plan of the paper. In the next section we prove variants of
the Poincar6 lemma and apply this to study the Dirichlet problem. The third section is
devoted to compact imbeddings and their applications. In the last section we shall
study the Neumann problem. There we shall again prove suitable variants of the
Poincar6 lemma, this time for functions which do not necessarily vanish on the
boundary. In most existence theorems we shall get explicit bounds for the norm of the
solution operator.

2. Dirichlet problem on unbounded domains. The Poincar6 lemma states that for
bounded domains f there exists a constant depending only on the diameter of f such
that for all fC() ffadx<=constflvfl2dx. It is easy to see that this is false, in
general, for unbounded domains. We prove now some variants for the weighted spaces.

LEMMA 2.1. Let p be a locally Lipschitz-continuous weight function with p(x)>__lxl
on f. Furthermore, let k N and q, R with q > 1 and > O. Then either of the two
conditions

(i) 1 -qkETDo(x)x
no(x)

>_ forallxa,

(ii) 1
qkFfDp(x)xg

<

_
for all xa

no(x)

implies that for allf C()

fp q <=h ( f ) o q.

Proof. Integration by parts implies

f
q q

f-- dx=-l fsign(f)D f---

q-n fsign(f)( Df kfDio iq_1xidXpk

f
q-1

xidx

Hence we have the identity

f
q

sign(f ) x Oif f
q-1
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(i) In this case the left side is fff/pklqdx. Since Isign(f)x;I/o<=l the HOlder
inequality for ql, q2 > 1, l/q1 + l/q2 1 implies that

f k

Choosing qx=q, q2=q/(q-1) and dividing by (f[f/pklqdx)(q-O/q, we get the
assertion.

(ii) In this case the left side is =< -f[f/J’lqdx. We divide by -8 and get

f f p pk-1

Ok l’ dx.

Now the assertion follows as in case (i). Q.E.D.
Remark 2.2. Of course we did not need the assumption k N in the proof of

Lemma 2.1. Furthermore, it should be noted that in case p(x) grows stronger than
O([x[) the estimate [sign(f)x;/p]<= 1 is not sharp. This observation leads one to sharper
estimates and yields essential improvements for second-order operators (see JanBen
[6]).

THEOREM 2.3. Let f, p, k, n, 8 fulfill any of the following conditions:
(i) p(x)=(l+[x[), a>=l, n-2ak>O, 8=(n-2ak)/n.
(ii) p(x)=(l+lxll), a>=l, n-2ak<0, 8=(2ak-n)/(n+2ak), r=2n/

(2ak n), f c { x lxll >_- r ).
(iii) 2k <n, p(x)=([x[i + c) ln([x[x + c), c=exp(4k/(n-2k)), 8=(n-2k)/(2n).
(iv)2k>n, p(x)=(Ixli+c) ln([x[l+c), 8=(2k-n)/(2n), let r, c be chosen

such that for [Xix>=r we have Ixl ln(lxll+c)+lxli>_((2k+n)/4k)(lxli+c)
ln([xlx + c) and f c (xiix >__ r ).

(v) p(x)=xi, cR+Rn-x, 8=(2k- 1)/Vrff.
(vi) f=R+R+, p(x)= dist(x, }2) min(x, x2), 2ak4:n=2, 8 (n 2ak)/n.

Then for all fe V"()

dx<_
pk-

dx.
pk -n6 2

Proof. (i) Dip=a(1 +[x[1)’-Xsignxi implies that

1-
2k Dipxi 1

2ak [x[1
>1

2ak
np /’/ l+]xJx n

Now Lemma 2.1 implies that (after squaring both sides) for all f

(f)2 4 (,(f( Dif)2 )1/2)2 ’S( )4 Dif
2

dx <= 26 2 pk-i dx <= pk-1
dx.

pk n n82
0

Since C() lies dense in Wk’P(), this gives our assertion.

(ii) As above we get

2k
1 ,DiPxi 1

np
2ak Ixl 2ak r

<1 -8.
n 1 +lxl- n 1 +r
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Now multiply by -1 and proceed as in (i).
(iii)

l_2kF’DiPXi=l_
np

2k Ixlt(ln(Ixl + c)+ 1)
n (Ixlx + c) ln(Ixlx + c)

(iv)

2kEDipx 2k 2k + n
<1

np n 4k

(v) Since

dy---- 27.)1(4) ,4, yl dy

( )2
we get

)2_ dx)l/2
We divide by IIxi-ll, square both sides and thus get the assertion.

(vi) We have

if x < x_
p(x)-- xl

elseX2

--dx<-2k 1 f xf- 

1/2

a-1 if X <XDip(x)= ITX1 2’

0 else,

0
D2P(X)=

olx-I
Now ,Dioxi--oqo and hence

1 2__k E DiPXi-- 1 2a___k 3.
np n

if x

else.

Lemma 2.1 then implies the assertion as usual. Q.E.D.
Remark 2.4. (i) If the assertion of Theorem 2.3 holds for a weight function p and if

t5 is any other (not necessarily continuous)weight function such that Clp(X)<=(x)<
cap(x ) for all xf and some constants cl, c2>O, then an inequality of the same type
as in Theorem 2.3 holds for --only the constant 4n-i3-2 has to be changed!

(ii) Mazja [11] studies Poincar6-type inequalities using capacity theory. But the
constants appearing in his conditions are hard to compute or even prove finite, espe-
cially in the critical cases n __< 2k.

(iii) Using a suitable transformation of the coordinates, we can of course replace
the condition on f in Theorem 2.3(ii) and (iv) by 2 4= Rn.

The next examples show that the conditions on 2 cannot be relaxed, at least for
k=l.
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Example 2.5. (i) Let n 1 and O be a weight function which is less or equal than
one on the interval [- 1,1]. We consider the functions

if x [0,1],
if x (1,m+l),
if x>=m+ 1,
if x_<O.

Then for all m N

f[ fo-2dx>= fdx=2m2 and dx<=2m.
o

Hence there cannot exist any locally bounded weight functions p and any constant K
such that for all f C(R)

(ii) Now let n 2 and p be a weight function which is smaller than or equal to one
on the unit ball K(0,1). For m N, r R + we define

m if r [0,1],
gm(r)’-- m-lnr if r(1, expm),

0 if r >__ exp m.

Then

2

fR2gm([X[)2p-2(x)dx>=rm and .fR(Digm(IX]))2dx=wrm
and again there cannot exist any locally bounded weight function p and any constant
K such that for all fC(R)

2

COROLLARY 2.6. Let 0 c R", p be a weight function, ko N. If a, p, k, n fulfillfor
any k <= ko any of the conditions of Theorem 2.3, then there exists a constant K, which can

be computed explicitly, such that for all f V’(a)

2E D’f I1 =< E P- +I"ID f Z Df I1 .
lal=ko lal_-<ko Il=ko

Proof. The proof follows immediately from Theorem 2.3 by induction. Q.E.D.
We shall now apply our theorems to the Dirichlet problem on unbounded do-

mains. The proof follows the philosophy of J. Wloka (see [18]).
THEOREM 2.7. Let , p, k, n fulfill the assumptions of Corollary 2.6. Furthermore,

let Au’= ll,I/31z k(--1)llD(a/Du) where the matrix (a/3)11__131__ k is assumed to be
uniformly positive definite and

(i) a,/ Lo for I1 I/1 k,
(ii) a 0 for k < I1 / 1/31 < 2k,
(iii) D V( a,#)p2k-I/3+’-vlL for Icl+l/l__<k, ,__<,.
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Set

a(u,o) "= fa,lDuD%dx.
Then there exists a o > 0 such that for all X > o and allf ( Vk’(f])), there is exactly

one u V’(f) such that for all v V"(f)

b(u,v) "= a(u,o)+Xfauop
The operator A + ,p-2k. Vk,o( Wk,,), is a topological isomorphism.

Proof. b is for all X R a continuous bilinear form. From the assumptions on the
coefficients and Corollary 2.6 we conclude that

(2) a(u,u)= 2 fa.tD"uD"udx+ E [a..D"uD"udx
II=IBI=A Il/lBl<k

l,l/IBl<k ,<,

where c are positive constants. Now let c > > 0 and e’= 2(c3- )c-t; then

(3) c4[I u II ,oll u0 C4t2-111 u I[,o + 4(2e)-111 uo-
(c 8)ll u II],o + c42(4(c3- ))-111 uo-

For any X>X0"= C42(4C3) -1 exists a 8>0, such that )k >= C42(4(C3 J)) -1. For this 8 it
follows from (2), (3) that b(u,u)>Sllull 2 i.e. b is coercive. The Lax-Milgramk,p
lemma (see e.g. Oden, Reddy [13]) gives us then the assertion. Q.E.D.

Remark 2.8. (i) X0 can be computed explicitly using Corollary 2.6 and bounds on
the coefficients.

(ii) The conditions on at for [al+lfll<2k will be weakened considerably in the
next section. But then we use compactness arguments and shall not be able to compute
X 0 any more.

(iii) We can also treat mixed boundary conditions in this way. For an example see
JanBen [5].

3. Compact imbeddings. In this section we study compact imbeddings and some of
their consequences. We shall need some geometric properties of f and the weight
function p, which we shall provide in the next definitions and lemmata.

DEIYITION 3.1. Let N, 0 =< x _< 1 (for l= 0 only x 0 or 1).
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(i) The function f" 2 R belongs to CZ’)(2), if the numbers

supID"f(x)l,

sup IDf(x)-Df(Y)I
x,yf ix-yl

sup IDT(x)-DT(y)I,
x,ya Ix-yi

are all finite.
(ii) A one-to-one mapping T" ’ c R is called a C(t’]-diffeomorphism if the

components of T resp. T-x belong to C(t’]() resp. C(’](’) and for
]det(3T/3x)(x)[Nc < m for all x.

(iii) c R" is called (/, x)-smooth if for all x a there exists a neighbourhood Ux
such that U is (/,x)-diffeomorphic to the unit cube W at which (all mappings are
one-to-one, onto)

flnU Wn {x,>O},
CnUxWn(xn<O}

LEMMA 3.2. Let T" ’ be a C ’)-diffeomorphism. Then the pullback operators

are continuous for L + and hence

W’,,(e’) W’,O" ().

Proof. Analogous to the case O 1, see e.g. Wloka [18, p. 86ff], or Adams [1].
Q.E.D.

DEFINITION 3.3. A weight function p" RnR+ is called translation, and dilation
invariant (td-function) if for all K0> 0 and all xo R" there exists a constant K such
that for the mapping T" R"
Ko(Tx), where K as a function of K0, x0 is locally bounded.

LEMMA 3.4. (i) 1 + IX and ln(lx + 2) are td-functions.
(ii) If Pl, P2 are td-functions, then the same is true for Pl"O:, O] for any c > 0 and

also any weight-function O with c{pl < p < ClO, c > 0 is a td-function.
(iii) U O is a td-function andf" R + R + increasing, then f O is a td-function.
Proof. Left to the reader.
LMMA 3.5. Let M R +, Ko R + and xo R" such that Ko + IXo] M. If O is a

td-function, T(x)’= Ko(x-Xo) and "= T, then for all lN, Wt’() Wt’(’).
The norms of the pullback operators depend only on and M.

Proof. T is a C-diffeomorphism. Lemmata 3.2 and 3.4(ii) imply W’()
W’(’) and the continuity of the pullback operators. Since by Definition 3.3 K as a
function of Ko, x0 is locally bounded, the norms depend only on M (and of course 1).
Q.E.D.

LLEMMA 3.6. Let T" ’ be a C -diffeomorphism, L + 1. If O(x)=f(1 + Ixl),
f: R + R + increasing, then for all L + , Wt’() Wt’(’).
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Proof. p is a td-function; hence by 3.5, without loss of generality, 0f’,
T(0)=0. T, T-x are Lipschitz continuous; hence there exists a K >0 such that
K-{llxl<=lTxl<=KllXl. Since f is increasing, it follows that p(K{lx)<=p(Tx)<=p(KlX).
Since p is dilation invariant, there exists K2>0 such that Klp(x)<=o(Tx)<=K2p(x)
and Lemma 3.2 gives us the assertion. Q.E.D.

Before we proceed, let us fix some more notation. If k N, O is a weight function
on , then M,p denotes the operator which assigns to any measurable f" 2 R the
function Mk,p(f)’= p-k.f. If q" ---, R is measurable, then M,(f)’= q.f. Let E c
(xR"llxl=l), xoR", r0>0 then

S(xo,ro,Y)’= (Xo+t.olro<=t,
For a>= 1 we introduce the following abbreviation, where t(x)=(Ixl) (for shortness
0(Ixl))

f, fva-np2(k-1)(v) dv ,-1I(a,n,k,o) "=
o(u) " "

Furthermore, we shall need the following well-known theorem due to Kolmogoroff (for
a proof see Yoshida [19] or Voigt and Wloka [17])"

Kc L2(f) is relatively compact iff the following three conditions hold"
(K1) K is bounded in L(2);
(K2) limb_, 0 f[/(x + h)-f(x)12dx=O uniformly for all f K;
(K3) lima flxl> a[[(x)ldx=O uniformly for all f K.
LEMMA 3.7. Let f=S(0,1,Z), kN, p be a weight function with p(x) "= tS(Ix])

(for shortness p([x[)) andf C(f) with Iljqlk,o<= 1 andf(o)=O for o Y. Then

ff f2(x)p-2k(x)dx <=I(a,n,k,p).
c{Ixl>a}

Proof. We introduce polar coordinates x T(u, al,. ., a 1)-
X --/’/COS Ot

X 2 U sin 13/1 COS O2

xn- u sin a sin a,_ 2 cos a 1,

x, u sin a sin a._ 2sin a,_ 1,

where 0__<u<oe, 0__<a,_l__<2r, 0=<ai=<r for i=l,...,n-2 and set f:=foT. Since
f(1,al,...,a,_l)=0 for (al,...,a,_l)T-l(1,X)=: we have for x=
T(U, al,..., a,_l) f] that

This implies that
2

[f(U O ",On 1)12 --flu,’" -O (O,al,.. ",Otn_x)do

(flUl(Of/OU)(U,Oll,i.i, Oln_l)[ 2 )2o(n- 1)/2. p(k- 1) ( U )" O(1 n)/2 do

_<-f(u,n,k,o) f ](Of/Ov)(v’ai"
i3i )-

an-i)]2 .vn-idv
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where F(u, n, k, p)’= fvl-no2(k-1)(v)dv. We multiply both sides of the inequality
by II’--(sinai) "-i-1, integrate with respect to a:,..., an_: over 2 and since

_(y) < _xi(TY ) OTi :
Of(Y) E (Ty)

and [[[ k, 1 we arrive after a coordinate transformation on the right side at

n-2

f... f [f(U,ax," ",n_l)2 (sinai)n-i-Ida1 dan_lf(u n, k, p).

Multiplying by u"-Xp-2(u), integrating with respect to u from a to and transform-
ing the coordinates on the left side, we finally get the assertion. Q.E.D.

LEMMA 3.8. If p, k, n fulfill any of the following conditions
(i) 2k> n, o(x)= (Ixl+ 2) ln(Ixl + 2),
(ii) p(x)=(]x]+ 1) c, c> max(1,n/2k),
(iii) p(x)=(lx]+ 2)’ln(lxl+ 2), c> 1, n=2kc,

then p is a td-function, p- L2(R) and lima I(a, n, k, p) 0.
Proof. Lemma 3.4 implies that all functions are td-functions. In all three cases we

easily see that f p-2k(u)u"-X du< and hence p-k L2(R).
(i) Set F(u,n,k,p)= fvX-"p(k-X)(v)dv; then

Since 2k > n we have m’= 1 n + 2(k- 1) 0 and hence

F(u,n,k,o) fvmdv Um+l-2k U
<c <c2 =c

02 (u) ln (u+2)  ln2(u+2)
For a 2 this implies that

1 C a+m
I(a,n,k,o)<c du= O.

uln2u lna

(ii) Now we define m’= 1 n + 2(k- 1)c. Then

F(u,n,k,o)Nc4 vmdv.

Case 1. m<-1. Then F(u,n,k,O)Nc4 and hence I(a,n,k,o)Nc4fu"-kc-1
du 0 for a m since n 2kc- 1 < 1.

Case 2. m=-1. Then F(u,n,k,o)Nc41nu and hence I(a,n,k,o)Nc4fln(u).
u"-2k"-duNcsfu-l-duO for a where we choose 8>0 such that lnuN
csu/c4 and n 2kc- 1 1 2.

Case 3. m> -1. Then F(u,n,k,O)Nc6u+l and I(a,n,k,O)Nc6fu-C+duO
for a , since -2c + 1 < -1.

(iii) For a 2 we get

fvl-2dv 1 c a
I(a,n,k,O)<c7 .u"-lduNc7 du= O. Q.E.D.

u k’ln u u In u In a

THOM 3.9. Let O, k, n fulfill any of the conditions of Lemma 3.8. Then
Mk,o Wk’(R) L(R") is a linear, continuous and injective operator with dense range
which maps bounded into relatively compact sets. (Henc@rth we shall call a mapping with
these properties a compact imbedding.)
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Proof. Obviously, Mk,0
is linear, continuous, injective and has dense image. Let

C(R") with suppq c K(0, 2) and qa(x) 1 for x K(0,1). Since

Mq,, "W"(R") l’(K(0, 2)) -- IV(K(0, 2))

is continuous, we get from the imbedding theorems on bounded domains that

Mk,oo Mq,, W"o(Rn)Lz(K(O,2))cL2(R")
is compact. If we define qb_: 1- ql, then the derivatives of q’2 have compact support
and since the weight functions are bounded from above and below by positive con-
stants, it follows that

m,l,2 wk’o( Rn) -) vk’( Rn\K(O, 1))

is continuous. Since Mk,o M,,o M, + Mk,o Mq,2, it suffices to show that

M,,o ( Mq,2( K )) L2 ( Rn\K(O, 1))

is relatively compact where K’= {f W’’ IIjql,,o<= 1}.
Now (K1) is immediate and (K3) follows from Lemmata 3.7, 3.8. Since M,2 is

continuous, there exists c > 0 such that

M,2(K) c(f C(e") II1]1 ,o__< el, suppfC Rn\K(O, 1)
So let f C(R"), IIJql,o=< Cl, suppfc Rn\K(O, 1), Then

,P ,P }2 dxf[M (f)(x+h) M (f)()

f(x+h) f(x) 12-( -x ;-hi i-x-i
f(x + h)ok(x)-f(x)o’(x)+f(x)ok(x)-f(x)ok(x + h)

o*(x+h)o()

2

2

_-<2f{ (<vf(x+t)l>t)=o(x+h) (v0 (x + ,h)Ih>
o(x + h)

x

_<2lhl2 Ivf(x+th)l z f(x) dxdt (since 0 is a td-function)

<c3lhl
2
0 for [hl0

where c does not depend on f (only on ca, k, 0). This implies (K2) and hence the
assertion is proved. Q.E.D.

COROLLARY 3.10. Let fcR", k, n, 0 as in Theorem 3.9. Then Mk, V’(f)
L2(2) is a compact imbedding.
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Proof. Let Fa" gk’o(a) ---) /gk’(Rn) be the natural continuation operator (zero
outside 2) and Ra L2(Rn)L2(f) the restriction mapping. Then Fa, Ra are con-
tinuous and hence

Ma =R oMR"o
k,p f k,p Fa

is compact by Theorem 3.9. Q.E.D.
If there is a continuation operator for the spaces W’, i.e. a continuous, linear

mapping Fa" W,O(a)--,W,O(Rn) with Fu(x)=u(x) for all xa, uCk(a)cl
Wk’(f2), we can easily transfer Corollary 3.10 to these spaces. We now give some
examples where such an operator exists.

LEMMa 3.11. Let { x Rn x,> 0}. Then there exists a continuation operator.
Proof. Use the method of Hestenes, see Adams [1], Wloka [18]. Q.E.D.
Remark 3.12. By multiple application of Hestenes’ construction we can of course

also construct continuation operators for orthants and similar domains, e.g. { x R31xl
>0 and x?_>0}.

LF,MMa 3.13. (i) Let be c(k’)-diffeomorphic to a domain a’ for which there exists
a continuation operator for <__ k + x. Then there exists also a continuation operator for
and < k + x.

(ii) Let 2 be (k, x)-smooth with bounded boundary. Then there exists a continuation
operator.

Proof. (i) F’= *T Fe, *T-1 (see Lemma 3.2).
(ii) Cover 3f by small_ neighbourhoods U, j 1,. -, m from Lemma 3.2(iii). Then

(with Uo 2) we have f U.j=o U. Let eta, j= 0,-.., m be the appropriate partition of
the unity. Then ao is equal to one outside U’ U; hence all derivations of a0 (and of
course those of %, j= 1,..., m) vanish outside a bounded ball and hence IDa%
stays uniformly bounded. This implies that Ma;" Wt’o(Uj. f)--* WZ’(f) is continuous
and their norm is uniformly bounded. By (i) we can extend af for j= 1,.-., m to

Uj.(f WZ’(f)). Adding these local extensions to a0f, we get an extension with support
in U.j=0 Uj. and can extend by zero to the whole space. Q.E.D.

THeOReM 3.14. Let f =U1Nfi, where there exists a continuation operator for each fi
and p, k, n fulfill the conditions of Lemma 3.8. Then Mk,o W,O(f)--,L(a) is a
compact imbedding.

Proof. For N=I, analogous to Corollary 3.10. For N> 1 let (q,j.)j.N c
with ]lqjllk,o=<l. Then j W,O(fi), i=l,..., N and there exist (eventually after
passing to some convergent subsequence several times) i L2(f;) such that M,oq
in L?_(a). Now define

i-1

q’=+, ona\ uat, i=I,...,N.
/=1

Then M,oq q in L(2)and M,o is compact. Q.E.D.
For n > 2k the conditions on the weight function are very restrictive (see Lemma

3.8). This defect can be removed if we add a decay condition at infinity, i.e. we consider
now the spaces W,}’.

LMMa 3.15. Let n > 2k and c > 1 be such that n > 2ke + 2(1 c). If 2 S(O, 1,
and p(x) (1 + Ix l) then

n(Ixl>__a) ok(x)
dxO asaao

uniformly for allf W,.’() with II/ll,o=< 1.
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Proof. Let fC(Rn)la, introduce polar coordinates x= T(u, ai,.. ",an_l) and
set f: f T. Then

Similar to Lemma 3.7 this implies that

f2(/) G(u,n,k,p); u

where G(u,n,k,O)’= f -,p2{-}()&. Since

G(u,n,k,p) n-1 2-2c

’; U dUCla

the assertion follows from c > 1. Q.E.D.
TnOM 3.16. Let n> 2k, d> 1, n> 2kd+ 2(1- d), p(x)= (1 + Ixl). Then
(i) M,o" W’(Rn) L2(Rn) is a compact imbedding.
(ii) If =U and for each i exists a continuation operator, then M,"

W,)’() L2() is a compact imbedding.
(iii) For any c R M,o W,’() L2() is a compact imbedding.
Proof. Analogous to that of Theorem 3.9, Corollary 3.10 and Theorem 3.14, using

Lemma 3.15 instead of Lemmata 3.7, 3.8. Q.E.D.
Tnuou 3.17. Let M,o W’()L2() be compact for 1 5j k. Then for any

e>0 there exists a c(e)> 0 su& that for allf W’()

lalSk-1

(similar for ’, W’).
Proof. Suppose the assertion wrong. Then there exist e > 0 and a sequence fm W’

with [[f[l,o 1 such that for all m N

From the compactness it follows that there exists a subsequence (again denoted by fro)
and gL2 such that Dfp-+llg for lalsk-1. We define h:= gp+l<. Then
Dho=h in the sense of distributions. Since I[fll,ol (,) implies that [Ifm9-ll0
and g0=0. Hence h o and also h=0 for lalsk-1. Going to the limit in (,) ts
implies that 0 > e and this is the desired contradiction. Q.E.D.

Remark 3.18. (i) Theorem 3.17 is a generalization of Ehrling’s lemma (see Wloka
[81).

(ii) Benci and Fortunato [2] prove an imbedding theorem of the following kind:
Let ’= +-p-, +(x)0 for Ixl m then M" W’ L2 is compact. This result can
also be applied to study Fredholm properties of elliptic operators but from it we cannot
derive Ehrling’s lemma or variants of Poincar6’s lemma for functions not vanishing on
the boundary (see }4).

(iii) Imbedding theorems for weighted Sobolev spaces have also been studied by
Otelbaev [14]. Contraw to our result, there p- has to grow sufficiently fast.

As an application of these imbedding theorems we study again the Dirichlet
problem.
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THeOReM 3.19. Let f, O, k, n fulfill the conditions of Corollary 2.6 and Theorem
3.17. Furthermore, let Au:= Ell,i/l_k(-1)llD"(a/Du) where (at)ll=ltl= k is uni-

formly strict positive definite and apz-Il-ltlL. Again let a(u,v)’=
f a#DuD%dx; then it follows that

(i) There exists X o such that for all f V’(2))* and for all > o exists one

and only one u Vk,o( ) such that for all v V,o 2 )

b (u,

(ii) A + X0-2" ’(2)(,0(fl)), is an isomorphism for all X> X o.

(iii) A" W’’(f) ( 1,,0(f)), is a Fredholm operator with index zero.

(iv) There exist only countably many , such that Av+ p-2kv=0 admits a nontrivial
solution. These eigenvalues have no finite accumulation point.

Proof. b is continuous and from Corollary 2.6 and Theorem 3.17 we get

Set )to= c2. Then the Lax-Milgram lemma implies (i), (ii). Since M,o is continuous it

follows that the dual mapping M* *k,o L( is also continuous; hence
henceM* Mk is compact. Identifying L2= L* it is easy to see that M,of-fo k;,p ,p 2

k,of=p-2V. Define_ L’= A +X, X>X0. Then A=L-X. Since L is an isomor-
phism by (ii) and M is compact, (iii) follows. Now the esz-Schauder theory applies
to the operator I + L-1 M This implies (iv). Q.E.D.

4. The Neumann problem on unbounded domains. In order to study the Neumann
problem by the variational method, we need suitable variants of the Poincar6 lemma.
On bounded domains we have (see Ne6as [12], Wloka [18])

wk<const ID"f 12dx+ E
=k lal<k

fD"fdx
We first apply the compactness theorems of the last section to get a generalization for
weighted spaces. Then we get it for convex domains and compute the constants
explicitly. Furthermore, we prove generalizations of Friedrich’s inequality. As an appli-
cation we study the Neumann problem. Before we begin with this program, let us fix a
notation. By QI, lNO we denote the set of all polynomials in x R" of degree less
than or equal to l. For a multiindex a (N0)" we denote by q, the monom q,(x):= x.

THEOREM 4.1. (i) Let 2, k, n, p be such that Mj o" wJ’(’)- L2(f) are compact
for 1 <=j <=k. Furthermore, let p- L2( for som l>= 1 and let there exist a set
I ((No)l Il<k) such that Wk’(f)Qk_=span{qlaI}. Then there exists
a constant c > 0 such that for all u Wk’()

k,o<= c Daul2dx+ E
=k

(ii) The assertion remains true if we replace everywhere in (i) W, by Wf’.
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Proof. (i) If the assertion is wrong there exists a sequence u. Wk’, []Um]lk,o--1
such that

s s )=k aI

This implies that [IDull0 for m, [al=k. As in Theorem 3.17 we get functions
g such that [[Dup-+li-g[[O for m and [a[<k. We define h’= gp-Il
for lal<k and h=0 for lal=k. Then Dho=h for [al<k and from Dho=O for
[a[=k we get h0

_
1. Since p-#L (1) implies that

(2) fD:ho--+:dx=O for aI.

Since h0=limu (in W’) we see that on the one hand Ilh0[[,= 1 and on the other
hand ho=Eaq, aR; hence (2) implies h0=0. This is the desired contradic-
tion.

(ii) Obvious. Q.e.D.
Now we are going to prove another variant of this type of inequality where we

shall be able to compute the constants explicitly.
THeOReM 4.2. Let be a convex domain, p a convex function and p 1 +[xl,

p-lxlL and set PI’= liiXip-IiI P2 "= [IP-li[ 2" -k ., P =lip Then for all u
W,"()

( 2n(pl + P2) IVu[ 2 1 uup-)2dx <
P3 p2(k- 1)

dx + p3 dx

Proof. From u(y)-u(x)= fO(V u(x + t( y- x)) [( y- x) ) dt we get

)2 )2u(y-2u(y)u(x)+u(x Ivu(x+t(y-x))121y-xl2dt.

Multiplying by p-2(x)p-2(y) and integrating with respect to x, y yields

’ff ivu(x+’(u-x))l ixi

1SS Ivu(x+ t(y-x))121yl 2

+2
o(x)o(y )

axayat.

We estimate the first summand in (3); the second is treated analogously. Set
(t,x,y)’= x + t(y-x); then from the assumptions on p it follows that

fol/2fflvu(’(t,x,Y))121xl’(x)-(y)
dx dy dt

fol/2f -2 f Ivu(@(t,x,y))l 2

<= P (Y)
(p(x)p(y))2(!-1)

xyt

2 IV U _(/_.__X_,.y !.)_J 2_ dx dy dt ---: Iii/,x,y))2(k_l)
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The mapping (t, .,y):f(t,f,y)=:f ycf is differentiable and bijective for all
t[0, 1/2], yf. The inverse is (t, .,y)-tix):= (z-ty)/(1-t). For the determinant
of the Jacobian of this inverse we have IJt,-yll=(1- t)-" <=2" for all t[0,1/2]. We
transform the coordinates and obtain

=0 0-2(Y)
,,.v O(z)2’k-) lJ-11dzdy

f dz dy dt

=2"-%.f 0(z -)

Furthermore, we have

f ff Ivu(’(t’x’y))12lxl2
/2 O2k(x)oZ(y)

" - ,i----) dy dx dt =: 12
/2 O((t,x,y))

Now we consider the transformation (t,x,-). For the determinant of the Jacobian of
the inverse we have -t -n=2Jt,x ]= < for all [1/2,1] and x f. A similar reasoning as
above implies

Ivu()lI<=2"-of o,------_-;(f) az.

The same estimates hold for the second summand in (3). Adding these estimates we
obtain the conclusion. Q.E.D.

COROLLARY 4.3. Let f, 19 be as above; then there exists a constant c, such that for
all u W’(f)

2 + D’uo dx

Proof. Simple induction. Q.E.D.
We now turn to Friedrich’s inequality. In this inequality appear some boundary

integrals. So before we can proceed, we need a trace theorem for weighted spaces in
order to ascertain that these integrals exist.

DEFINITION 4.4. The boundary Of of a set f c R is called uniformly locally finite
Lipschitz continuous (ulfL) if there exist numbers L, a, /3 > 0 and KN as well as a
covering ( U }i N of 0f such that

(i) At most K different U have a nonvoid intersection, i.e., U2(t),..., U2(c+t) (U)
implies nL+ v.()= e.

"RnR" (Yl,"" Y(ii) For all U there exists an orthogonal transformation A
are the new coordinates) and a uniformly Lipschitz continuous (with Lipschitz constant
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L, independent of i) mapping ai:R"-lR such that for W,:= ((Yl,’",Y,-1)I
lyl =< ) we have

u/c 0f {(y,..., y,)I(yl,"" ", Yn-1) W, y,,=ai(Yl,... Yn-1)},

Uc {(yt,..., Y,)I(Y,"" ", Y,-) w,
ai(Yl," ", Yn-)<Y,, <ai(Yl," ", Yn-)+ },

u/c c- {(yl," ", y)I(yl,’", Yn-x) W,
ai(Y,’’’, Yn-1)--fl<Yn<ai(Yl, "’’, Yn-))"

LEMMA 4.5. Let B, BiBorel(Rn), Ix be a measure on Borel(R’). If B=I.J=IB
and at most K different B have a nonvoid intersection, then Y’. l*( Bi) <= glx(B ).

Proof. Let P(m)’= (Pj}jj be a pavement of I,.JBi, i.e., the Pj are pairwise
disjoint and

(i) for all Pj exists a B;(j), such that Pj. c Bi(j)
(ii) Bi=l,J p Bi P,
(iii) tO B; U,, P(m) P"

Then it follows that
m m

( )
Pc E PP(m) PP(m)

for all m N and hence the assertion. Q.E.D.
THEOREM 4.6. Let have a ulfL-boundary and p 1 be a td-function. Then there

exists a continuous, linear mapping T" Wk’O()L2,p-() such that for aO functions
u Ck() Wk’() there holds To= via.

Proof. We work with the new coordinates (Yl," ", Y,) and set y’=(y,..., Y-I).
Now fix iN and +’= {yly’W, ai(y’)<y,<ai(y’)+} and let uC()
W’() then for (y’,z) +

u(y’,ai(y’))= D.u(y’,y.)dy.+ u(y’,z)
i(Y’)

and hence

u( y ai(Y’)) 2 l’ai(Yt)q-[ 2 )2’, =<2/,(y,) D,u( y ’Yn) cly+ 2u( y’ z

We divide by p2k(y’,a;(y’)) and since p > 1 is a td-function

2u( y ,ai(Y )) f.,(,’)+# [D,u( y’,yn)[ 2

’; ;5i 2C1 a,(y’) p2(k-1)(y’,ynS dyn + 2c2

Integrating over y’ and z, we conclude

fw. u(y"ai(y’))2 [Dnu(y"Yn)[2
+ P:(-)(Y’,Y,,i

u(y’,z+ 2C2
.+ p2k(y’,z)
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The surface element is ds=(1 + 2_(Djai)2)l/2dy and since IDjail<=L (see Definition
4.4), A orthogonal we obtain after transforming back to the old coordinates

2

and hence (c is independent of i)

SU20- 2k ds C E u

Lemma 4.5 implies the assertion. Q.E.D.
TI-IEOREN 4.7. (i) Let f have ulfL-boundary and Mj o

Wg’(f) L2(f]) be compact
for 1 <=j <= k. Furthermore, let O- L2 for some > 1, { (No)" II1 < k ) such that
Q,_x n Wk’(f)= span{q [a I } and there exists no polynomial which vanishes identi-
cally on Of. Then

So, + S ou2 -
& an equivalent Hilbert space norm on Wk’(2).

(ii) If we replace everywhere W’ by W<}’ the same statement holds.
Proof. (i) From Theorem 4.1 we see that (FII=IIDulI)112 is equivalent to the

quotient norm on W’o(2)/Q_x and from the assumptions on 02 it follows that
fau20-2ds is a norm on the finite dimensional space Q-x n W,o(2). This readily
implies that Ilull-’= Eii=llD"ull + foau2p-2Cds is a Hilbert space norm on
Wk’(f)--it remains only to prove the completeness of W’ with respect to this
norm. Since the imbedding (Wk’(f), [[.[[,o)(Wk’(f), [1"[I) is continuous by Theo-
rem 4.6 and bijective, the assertion follows from the isomorphism theorem of Banach.

(ii) Obvious. Q.E.D.
Now we shall prove variants of Friedrich’s inequality without using compactness

theorems. Again we shall be able to compute the constants.
LEMMA 4.8. Let f have ulfL-boundary and denote for any xOf by v(x)=

(v (x)," ., v,(x)) the normed outer normal. We assume that there exists M> 0 such that
I(v(x),(x)>l<__M for all xOa. Now let o>_lxl, 8>0, kN. Then either of the
following two conditions

(i) 1 2kEDioxi >>0 for allx
no

2kEDiox(ii) 1- <-8<0 forallxnp

implies that for all u W,}’P(f)

(n3 pk-f dx + n- a 7 ds.

Proof. Let u C(Rn) a- Then by Gauss’ integral theorem

u 2 Du kuDo u 1 u
idx q- 2tJi ( X )-- dx

n
1 9 -- ok

X
gl
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and hence
(4)

(i) In this case (4) implies

Diu u

ok- pk
ds

2 E pk=l dx-]"" 7 dx-.]---- 7 ds
()

and hence the assertion.
(ii) We estimate in (4) on the left side from above by -8f up -2k dx, divide by

and proceed as in (i). Q.E.D.
Remark 4.9. If Lemma 4.8, case (i) for all x (v(x),x)0--as is the case

e.g. for S(0, r0, E)--we can omit the boundary integrals in the assertion of Lemma 4.8.
To see this, consider again the identity (4).

THOgM 4.10. Let fulfill the conditions of Lemma 4.8. Furthermore, let , p, j,
n for allj k fulfill one of the conditions of Theorem 2.3. Then for all u Wf’(a)

k,o IIDul[+ c 0_l
d.

Proof. By induction from Lemma 4.8 and the proof of Theorem 2.3. Q.E.D.
As an application we consider the following Neumann problem for an elliptic

operator of order 2k: Find u Wk’(a) such that for all

(5) a(u,v)’= E a,D"u(x)DN(x)dx= f](x)v(x)dx.
THEOREM 4.11. Let aL, (afl)lllfll k uniformly positive definite and fok

L(). Furthermore, let p be convex and p-.(1 +lxl) L(R). We assume that there
exists a convex set and a (l, r)-diffeomorphism T" with 1 l+ such that the
matrix

B "= (B(T)) i1,11< k, B(T)" D(q T)(y)p-2k+l<(y)dy

is invertible. Then problem (5) admits a solution u iff for all q Qk_lfaq.fdx=O. This
solution is unique in w,o(a)/Q_ and

Ilull Wk’/ak-, <= ell fpk lit2,
where c can be computed explicitly.

Proof. p-l(1 +lxl)L2 implies Qk- c Wk, is well defined. Denote by QI the
orthogonal complement of Q_ then Q_I W’/Q_x and the norms can be
identified. Hence we may denote the norm on the quotient space by - ,o,a" Applying
Lemma 3.6, Theorem 4.2 and Lemma 3.2, we obtain for all v Wk’(a)

i1112 -2+0Cl IIDII 2
+ E (oor)()o ()

Il k I1 < k
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If q" El# k d#q# Qk_ 1, d# R, then

f lD vl2dx+ E=k lal<k
Ca(V)+ E d#B,#(T)

I/l<k

where ca’= fD"(v T)(y)p-2k+l<(y)dy. Since B is invertible there exists a vector d
such that -c(v)’= Bd and hence

C1 E flDldx.
Now let u be a solution of (5). Then for all q Qk-1 and all v W’P(f)

and ffqdx=O. If on the other hand ffqdx for all q Qk-1 then ffvdx is a continu-
ous, linear functional on Q-I- Since there appear only derivations of order k a(u,v) is
a continuous, bilinear form on Q_I. Furthermore, a( u, u) >= c2Z,ll=k[[Du[[2 >__
c_c{ l[[u[[,p,+/- and the Lax-Milgram lemma concludes the proof. Q.E.D.

Remark 4.12. (i) Analogously, we might apply the other inequalities to get ex-
istence theorems for problem (5). In some cases the decay condition u W.’ suffices
to ensure the existence of a unique solution, e.g. in the situation of Theorems 4.10, 4.1 if
Qk_xOWk’O()=(O}.

(ii) The coercivity estimates can be used to prove the convergence of approximate
solutions computed on bounded domains. Also they can be applied to get stochastic
representations of solutions to the second-order Dirichlet problem (see Jangen [7]).
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EXISTENCE AND UNIQUENESS OF SOLUTIONS
TO THE COMPRESSIBLE REYNOLDS LUBRICATION EQUATION*

MICHEL CHIPOT" AND MITCHELL LUSKIN $

Abstract. We prove the existence of a solution to the compressible Reynolds lubrication equation and we
show that our solution is unique in the class of nonnegative solutions (under some additional hypotheses, we
prove that our solution is unique among all weak solutions). We also prove the strong result that the mapping
from the boundary data to the solution is monotonic.

Key words, compressible Reynolds lubrication equation, nonlinear elliptic boundary value problem
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1. Introduction. The compressible Reynolds lubrication equation [7, p. 63] is the
nonlinear elliptic partial differential equation

6p,V. V (Ph)= V "(h3PvP),
P=P,,, xa,

X’-’(Xl,X2)(-a,

which gives the pressure, P=P(x), that develops in a layer of air of thickness,
h h(x), which is confined between two solid bodies when the average of the velocities
of the upper and lower bodies is V (V1, V2). The air is assumed to be isothermal and
to be an ideal gas (the density is taken to be proportional to the pressure) [7]. Here,
/ > 0 is the dynamic viscosity of the fluid, 2

___
2 is the region (with smooth boundary,

Of) where the upper and lower bodies are in proximity, and Pa >0 is the ambient
pressure.

When the thickness of a gaseous fluid layer is of the order of the molecular mean
free path of the gas, then the compressible Reynolds equation becomes a poor model
for the pressure in the fluid layer. In many applications in the modeling of the
mechanical systems of magnetic recording the following modified Reynolds equation
[3] has been found to be a good model equation for predicting the pressure in the fluid
layer

6/xV. v(Ph ) V ( h3pVp ) +V (6hah2PaVP ), x ,
(1.2)

P= P,, x 3f.

Here X ->- 0 is the mean free path of the gas at ambient pressure. Note that a--0 gives
the compressible Reynolds equation (1.1) and all the analysis and results which we give
for the modified Reynolds equation, (1.2), are valid for the modified Reynolds equa-
tion, (1.1), unless we state otherwise.
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We assume only that h h(x) is a Lipschitz continuous function such that for
positive constants h rain, h max, and H we have the bounds

O<hminSh(x )__<hmax, X,
(1.3)

Ix7h(x)l<=H, a.e. xa.

We prove the existence of a nonnegative weak solution to the Reynolds equation (1.2),
and we prove that this solution is unique in the class of nonnegative functions. We
actually prove the stronger result that the mapping S" Pa P(X) from the boundary
data to the solution satisfies the monotonicity result

P,>=Qqimplies P(x)>=Q(x) forall xf

where Q= S(Q,). Moreover, if

V.vh__<0,

we prove that our solution to the Reynolds equation (1.1) is unique among all weak
solutions.

We note that the implicit function theorem has been used in [5] to obtain the
existence of solutions to (1.1) for small values of the velocity, V=(V+ V)1/2. How-
ever, our techniques give the existence and uniqueness of solutions to (1.1) for all values
of V.

In the mechanical systems of magnetic recording, the pressure developed in the
fluid layer is coupled to the deformation of the confining solid bodies (such as a disk or
a tape) [8]. In a forthcoming paper, we will give an analysis of the system of coupled
partial differential equations for the pressure and the deformation. In this case, h will
depend on the deformation and the present results will be useful there.

2. Existence o| solutions. In what follows, the L2(f) inner product for real-valued
functions q, ’ L2() is denoted by

with corresponding norm

If k, ’" f R 2, then the L2(f) inner product for +, " L2(2) is similarly denoted by

with corresponding norm

where +(x).’(x) denotes the usual Euclidean inner product in R 2. Also, we define the
Sobolev spaces

H(a) ( +L2(a)IV+e L2(a) ),
H(a) ( g, Hi(a) +--0 on )a },
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with norm

2q w)= q = + vq -,
where equality on the boundary is understood in the trace sense [1].

We first prove the existence of a solution to (1.2). Set A 6/,V and 6oP, and
introduce the dependent variable

1p2 )k

u=
If P is a nonnegative solution to (1.2), then we see that u is a nonnegative solution to

(2.1)
V (h3vu) V" (/8(x, u)A

1
u(x)=-Pa2+h(x ) Pa=--U,,(X),

where

--.+ /}k2+ 2h2u, u>__0,(x,u)=
0, u_<O.

Conversely, if u is a nonnegative of (2.1), then

e(x) h(x) - V/2/h(x + 2u(x)

is a nonnegative solution to (1.2). Thus, we shall show that (2.1) has a nonnegative
solution.

We set

,(x,u) (x,u) a- X(x,u)vh().
We define a weak solution, u, to the problem"

(2.2) V ( h3(x)V u) V .ot( x, u),
u=q, x 3f,

for H1(2) to be u such that

(2.3) f h’(x)vu, v, f ,(x,u).vx,

Using the inequality + v/ _>_ /A + B, it is easy to check that

1,8(x v)12 h 2_<2 Ivl, x, vR,

I/3(2 o) -/3(x, w)12 <_2h21v-wl, xf,

Hence for some constants Cl, c2 we have

II(X U) 12I(X W)12 __<c21v-wl, xa, V,W[.
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We shall prove the following theorem.
THEOREM 1. There exists a weak solution to (2.2).
In {}3, we shall prove that a (weak) solution u, to (2.1) is nonnegative almost

everywhere. Thus, we can define

(2.5) P(X)=h(x) + X2/h(x)2+ 2u(x)

to be a weak solution to (1.2). Hence, we have the following theorem.
THEOREM 2. There exists a nonnegatioe, weak solution, P, to (1.2).
We now turn to the proof of Theorem 1. We shall use the Schauder fixed point

theorem. We denote by T: Lz()--+L2() the map u=T(o) where uHX(2) is the
solution to u= on Of,

(2.6) f h3(x)Vu.vdx f tx(x,v).vdx, H(f).

The Schauder fixed point theorem states that if T is continuous and if there exists a
closed, convex set B such that T(B)c B and T(B) is compact, then there exists a fixed
point, u B, of T, i.e., T(u)= u. We note that a fixed point of T is a weak solution of
(2.2).

Set

BR= {vL2()[[[ol]<R}.
We shall show that there exists a positive constant R such that

T(BR)GBR if R>=R1.

Further, we shall show that there exists a positive constant, c -ca(R), such that

(2.7) T(v) Ilnl(u)<= c3, v BR.

Thus, it follows from Rellich’s theorem [1] that T(BR) is compact.
The conditions (2.6) are equivalent to the conditions

(2.8) h’<x)v<u-w).v dx= h’(x vw, v dx

It follows from standard elliptic theory [2] that (2.8) has a unique solution, u Hl(f).
(Note that t(x,o)L2(f) thanks to (2.4).) We can set =u-q in (2.8) and use the
Cauchy-Schwarz inequality to obtain the bound (see (1.3))

(2.9)

Here and in what follows, will denote a positive constant which can change from
equation to equation. Now it follows from (2.4) that

(2.10)
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where ]] is the measure of 2. Hence, we obtain from (2.9) and the triangle inequality

Also,

(2.a2)
where , > 0 is the smallest eigenvalue of the problem

q=0, xO.

Now

Thus, it follows from (2.9), (2.10), and (2.13) that there exists positive constants c4 and
c such that

We see from (2.14) that Ilvll R implies that Ilull R if R R where

RI= ( cS+(c+4c4llll’(e,)2
Thus, T(BR)BR if RR. Further, it follows from (2.11) that there exists c3=c(R)
such that

I() !1)c(R), vg.
All of the hypotheses of Schauder’s theorem have now been satisfied except for the

continuity of T. It follows from (2.6) that for v,wL(),

V(o)- V(w)(),
(2.)

f h(x)V(T(v)-T(w))’vdx f (a(x,v)-a(x,w)).vdx, H(a).

Thus, we can set T( v)- T(w) above to obtain

(2.6) [lv(T(o)- v()) ll(,o)-(z,w) 1.
Now by (2.5)

(,)--(,)1 / (, /1u I1/1 w 11/.
Hence, it follows from (2.12), (2.16), and (2.17) that

() v() ’/,
i.e., T is H61der continuous with exponent 1/2. This completes the proof that T has a
fixed point.

Remark. One could weaken the assumption (2.4) in various directions and still get
a solution of (2.3).
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3. Uniqueness of solutions. In this section, we prove a uniqueness and monotonic-
ity result for weak solutions to the problem (2.2). More precisely, we have:

THEOREM 3. The weak solution to (2.2) is unique. Further, suppose that u is a weak
solution to (2.2) corresponding to boundary data q and u2 is a weak solution to (2.2)
corresponding to boundary data q2. If qx >= q92 a.e. on , then u >= u 2 a.e. in f.

Proof. The uniqueness of weak solutions clearly follows from the monotonicity
result. We will use here an argument due to Carillo and Chipot. See [4] for a variant.

We assume that ql->_q2 a.e. on . First, we prove that for all ’ C(f) and

" > 0 we have

(3.1) fl-x-u:>Ol h3(x)V ( U2 Ul)" V"--(o(x.u2)-o(X.Ul))’vdx Z 0

where

[u-ux>O]= {xalu:(x)-ul(X)>O}.

To do that, we consider for 13 > 0

(3.2) (U2--Ul)+13 ’
where

p+(x) max(p (x),O).

Note that H0() since for x 0f,

(x) min( (q2- pl) +

), --0o

It follows from subtracting (2.3) with u= u 2 from (2.3) with u u that

(3.3) h3(x)V(u2-ul)V-(I(x’u2)-Ix(X’Ul))’vdx’-O’

which for given by (3.2) is equivalent to

(3.4) iu2-Ul > 3’]
h3(x)V(u2- Ul)V’- (Ix(x. u2)-ix(x. Ul))’vdx

+-- h (x)lv(u - ux)

( .( X. U2 ) --O( X. Ul) ) V ( u2- Ul)dx--O

where

[u2- u>e’] {xftlu2(x)-ul(x)>e }
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and the other sets [-] are defined likewise. We estimate the last integral above by

1=

h(x)-3loz(x,t2)-t(X, Ul) 12dx) 1/2

h3(x)lv(u2-u,) 12dx)
’/2

h(x)-31,(x,u)-o(x,u,) Idx

h3(x)lv(u.-ul)

Using the estimate (3.5) in (3.4) we obtain from (1.3) and (2.4)

(3.6) flu U >
x)V (

_-< 1 fo<u2-ul I3]h(x)--aIO(X’U)--O(X’Ul) 12dx
caM
4h min < u2-

where M =max,’. Now the measure of the set [0 < u2- u __<e’] goes to zero as e--,0.

Thus, the estimate (3.1) follows from (3.6).
Now set n=(nl, n2)=(-A2,A1) and s>0. We then set

(3.7) (Xl,X2) W-exp(s(nlx + n2x2))
where W is a constant chosen large enough so that " > O. If we set " from (3.7) in (3.1)
we obtain (see the definition of a)

(3.8) fu2-u,>Ol h3(x)V ( u2 Ul)V’+)t(fl(x,u2)-fl(X,Ul))Vh’vdx <=0

since A. V" 0 for all x 2. Now it follows from integration by parts that

(3.9) f[12 U, > 0]
h3(x)V(u2-ul)Vdx-- L h3(x)V(u2-ul)+Vdx

L (u:-u,)+V "(h3(x)V)dx

U U > O]
(U 2 Ul)V" (h3(x)V’) dx.

So, from (3.8) we obtain

f[u > O]
(u2-u,)[-V "( h3(x)V) +g(x)Vh" v] dx <= O
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where

g(x) /;i)’: Ux (X))
0

if u2(x)4=ul(x ),

if u2(x)=u(x ).

If X 0, then g 0. Further, from the definition of fl, for ) 4= 0

h 2

X Iv-wl, x, v,w.

Thus, gL(fa). Also, we have that

V "(h3(x)V)+g(x)Vh v
h3(x) A’- vh3. V’ + g(x)Vh"V

=exp(s(nlx + n2x2))[h3(x)s2n2+(vh3.II)S-g(x)(vh.n)s]
where n 2-- n2 + n22 Hence, it follows that for s sufficiently large

(3.10) V" ( h3 (x)V") + g(x)Vh.V> 0

for all x 2. The inequalities (3.9) and (3.10) thus allow us to conclude that (u 2 u)+=
0 a.e. This concludes the proof of Theorem 3.

4. Nonnegativity and regularity of solutions. We have

(4.1) (x,0)-0, xf.

Thus, Theorem 3 allows us to conclude that the weak solution, u, to (2.2) with
boundary data q > 0 on 8f is nonnegative, i.e., u> 0 a.e. in . (Take ql=qg, u= u,
2 0, u2= 0 in Theorem 3.) Thus, we have the following result.

COROLLARY 1. If q > 0 a.e. in , the weak solution, u, to (2.2) satisfies u > 0 a.e.
in

If ,4=0 and h(x)C(f), then a(x,v) has bounded derivatives of all orders for
v >__ 0. Hence, the standard techniques for the analysis of the regularity of solutions to
elliptic boundary value problems [2], [6] can be used to prove that u is a smooth,
classical solution to (2.1). However, if ,=0, then a(x,v) is not differentiable at v=0,
and it is necessary to show that u is bounded away from zero to be able to prove that u
is smooth. Thus, we demonstrate the following theorem which gives a condition on h
which guarantees that u is bounded away from zero.

COROLLARY 2. If q >= d > 0 on Of where d is a constant and if

v .(x,,)<=O, xfa,

then the weak solution, u, to (2.2) satisfies the bound u >= tb > 0 on 2.
Proof. We will use the method of Theorem 3 with ql =, Ul u, q2= I), u 2-- .

Now u 2
tI) is not the weak solution of (2.2) with boundary data, q92 ---(I), but we have

instead by integration by parts that for all " H(), " >= 0,

v o.
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From (4.2) we obtain in place of (3.3) that

(4.3) f. h3(x)7(u2-ul).7dx-(ot(x,u2)-ot(x,ux)).’7dx <_0

for all " H(f), " >__ 0.
The proof of Corollary 2 now follows from the observation that the inequality (4.3)

can replace the equality (3.3) in the argument of Theorem 3.
An argument similar to that given in Corollary 2 can be used to prove the

following result.
COROLLARY 3. If 0 <= q9 <= d on 02 and if

v .(x,)_>_0, x,
then the weak solution, u, to (2.2) satisfies the bound 0 <_ u <__

Note that the technique of Corollary 2 and Corollary 3 could provide some other
comparison results by choosing and u to satisfy a suitable differential inequality.
The bound given in Corollary 2 allows the standard regularity theory for elliptic partial
differential equations [2], [6] to be used to prove the following theorem.

COROLLARY 4. Assume that the boundary of f, Of, is infinitely differentiable, that
h C (f), and that

(4.4) A.XTh__<0, xf.

Then the Reynolds lubrication equation (1.1) has a nonnegatioe classical solution, P, such
that P C(f) and such that P is unique in the class of nonnegative solutions.

We note that it is proven in [5] under the hypothesis (4.4) that solutions to (1.1) are
positive, smooth, and unique in the class of smooth solutions. Our results here prove
that such a solution exists and that the stronger bound of Corollary 2 holds. Further, if
(4.4) holds, the following result proves that our solution to (1.1) is unique in the class of
weak solutions.

COROLLARY 5. Assume that P is a weak solution to (1.1) in the sense that P =- Pa > 0
on and

(4.5) fu h3pVp.v-PhA, vdx 0, H(f),

where P, p2HI(). If (4.4) holds, then P>0 a.e. in

Proof. Take =P-= min(P,0) Ho(2). Then by (4.5)

(4.6)

Hence, by (4.4),

=h3p_lvP_ 12 1 )2--(A’vh)(P- dx=O.

f. f.h3p-Ix7P-Idx =- (A.vh)(P- dx<=O.

Thus, P-= 0 a.e. in 2.
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ON THE RELATION BETWEEN COEFFICIENT AND BOUNDARY
VALUES FOR SOLUTIONS OF WEBSTER’S HORN EQUATION*

WILLIAM W. SYMESt

Abstract. Webster’s horn equation is a normalized version of the one-dimension linear acoustic wave

equation. It has been used extensively as a simple model for plane wave propagation in layered systems, and
particularly as the arena for much work on the relation between the acoustic impedance (coefficient) and the
surface response or seismogram (boundary value) in theoretical seismology (this is the simplest so-called
seismic reflection inverse problem). The question of continuous dependence of the solution on the coefficient
arises naturally in this context, particularly in connection with perturbational techniques.

We study the dependence of boundary values for solutions of Webster’s horn equation on its coefficient.
For suitable choice of topologies (Sobolev spaces), we show that the map from coefficient to boundary values
is a Cl-diffeomorphism.

Key words, wave propagation, one-dimensional acoustics, inverse problems, stability

AMS(MOS) subject classification. Primary 35R25

Introduction. Various wave propagation problems in a plane-stratified half-space
( z > 0} lead to Webster’s horn equation:

(0.1) (( z )Ot2- Oz( Z )Oz ) U( Z, ) =0
where the coefficient l is generally called an impedance, and is related to the mechani-
cal properties of the medium (see [5] or [26] for a derivation and discussion of (0.1) in
linear acoustics and elastodynamics).

We impose the boundary and initial conditions

(0.2) 3zu(O, .)=f,
(0.3) u(., t)-- 0, << 0,

where the Neumann datum f vanishes for Itl large, so that the resulting disturbance is
transient.

The conditions (0.1), (0.2), (0.3) form a well-posed initial boundary value problem
in the half-space (z > 0), even for distribution datum f. Therefore, specification of /
and f determines for instance the values of u on { z 0 }. We define

(0.4) ’i() Otu(0, .).
Our aim in this paper is to establish the properties of ’i as a map between suitable

function spaces. Note that

’f() =f* %().
Thus properties of -/ follow from properties of % via well-known facts about

convolution. Therefore, we restrict our attention to the choice f=- (the so-called
impulse-response case). Our main result is that -= -_ is a Lipschitz homeomorphism,
in the following sense.
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supported in part by the National Science Foundation under grant MCS-80-02996-01, and by the Office of
Naval Research under contract N00014-83-K-0051.
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We may rewrite (0.1) as

(o.v)
with o Ozlogr/(the reflectivity in seismic parlance), and normalize /(0)= 1, by scaling
U, SO

We can view as a functional of o instead, i.e. redefine

(0.4’) r(o) atu(0, .).
Note that the boundary value u(o,t), O<t<2T, depends on the coefficient (or

o) only in 0 _< z =< T, since the signal propagation speed of (0.1) is one. The solution of
(0.1), (0.2) and (0.3) is constructed by well-known methods (see below) for smooth (or
o), so we can view initially as a map: C[0, T] C[0,2T].

We can now state our three major results:
THEOREM 0.1. For o C[0, T], there exist constants and C*, depending only on

Iloll =t0,T] and on T, so that for 6 C[0, T] with Iio- ll =t0,T] </3 we have

C*llo-o* II  t0,T].
So " extends to a locally Lipschitz map"

L2[O,T]L2[O,2T].
THEOREM 0.2. For oL2[0, T], g=(o)L2[O,2T], there exist a and C,>0

depending only on [loll L2[0,r] and on T, for which

implies that , ’( # ) for a unique # L2[0, T], with

Ilo- Ilt2[0,Z] < C lI g-
Actually Theorems 0.1 and 0.2 were the main results of our previous paper [21].

The arguments used in [21], however, suffered from two major drawbacks: they depend
on

(i) a characterization of the range of r; and
(ii) Lipschitz estimates for the time-like Cauchy problem.

Neither (i) nor (ii) is available in similar higher-dimensional problems. In the present
treatment, we have reformulated the results so that the Lipschitz constants and do-
mains of validity depend only on local quantities, thus avoiding (i). Also, we have
revised the main step in the proof ("downward continuation") so that the time-like
Cauchy problem no longer plays an explicit role. As a by-product of our analysis, we
obtain a stronger result:

THEOREM 0.3. " is a Cl-diffeomorphism of L2[O, T] into L2[0,2T].
As intended, the new approach has allowed us to establish carefully formulated

analogues of Theorems 0.1, 0.2, and 0.3 for similar higher-dimensional problems: see
[22] and references cited therein.

In the remainder of this introduction, we shall:
(i) explain the origin of our interest in the map r;
(ii) briefly discuss related literature;
(iii) describe the main components of our analysis;
(iv) outline the organization of the paper.
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Our interest in the properties of r/is motivated by the impedance profile inversion
problem, which is a model for many inverse (or coefficient--or medium--identifica-
tion) problems in wave propagation. In the impedance profile inversion problem, a
propagating plane-wave disturbance (measured by u) is introduced into a medium
{z>0} (modeled by (0.1)) by means of a boundary excitation (imposed traction,
pressure drop, etc., modeled by (0.2)), assumed quiescent in the past ((0.3)). The
inhomogeneities in the medium ( 4: constant) set up reflected waves, which reach the
surface and result in a nonzero rate of change of the boundary value of u (rf(o)=
Otu(O, .)). From this latter data, one is to infer the structure of the medium (i.e. /(z),
z>0).

In our notation, we formulate the impedance profile inversion problem as follows:
given data g and f, find rl (or o zlogl) so that the functional equation

is satisfied.
This problem and its generalizations are models for many interesting data-pocess-

ing technologies, the best-known being the seismic reflection method in petroleum
prospecting. Correspondingly, inverse problems in wave propagation have a large and
rapidly growing literature, much of it concerned with impedance profile inversion and
simple variants (layered-medium problems). Therefore, it seems surprising that the
properties of the map / have seldom been addressed in any substantial way, even
though many authors have recommended perturbation or optimization techniques for
(0.5) and its generalizations, which require properties such as differentiability (see [7],
[13], and references cited there). Even continuity of and its inverse has been
addressed in only a few papers (see [21], [6], [11], [1], and in the context of spectral
inverse problems [14]). The issue is serious, as any measurement modeled by is
inevitably contaminated with noise, and and -1 are not continuous with respect to
some apparently natural domain and range metrics (see [11] for discontinuity examples
in impedance profile inversion, and [23] for different examples of nondifferentiability
of " and -1 in higher-dimensional problems). Moreover, many approaches to imped-
ance profile inversion do not generalize in any obvious way to higher-dimensional
(nonlayered) problems.

Our approach in this paper is a modification of the downward continuation (or
"layered-stripping") method, which really goes back to the geophysical work of Goupil-
laud [12] and Kunetz [15] in the early 1960s. A number of authors recently have
developed reliable computational techniques for impedance profile inversion based on
this idea ([17], [4], [3], [19], [9], [2], [20]).

The main tools used in the present study (and in [21]) are"

(I) The transport equation. The progressing wave expansion ([8, Chap. VI, [}4, esp.
pp. 633-655], also [23, 2], and [10, pp. 42-45]) for smooth 1 shows that the solution of
(0.1), (0.2), (0.3) with f=-3 must have a jump along the characteristic (z=t} of
magnitude

(with the normalization r/(0)= 1), and is otherwise smooth. Therefore, u solves the
characteristic initial boundary value problem

(0.6a) ()t2-O2z -OOz)u=O inf,’= ((z,t)’O<z<T, z<t<2T-z),
(0.6b) Ozu(O,t)=O, 0<t<2T,

(0.6c) lim u(z,z+)=: Ft(z)=-l/2(z)
’0
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with

(0.6d) ,/(z) exp Jo o.

In effect the use of (0.6) rather than (0.1), (0.2), (0.3) removes the propagating
singularity from the problem.

(II) Downward continuation problem. We shall actually study a slightly more gen-
eral problem than (0.6), because the generalization does not significantly increase the
difficulty of the arguments and because the extended results are useful in further
investigation of the inverse problem as an optimization problem with constraints on
(or o).

We note that, if we pick 0 <_ z0 < z =< T and set

(0.7a) f zU( Zo, ),
(0.7b) h "= (z+t)U(Zl, .),
then in the region ((z,t)’Zo<=Z <=z, z <=t <_2T-z } the solution u of (0.6) satisfies

(0.8a) ( Ot2- Of OOz ) u= O,

(0.8b) OU(Zo, .)=f,
(0.8C) ( t-- Oz ) U( Z1, ) h

(0.8d) (z) 1-1/2(2).
Now define, for arbitrary f, h, o,

’0(o,h,/,*/0) "= OtW(Zo, ")
where

and w solves the mixed characteristic initial-boundary value problem (0.8).
We shall show in {}2 that, if we regard f and 0 as parameters, the equation

(0.9) ro ( o, h ,f ,lo ) g

has at most one solution (o,h) which depends continuously on f, *to and g. In fact, we
shall show that 0 is Lipschitz in all variables, continuously differentiable in the first
two, and we shall bound the derivative and its inverse locally. The implicit function
theorem and a global uniqueness theorem then yield the result.

Note also that if we pick z0 0, z T, then %(o, 0, 0,1)= (o). Thus Theorems
0.1-0.3 follow from similar statements about

The uniqueness of solutions to the functional equation for 0 also implies that if f
is given by (0.7a), g--OtU(go, "), and 0=,/(z0) from (0.6d), then the solution of (0.8) is
identical to the solution of (0.6) for z0 =< z =< zx. In particular, the solution (o,h) to (0.9)
continues o to [z0,zl]. Also, in solving (0.8), we have implicitly constructed Otu(z, .)
and Ozu(z,.). So we can redefine g, f, and */0, replace z0 by z1, and continue the
procedure. This is a version of the downward continuation algorithm suited to several-
dimensional generalizations.

Most inverse problems of wave propagation which model feasible experiments are
ill-posed, either because of explicit band-limitation of the observed signal or because of
several-dimensional effects (see [22], [23] for a discussion of the latter). This is even true
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for some versions of the impedance problem with band limited data (the problem
considered in this paper appears to be the sole exception). Such problems must be set
as regularized (nonlinear) optimization problems, and the presence of multiple local
minima becomes a possibility.

The’ global minimum of lit0-gl], however, is unique in a region of size propor-
tional to (zl-Zo) -1/2. This fact may be used to approximate recursively the global
minimum of lit-gll by a nonlinear least-squares version of downward continuation.
This approach, which is a particular homotopy method for global optimization of
[1,- gl[, underlies our interest in the map r0, and will be discussed elsewhere.

(III) Sideways energy estimates. The key tool in constructing derivatives and
bounds for *o is the estimation of

1 f2r- )2 2 }
for solutions u of (0.8). Q is a sort of vertical energy form. Its interaction with the usual
energy form produces most of the important estimates. The key point is that the 1- D
wave equation is hyperbolic as an evolution equation in z as well. This sort of
argument seems to have been introduced by Rauch and Taylor [16], who used it to
prove energy decay for some dissipative boundary value problems in 1 + 1 dimensions.
Of course, the time-like Cauchy problem is no longer hyperbolic in 1 + n dimensions,
n > 1, so the argument breaks down, as noted in [16]. The author has recently studied
regularization of the higher-dimensional time-like Cauchy problem, in such a way that
"sideways" energy estimate for analogues of Q are again useful (see [22], [25]).

The paper is organized as follows:
Section 1" derivation of a number of "sideways" energy estimates.
Section 2" investigation of the downward continuation operator ro, proof of Theo-

rems 0.1-0.3.
In conclusion, we note that any serious attempt to model applications such as

reflection seismology by the impedance profile inversion problem sketched above runs
into serious, and as yet mostly unresolved, difficulties. The gravest of these concerns
the Neumann datum f, which for any realistic model is far from impulsive, and in fact
tends to have very small Fourier components near both 0 and oo Hz. For the disastrous
effect of the low-frequency small amplitudes on coefficient determination, and a
suggestion for a partial cure, see [18]. See also, however, reference [20] in which these
measurement difficulties are overcome and the solution of the impedance profile inver-
sion problem by numerical downward continuation allows the real-time imaging of the
vocal tract.

1. Energy estimates. Suppose 0Z0<Z T, and define f]= {(z,t)" Zo<__z <_zl, z
<_ <= 2T-z }. Thus is the trapezoid obtained by intersection the double light cone,
with vertices (0,0), (0,2T) with the strip ((z,t)" Zo<=Z__<Zx}. Suppose u,w C(R2),
o R+, 0, rl, o, f, h and p C(R)satisfy

(1.2a)
(1.2b)
(1.2c)
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Note" We will make use throughout of the symbol fi to represent the restriction of
a real-valued function of two variables to the diagonal z-t. We will also use the
abbreviation

a(z).=u(z,2V-z)

to indicate restriction to the upper boundary segment of 2.
The problem (1.2) may be viewed as a mixed characteristic initial/boundary value

problem with data o, w, w, f, h. A standard construction ([7], pp. 461-471) assures the
existence of a solution u depending continuously on the data in various senses. The
purpose of this section is to establish estimates for the boundary values of u and its
restrictions to vertical line segments.

The main tools are two "energy identities." These are most easily derived by
application of Stoke’s theorem. The first is related to the well-known energy method
([8, pp. 438-449]); set

1
WV -rl ( ( OtU )2 + ( Ozu ) dz + rlOzU)tu dt

Stokes’ theorem

amounts to the identity

(1.3)
1 fZl(fi’)2

Zo --l fZl(’)2+(zl)f:ZT-ZldtOtUOzU(Zl
Zo zl

t)

f Zdt)zUO,U(Zo, t)
o

fZ dzn(z) (z)[ T-Zdtw(z,t)a,u(z,,)z

where in rewriting the area integral we have made use of the form of (1.2a):

The second identity involves the "sideways energy" form"

We introduce the abbreviations

1 ar-e(z).= 7

for ZoNZ<ZNZ. Then the identity

a,b
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amounts to

(1.4) Q(za)-Q(z)+ {(fi’) +( }

The identities (1.3) and (1.4) together imply a number of useful estimates on
boundary values of u, corresponding to various special cases of (1.2). We make the
convention in the following lemmas and their proofs that constants, which are denoted
by C and which change their meaning from equation to equation, depend only on

o, T, and z -z0, unless otherwise noted, and that II’l[ refers to the L<norm on the
appropriate interval.

LEMMA 1.1. Suppose in (1.2) that h w O. Then

O(z) c(
forzozzl.

Proof. Setting w=0 and z=z, z=z in (1.4), we obtain

Thus,

Q(ZI) J- z,( q- __Q(z)_fzZ,dzo(z)fr Zdt(OzU)2([,t)"

Q(z) __<- l + Q(z) +- ZI(t)
__
2 o

So Gronwall’s inequality implies

,2(1.5) O=< 1] +

Since (,+ 3z)U(Z1, .)=0, we have

Therefore (1.3) yields

(1.6)

where

Q(z)+-ll exp 2z
0

for z z1.

1" sup rl ( z ) <_

)/2, inf/(z) >= r/0 exp ( (z z0 o II}.
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The L.H.S. of (1.6) is bounded by

n* - + f Q(Zo)’/2 =< /* - / f + Q (Zo)

for any k > 0. Combined with (1.5) this yields

Take (n*/n,) exp{2f[ ol}; then we have

QZ c(ll +’11=+ llf 112+ Q(zo))
so

and so

2Q(z0) =< 2c{I q/112 + f
2 }

Q =< 2c {1[ +’ = + f 112}.
LEMMA 1.2. Suppose in (1.2) that f= h O. Then,

a <= C( zx- zo)ll, ll2w *
where

So

w*=sup Zdtw z t)

Proof. From (1.4) we obtain

1 zx t)2 2

fzZldo)() f2T-dt(wzu)(,t).

(1.7)

Q.E.D.

1 fzi(,)2 /’Z1
d

/’2T-- 2(O(z)<-Q(Zl)+- +Jz J dt(lo(E)l(Du) ,,)

Identity (1.3) gives

1 fz(?,)+(z,)f2r-Zdt),UBzU(Zx,, )

fZXdz(z )o (z) -zf2Y-Zdtw( z,, )O,u( z,, ).
0

As in the proof of Lemma 1.1, 3tU3zU=- [(3u)+(3zU)] at z=z, so the above
implies

(.8) n, 2 +Q(Zl) z ()
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Now for any a > 0

(1.9) fdtlwll,ul=fdt(,lwl) l l0,u

0/2W* 0/-2 f=< 2 +-5-
Similarly

0/2W, 0/-2
(1.10) fdtlwliOzUl<= +-2-- f
Equations (1.8), (1.9), and (1.10) combine with (1.7) to yield

ld’lo ** w +20/ )+2(z)< () 1+ (
0

where Q* := sup s s Q(z). By Gronwall,

(a.al) Qc(=w,+2-2Q,) zll exp 2 o
0

Now if w 0 a.e., u0 by uniqueness in the mixed problem, and the assertion of the
lemma holds trivially. Otherwise, set

==4fzll exp2
20 0

so that (1.11) becomes

1
+Q,Qc I1 w* exp 4 Iol +Q*NC(zx-zo)w*[[[[

2 1

0 0

from which the conclusion follows immediately. Q.E.D.
LEPTA 1.3. Suppose in (1.2) that f= O. Then

QCllhll2.
Proof. From

we obtain

(atq-az)Id(z1, .)--h

1 f2r-ZtdtOtUOzU(Zt,t)=- zhZ-Q(Zl).
z1 z1

So the identity (1.3) reads

0=
a f’n(r,’)+n()zo - -Q()

whence

(1.12) f f (lfzlFt’2 )- 2T-Zth2=_zolz,r(,)z+rt(z,)Q(z,)>rt,= - o

()+Q(z)
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On the other hand, (1.4) gives

21 f2T-- 1/(a,)2.(1.13) O(z)+f do() dt(lzU)2(,t)=O(Zl)+-
Equations (1.12) and (1.13) combine to yield

Q(z) <= Cllh II= / fl] o IQ

whence the result follows via Gronwall’s inequality. Q.E.D.
LEMMA 1.4. The solution of (1.2) satisfies

Q(z)<__c(ll+,ll -/ f + h
2
+ w*

in the notation of Lemmas 1.1-1.3.
Proof. This follows immediately from the previous lemmas by writing

u u + u+ u

and correspondingly

OZ3{Ox+O+O3}
where uk solves the problem of Lemma 1. k, k 1, 2, 3. Q.E.D.

LMM 1.5. Suppose that there exists k > 0 so that for zo z, z,

zk +!+(0)1

Then there exists C > 0 so that

+ llhll C(Q(zo)+ I+(0)

Proof. From (1.4) we obtain

O(z)+ (,)

Q(zo)+fzoIolQ+ W*od[ () 2T-dt(OzU)2(,t)

zz20
for any < 0. For sufficiently small, the hypothesis allows us to dominate the second
term on the R.H.S. by a fraction of the second term on the L.H.S., after adding a
suitable multiple of (0)1, to both sides. We replace Q by Q(z)+f’ on the
R.H.S. under the integral sign and apply Gronwall’s inequality to obtain

1 ,a { ( w* }
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The proof is finished by setting z- 21 and noting that

fzr-llhl<=4Q(z). Q.E.D.

(2.1a)
(2.1b)
(.a)
(2.1d)
Define

2. Proofs of the main theorems. Suppose T> 0, 0 =< z0 < z < T, ri0 > 0, O

C[Zo, Zl], f C[Zo,2T-zo], hE C[Zl,2T-Zl]. Define ri =ri[o, ri0] by

ri(z) =rio exp o.

Thus, o Ozlogri and ri(Zo)=h o. Suppose u solves the boundary value problem

(,2-z2-OOz)u=0 inf]’= {(z,t)’Zo<=Z<=Zl, z<=t<=2T-z},
OzU(Zo,t)=f(t), Zo<=t<=2T-zo,
(8t+i)z)u(zl,t)=h(t), zl <_t<_2T-z1,

l(Z)=ri-X/2(Z), ZO_<ZZ1.

ro(o,h,f, rio)(t)’-- )tU(Zo,t), Zo<=t<__2T-zo.

ro is the basic downward continuation operator. It is well-defined, as the problem
(2.1) has unique solutions depending continuously on the data, by standard reasoning
(see [8, Chap. V, {}61).

Our first task is the extent ro continuously to square-integrable arguments.
PROPOSITION 2.1. Suppose o, ri, f, h, rio, u are smooth and satisfy the equations

(2.1). Then

(2.2) i fz2T 2(z).= zdt{(,) +(zU)}(z,t
satisfies

Q(z)<=C(]]oil+]lh[[Z+llf [l-), ZO<ZZ

where C is exponentialpolynomial in rio, [[o[[, and z zo.
Proof. Since

az -1/2 =< c(o, o II, 21 Z0 )ll O
use of (2.1d) and Lemma 1.4 imply this estimate. Q.E.D.

PROPOSITION 2.2. Suppose ui, h i, oi, rioi, rii, and fi are smooth and satisfy (2.1),
1, 2. Let v u

_
Ul and set

1 fz2r )20()= Zd,{(,)+( }(z,t);
then for zo <= z z i,

where C is exponential/polynomial in

0,, I1o11, f;ll, IIh,ll, Z1--Z0, i--- 1,2.
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Proof. The difference v solves the boundary value problem

(2.3a)
(2.3b)
(.3c)
(2.3d)

(t2--;--Olz)l)=(Ol--O2)zU2 in f,

8zV(Zo,t)=f2(t)-ft(t ), Zo<_t<=2T-zo,
(t+z)V(Zl,t)=h2(t)-hl(t), zt <=t<=ZT-z1,

)(Z)=’01/2(Z)--’0;X/2(Z), ZOZZ ZZ1.

Note that

"0/2(z)-’0;/2=n-d/2 exp - 002 -exp - 0%
+ (’0-21/2_ ’0]1/2) exp fzoOl
-[( (lfz(2 1)))+(1-’1/2 ]=’02 t/2 1 exp - Zo

,102 ’0-11/2)

and II0zn? 1/211 - CIIoll. Thus, after some manipulation,

nt- 1’002 ’001Ilaz(n-1/: -/)ll <C{llo: o11[
2 2} 1/2

Also Proposition 2.1 shows that

f2r- iOzul
z

<=Q(z)<=C(02, ’020, f2)

so the conclusion follows from Lemma 1.4 with w 3zU2, o o 02, h h 2- hi,
+ "---> ’0 - 1/2 ’0 i-- 1/2. Q.E.D.

COROLLARY 2.3. ro extends to a locally Lipschitz map"

L2[zo ,Z1] IL2[z1,2T- z1]_t) L2[z0,2T- Zo] mR+--,L2[z0,2T-zo].

More precisely, for each (o,h,f ’00) there exist positive constants r and k for which

I1o- 0 + h h 2
+ f-f + [o-o [2 <r 2

implies

I1o(O h,f,’0o)-ro(#,l,f,?o)II <(llo-oll 2 2)1/2+ IIh-hll + IIf-/I[ + Ino-ol

The parameters r and k are (bounded by) functions of Iio11, II/]1, zt- Zo, and ’00.
Proof of Theorem 0.1. If we take Zo= 0, z T, the dependence of r0 on the second

argument disappears altogether. In fact, from the definitions in the introduction,

(o) o(O,0,0,1).

Thus Theorem 0.1 follows immediately from Corollary 2.3. Q.E.D.
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For the sake of brevity set

KD’= L2[zo,zx]L2[zl,2T-zx]LZ[zo,ZT-zo]R +,
K "= C[zo,zl.C[z,2T-z].C[zo,ZT-zol+,
HD" L2[ Zo,Zl] L2[ Zl, 2T- zl]
Hr’= L2[zo,2T-zo].

The formal linearization of 0 in (o, h) is given by

Do ( o, h ,f lo ) ( ol, hl )
where u solves (2.1)and u solves

(2.4a) (tz-Zz-oOz)Ul=OlOzu in 2,

(2.4b) OzUl(Zo, .)=0,
(2.4c) (at+ )z)ul( z1,. )= h1,

(2.4d) ill(z) --1/2fo.
All of this makes sense a priori when o, h, f, 01, and h are smooth. The first task is to
extend D%.

THEOREM 2.4. For smooth (o,h,f,*lo) K, D% extends to a bounded linear map"

Hz Hr. Moreover,

(2.5) 1101112 2
hi

2
/ h =< cll D’0(a, h ,f no)" ( ol,

so in particular the range ofDzo is closed in Hr.
Proof. The boundedness of Dzo, hence the existence of the extension, follow

immediately from the application of Lemma 1.4 to the boundary value problem (2.4).
A simple "Poincar6 inequality" argument gives

1o] __<C 0 Zo=<Z=<Zl

(or see [21, inequality (13)]). Then Lemma 1.5 yields the estimate (2.5). Q.E.D.
We next study the adjoint of D0. Suppose that v solves the boundary value

problem

(2.6a) (t2-zz)v=O in a,
(2.6b) Ozv(zo, .)=n,C=[zo,2T-zo], q,(2T- z0) 0,

(2.6c) (O,-Oz)V(z1, .)=0,
(2.6d) 3--0.
Then Green’s theorem, i.e. integration by parts of

fZldz fz2T-Zdt Otu (,lO? ul z (,lzUl ) )
ZO

and repeated use of the boundary value problem (2.1) and the adjoint problem (2.6),
yields the identity

Zldt tO ( Zx ) hX(t)<q, D’ro(o h f,o)(O1 hl)>=7(Zl) 2T-

21

+ dzn(z) OzOz(z)+o
-z
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Now

Zdz3zOzfil 1 ZXdzl)z) T/_I/2 171
ZO -’ ZO

lfZdzl/23z(ol 1 012 Zo o

whence follows the identity, valid for smooth with (2T-Zo)= 0,

D*(,h’f’o)=(,o 1 /+ l fo/ )
2T-z )

Pooso 2.5. For C depending on o, h, f, o, T, and z-Zo, and
C[zo,2T-zo] with (2r-zo)=0,

Proof. This argument is very similar to the proof of Lemmas 1.1, 1.3. Set

1 2T-z 2 2

From the identity (1.4) we obtain

if 2 fZl 2T- 21(2.7) O(z)=O(z)+ zozl + () ]OzO(,t)

From (2.6c)

Q(z1) f2r-’l 3/ 12(_71, .)
Z1

On the other hand, as we have assumed o to be smooth, the operator

1 1/2fzl
is a Volterra operator of the second kind on L2[zo,z] with continuous kernel, hence
invertible. In particular for suitable C > O,

IIzOll2tz,z, c nl/2zO+ onl/2z
t2[z,z1]

for zo N z N z1.

On the other hand,

( 1( 1 Ifz ) )
=D*(o,h,f no)’- n dtO,vOu, 0
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and

u < CQ1/2( z)

from Cauchy-Schwarz and Proposition 2.1. Thus

Q(z,)+- z’[o <__C rt(zx)
T-

[Oto(z )

C IID**(o,h,f, wo).OIl+ C,. Q

Thus we can replace the RHS of (2.7) by

Q(Z) Cl]lOr*(o h,f ’0o)’(/)112 fzZ1+2 (210[ + C2) Q

whence from Gronwall’s inequality

I!* Z 2Q(zo) < CII Or*(o,h,f 1o)’* 2. Q.E.D.

COROLLARY 2.6. For smooth (o,h,f,lo)K, Dr(o,h,f,lo) is a linear isomor-
phism: Ho Hr. Further, the bounds for IlDrl[, [IDf 11[ depend only on Iloll, Ilhll, II/11, 0,
T, and z zo.

Proof. The previous proposition shows that the adjoint Dr* is injective, since the
q, C[Zo,2T-zo] with q,(2T-z0)=0 are dense in Hr. Therefore, the range of Dr is
dense. We have already noted that it is closed: so Dr is surjective. Proposition 2.4 gave
the required bounds. Q.E.D.

THEOREM 2.7. Dr is a locally, Lipschitz-continuous map on K with values in

L(HD, Hr), whence Dr extends to a locally Lipschitz map

KDXHD H.
Proof. Select (o,h,fo,lo) and (6,7,fo,1o) in Kff, and let u, fi be the corre-

sponding solutions of (2.1). For (smooth) (ol, h1) let u and fil be the corresponding
solutions of (2.4). The difference v- fil u solves

(2.8a)
(2.8b)

(2.8d)

(at-o-ooz)=o(o,-o,u)+(,-o)oz
az,(Zo, .)=0,
(Oz+Ot)O(Zo, ")-"0,

1 1/2 71/2 fz(z)=--( )().o.
Zo
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Note that

+ 11(-x/2--1/2)01[I

o=uX_-(_u)

_
cII- o O1 II.

Now Proposition 2.2 states that, for suitable C,

c{ll -o i1 + I1 +
Implicit in the proof of the Theorem 2.4 is the estimate

=T-ZdtlOl]=( z t)c{lloll}=+llhlll)
where C depends on I1011, I1#11, 0, and z -z0. Clearly Lemma 1.4 extends to the case
in which the RHS of the wave equation is given by a sum:

N

iWi
i=1

Taking N= 2, o, wa O(fi u), =# o, w2 Oz ill, gives the estimate

(2.9) I[oO(Zo,.)llzf(lloal[=+llhlll2) 1/=

(11 o- 112+ h

where C is bounded by a smooth function of Iio11, I1#11, IIf011, I1011, 0, 0, and Zx-Zo.
For any smooth o, #, etc. belonging to a bounded set in Ko, the inequality (2.9) is
therefore an explicit local Lipschitz estimate. Q.E.D.

THEOREM 2.8. For each (o,h,f,o)Ko there exist k,r > 0 so that for (ol, hl)KD
with Iloall + IlhXll2= 1, and all e < r,

oO(O’h’fO 0)" (O1 hi)--e T(+ goa h+ghl,f

Proof. Let # o + eo1, h h + eh1,

(z) no exp

Let u solve (2.1), solve (2.1) with , h replaced by , and u solves (2.4). Then the
quantity we need to estimate is

where
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solves the boundary value problem

(2.10a)
(2.10b)
(2.10c)

(2.10d)

( t2- 2 O )l) Olz( bl-- l ),
z(Zo, .)=0,
(,+z)(z, .)=0,

1)’--- ----T1 1/2o -ffl (
_

1/2 T

Note that

(2.11) T 1/2(z)-T 1/2(z)=T 1/2(z) exp-
z0

E -1/2( fz2T z) o +r(e,z).

Since [[olllL2 =< 1, (1/e2)r(e,z) is uniformly bounded as e--*0 by a function of T0, IIoll,
and (z z0). Also,

zzr(,z) -zT z) exp -f E

2o

-I i (  zlt ]+T 1/2(Z) -’01(Z) exp - o --1

1 -1/2 -1/22(z)r(’z)-- (z)( (z)- (z)).
So (from (2.11))

where the constant implicit in the Landau symbol depends on T0, IIol], and z -z0. For
convenience, we shall make this dependence a convention for our use of the Landau
symbol for the rest of the proof.

It follows from (2.10d), (2.11), and (2.12) that

Note that the RHS of (2.10a) is of the form O1W, with floll 2 1 and

W=z(-)

satisfying

according to Proposition 2.2. We are once again in position to apply Lemma 1.4. We
conclude that

[1o,o(z0, .)11=o(). Q.E.D.
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Remark. This last estimate is more than sufficient to establish that r0 is differen-
tiable as a function of its first two arguments. In fact, similar estimates show that ro is
of class C 2 on Ko, i.e. as a function of all of its arguments. Conceivably, ro is actually
smooth.

PROPOSITION 2.9. Let r>0, (o,h,f,,/)Ko. Set

/llh II==<r=},Br={(o h)HD IIo-o11= -h o

Then there exists C=C(o,h,f,Io,r, zl-zo) so that for any (o,h)Br,

/ I111 c II,(o,h,Z,no)I1/ I111
Proof. It follows immediately from Lemma 1.2 that

ilhl12 1 fzi ,2 { +llfoll }+ ( ) __< c II’(,h, 0o)I[ -
where C depends on Iloll _-< r + Iio11, , and z zo. On the other hand

and

lt-- (-l/2)t-- -1/2 lfo )

$1-1/2 () -1/2

()-1/2 exp --(Zl-Z0) [Io1[

exp -(Zl-Zo)l/a(r+ 11o11)

whence the conclusion follows. Q.E.D.
THEOREM 2.10. Let (o,h,f,/o)KD. Then there exist constants

c=c(lloll, IIhll, Ilfll, /0, r, Zx-Z0)
so that if r < R, then

1/0 /0012 2 0 0 0 <r 2/llf-fll /[Ig o(O ,h ,f ,o)112
implies that there exists a unique solution (o, h) of the equation

(2.13) r0(o,h,f,lo) g HT.
Moreover,

/ IIh- =<c (no-g) + Ilf-fll2/ [Ig-ro(o,h,f,l)II 2

Proof. From Corollary 2.6, Dr is an isomorphism for smooth data. From Theorem
2.7, the lower bounds of Corollary 2.6 and Proposition 2.5 for Dr and Dr* respec-
tively survive the extension to KDHD, so Dr is a linear isomorphism for all
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(a,h,f, rto) Kz. Now the implicit mapping theorem guarantees the local existence and
continuous dependence on g, f, r/0 of solutions of the functional equation (2.13).

The uniqueness of global solutions of (2.13) follows from (a slight extension of) the
results of [21]. We prefer to give an alternative proof more closely related to the
arguments which we have extended to several-dimensional problems--see [22].

Suppose (,]t)Ho with r(6,]tf, tlo)=’r(o,h,f, tlo). Denoting by and the rele-
vant solutions of (2.1), we see that the difference v fi- u solves

(2.14a) (- o)v= ( 6 o )z
(2.14b) zV(Zo, .)=0,
(2.14c) (3 + 3t)v ( z, ) h h,

(2.14d) (2)=-1/2(2)--1/2(z).
Write, v v + vn, where v solves

and (2.14b, c, d) while vu solves (2.14a, b, c) and

fii0.
Consider for the moment (2.14) restricted to the triangle {(z,t)’ZoZZ2, zt
2z2-z }, where z2 (Zo,Z), for which the right-hand boundary condition (2.14c) plays
no role. Define

and similarly for QI. Since the Cauchy data for v vanish on ( z z0 ) by hypothesis, we
have

Q(zo)= Qi( Zo).
According to Lemma 1.1,

=z=-dt(z)Z(z,t)S C(o,Z=-Zo, I10 II)ll 2

whence from Lemma 1.2

QI(zo)ZC(o,Z=-Zo, I[oll, [1 11) 1o-0 12110 12(z=-20).
From Lemma 1.5

fZdz(O(n-l: -1/2)12 C(o, z -zo,
Zo

SO

)1/21/2_ 1/2] C(o,2 Zo, Ilo l)QP(zo
Also -- 21/2z(- 1/2__ -1/2) (1 1/2-1/2)
whence

C(o,Z2--ZO, Iio11, 11011)llo- ll2(z=-z0).
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Now C is continuous in 22--20-’-)0 SO for zg_-zo small enough, we obtain o=# p.p.
on [Zo,Z2]. Consequently the equation (2.14a) becomes homogeneous in the slab (z0 =<
z < z_ }, and from Lemma 1.5 we conclude that v--0 in this slab, in particular that v
and Ozv vanish for z-z2, z2<=t<=2T-z. Now we can replace z0 by z 2 and repeat the
argument. After finitely many repetitions we obtain o-# on [Zo,Zl], i.e. we have
established global uniqueness for (2.13). Q.E.D.

Remark. This "downward continuation" or "layer-stripping" argument of course
gives a (direct) uniqueness result for the (global) inverse problem, i.e. the functional
equation (0.4) with f= -i.

As before, with the special choice z0=0, zl= T, f=0, r/0= 1, we obtain Theorem
0.3 as a corollary of Theorem 2.10. Since Theorem 0.2 is implied by Theorem 0.3, we
have completed the proofs of our results.
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HOMOGENIZATION FOR A VOLTERRA EQUATION*

HEDY ATTOUCH AND ALAIN DAMLAMIAN

Abstract. A model is given for the nonlinear heat equation in a heterogeneous medium with memory. Its
homogenization is carried out in two particular cases (including the linear one).

Key words. Volterra equation, homogenization, heat flow, heterogeneous material with memory
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1. Introduction. In a heterogeneous medium with memory, a model for the heat
equation (see Nohel [1]) is

(1.1) O- +divxQ=hl,)t

where h is a given diffused source term, is the internal energy, and Q is the heat
flux. The latter are assumed to be functionals of the temperature distribution u with
"memory""

(1.2)

(1.3)

Id(t,x)=bo(x)u(t,s)+ fl(x,t-s)u(s,x)ds,

Equation (1.1) is considered on the product 2(-,T), where 2 is a bounded
regular domain in R (or RN); the function o: RN---R N, (x,r)o(x,r) represents
a nonlinear flux law. Its dependence upon x specifies the heterogeneity of the medium.
Similarly bo(x ), (x,T), Co(X ), /(x,t) characterize the spatial heterogeneity of the
other thermodynamical parameters.

To equation (1.1) are added boundary and initial conditions which will be speci-
fied later.

The questions considered here are:
--under what suitable set of hypotheses is equation (1.1) well posed (existence and

uniqueness);
lunder what further conditions can one treat the corresponding homogenization

problem; in other words, if all parameters involved (o, b0, fl, c0, 7) depend upon another
variable e measuring the "tightness" of the heterogeneity of the medium (typically
b6(x)=bo(x/e) where bo(y ) is periodic), one can find a limit problem whose solution
would be the limit of the solutions u, and whose structure would be similar to (1.1),
(1.2), (1.3)? We will give positive answers to both questions in particular cases only. The
paper is organized as follows:
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In the next section (2), we reformulate the problem in terms of a Volterra
equation (i.e. with memory convolution kernels), and we make precise the hypotheses
on the nonlinear term o.

In 3 we then study what we called the splitting case, when C/Co is independent of
the space variable x. In this situation one can apply the nice method of Crandall and
Nohel [1] in order to transform the problem into a Lipschitz perturbation of a varia-
tional monotone evolution equation for which sophisticated, albeit known, techniques
apply to yield a positive answer to the aforementioned questions. When dealing with
the homogenization, we of course make use of various results from that theory, some of
which are quite involved (see the quoted references).

In the general situation (4) we obtain existence and uniqueness via an argument
of local monotonicity combined with global estimates, both of which require some extra
conditions on the various physical parameters. In 5 we give a first result for homogeni-
zation in the same framework; it is however restricted to the linear case and this for the
obvious reason that we make use of the Laplace transform together with homogeniza-
tion theory for complex-valued elliptic problems in order to specify the limit problem.
To our knowledge, there is no result pertaining to the homogenization of the nonlinear
case; any progress in that direction would be very welcome indeed.

A first approach to this type of problem appeared in Raynal [1].

2. Reformulation of the problem as a Volterra equation. Let denote the usual
convolution with respect to on [0, + [.

As "initial" condition, we assume the history of the medium to be known for
negative. One can then rewrite (1.1), (1.2), (1.3) as:

0
[bou+fl,ul+divx(_CoO+,/,o)= h(2.1)

where o stands for o(., X7 u(-,-)) and the right-hand side h includes the history of the
system up to time zero.

It is customary to define

(2.2) c0( ) f0
and to assume that c(x,t) and bo(x ) are strictly positive valued (a physical condition).
With these notations (2.1) can be written as

(2.3) bou’ divx ( ( C * O } h floU fl * u

where indicates a time derivative.
The initial condition becomes a Cauchy data at t= 0:

(2.4) u(0) uo in

the boundary condition is taken to be compatible with the operator -divx(O(XTu)), for
example

(2.5) u=0 on 3aX(0, T).

Problem (2.3), (2.4), (2.5), upon integration with respect to time appears as a
Volterra type integral equation (cf. 3.1).
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We now make precise the type of function o appearing here: let j: (x,r) 2 RN

j(x,r)R +, be of Caratheodory type, convex and equicoercive in r. Assume further
that j(x, 0) 0; let o be its subdifferential with respect to r and put:

(2.6) *(u)= { f"s(x’v"(x))ax+ for . Wo1’1(),

otherwise;

then it is shown in Attouch-Damlamian [1] that is lower semi-continuous (1.s.c.)
convex on L2(); moreover, denoting by the subdifferential of q, on L2(2) one
has:

u I/V0’ 1() CL2(),
v divh for some h such that h (x) o x, V u (x)) a.e.

This is the sense in which o is used in (2.3) and it also gives a meaning to the Dirichlet
condition (2.5) (when j is even with respect to r, (2.7) is actually an equivalence).

3. The splitting case. By this, we mean that c/co is independent of x. Equiva-
lently, by an obvious change of notation (for o), c and , can be taken independent of x
(co is taken to be 1).

3.1. Existence and uniqueness. Integration of (2.3) with respect to time from 0 to
yields:

(3.1) bou div ( c o ) bouo fl u + H

where H is the integral of h.
PROPOSITION 3.2. Assume that bo and b are in L()+, that fl is in

L(fl; BV(O, T)), and that is in BV(O, T). Then equation (3.1) has a unique solution u
in C([0, T]; L2())CILI(0, T, W01’ 1()). Furthermore, du/dt is in L2( (0, T)).

Proof. We follow here the ideas of Crandall-Nohel [1]. Let e be the resolvant
kernel of ", i.e., the solution of

(3.3) e-’t,- 3, * e= 0.

Making use of standard results for convolution equations, one obtains that e belongs to
BV(0, T) as soon as " does so. Using (3.3), (2.3) becomes

(3.4)
where
(3.)

bo--dT-div,,o(x, Vu)= G(u), u(0) =u0,

G (u) h + h * e (}80 + boeo) u + bouoe u ( floe + boe’ + ’ + e ’).

Above/30= fl(0), e0= e(0) (= 3,(0)) and fl’, e’, are the measure derivatives of/3 and e.
It is easy to check that G is Lipschitz continuous from LI(0, t; L2(2)) into itself for

each > 0. In order to apply a fixed point theorem (as in Crandall-Nohel [1]), we first
consider the following problem for w in C([0, T]; L(f)):

(3.6) b
du

o dt divx o(x, 0u) w, u(0) u0.



1424 HEDY ATTOUCH AND ALAIN DAMLAMIAN

Now, the operator u-(1/bo)divxo(X, V U) is the subdifferential of 0 (see (2.6))
on L2() provided the norm on L2() is chosen with the weight function bo(x ) (since
bo and b-1 are in L(2) +, this is an equivalent Hilbert norm on L2(2)). Therefore,
(3.6) can be solved with classical estimates which allow to apply the Lipschitz fixed
point theorem to solve (3.4), (3.5). D

3.2. Homogenization. We now assume that b,c),’,fl and o depend upon an
extra parameter measuring the size of the heterogeneity of the medium. A typical
example is the periodic case where b)(u)=o(X/e), c)(x)=o(X/e), etc....where
0(Y), O0(Y),"" are Y-periodic (Y is an N-dimensional parallelepipedon). We make
the following hypotheses:

e) -1 L +,(3.7) bo and (bo are bounded in (f)

fl is bounded in L(fl; BV(O, T)) and ,{ is bounded in BV(O, T). Applying Proposi-
tion 3.2, one gets

PROPOSITION 3.8. Under hypothesis (3.7), there exists a unique solution u for
problem (3.1) and u is bounded in C([O, TI;L2(2)) by a constant involving only
Ih[(o), [Bl(a), Ibl(a), [(b))-ll(a), IBl=(a;,v(0, r))and Ilv(o,r).

In order to study the convergence of u when e goes to zero, we make the
following extra hypotheses (3.9)-(3.13):

(3.9) j(x,r) is coercive in r uniformly with respect to x and e; more precisely:
:]K >0, ]K2R and p> 2N/(N+2) such that je(x,r)>KI[rI2N/(N+2)--K:.

(3.10) q (defined as in (2.6)) converge in the sense of Mosco on L2() to a limit
denoted , which is then known to be of the same integral form, associated to a convex
function j (cf. Attouch [1]). Finally q(u0) is assumed to be finite.

(3.11) fl converges in the weak star topology of L(2;BV(O,T)) to a limit
(consequently fl converges to fl0 in the weak star topology of L(2); in the periodic
case, fl is just the average of fl over a period).

(3.12) b6 converges to some b0 in the weak star topology of L(2) and e

converges to some e in the weak star topology of BV(0, T). Then, e is the resolvant of
some , in B V(O, T) (but , has no relationship to the weak star limit of " in
B V(0, T)).

Consequently, the mapping G (the analogue of G in (3.5)) is bounded so that
G(u) is bounded in L2(0, T; L2(2)) and therefore, via the properties of the solutions
of the problems (3.6), one can conclude (making also use of (3.10)) that

(3.13) u is bounded in L(0, T; W01’p(2)), du/dt is bounded in L2(0, T; L2(2));
hence, as a consequence of Aubin’s lemma (see Aubin [1]), u is compact in

C([O, T]; L2(2)).
We will show now that u has only one possible limit value u when e goes to zero,

which implies that u converges to u. Let therefore e,, go to zero so that u ,, converges
to some u in C([0, T]; L2(2)):

PROPOSITION 3.14. Under the above hypotheses (3.13), G,’(u ’,) converges weakly in

L2(f](0, T)) to G(u) (as given in (3.5)), and b),, du,,/dt converges weakly in

L2(a (0, T)) to bodu/dt.

For the definition and properties of this convergence, see Mosco [1] or Attouch [2].
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Proof. We write e instead of e, for simplicity, b6du/dt is bounded in L2(Q)
(Q=2 (0, T)) and for q(x,T) in D(Q) one has:

f. du f_ O u- f ab;--aTe= b;-a7 b0N-u
which proves the second claim. For G(u), each term can be treated independently; let
us show convergence for the worst case: w=/3’ u e . First

e t-s) u x s-o)dfl x o)ds

so that

w(x," )IL=(0, r)<le Lt(o, r) u(x," )I Lo, r)[ fl(x," )[ BYe0, V),

and

w IL2(a; L(o, v))< [e Ll(o, v)l u IL2(a; L=(o, v))l fl IL(a; By(o,

Consequently, w is bounded in L2(;L(O,T)) because of u being bounded in
L2(; Hi(0, T)) is bounded in L2(; C([0, T])). By a similar argument, one checks that
for almost every x in f, u(x,t)- u(x,t) in C([0, T]) which will be enough to show the
convergence of w to the proper w in ’(Q) as follows: for q0 in (Q),

(w,q) fff q)’(x’t+s+)e(t)u(x’s)(x’)dsdsddx

ff dtdse (t)f
For every (t,s) the last integral converges to

f
because/3 converges to/3 ,-weakly in L(Q). Furthermore, Lebesgue’s dominated
convergence theorem applies to the (t, s) integral since the integrand is actually bounded
by a constant, namely

[qg’ I" supl u !(, r; L:(a)) sup[

this last factor being bounded above by suplfl’lL(a, Bv(o, v)) which is finite by hypothe-
sis (3.7). []

Making now use of the convergence in the sense of Mosco of q to 0 which implies
a demi-closedness property (cf. Attouch [2]) one passes to the limit in

-div(x,Vx)=G(u)-b
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to conclude that u is a solution of

(3.151 -divo(x,Vu)=G(u)-bo-d-[ u (01 u 0.

Because G is as in (3.5), one concludes to the uniqueness of the solution for (3.15),
hence the conclusion:

THEOREM 3.16. Under the hypotheses (3.7), (3.9), (3.10), (3.11), (3.12) (and with the
notation therein), the solution u of problem (3.4) , (3.5) converges uniformly in
C([O,T];L2()) to the solution u of the analogous problem whose thermodynamical
parameters are obtained as follows:

fl and bo are the weak-star limits of fl and b respectively;
o is the elliptic homogenization of o (equivalent to the Mosco convergence of dp to q

cf. (3.10));

" is the resolvant of the weak-limit of the resolvant of 3/ (these two operations do not
commute!).

4. Existence and uniqueness in the general case. We start with (2.3) again:

(4.11 bou’-div((c, o )’) g(u) u (0) u0

where

g( u) h flo- fl’ , u

is Lipschitz continuous from Ll(0,t; L2(f)) into itself for every positive t. Therefore,
one can solve (4.1) as a Lipschitz perturbation problem (in a fashion similar to that in
3.1) provided one can solve

dU-div((c, )’) F, u(O) uo(4.3t b0- o

for given F, via a monotonicity argument.
Here, one should notice that the method of Crandall-Nohel does not apply

because c depends upon x so that div and convolution with c do not commute.
We make the following assumptions where a and k are given positive numbers:

(4.4) i) bo,1/bo, co,1/Co, flo, 1/flo are bounded by k in L(f) and
lUolL()<k.

ii) /3’<0 and c’=-3,<0 a.e. in Q; B(T,x) and c(T,x) are bounded below
away from zero by a; tc(t,x) is continuous at t=0 with values in L(f).

iii) fl" and c"(= -,’) are nonnegative measures for a.e. x in ft.
iv) (2.6) holds with the following inequalities:

tr, s in RN,

a[r-sl2<= (o(x,r)-o(x,s),r-s),
Io(x,r)-o(x,s)

We start by choosing small enough as follows:
PROPOSITION 4.5. Let Au= -div((c, o)’)= -div(coo)-div(c’ , o). For T small

enough, A is maximal monotonefrom L2(0, T; H01(2)) V into L2((0, T); H-l) V’.
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Proof. We estimate

(Au-AV, u-v)v,,v

> fQ Co((x,Vu(xll-o(x,Vv(xll,vu(x)-Vv(x))dxdt
+ fe (c’

> colVu-Vv dxdt

fo Ic’l*lo(vu)-o(vo)llvu-voldxdt

>-_ afo Co{ V U Vv l2 dx dt

f dx c’(x)ILl,O, T)I o(V u)-o(Vv)Ig2(0, T)IV U-- VV IL2(0, T)

>a Co{VU-VV dxdt-klc’lL(u. Ll(o,r)) ]Vu-Ov dxdt.

Note now that Ic’(x)l<o,-Co(X)-C(t,x) so by (4.4ii) Ic’l;0,r is arbitrarily
small for T arbitrarily small close to zero. For such a T, (Au-Av, u-v)>OlVu-
VvI2Q) for some positive number 0. Hence A is monotone. Since it is also everywhere
defined and continuous on V, it is maximal, rn

Now, for such a small T, bod/dt +A is one-to-one and onto from V to V’ (because
of a standard nonlinear argument of coerciveness, cf. Brezis [1]). This proves local
existence and uniqueness of the solution for problem (4.3), and hence for (4.1), (4.2). In
order to prove global existence, we now get two a priori estimates.

PROPOSITION 4.6. Under the above hypotheses, there is a constant C (depending
upon a and k) such that if u is a solution of (4.1), (4.2), the following holds:

lUlL<O, r; L2<)) <= C, and Ij(vu)l<e), Ij*(o(vu))I1<0)_-<C1
(consequently IV ul=<o) <= kC1, ol(OVu)l<O)>= G/a).

Proof. Multiply (4.1), (4.2) by u(t) and integrate by parts to get

Integrating on (0, t) yields

(4.8) -lblo/2U(t) JL2(ft)+ ou2dsdx + CoO(Vu(s))Vu(s)dsdx

h.udsdx+ ( * u)(s)u(s)dsdx

+ (-c’
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By (4.4ii), one has

(4.9)

Hence

A similar computation, making use of Young’s inequality corresponding to j and
j*, gives

(4.11) fo’

Now (4.8), (4.10) and (4.11) combined give

(4.12)

A standard application of Gronwall’s inequality finally yields the desired result.
PROPOSITION 4.13. Assume the above hypotheses and that (Uo) is finite. Then,

there is a constant C2 (depending on c,k and q(u0) such that whenever u is a solution of
(4.1), (4.2) then

du
L2(Q)

Proof. Multiply (4.1), (4.2) by du/dt to get

(4.14) fo b -- dxdx + (floU+ fl’* u)du-yi ( s ) ax a,

+ (COO+ *o)-7(Vu(s))dxdx= h-7(s)dxds.
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In (4.14) we integrate by parts the third term as follows:

u() t-) a-’(o) ’
u(s) u(o) s-o)dods.

Making use of "> O, one can evaluate the last term in a way exactly similar to (4.9)
above to get

(4.) ’( .)z.(t).() t-)a-(o).()as.

Again, similarly,

Using (4.15), (4.16) and the following consequence of the definition of subdifferential

(4.17)

(4.14) yields

(4.18)

d d.
o’- (V u) --J(Vu)

1 2

dxds+lg/2u(t) f oS<Vu<t))d,

fot fa du
<= h-- dx ds +- B1/=u0 (+ coj(Vuo)dx

u(,)(- x

In the right-hand side of (4.18) one can use the following bounds:

(4.19) u(t)u(s)(- t--s))dxdstult<O,T;I’[’l<O,;IO<)).

ii) By Young’s inequality

f0’ ’(a(S)VU(t)’(--C t-s))dsdt

<=j(vu(t))(Co--C(t))+ [C’I=(o)Ij*(o(VU))

Now, confronting (4.18) and (4.19) with hypothesis (4.4ii) and Proposition (4.6), one
can conclude. []
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THEOREM 4.20. Under hypotheses (4.4), problem (4.1), (4.2) has a unique solution on
[0, T].

Proof. From Proposition 4.5, there is existence and uniqueness on some interval
[0, tit > 0. But the very same proposition gives existence and uniqueness locally in time
(starting from r > 0, the problem is changed only insofar as G in (4.2) is modified to
incorporate the history up to ; this in no way changes the conclusion because the a
priori estimates are global in time). Combining local existence and the a priori esti-
mates (4.6) and (4.13) gives the result in a standard way. []

5. Homogenization (for the linear case). In this paragraph, b, fl, c and y will
depend upon the parameter e which will tend to zero; similarly, o will depend upon e
but will be assumed to be linear with respect to X7 u; hence the notation

o(x,r)--A(x)r
where A(x) is a measurable function from f] to a fixed (independent of e) set of
symmetric uniformly positive definite matrices.

We shall assume hypotheses (4.4) to be satisfied uniformly with respect to e, so
that (4.6), (4.13) and (4.20) hold uniformly in e.

Consequently, the solutions u of equations (4.1),(4.2), belong to a compact set
of C([0, T]; LZ(f)) and a bounded set of

L(O,T;H(f))Cq Wx’2(O,T;L:()).
The question of homogenization for (4.1), (4.2) is: what can be said of the limit

points of u as e goes to zero?
In order to simplify the notations, we shall assume that e belongs to a sequence

(still denoted e) such that the following holds:
(5.1) u converges to some u in C([O,T];LZ(f])), in the weak-star topology of

L(0, T; H(f)) and the weak topology of W1’2(0, T; L2(f));
(5.2) b converges to b0 in the weak-star topology of L(fl); fl converges to fl in

o(WI’I(O,T;L()), W-I’(O,T;LI())).
Following integration on t, the Volterra equation can be written as

(5.3)
where

(5.4)

and

lK’(x,t)= fotA(x)c(x,t-s)Vu(x,s ) ds

F(x,t) -b)(x)u(x,t)-fot (x,t-s)u(x,s)ds
+ h(x,s)ds+b;(x)Uo(X).

Clearly F converges to F in c([0, Tl,/-/-(a)) and weakly in Wt’(O,T;L2(a)),
for

(5.6) F(x,t)=bo(x)(uo(x)-u(x,t))+ h(x,s)ds- (x,t-s)u(x,s)ds.
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On the other hand, U is bounded in W1’2(0, T; L2()). In order to characterize the
possible weak limits of 3V" (the uniqueness of which will follow, as usual from the
unique solvability of the limit equation), we shall assume, after extracting another
subsequence, still denoted e, that Y converges weakly to some Y. So, going to the
limit in (5.3) yields"

(5.7) div f’=.

The main task is to find the relationship between f and u, which (5.4) should yield.
Here, because the problem is linear, we use the Laplace transform, but to do so we
extend the problem to [0, + ) in time as follows: for t> T, extend by (x,t)
(x, T), h and by zero (so o (x, t) c(x, T)), and by Theorem 4.20 which applies

to any interval [0, T], u exists for all 0, but for > T, the problems become simpler,
as seen from (2.1)"

b+(T)u- divxA ( coV u’- 7 * V u =0.

A detailed analysis of estimates (4.6), (4.13) shows that in this particular case, lu(t)[ne)
grows at most exponentially in with a rate uniform in e. Therefore, all the Laplace
transforms considered here will be convergent at least in some complex right half-plane
ReX>o.

We will denote by
+ _xvO(X)= e (t)dt forReX>X 0

and (5.3), (5.4) yield (5.8) below since the gradient operator in x commutes with the
Laplace transform.

For fixed X, (5.8) is just the homogenization problem for an elliptic operator with
complex coefficients.

Upon inspection of (5.5), one sees that for every > 0, converges to in
C([O,t];H-()) but that grows in H-t at the same rate as u does. Conse-
quently, for each X with ReX > X 0, (X) converges to (X) in H-(a; e). Similarly
(X) converges to (X) weakly in H(; e). The sesquilinear form

is continuous coercive on H(; e) under the hypothesis

 eO (x,X a 00(x > 0,

which we will check later.
Indeed, c is bounded on for each X such that REX>0 so a is continuous and

for such X’s,

>=af Re,(x,X)lVul2dx
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since A is symmetric real coercive. Incidentally, another proof of existence for the
solution u is thus obtained by applying Lax-Milgram’s theorem for

One can now apply a compactness result for complex homogenization (see for
example Sanchez-Palencia [1], Murat [1] or Bensoussan-Lions-Papanicolaou [1]). For
each with Re,>0, there is a matrix-valued function D(x,) (independent of
and ) such that (5.8)e implies at the limit e 0"

div /’=o&,
(5.11) (x, ,)= D(x,X)Vft(x,) ).

In order to apply the inverse Laplace transform to (5.11), all that is needed is that
D(x,h) be analytic in , with at most polynomial growth at I,1--’ , in which case it is
the Laplace transform of a distribution of finite order in t, denoted E(x,t). That /9 is
analytic is a mere consequence of the fact that it is a limit of a sequence of analytic
functions of h, the limit being locally uniform. From the uniform boundedness of c
and Re, one can conclude that D(x,) is bounded by a multiple of (Re) -. Conse-
quently, E(x, t) is a bounded distribution of order not more than 2, on [0, + m[, with
values in the cone of bounded measurable symmetric square matices on

We now check that (5.10) holds: integration by parts in

(5.12) ReOe(x,)t) e-(ReXl’cos(ImX)c(t)dt

gives

Re e(x, )t) fo (1-cos(tlmX))e-’’eX(c"- 2 Re)c: + (ReX }
)- ce) dr.

Since (1-cos(tlmX)) and -c’ are nonnegative functions and c’’ is a nonnegative
measure,

+m
Xc(t)dt;(5.13) Reee(x,X) > (1 cos(tlmX)) e

combining (5.12) and (5.13) one gets

(Re X) f0(5.14) Re ’(x, X)=
1 + {Re

> )_2 e-tReXce(t)dt

But ce(t)>=a implies with (5.14) that Rek(x,)>=aReX/(1 +(REX) 2) which implies
(5.10). Finally, we have proved the following theorem:

THEOREM 5.15. Let b, c, B and oe=A (linear case) satisfy hypotheses (4.4) with
a and k independent of e. There exists a sequence e, converging to zero, functions bo(x),
(x,t) and a distribution E(x,t) such that the solution u e. of the corresponding problem
(4.1), (4.2) converges in C([0, T]; L2(fl)) to the solution u of

)’(5.16) 0u-div((U,vu )=6(u).
bo and fl are the weak limits of b,, and fie,,, and E is obtained via its Laplace transform
D(x, ), which is the complex elliptic homogenization of O,,(x, )A,, (x).

Remark. Even in the case of periodic problems, where there are explicit formulas
for D it is not known whether tE(t,x) is in some appropriate sense, a convex
decreasing function of t, not even whether it is a function of t, as one would suspect.
This is one of the problems left open in the theory, the other one being the homogeni-
zation of the nonlinear case (where the Laplace-transform cannot be used).
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A NONLINEAR SINGULAR INTEGRO-DIFFERENTIAL
EQUATION ARISING IN SURFACE CHEMISTRY*
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Abstract. We prove an existence-uniqueness result for the solution of a nonlinear singular integro-

differential equation. This equation is an approximate model for the development, by the mechanism of
volume diffusion, of a grain boundary groove on an interface separating a solid phase and a saturated fluid
phase.
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Introduction. When a polycrystalline solid is heated in thermodynamical equi-
librium with a fluid phase, grooves will form at the intersections of the grain boundaries
and the interphase interface. These grooves have a constant dihedral angle and their
dimensions roughly vary as (time)’, the exponent a being determined by the dominant
transport process involved.

We study here a model for the development by the mechanism of volume diffusion
of such a grain boundary groove.

Referring to Mullins [6] for more details, we give a brief summary of the most
important physical assumptions upon which the model is based:

1) the transport process involved in the growth of the groove is volume diffusion
in the fluid phase,

2) isotropy of the interfacial free energy,
3) applicability of the Gibbs-Thompson formula relating curvature and chemical

potential,
4) quasi steady-state volume diffusion,
5) negligible convection in the fluid phase,
6) the interface is taken to be initially flat.
Writing up the equations governing the groove development, we show that the

groove profile has a fixed shape and linear dimensions that are proportional to (time)1/3.
This led us to study the stationary equations giving the shape of the groove. Then,

we make some sort of nonlinear small slope approximation. That is, letting the curva-
ture term be unchanged, for purposes of the diffusion problem we represent the
interface as a plane.

The study of this approximate problem is a first step towards the solution of the
complete problem (which is object of actual research), it gives some insight on the way
the operators involved behave. On the same way the numerical resolution of the
approximate problem (see [7]) enlightens our understanding of the computational
processes involved in the numerical resolution of the complete problem.

From a physical point of view, the practical value of such an approximation is not
obvious. Roughly speaking, the correction term created by our approximation depends
linearly on the slope of the groove root (this is discussed on a physical level in [6])
whereas the correction term given by the linearization of the curvature depends
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INTEGRO-DIFFERENTIAL EQUATION 1435

quadratically on the slope. So, for small slopes, we cannot expect a better suited
quantitative model than the completely linear small slope approximation given in [6].

1. The mathematical problem and its approximation. We consider a plane section
normal to the groove line and define cartesian coordinates in the plane so that the x
axis coincides with the trace of the initially flat interface and the negative y axis
coincides with the grain boundary. Letting y= w(t,x) be the profile of the groove, we
note that

t ((x,y)ly> w(t,x)), Oft ((x,y)ly=w(t,w)),
n(x,w(t,x)) the unit vector normal to Oflt at (x,w(t,x)) and pointing out of 2t,

C(t,x,y) the concentration of solid atoms in the solvent.
Then, following Mullins [6], we write the set of equations governing the growth of

the groove:
(i) AC= 0 in t (quasi steady-state diffusion),
(ii) C= Co(1 L(D2w/(1 + Dw2)3/2)) on O’t for x 4:0 (Gibbs-Thompson for-

mula),
(iii) Dw(t, 0 +_ )- +_ m for all > 0 (constant dihedral angle),
(iv) Ow/Ot=-M(lq-DwE)l/E)C/On (the normal flux determines the rate of

movement of the interface),
(v) w(0, x) 0 (initially flat interface),

where m is the slope at the groove root, D indicates differentiation with respect to x
and Co, L, M are physical constants.

We seek a solution of constant shape and try the function change:

w(
C(t,x,y)=Co(1 -t-1/ac(t-1/ax,t-1/ay)).

One readily sees by a straightforward computation that equations (i)... (v) change
into the following system of stationary equations.

Ac=0 in ,
Dau

c=L on 0 for x4:0,
(1 + Du2)3/2

(s)
Z)u(0 +__)= + m,

u-xDu= 3 CoM(1 + Du2)1/20c

where 2 ((x,y) y > u(x)).
Let us identify c on 02 with a function of x, i.e. c(x)= c(x, u(x)). We show in [4],

by a study of the single layer potential, the splitting:

(1 + Du2)1/20C-n 2’rrAXc + P ( u ) Dc,

where the operator A is defined by Fourier transform

When u is a smooth function the operator P(u) (taken on the space L()) is a
compact and smoothing one whose norm, denoted IIP(u)ll op, goes to 0 with u (in some
convenient norm). When u is only Lipschitz P(u) is defined by means of a singular
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kernel and we can see, using deep results of Coifman, Mclntosh and Meyer [1] that

IlP(u)llov goes to 0 as the Lipschitz constant of u goes to 0.
For a detailed study of operator P(u), which falls out of the scope of this work, we

refer to [4] and [1].
In the sequel we shall approxime the operator (1 + Du2)l/ZO/n by its "dominant

part" 2 rrA1.
Then (S) becomes

(E) u-xDu-’/A
[D2u]

=0, Du(0 +) +m,
(l+Du2)3/2

and we note [D2u]=D2u-2mS, where 6 is the Dirac mass in 0 and derivatives are
taken in the distribution sense.

If we approximate the curvature of the interface by D2u, (E) becomes the linear
small slope approximation studied in [6].

By a change of scale in the space, we can take the constant to be 1/4r 2 which
will be a convenient choice for the sequel.

We prove here an existence and uniqueness result for the solution of equation (E).
Let us briefly indicate the plan of the proof.

First step (paragraph 2). For e > 0, we introduce an elliptic regularization (E) of
equation (E). Using a suitable linearization of (E) and two estimates (A1, A2), we
apply Schauder’s fixed point theorem to prove that (E) has a solution (Theorem 2.1).

Second step (paragraph 3). We show that equation (E) has a unique solution
(Theorem 3.1) by a limit process, letting e go to zero in (E). Here the crucial point is to
obtain the key estimate IOul bounded. This is a consequence of some technical
lemmas and three basic estimates on u solution of (E), (B1, B2, B3). Uniqueness
is a straightforward consequence of the monotony of the nonlinear operator
D2u/(1 + Du2) 3/2.

2. The regularized equation (E). Throughout this paper we note sgn the sign of
the real number and Rez the real part of the complex number z. Functions under
consideration are real-valued. Notice that for f real valued, Asf is real valued. For s

real, we note Hs= HS(t) the usual Sobolev’s space and (.,.) the pairing between H
and H-s. Also we note [/] the L2-norm and the L-norm of the function f.

We find it convenient to use the solution u0 of the linear problem:

Uo-XDUo-1--Al[D2uo]=O
4r 2

DuO (0 +_ +_ m

or equivalently:

1 AID 2u0Uo- xDuo 4qr2
m AI

Fourier transformation leads to the linear differential equation

ft0+ D(ft0)+ I ]3ft0 -6mini,
and standard calculation gives the unique tempered solution:

m (1 e_113/3)ft0()
2r2, 2



INTEGRO-DIFFERENTIAL EQUATION 1437

We notice that uo is in H and

D2uo=[D2uo]+2m8
with D2Uo] square integrable.

We then introduce, for e > 0, the regularized equation

u-xDu
1 [D2u] e__E_Al(D2u_D2uo)=O

(E) 4---]A] (1 + Du2)3/2 4rr2

Du(O+_ )= + m.

In this section we prove,the following:
THEOREM 2.1. Equation (Ee) possesses a unique solution u in the set Uo+ H2. This

function is eoen.

Proof. Let u uo + o, o H2, and define

T(g) (1- (1 + (Duo + g)2)-3/2)( Dg+ [D2Uo]);
equation (Ee) now is"

v xDv + (1 + e) A3v

Do(0) =0.
47/" 2

AIT(Do),

Forf L2(R), we define S(f) to be the unique solution on2 of

1(LEe) v xDv + (1 + e) A3o Alf.
4qr 2

Equation (Ee) then can be written

o=S(T(Do))=((o),
Dr(O) =0.

We show now that the equation v= O(v) possesses an even solution in H2. For r > 0,
let C be the weakly compact convex set in H2 of even functions v such that: Ivl, IDol,
]DZol<=r. for r large enough, maps C into itself as is shown by the following lemma:

LEMMA 2.2. Let f L2([]) and v S( f ). Then we have:
(i) Iv I=< c,
(ii) IDol <- c,
(iii) IDvl <= c,
(iv) ID2vl__<(1 +e)-l/-[/],

where c is a constant < 1.
Proof. By Fourier transformation equation (LEe) becomes

b+D(Idb)+(1 1 I 1,*

whose unique tempered solution is given by:

(o) -1 e-(1 + e)lfl3/3 [fe (1 + e)lsl/3s[ s [f(s ) ds.
.’0
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Schwarz’s inequality shows this function is locally square integrable, since

but

foe (l +lsl/3sl s ll( s ) ds

2(1 + e)lsl3/3s ds

so that l()l_<(1/4r)ll/.

1/2 1/2
2(1 + e)lsl3/3s ds

[[5e2(l+e)l13/3

But it is not obvious from the expression (0) of b above that o H2. Therefore we
shall show inequalities (i),..., (iv) for f C with compact support, a density argument
then completes the proof of the lemma.

Estimate (A1). Multiplying equation (LE) by o and integrating over R, we get

Io fxDvvclx+(l +e)lA3/% <[f
=4r2

One easily verifies using formula (0) that this makes sense. Integration by parts
gives

fxz oo, x=fz (xo)oax=fo2ax +fxo oaz,
whence f x Dv vdx lvl =, and we get

3 2 12 1(A1) [v +(1 +e)lA3/Zv < lf IIAol42
Estimate (A2). We multiply equation (LE,) by Ao and integrate over ; it

becomes

1IA ’ol fx o  o x+(a 42
Notice that f x OvAvdx f O(fb)lfld=O; then we get

(A2)

which proves (iv):

iA/2vl2 l+e 2 1 12+ [Aao[ =< 2(4rr2)2 If

(1 +e)l/21D2v[_<lf I.
We now use estimates (A1) and (A2) to prove (i), (ii), (iii). An easy computation

gives

=<--IA/% +IA2ol
2

which together with (A2) gives

i.e., (ii).

iDvl2 1 2

12,a2
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Using (ii), (iv) and IDv[ <_ 1/v(lDvl u + IDUv[2)/9- one gets

1 1 )1/224rr2

i.e., (iii).
Finally (i) is deduced from (A1) and (ii). []

One easily sees now that maps cr into itself for large r. First O(v) is even if v is
even, and Lemma 2.2 says:

[(o) [, IDa(.)l, [D2(v)
with c max( c, (1 + e) 1/2 < 1.

But IT(Dv)I<_ID2vI+I[D2uo]I, so that r just has to be chosen large enough to
ensure:

Let us now prove some convenient continuity property for the operator
LEMMA 2.3. The operator T is continuous from bounded subsets ofH into L2 for the

weak topologies.
Proof. Recall T(f)=(1-(l+(Duo+f)2)-3/2)(Df+[D2uo]). Let f, converge

weakly to f in H. Then f,---,f uniformly on every compact and Df, Df weakly in
L2. An easy extra lemma says if u, is bounded in L and u u uniformly on every
compact and v, weakly in L- then UnO,uo weakly in L2. This, applied to
(1 +(Duo+fn)2) -3/2 and Df, completes the proof.

The linear operator S is continuous from L2 into H2, then also weakly continu-
ous, and from Lemma 2.3, one concludes is continuous on Cr for the weak topology
of H-. By Schauder’s theorem, has a fixed point v Cr. Letting u= u0 + v, one gets
an even solution of equation (E). This solution is unique (the proof of uniqueness is as
in the following section in the case of equation (E)).

3. An existence-uniqueness result for equation (E). This section is devoted to
proving the following:

THEOREM 3.1. Equation (E) has a unique solution u in the set uo + H2. This solution
is even.

Proof. We let e go to zero in equation (E). Before deriving the necessary a priori
estimates, we give a technical lemma.

LEMMA 3.2. Let h L2. There is a unique temperedfunction u solution of

(1)
satisfying the estimate

(2)

If moreover u L2, then

(3)

u-xDu= Alh

+ 3r21xu <= h

A-X/2uL2 and (h,u)=2lA-/Zul2.
Proof. Applying Fourier transforms to (1) gives



1440 JEAN DUCHON AND RAOUL ROBERT

this differential equation has for particular solution

( ) - 2fosl s T ( s ds.

Applying Schwarz’s inequality, one sees that I()l__<cll/2, so is a tempered
function.

Now we show this particular solution satisfies estimate (2): first considering the
case h C with compact support, the result will then follow for h L2 by a density
argument.

For such a function h, -1/and D both are in L2, and so that we can multiply
equation (]) by -1D and integrate over , we get:

2f +flDal=fsgn()k;
u being real, the first integral is real and we have:

1 XDI 12 d;f D}- d f- e( aDh) d

an integration by parts performed on the last integral then gives

JD-ld=z d.

Then we have

12 2 12 +’17" xuIA-lu +4’rr Ixu <=2rlhllxul<lh]
2

21
2

which proves estimate (2).
Uniqueness is obvious here since the general solution of (1) is obtained by adding

Xx to the particular solution.
If u is square integrable, multiplying equation (]) by Il- gives

2fh[ 1-1 + fsgn() Da a
But

1 2fsgn() D}d=fsgn() Re(Dh})d=- fsgn()Dll d,

and this last integral vanishes since h is zero at 0 and (notice h H1). Then we have
(h,u)-2flhl2ll-ad,i.e.(3). ca

We use Lemma 3.2 to prove the following estimates.
Estimate (B1). Equation (E) writes u- xDu= Ah, with

h= 1_( D2u
4’r/’2 (1 + Du2)3/2

Lemma 3.2 then gives

f (1 + Du2)3/2 dxnt-E(D2bl,bl)- E{ D2L/0, b/)- 8vr21A-/2u 12.

For simplicity we denote by u instead of u the solution of equation (E).
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Integration by parts gives

[Du]u f Du 2m

(1 + Du2)3/2
dx=

)1/2
dx-

)1/2
u(0);

(1 + Du2 (1 + m 2

we have also

(D2uo,U)--([O2uo], u)+2mu(O),
and then

(B1) 12 f Du2
8’B" 21 A- 1/2u +

)1/2(1 +Du 2
dx+ e[Du]

2 2 -1/2+am((1 + m ) + e)u(O)

-e([D2uol, u).
Estimate (B2). We may write equation (E) as follows"

1 [DZu] eA-I(u-xDu)-
4rr2 (1 + Du2)3/2 4r 2 (D2u- D2uo)-- 0.

We multiply by -[D2u] and integrate over R. Then we need the following lemma.
LEMMA 3.3. The solution u of (E) satisfies:

12(A-l(u-xDu)-[D2u])--4rr2lA1/2u +4mA-lu(0).

Proof. We first notice that Il-lh is integrable, so that A-lu is a continuous
function (vanishing to infinity) and A-lu(0) makes sense. Let us begin the proof with a
formal computation where some of the scalar products may be undefined. One has

D2u=[D2u]+2m,

and then

(A-’(u-xDu), -[D2u]) (A-I(u-xDu), D2u) + 2m( A-I( u- xDu),

but

(A-I(u-xDu), -D2u)=4rr2(u-xDu, Alu)=4rr2lA1/2ul2-4rr2(xDu, Alu)
and

(A-I(u-xDu), 8)=(A-I(2u-D(xu)), 8)=2A-lu(O)-(A-1.D(xu), ).
Now we examine the term

(A-1D(xu), ) fsgn()Dd.
This last integral might be undefined since Dh is only square integrable; however
limA_f+sgn()Dhd=O for h is in H and h(0)=0. Similarly (xDu, Alu)

f D()lld.
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Let us prove that

lim Re fA--+ + o -A
sgn() D(ft)d=0,

Thus it is enough to prove that f vanishes to infinity, which is a consequence of the
following lemma.

LEMMA 3.4. Let the function v satisfy a H6lder condition of order a/2, 0 < a <= 2. If
1 +u is square integrable, then lu0 as ]] .

Proof. By contradiction. Thus assume the existence of a sequence ,, I,] , and
e > 0 such that [,(,)1[,[ >= e. Since u satisfies a H61der condition of order a/2,

therefore

Call In the interval [,_2, nd_-2], >0. For In, we have
/2[,[-, so that a suitable choice of ? yields [()[>= e/2[,]-.

If the In’s are disjoint, which we may assume, one has

but

fin 12+l u ]2

so that the integral is divergent, which proves Lemma 3.4.
Let us go back to the proof of Lemma 3.3.

ft=f0+b and ft0=2r2j(e-113/3-1).

Thus it is enough to prove that b vanishes to infinity, tt and tt 0 belong to the space
H1; so do b, which then satisfies a HOlder condition of order 1/2, and applying Lemma
3.4 with ct 1 yields the desired result.

Finally, to justify the formal computation in Lemma 3.3, we compute
( A 1( u xDu), KA D 2u ), where/A is the characteristic function of [-A, + A],
and take the limit A . This completes the proof of Lemma 3.3. []

From Lemma 3.3 one gets the estimate

f 12 12(B2) 4q.r 21A1/2u 12+1 [D2u e

4r 2 (1+Du2)3/2 dx+l[Dau]8
E 2

_< -4mA-lu(0).
--8’n’
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Estimate (B3). We proceed as above but multiplying by A-lu. Let us compute the
term:

but

(A-l(u-xDu), A-lu)=2lA-lul2-(A-1D(xu), a-lu)

( A-1V(xu ), A-lu)=fD  e-*ae,
and, as in the proof of Lemma 3.2, we see that

and therefore

Denoting

one obtains

Then

and finally

( A-1( u- xDu), A-lu)-- -la-lu

Bu
1 [D2ul

4r 2 (1 + Du2)3/2’

5 2

lA-lul +(Bu, A-lu)- e-’--’(D 2

4r 2
u, A-u)+ e--L-(D2uo A-u)=0

4,r/. 2

lA-Xul /el u =<lnullA lul/e[ u0[I u[,

(B3) 21 A-lu 12 A1/2 2 E A1/2 12 1 [2+gl ul__<7l Uo +71u
We now use estimates (B1), (B2), (B3) to prove Theorem 3.1. First, for every

there is a Ca > 0 such that

A- ltl [oc Z oil A1/2u [+ Cal A-lu I.
Taking this inequality in (B2) with a rr:/m yields

1 r [Dul:
2rr 2[ A/2u 12 nt- j dx+

e I[D2u][2<=A+A21A-lul
4r 2 (l+Du2)3/2 8rr2

for some constants A1 and A 2-

On the other hand, we derive from (B3)

le i+
1fla-ul=< 7 al/u 7

which together with the previous inequality and

f [Vul
(1 + Du2)3/

dx>_ 16r4]Bu

gives 4r2lBu[ 2 =<A +A4IBu 1.
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From this we deduce that ]Bue] remains bounded and, going back to (B3), that
]A-luel and ]A1/Zu] are bounded too, and then also

We now return to (B1) to prove the key estimate: ]Du] is bounded.
(B1) writes readily:

(4) 8r2lA-a/u +
(l+Du2)/2

dx<=A+2m(e+(l+m2)-/2)lu(O)l.

To proceed further we need a technical lemma.
LEMMA 3.5. For every K> 1, there is some C( K)>= 0 such that

Du 2
2/3(5)

(1+
c( )l l

for every even function u H(N).
Proof. Let K> 1 be fixed, there is a X > 0 for which x2/(1 +x2)1/2 lxl/K

whenever Ixl X. Then

(1 + Du2)/2 1 + X2 -"lDul2dx
where E { x O" [Du(x)l a }.

Suppose first that u is nonincreasing for x 0 and let

where X E is the characteristic function of the set E. Obviously u u + u 2 and 0 __< u 2 U.

As u2
2 is absolutely continuous on every compact and D(u)= 2u2Du2, we have:

fo (fo)l/2(fE )1/2U 2 (0)2-- 2 u2Du2dx <= 2 u 2 dx DU 2 dx

Applying Young’s inequality, we get

//2 (0) V/1 + 2
On the other hand

u,(0)

and since u is even this proves (5).
The general case follows by considering the function fi(x)= inf0 <=y z x]U(Y)l which

is nonincreasing and satisfies Ifi(0)[=lu(0)l. fi is absolutely continuous on every com-
pact set since [(x)-fi(y)[<__lu(y)-u(z)[ for some z[x,y] for which lu(z)l is mini-
mum. As (x)<=[u(x)[ and [D(x)l<=lDu(x)l, applying (5) to fi (extended with fi(-x)
(x)) proves the lemma. q

Let us return to (4); for e small enough we may apply Lemma 3.5 choosing K such
that (m(1 + m2) -1/2 + me)K=/3 < 1. We get

1/2/t [2 f Du 2

+(1-/3)
(l+Du2)l/2

dx <= constant,
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and then

Du 2

(1 + Du2)1/2
dx < constant.

On the other hand, since Du Hi(0, + ), we have

D log(1 + Du 2 ) 2
DuD2u
1 +Du2

thus for x > 0

log(1 + Du(x)2)-log(1 + m2) 2fo
x Du D2u
(1 + Dr22) 1/4 (1 + Du2)3/4

dt;

then

log(1 + Du2) log(1 + m2)[ =< 2( f Du2
(l+Du2)1/2

dx
[D2u

(1 + Du2)3/2
dx

1/2

From the estimates above, this is bounded, consequently IDu] is bounded and so is
I[D2u]l.

Let now e go to zero. If u=u0+ G, G is bounded in He and, passing to a
subsequence if necessary, we may further assume that Gv weakly in H2.

Let U=Uo+. As [D2u][D2u] weakly in Le and DG-.Dv weakly in H (and
then also uniformly on every compact), [D-u]/(l+Du)3/e must converge to
[Deu]/(1 + Du2)3/e weakly in Le. Thus u satisfies equation (E), and since u is even,
so is u. To complete the proof of Theorem 3.1, it remains only to prove uniqueness.

Let ul, u e be two solutions of (E) in the space u0 + He; we have:

A -1 [u u 2 4vr----S (1+ Du21)3/2 (1 t_ Db/22) 3/2
--0.

Multiplying by u u 2 and integrating by parts gives

21A-1/2(u1 /’/2) f 1/24"/r 2 (1 +DUl2 )
Du2

(I+Du)1/2 (Dut-Du2)dx=O"

But x/(1 + x2)1/2 is an increasing function of x and the integral is >= 0, so then u ---U 2.

Remark. The same mechanism working on an interface with no grain boundary
and arbitrary initial profile leads us to solve the initial value problem:

3w D2w
3t (1 nt- Dw2)3/2

w(O,x)=wo(x).

=0,

An existence uniqueness result for that initial value problem is given in [5].
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Abstract. Estimates are obtained for the ill-conditionedness of the inversion problem, which are indepen-
dent of the method of inversion. These estimates are in terms of the resolution required of the inversion
algorithm and parameters that describe the restrictions. Two kinds of restrictions are considered: the limited
angle type and the exterior (hole) type.
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1. Introduction. As demonstrated by the technology of X-ray tomography, Radon
transform data can be inverted quite successfully in cases where a full range of data is
available. However, success has been less notable in cases of restricted data such as
exterior (hole) problems and limited angle problems. Here we consider certain examples
which clarify some of the difficulties that occur when the data is so restricted. From
these examples we obtain estimates which give lower bounds on the ill-conditionedness
of the reconstruction problem for restricted data. These estimates involve a parameter b
related to resolution and constants a, r related to the restrictions; they are independent
of the method of reconstruction.

In the limited angle case, Davison [2] has used a singular value decomposition to
study ill-conditionedness. At the end of [}2 we make an effort to relate some of his
results to ours. A singular value decomposition for the exterior problem has been
carried out by Quinto [6]. Since the bibliographies in [2] and [6] provide an account of
work related to inversion of restricted data, we only mention a few articles of an
introductory nature: [7] and [8] for general tomography; [3] and [4] for restricted
problems.

Our results extend to Radon transforms f of functions f on R but there are
technical complications. For clarity, we do the case n 2 first and comment on gener-
alizations in [}3. If n 2 then f gives the result of integrating f along lines (x, u)= t.
Namely,

f(u,t)= f(tu+sv)ds.

Here u=(ul, u2) is a point on the unit circle S in R2 and v is either of the two unit
vectors perpendicular to u. For points x=(Xl,X2) and Y=(Yl,Ya) in the plane R2,
(x,y) xy1-4r x2y2 denotes the usual inner (dot) product. For the exterior problem the
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data f is restricted to lines that miss a fixed disk. For the limited angle problem the
vectors u are restricted to a fixed sector.

We let U denote the subset of $1R that corresponds to these restrictions on
(u, t). The distance from the point x0 to the line {x,u)=t is ]t-<Xo, U)l. Thus

U--((u,t)"
corresponds to the lines that miss the disk with center x0 and radius d. For the limited
angle case, we fix a in (0, r/2) and take

)2 < COS 2U=((u t)’u,e a}
where e (1, 0). Note that u= + (cos0, sin 0), c __< 0 =< r a gives the vectors specified
by (1.2).

The examples we consider are defined by

(1.3) g6 ( x ) ( x ) e- ab[x[2 COS bx

where Ixl2=(x,x)=x+x and a, b are positive numbers. We assume that q., is a
measurable function which is identically 1 on a disk [xl<r and takes values in [0,1]
elsewhere. The function q, is included in (1.3) to provide a way to make g6 vanish
outside of a bounded set, but if desired, may be taken to be identically 1.

Below, we assume a > 0. However if one takes a 0 and takes q to be the indicator
function for the unit disk then g6 reduces to a density that has been used in numerical
tests of certain limited angle reconstruction algorithms; see [5].

We will be interested in gb in cases where b becomes large with a and r fixed. In
such cases the graph of gb has furrows near the origin, running parallel to the x2 axis.
The spacing of the furrows is 2r/b and their length is of order (ab) -/2. One would
expect g6 to be reasonably well reconstructed by algorithms claiming to resolve fea-
tures whose size is of order 1,/b.

The following theorem shows that achieving such resolution when b is large, leads
to severe demands on the accuracy of the data.

Indeed, this result gives an estimate on the accuracy required and, we stress, is
independent of the inversion algorithm. Roughly speaking, it indicates that such data
must be given with accuracy of order e -cb in order to resolve features of size l/b; here
c is a positive constant which depends on the geometry.

THEOREM 1.1. Let gb and r be as above. If U is defined by (1.1) with x0=(0,d ),
d--v/r and if a=(2/r) -1 in (1.3), then for all b>0

7/")1/2(1.4) sup Ib(u,t) <2 e -arab.
(u,t)U

Likewise, if U is defined by (1.2) and if a=(ar)-sina, then (1.4) again holds for all
b>0.

Proof. The final remark in 3 shows that for all (u, t)

qT")1/2(1.5) I?,b(U,t) <= (e-abr--l-e-abQ)

where Q= ta+(ua)2(aa) -2. Thus it suffices to prove that Q> r 2 for (u,t) in U. Since
]u]=l, we see that (Ul)2COS20 implies (Ua)2_>_sin2 a. Hence Q(sina)2(2a)-Z=r 2

in the case of U given by (1.2). In the other case we see from (1.1) that if (u,t) is in U
then [t-dua[>_d, which implies ta+(dua)2>=da/2. But this says Q>=r 2 because
d= vr=(2a) -x.
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The functions gb can be used as building blocks to construct additional examples
of densities g that satisfy (1.4). How this is done depends on whether U is given by
(1.1) or (1.2).

If U is given by (1.2) then any translate of gb will also satisfy (1.4). Superimposing
such translates leads to examples like

(1 6) g(x, X2)-- gb(x,x2-t)dt.
-1/2

For this example, the furrows are approximately of unit length when b is large. If U is
given by (1.1) then other densities that satisfy (1.4) can be obtained from gb by using
rotations of the plane about the point x0 (0,d) in place of translations.

Further examples of densities that can be constructed by using the functions gb are
those of the form f= h + cgb where c is a constant and h is a suitable function. When b
is large, (1.4) shows that there will only be slight differences in the U restricted Radon
transform data for f and h. Since Igb(X)[__< /(x)e -ablxl2, c and h can be chosen so that
f and h satisfy nonnegativity conditions or, more generally, conditions which specify a
given range of values on a given subset.

2. Discussion. In this section we examine in more detail some of the implications
of Theorem 1.1. We begin with some useful notation and estimates. Define qa,b on R2

by

1

fl)a’b(Xl’X2)-- -1

0

if cosbx > 1/2 and ablxl<= 1,

if cos bx <= 1/2 and ab x _< 1,
otherwise.

The resemblance between a,b and gb is reflected in the fact that dPa, bgb 0 and

-1e(2.1) g >__ --- ,a, b [q.

We will assume abr2>= 1, so the factor of q in (2.1) can be dropped. The set where
I,h,(x)] 1 consists of stripes inside a disk of radius (ab) -/2. Since the area of those
stripes is at least half the area of the disk we have

( r ) 1/""(2.2) t)a ,b lip

Here lip denotes the usual LP(R2) norm:

illll,={f il(-) I’.-}
1/"

where dx dsdxs is the usual measure on and the intefral is taken over the whole
plane.

Combinint (7.1) and (7.) lives the first inequality in

2  llg ll, 

The second inequality follows from g(x)lN e lxl.
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Now suppose V is a subset of U and A is a mapping of data fly into functions
defined on some subset f of the plane. Here fly represents f restricted to the set V. A
may be viewed as a reconstruction algorithm. For notational convenience, we denote
the result of A applied to fly by Rf; symbolically Rf=A(f]v). In addition, we define

Rf to be 0 at points outside of
To see the implications of estimates like (1.4) let fl and f2 be densities that, for

some nonzero constant c, satisfy fl(x)-fz(x) cgb(x ) at all x in 2 and along all lines
corresponding to V. If A is a reconstruction algorithm in the sense that Rf approxi-
mates f on and if features of size 1/b are resolved, then on f one can expect
Rfx-Rf2 to resemble Ca,b. This resemblance should be at least good enough to give
an estimate such as

This can be linked with an estimate like (2.2) if 2 is suitable. Even in the exterior case
it is appropriate to assume that 2 contains the half disk D defined by x2 < 0, (xt)2+
(X2) 2 < (ab) -. Since the stripes where [qa,b(X)[ 1 cover more than half the area of D,
this assumption on 2 implies

Iqa,b(X)
p
dx >

4ab

Combining the last two inequalities gives

(2.4)

This difference in the reconstructions Rfl, Rf2 must be based on differences in the data

fl IV, f2 IV" By (1.4) the difference in the data is at most 2[cl(’tr/ab)l/2e -ar2b. Thus to
achieve (2.4), A would have to amplify such small differences between sets of data by a

r2bfactor that is at least of order (ab)l/2-1/pea
Such amplification means that, to keep the effects of noise down, the data will at

least have to be accurate to roughly O(e-ar2b). Note that ar2=(r/2)sina in the
limited angle case and ar= (r/4)Vc in the exterior case.

In the above discussion we have tried to minimize the assumptions made about A.
For specific reconstruction algorithms A it should not be difficult to make the above
considerations more precise.

For purposes of comparison with [2], we introduce some further notation. Let HN
denote the space of functions of the form h Xq where X is the indicator function of
the unit disk in R2 and q is any polynomial on R of degree no more than N. Let

(2.5) eu(a) min

where the denominator is the L2(R2) norm of h and the numerator is defined by

ilhl122, -1 ff-’ fl_l Ih(u(O),t)[2(1-t2)/2dtdO
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with u(O)=(cosO, sinO). The results in [2] imply that eN(Ot)=(r/N)XN_I(N, W) where
W= (r/2-a)/,r and AN-I(N, W) is the function plotted in [2, Fig. 1]. As an analogue
of eN(a) we consider

Eb(a)
suplb(u(O)’t)l

where the sup is over a < 0 < r- a, < < and where the parameter a in g is
chosen so that a= (2r)- sina. By (1.4) and (2.3) we have

(2.6) E(a) <__ 4ex/e -(brsina)/2.

Figure 1 of [2] suggests that eu(a) varies with N and a in much the same way as the
right side of (2.6) varies with b and a.

3. Estimates. In this section we establish the estimates that were used above and
comment on extensions to higher dimensions. We use the natural n dimensional
versions of the two-dimensional notation in 1 and 2.

The k-plane transform Rk(f) of a function f on Rn is defined by

Rk(f)(M)= fMfdO
where M denotes any k-dimensional affine subspace of R’, 1 __<k__<n-1 and do is
ordinary Euclidean measure on M. In what follows we let q(M) denote the point on M
that is closest to the origin. If v,..., vk are an orthonormal basis for the subspace
M- q(M) then

(3.1) Rk(f)(M)= f f z q(M)+ ds1. dsk.
i=

For k=n-1, this becomes the Radon transform and we use the notation f(u,t)=
R,_I(f)(M ) where M={xR"" (x,u)=t}.

PROPOSITION 3.1. Let h(x)=e-ClXlcosbxl where b,c are positive constants and
Xl=(X, el) el=(1,0,...,0). Then

Rk(h)(M) () k/2-b2’2 -1__
e (4c) e clq(M)12cos(b(q(M),el))

c

) is the square of the length of the vector obtained bywhere 2 IPell 2 E=a(vi, el
orthogonally projecting el onto M- q(M).

Remark. In the Radon transform case, q(M)= tu and

[Pe112= 1 (u,el)2= E (uj)2.
j=2

Proof. If x=q(M)+E=xsiv with U as in (3.1), then ]xl2=lq(M)12+E=(si)2

and Xl= (q(M),e) +(s,a) where (s,a)=E=sia and ai= (vi, e). Thus, from (3.1)

R(h)(M)=Ref f e-Clq(M)lZe-ClSl2eib((q(M)’el)+(s’a))ds1.’’ dsk.

Applying f e-clsl2e ib(s’a) ds ( qr/)k/2e -b2lalz(4c)-I completes the proof.
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PROPOSITION 3.2. Let g= +h where h is as in Proposition 3.1 and / is any measura-
ble function on R taking values in the interval [0,1] and satisfying p(x) 1 when Ixl < r.
Then

(3.2) IRl(g-h)(M) [<= e -cr2

while for k >= 2

(3.3)
1

C -k/2 o (k/2)-i[Rk(g-h)(M ) [Z’-k_l Jcr2 e u du

where o
_

denotes the area of the unit sphere in R.
Remark. The asymptotic expansion [1, pp. 13-14]

(3.4) e "uq-du-zqe- _l+q 1 (q 1)(q 2)
z z 2

+ +’’"
Z

shows that (3.3) gives bounds much like (3.2) when cr is large. If q is a positive integer
(k even) then (3.4) is exact. In particular, if k= 2 then (3.3) says

(3.5) [R2(g-h)(M)[< e-
C

Proof. Using the fact that [g- h [(x) =< X (x) e- elxl2 where X is the indicator func-
tion for the set Ix[ > r we see from (3.1) that

(3.6) IR(g--h)(M) I<-_J(k,c,r, Iq(M)I)
where

(3.7) J(k,c,r,a)=L+lslZ>_r e-c(a2 +lsl)dS dsk.

We first show that for all real a

(3.8)
and

J(1,c,r,a)<=J(1,c,r,r)

(3.9) J(k,c,r,a) <J(k,c,r,O), k>=2.
If r2<=a then the integration in (3.7) is over all of Rk and e-c(a2+s2)<=e-c(r+s) so
J(k,c,r,a)<=J(k,c,r,r). Thus if (3.8) and (3.9) hold for a-<_r then they hold for all
real a.

Assuming r- a2>= 0 and changing to polar coordinates we have

J( k c r a ) tk -1
2-32)1/2

e-C(a2 +2))k-l dO

which becomes

(3.10) 1 jrJ(k,c,r,a) --Ok_l

after the change of variable t=a2+p2. If t>r>a then (t-a)/)-<=(t-r))l/) and
(t-a)(k-z)/)-<__(t-O)(-2)/2 for k>2. Thus (3.8) and (3.9) follow from (3.10).
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To obtain (3.2) we apply (3.8) to (3.6) and note that J(l,c,r,r)=(,n’/c)l/2e -cr2. To
obtain (3.3) we apply (3.9) to (3.6) and express J(k, c,r, 0) using (3.10) and the change
of variable u ct.

Remark. To derive the inequality (1.5) write Il__<l-71/171 and apply Proposi-
tions 3.1 and 3.2 with c= ab, n 2, k 1. A higher-dimensional version of (1.5) can be
obtained in the same way but (3.3) gives it a messy appearance. If n= 3, k= 2 then
(3.3) simplifies to (3.5), so that

q’t" -cQI,(u,t)l<-(e-r+e )--C

where Q=b12(2c)-2+ 2. For c=ab this gives the n=3 version of (1.5). If (1.1)-(1.3)
are given n= 3 interpretations, only two changes are needed in the statement of
Theorem 1.1" take xo deo where eo is any unit vector orthogonal to e and change the
right side of (1.4) by replacing (qr/ab)1/2 with (r/ab). Concerning the proof we note
that Igt-d(eo, u)l>=d implies tZ+dZ(eo, u)Zd2/2. Also, (e0,u)2+ (el, u)Z<=lul2= l
so (eo, u)Z<=l-(el, u)2=l 2. Thus, if (u,t) is in the set U given by (1.1) then t2+dZl 2

>= d2/2 and hence Q>=r 2. For the case of U given by (1.2), Q>__r 2 follows from
12 . sin2 a.

Acknowledgment. We thank the referee for bringing reference [5] to our attention.
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SIGN VARIATIONS OF THE MACDONALD IDENTITIES*

DENNIS STANTON"
Abstract. Sign variations are given for the Macdonald identities for root systems of small rank. Limiting

cases of these identities give properties of the eta function. Two such formulas are explicitly given.

Key words. Macdonald identities, eta function, root systems
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1. Introduction. The Macdonald identities [3] are the analogues of the Weyl de-
nominator formula for affine root systems. Dyson [2], based upon Winquist’s [6]
original idea, found each infinite family of these identities (except Bv) by a case-by-case
argument. Macdonald [3] gave a uniform proof of these identities.

Dyson’s proof (and Macdonald’s) can be thought of as having three main steps.
Let F(xl,..., Xn) be the product side of the Macdonald identities. Let F have the
Laurent expansion

F(Xl,. ",Xn)=.,f(ml," .,m,,;q)x? Xnm".

These three steps are:
(I) Use the affine part of the root system to give functional equations for

F(xl,...,x,,) or f(m,.. ",mn;q). These equations reduce the number of unknown
f(mx,..., mn; q) to a finite number. This gives a fundamental domain for the lattice M
in the Macdonald identities (see [3]).

(II) Use the Weyl group W of the finite root system to show that only one
function, f(0,-.-,0; q), the constant term, is unknown. The simple reflections give
sign-reversing involutions which show that all terms other than the orbit of W on
(0,-..,0) are zero.

(III) Find the constant term by specializing the identity in (II). This can be done
by choosing special roots of unity for each x and using the Weyl denominator and
Jacobi triple product formulas.

In this paper we shall use this proof to give new identities, called sign variations.
The infinite products in F(xl,..., x,,) are modified by allowing appropriate signs. Step
(I) still holds. Instead of the Weyl group in (II), a subgroup related to the signs is used.
This time more than orbit survives. There is one constant to be computed for each
orbit. The calculations can be carried out if the rank of the root system is small.

These steps also easily prove the generalization of the Macdonald identities of type
A due to Milne [5]. They also indicate that the Macdonald identities could have a
purely bijective proof.
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2. Type B2. For Type B_ the Macdonald identity is Winquist’s identity [6], and
the function F(x,y) is

(2.1)
where

F(x,y) (l/x) (qx) (l/y) (cff)(l/xy) ( qxy)(y/x) (qx/y),

(2.2) (x)=(x;q)= I-I (1-xq").

(The base q will be omitted unless a base other than q is used.) The functional
equations for (I) are

(2.3) F(x,y)= -q3x3F(qx,y)
and

(2.4)

which imply that

(2.)
and

F( x,y ) qy3F( x, qy )

f(i,j; q)= -qif(i- 3,j; q)

(2.6) f(i,j; q)= -qj-lf(i,j- 3; q).

So the functions f(i,j;q) are uniquely determined by the initial conditions at (i,j),
0_<i, j=<2.

For (II), the generators o and o2 of the Weyl group give

(2.7) 01 x3F( x,y ) F(1/x,y )

and

(2.8)

These two equations imply

(2.9)

and

02" -xF(x,y)=yF(y,x).

O1" f(i,j;q)=-f(-i-3,j;q)

(2.10) 02: f(i,j;q)= -f(j-l,i+ 1;q).

Equations (2.9) and (2.10) give relations on the initial conditions. They can be recorded
by Fig. 1: the edges of o and % are solid and dotted lines, respectively. The edges are
labeled with the appropriate sign of the equality. It is clear that f is zero off the orbit
of 00. Moreover, all terms in this orbit are determined by f(0, 0; q).

For (III), the function F(x,y) is given by (II) as

(2.11)
F(x,y)

=f(0,0;q) E (- 1)i+jq(3i2 + 3j2+ 3i +j)/2x 3iy 3J(1 at x 2yq2i+ +y2q 2j xyqi +j )
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FIG.

We trisect (2.11) by replacing x and y independently by -1,-0, and __2, and
summing the resulting equations. The Jacobi triple product identity then implies

(2.12) f(0, 0; q)= 1/(q).
For a sign variation, take a subset T of positive roots, and replace all infinite

products (z) in F(x,y) involving T or -T by (-z). Then (I) still holds, with a
possible change of sign. For (II), the subgroup W(T) of W which fixes TU T is used.
For example, if

(2.13) r(x,y)=(1/x)(qx)(1/y)(qy)(1/xy)(qxy)oo(-y/x)oo(-qx/y)oo
then (2.3) and (2.4) hold with no minus sign. The involution o is replaced by

(2.14) x-y2F(x,y )= F(l/y, l/x),
and (2.8) has no minus sign. The graph that results is shown as Fig. 2. There are two
orbits which survive: 00-11-02-21 and 20-12. The formula that results is

(2.15)
F(x,y)

=c,(q)
i,./’-- oo

+c2(q)
i,.j= oo

(3i: + 3j2+ 3i +j)/2x3iy3j(1 q-j/y + q-i-2J/xy2 q- 2i- 2J/xZyZ )

q(3/2 + 3.]2+ 3i +j)/:x3iy3j( q-i/X_ q-2i-j/xZy),

,:5" 20 ..-’" 2
; ;

C1 2 "’*-::,

00 01 02

FIG. 2
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where

(2.16) cl(q) (q3; q3)(_q)/(_q3; q3) (q)3

and

(2.17) c_ (q)= 2(- q3; q3) ( q6; q6)/(q)3
There are two other B2 sign variations. If

(2.18) F(x,y)=(1/x)(qx)(1/y)(qy)(-1/xy)(-qxy)(y/x)(qx/y),

then

(2.19)

F(x,y)=cl(q) E
i,j -o

q(3i2 + 3j2+ 3i +j)/2x3iy3J(1 q-j/y q-i- 2.J/xy2 + q- 2i-- 2J/x2y2 )

+c2(q) Z
i,j= oo

q {3i2 + 3j2+ 3i +j)/2x3iy 3j( q-i-J/xy q- 2i/x2 ),

where

(2.20) c(q)=(q3; q3)(_q)/(_q3; q3)(q)
and

(2.21) c2(q) =2(q6; q6)(_q3;q3)/(q)3.
If

(2.22)
F(x,y)

( 1/x) ( qx) (- 1/y) (- qy) (- 1/xy) (- qxy) (-y/x) (- qx/y),

then

(2.23)

F(x,y)=cl(q) E
i,.j=

q(3i2 + 3j2+ 3i+j)/2x3iy3J(1 + q-J/y + q-i-2J/xy2 + q-2i-2J/x2y2)

+ c2(q)E
i,.j oo

where

+c3(q) E
i,j=

q(3/2-3.j +i+j)/2x3i-ly3J(1 + q-i/x)(1 + q-./y),

q(3i + 3j + 3i-3j)/2x3iy3j- 2,

(2.24)
(2.25)

c,(q) (q3; q3)2(_q)2/(_q3; q,)2(q)4
c2 (q) (q3; q3 )o (q6; q6)o (_ 1)/( q)4
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and

(2.26) c3 (q) 2ql/:Z (q3/2; q3)o (_ ql/:Z)2o/( ql/:)

-(-q3/:Z;q3)(q/:z)2/(-q/:z)] /3(q)(q3;q6):z

In all of these formulas, on the sum side the orbit could be represented in another
way. For example, in (2.11), the four terms could be taken as (x,y) with exponents
(3i, 3j), (3j- 1, 3i- 2), (- 3i- 3, 3j) and (- 3j- 2, 3i + 1).

3. Types A2,BC, anti Bv. These are the remaining types which have at most
three sign variations. Types G2 and G2v have 15 variations, while A has 7. No infinite
families of variations are given. It would appear that the appropriate constants are
difficult to find in general.

Type A 2:

(3.1) F(x,y)=(-1/x)o(-qx)(1/y)(qy)(1/xy)(qxy);

(3.2) F(x,y)=cl(q) Y’ q(i2+j2+ij+i+J)(-1)i(xZi+J+x-i+J-X)yi+2J
i,j

+c2(q) E q(i2+j2+ij+3i+3j)(-- 1) ix2i+j+2yi+2j+2

where

(3.3) q(q)= (q3; q3)(_q)/(_q3; q3)(q)3

and

(3.4) c2 (q) 2q3( q3; q3) ( q6; q6)o/(q)3

Type BC"

(3.5)

(3.6) 3n(n+ l)/2x3n+q

where

(3.7) ct(q) (q3; q3 )o (- q3; q6)/(_ q; q2)(q)

and

(3.8) c2(q) 2q(- q6; q6) (q12; q12)o/(q2; q2)(q).

Type B/"
(3.9) F(x,y)=(1/x2;q2)(q2x2;q2)(1/y2;q

( y/x) qx/y)
)(q2y2;q2)(1/xy)o(qxy)
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(3.10)

where

(3.11)
and

(3.12)

(3.13)

(3.14)

where

(3.15)

(3.16)
and

(3.17)

(3.18)

(3.19)

F(x,y)=ct(q) E q2i2+2i+2j2+j(x4iy4J--x-4j-3y -4i-3

+c’2(q) _. __x-4i--4y-4j-2..]_ x4j--ly4i+ 1)

q2i +4i+ 2j +J(x4i+ 2y 4j__ x-4J- 3y-4i-

x-4i-6y -4j-2 "-t" x4j- ly 4i+3)

cl(q) (_q2; q2)5(_q)3/(q8; q8)2

c2 (q) 2q2(_ q2; q2)3(_ q)/(_ q2; q4)2 (q)2

F(x,y)=(-1/x2;q2)(_ qZx2; q2) (1/y 2; q2)00(q2y2;q2)
(l/xy) ( qxy) ( y/x) ( qx/y)

F(x,y)=cl(q) q2i+ 2i+ 2j’2 +a’(_ 1) Jx 4i(y4j_y-4j-2)

+c2(q) E
iU" -o

q2i:+ 3i+ 2j2+ 2j(_ 1)Jy4j+ 1( x4i+1 ._[_ x-4i- 5)

+c3(q) E q2i2+4i+2j2+j(-1)Jx4i+2(y4j-y -4j-2)

Cl(q) (_q2; q)6/(q8; qS)2(q; q-)00,

c2(q) _q(_q2; q2)o[(qt/2)2 + (_q1/2)2]/2(_q; q 2)3o (q2; q2)o

c3(q)=2q2(_q2;q2)2/(_q2;q4)2(q4;q4)2 (q;q2)

F(x,y) (l/x2; q2)( q2x2; q2)00 (_ l/y2; q2)oo (- q2y2; q2)oo
(1/xy)o(qxy)00(y/x)o(qx/y)o;

F(x,y)=cl(q) E q2i2+2i+2j2+J( 1) ix(y+y4i4j -4j-2 )

+c2(q) E
i,j= o

q2i2 + 3i+ 2j2 + 2J( __1) iy4j+ l( x4i+

+c3(q) E
i,j= oe

q2i2+3i+2j2+4J(__1)iy 4j+3 (X 4i+1

x-4i-5)

x-4i-5)
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where

cl(q) [(ql/:)4 +(-ql/a)4]/(q2;qa)(-q;q)3,
ca (q) q(_ q; q)6/( qS; qS) (q; q: ),

and

(3.22) c3(q)= -2q3(-qZ;q2)2(-q4;q4)2/(qZ;q2)(q).
4. Remarks. One application of the Macdonald identities is to give expansions for

powers of the eta function

(4.1) "rl ( q ) ql/24 ( q)
For example, if x 1 in the identity of type BC1, then (see [3, p. 93])

(4.2) E nq
n (mod 6)

n2/24 (q)5/( q:Z )2.

If x 1 in the sign variation of BC ((3.5) and (3.6)), we find

(4.3) E
n (mod 6)

( 1)(n-1)/6nqn2/4=l(q)l(q)61(q12 )//(q4) 1 (q 6 )2

+ 6(q2)(q3)3(q12)3/(q4)?(q6)3.
As another example, we let x,y--. 1 in the sign variation (2.15) of B2. It is easy to

see that l(q)3cl(q) and (q)3c(q) can be expanded by the Jacobi triple product
identity to obtain

(4.4)

)7 2) 2 11/244r/(q (q q-

=3
i,.j,k=

{ i(3j- 1)(3j + 3i + 1) + (3i + 1)(3j + 2)(i +j + 1) } q (3’2+ k+ 3i2+ 3i+ 3j2+j)/2

i,j,k= oo
{ 3j(3j- 1)(3i- 1)+ (3i + 1)(3i + 2)(3j + 2) } q (3k2+ 3,+ 3i2+i+ 3j2+j)/2

All of the sign variations can be treated in this way.
These techniques do not apply to the finite forms of the Macdonald conjectures in

[4]. It is reasonable to ask if there are constant term formulas for finite forms of the
sign variations. The answer is no, for in the low rank cases, such a result would imply
that a well poised 3F2( 1) (see [1]) is evaluable.
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q-ULTRASPHERICAL POLYNOMIALS*

MIZAN RAHMANt AND ARUN VERMA:

Abstract. Using Askey and Wilson’s orthogonality relation and Rahman’s product formula for
Askey-Wilson polynomials a Gegenbauer-type product formula is obtained for continuous q-ultraspherical
polynomials. Summation and transformation formulas for balanced hypergeometric series are then employed
to derive a q-analogue of Gegenbauer’s addition formula.
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formula, balanced and very-well-poised hypergeometric series, q-Saalschutz formula, Bailey’s transformation
formulas
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1. Introduction. In 1875 Gegenbauer [9] gave the following addition formula for
ultraspherical polynomials;

(1.1)

where

kcX+k k
cos + ) a x (sin O ) (cos O ) (sin,) ca+, (cos,)k,n n-k "n-k

k=0

(1.2) a,,,
and

.Ck-1/2(COS--cosOcos)sin 0 sin

F(2X- 1) FZ(k+X)(n-k)!(2k+2X-1)2:k

Fz(,) F(n+k+2k)

(1.3) C2(cos0)= E (X),(X),_,cos(n_2k)0 0<0<r.
k=0 k!(n-k)!

See also Erddlyi [6, p. 178 (34), watch for the misprint 2 which should be 22m],
Askey [1, p. 30 (4.7), a factor of n!/(2X), is missing in the first term] or Whittaker and
Watson [18, p.335, Ex. 42]. There are many proofs of this important formula, some are
analytic in nature and some group theoretic. For extensive references see [1, Lecture 4].
One of the formulas that is contained in (1.1) is Gegenbauer’s product formula

xC(cosO)C(cosq)=b,, C(cosOcosq+sinOsinq, cos+)(sin+)2x- d+,

ReX > 0, where

[fo ]- 21-2xF(2X + n)b, Cff(1) (sin+)2x-a d+ l2(k)n!
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see [5, p. 177, (20)] or [1, p. 30, (4.10)]. Equivalent to (1.4) is the product formula

(1.6)
C.x(1)C.X(1) -1

K(x,y,z) C.x(i)

where

r(x+ a/2)(1-xZ-yZ-zZ+2xyz) a-1

(1.7) K(x,y,z)=r(a)r(1/2) [(l_x2)(1_y2)]a_l/2
or0,

according as 1 x 2 _y2_ z 2 + 2xyz is positive or negative, see [7, (1.4)] or [10].
The purpose of this paper is to obtain a q-analogue of (1.6) and then use it to

derive an addition formula for Rogers’ q-ultraspherical polynomials defined by

(1.8) Cn(X;fllq)= (fl;q)k(fl;q)"--cos(n--2k)O, x=cosO,
k=O (q; q)k(q; q)n-k

where the q-shifted factorials (a; q) k are given by

(a; q) (a;q) =9o(1 aqg), Iql<l.(1.9) (a;q)k=(aqk;q)
Askey and Ismail [2] have recently proved that

(1.10) C,,(x. Blq) --(;q)"(q;q)_nfl_n/2pn(X; r-,/,--1/--,- fl)’
where

(1.11) p,,(x;a,b,c,d)= 43[ q-’’abcdq’-l’aei’ae-iab, ac, ad
q’ q x cos 0

is the Askey-Wilson polynomial of degree n, discovered by Askey and Wilson [3], that
satisfies the orthogonality relation

(1.12)

=h,,(a C d)tdx

-1
w(x;a’b’c’d)pm(x;a’b’c’d)pn(X;a’b’c’d)

/1-x2 ’’

with

(1.13) w(x;a,b,c,d)=
h(x; 1)h(x; 1)h(x; g/-) h (x;

h(x; a)h(x; b)h(x; c)h(x; d)

(1.14) h(x; a)= ]-I (1 2axq" + a2q2")=(aei; q)(ae-i; q)o,
n=0

( q, cd, bd, bc; q ),, (1 abcdq-1 ) 2,
(1.15) h,,(a,b,c,d)=ho(a,b,c,d (abcdq_X, ab, ac, ad;q),(l_abcdqa,,_ )

a

(1.16)
m

(ax’a2" " am; q)"= i=II1 (ai; q)"
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and

(1.17) ho(a,b,c,d)= w(x; a,b,c,d)
1

dx 2r ( abcd q )
( q, ab, ac, ad, bc, bd, cd q)

provided max(lal, lbl, lcl, ldl, lql)< 1. The symbol on the right side of (1.11) is a special
type of basic hypergeometric series defined by

(1.18) r+lr ,q,z
(al,a2,’’’,ar+l;q)k k

 -q-i z

whenever the series converges. The series becomes a polynomial of degree n in z if any
one of the numerator parameters has the form q-n, n 0,1, 2,.-.. The series (1.18) is
called balanced if z=q and blbz...br=qala2...ar+l; it is called well-poised if
a2bl=a3b2 ar+ibr=qal; and very-well-poised if, in addition, bl= al, b.=
1- Note that the 4t3 series on the right of (1.11) is balanced.

In addition to balanced 4t3 series we make fairly extensive use of very-well-poised
series in this paper, so we shall adopt an economical notation:

(1.19)
a,qVrd -qf-d,al,a2,...,ar_ 2

r+ lr V/-, f--, aq/al, aq/a2,. ", aq/ar_ 2

)--r+l a,al,a2, ar-2,q,z

In 2 we shall use a q-analogue of Koorwinder’s proof [12] of his product formula
for Jacobi polynomials to prove that a q-analogue of (1.6) is

(1.20) Pn ( X a agr-d a av/- ) pn ( Y a agr-d a av/- )

K(x,y,z q)Pn(Z; a,av/, a, agC) dz,

where

(1.21) K(x,y,zlq)=A-X(O,q)(1-z-)-l/w(z;aei+i*,ae-i-i’,aei-i’t’,aei’-i),

and

(1.22) A ( O, dp) h o ( aei + i,, ae-iO--i, aeiO-irk, aei, iO )
2’/r (a4"q)o,

q, a 2 a 2", q )l( a2e :i a:e2i; q )12

x=cos0, y=cosq, 0=<0=<r, 0 __< q, __< r, max(lal, lql)< 1. Note that K(x,y, zlq ) is posi-
tive for all z(-1,1) and all 0,q in [0,r], unlike K(x,y,z) in (1.7) which vanishes
unless x,y,z satisfy certain triangle-type inequalities. However, after replacing a by qa
and then a by X/2 we will show in 3 that

(1.23) lim K(x,y,zlq)=K(x,y,z ).
ql
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It may be pointed out that (1.20) is probably not optimal as a positive kernel for
q-ultraspherical expansions since p,,(x;q, avf, -a,-ax/) does not equal 1 at x= 1,
although

lim p,,(x; qX/2,q(X+ 1)/2, qX/2, q
ql

1)/2) C2(X)/C)(1).

In {}4 we will make use of the orthogonality property (1.12) of Askey-Wilson
polynomials to obtain the addition formula

(1.24)

p,,( z; a,ag/-, a, af-)

Cm,,,(alq)e-mi(a2e2i; q)mPn_m(X;aqm/2,aq(m+t)/2, --aq m/2, --aq(m+l)/2)

e mi" ( a Ze Ziq’ q ) mP,, ( Y aqre aq(m +1)/2 aq /2 aqm+1)/2 )

"Pro ( Z aei + i,, ae- iO- i,t,, aeiO- iO, aei- io )

where

(1.25) Cm.,,(a[q)=
(q; q)n( a2,a4qn,a4q-1; q)mq re(m-n)

(q; q)re(q; q),,-m(a2f-,--a2,--a2; q)m(a4q-1; q)2m

Writing x-cos0, y=cosq, z=cosk, replacing a by qX/2 and taking the limit
q 1- one can easily see that (1.24) goes directly to (1.1) after using the 2F1 represen-
tation of C,X(x)"

(1.26)
C’,"t
C2(x) ( . -)_,.1-------C 2F1 n n + 2h" X +" 1 x

2

In a subsequent paper we shall consider some special cases of (1.24) and discuss
some applications.

2. Proof of the product formula (1.20). The starting point for the derivation of
(1.20) is Rahman’s product formula [8], [14] for Askey-Wilson polynomials which, in
the q-ultraspherical case, can be written as

p,, ( x a aTr a av/) p,, ( y a aTr a av/- )

l_q-__a.2_q_n ( 1 )n ’ (q-n,a4qn,-av/-dei,-a/--e-i,-a/r-ei4,-av/-e-iq’;q)c
l+a 2 -- /=0 (q,aZvF-d,-aav,-a2v/,-aaq,-V/-;q)

q’oW9 ( q -k-I/2. aeiO iO -i,t, -k 2,ae- ,ae i*,ae ,--q /a ,q1 k. ),q- ,q,q

The important property of the very-well-poised series on the right side is that it is

balanced and terminating, so we can apply Bailey’s transformation formula [4, p. 68,
8.5 (1)] as often as necessary.
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In particular, we have

(2.2)

loW9 ( q-1, /2., ae io ae io ae iq’, ae-iq,, q- k/a2 ql/2- ,/a 2, q

Thus

(-V,- a2v/-q-, -aeiq’,-ae-iq’;q),
(-1,-a, -af-deq’;-av/--de-gq’;q),

loW9 ( q- ’; afei, av/-de-io, aeiq,, ae-iq,, q/:-,/a, ql/:2- ,/a, q- ,; q, q).

(2.3)

p,, ( x a, avf a avf-d ) p,, ( y a agC-d a av/--d )
1 -+-a-2q-"’-l’"qt )

(q-,,a4q,,, _al/-deiO agree io ae i*, ae idp q)k
1 + a 2

,=o (q, aaf-, a af a2q, 1" q),,
.loW9(-q-,;af-dei agC-e-i aeiq ae-iq, ql/2-,/a _q/-k/a,q-,. q q)
The key step now is to use Bailey’s transformation formula [17, p. 101, (3.4.1.6)]

between a balanced nearly-poised 5q4 series and a very-well-poised balanced 12q’11- In
fact, we only need a special case of this formula giving a balanced nearly-poised 43
series in terms of a balanced and very-well-poised 109 series:

A’B’C’q- k ]4qb3
Aq/B,Aq/C,BC)_q-,-1/A

;q’q

( qgtAq A:Zq :z )’- B ’- C ;q ,
Aq Aq Aq Aq
BC’ BC’ B C’ -1;q),

( gr- f- CAq BCq-’-I/2 BCq-,-I/
"W9 -q-’;-V/--d’-q BC B C A ’- A

’q-’;q’q

It may be pointed out that the right side does not follow directly from Bailey’s
above-mentioned formula, but only after we make use of Bailey’s other formula [4, p.
68, 8.5(1)1.

Clearly, if we set x/A -ae iO, B= f-e iO+iq’, C-- }/--e iO-iq’, we obtain

(2.5) oWg ( q-- ’ av/ei, av/-e i, ae i’t’, ae iq’, q’/:z- ’/a:Z ql/:Z- /’/a2 q-" q)

(_l,_a 2 2e-2i0 2V/- e O + q, 2 V/-d ,0-i,i,.),a -a -a e q k

(a 4, av/e iO, av/-e -iO, ae iq’, ae-i’l’, q)

q-k a2e2iO eiO+i4, eiO-iq,
"43

ql_ke2iO,/a 2, a 2l-ei-iq’ a 2V/-- e iO+i,h
q’q ]"
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For real a, 0, q the expression on the left side of (2.5) is a real quantity, so the same
must be true of the right-hand side which, however, is not self-evident. Since the 4q’3
series is balanced we can use an iteration of Sears’ transformation formula [16]

q_kabc ](2.6) 4t/)3
d, e, ql-’abc/de

q’ q

( e/a,de/bc; q) ,
( e de/abc q) ,

to show that

q-’ a d/b d/c ]4qb3
d, de/be, aq1-’/e

q’ q k O, 1,2,.

(2.7)

q_/,,a2e2,O,_ 7te’O+’4, eiO-,o ]403 ql_ke2iO//a2, a2v/-eiO_i,l, a2/--eiO+iq,
q, q

(a 2, -a2f-deiq’-i;q),
( a2e-2iO’ --a2/r-ei+i’l’; q) k

[ q-i’, a2’ 7reiO+i*,_ ]/-e-iO-iq, ]"403 [ ql ’/a 2, a 2vf-de io-iq,, a 27re iq,-io
q’ q

Formulas (2.3), (2.5) and (2.7) then give

(2.8) p,,(x;a,af-d, -a, -af-d)p,,( y;a,af-d, -a, -av/-d)
1 -+-a-2-q-"t-t 1)nq-n/2 - (q-n’a4qn’a2’ a2y/-eiO-i" a2y/-ei’I’-i
1 + a 2

,=o (q, a 4, a:v/--d, a2f-d, a2q; q)k

[q-’,a2,--gr-ei+i’,--gCe -iO-iq’ ]"4q3
ql_,/a2 agr-deiO-i,, _av/’-deiq,-io

q,q

Since by the q-Saalschutz formula [4, p. 68, 8.4(1)],

(2.9) ( ayF-e ay/--e q’ q ) k

[q-k,aei-i4’+ig’,ae iO-i’t’-iq’ ]( a 2V/-de iO- iq,, ei,t, iO;q)k302
a2f-de iO- i4,, ql/2-i,eiO-i4,

;q’ q

we find that, by (1.17) and (1.22)

(2.10)
io+w ( z ae ’4’, ae

-1

dz"l" ae "l" ae i’l’ ( aT/-e 4" af-e 4’ q ) " V/1 z

(_a)-gr-e,O-,4,, /-e,,l,-io
, (q-,.q)2q2.q),y’.

",-qj=O ( q, a2y/-eiO- 1/2-keiO-i4"

dzw( z aei+ iq’, ae-i- iq’, aqJei-iq’, ae i4’-i )
V/1 z
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=A( 0, q)(- a 27re’ ’q’, fe ’’- q ) k

a2vl-eiO-iq,,a4, ql/2-keiO-iq,
q’ q

=A(0,,) ( a, afre,O-,q,, a2v/-ei, ,o

(a4;q)k
;q)k

q_,,a2,_ feiO+i*, 7re-iO-,, ]"413
a av/-e iO iq, a 2v/- e iq,- iO, q ,/a 2

q q

by (2.6). Combining (2.8) and (2.10) we then have

(2.11)

Pn ( X a agr a a/-) pn ( y a av/ a av/ )

=A_(0 ,)fl dz

-1 /1--Z
w z, aei+i’l’,ae

2

io i, ae io i ae ieo io )

1 +a2q [ av/-dei+ agre-i+
1 +a 2 (- 1)nq n/243

q ,a4q ;q,q]
f aeiO+ io-iq, --idp i*--iOw( z; ,,l’, ae- ae iO ae )
-1

dzpn(z;a,af-,-a,-av) /1-z
by (2.6).

This completes the proof of (1.20). It follows from (1.20) that we have the expansion

(2.12) (aZ;q)3o(qa;q)o
(a4. q)2 ae

a2e i0, a2e2i,l,, a2e2iq,; q)
iO + iq + ig/ iO idp + iq,, iO + iq i/ iO iq ib. "ae ae ae q ]

E (a4;q)n(1-a2qn)
n=O (q; /-i--1 -i a-2npn(COSO; a,ag/-, a, agr)

p, (cos;a, aV/--, a, av/)Pn (cos q;a, av/ a, av/- )

By a direct computation it is shown by the authors in [15] that the "--
(2.12) can be replaced by" =" for max(lal, [q[) < 1.

sign in

3. Limit of K(x,y, zlq) as ql-. Replacing a by q, 0<q<l, in (1.21) and
using the q-gamma function

(q;q) (1 q)l-x, lim Fq(x)=F(x),(3.1) Fq(x)=(qX;q) q--*l-
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it is not difficult to see that

(3.2) lim K(x,y,zlq )
q--,1

F(4a) sin
O+q+q

sin
O-q+q,

sin
O+q-g,

sin
2 2 2 2

4r 9_ (2a ) Isin 0 sin ql 4

2a-1

lim L(O,q,+lq).
q---, 1-

where

(3.3) L(O,q,,O/Iq)

(grd q)2 l(7re iO V/’-d eiO, 7rd e iv, 1ie-iv, v/-q e ‘+ e-ig,, q)]4,
(V/-e O + v, + + V/-e O v, + + V/-e O + v, + v/e O + q)]:

Changing the base to q2 and using the theta functions [18, Chap. 21] this can be written
as

(3.4)

L(O,rk,+lq 2)
0 0

--i’-;’’ 36I4214( 0-1--1-+2 40--’+’+)4(++--022 14\
0

where

3(0 )___o3(OIq)= (q2;qZ)(_qe2i0;qa)(_qe-2io;
4(0) -= #4(Olq)= (q; q) ( qe2i; q2) ( qe-2i; q2)

and

(3.6)
Since

va3=(-q;q2)2(q2;q2), va4= ( q, q) ( q; q).

(3.7) lim
(_q;q2)

q__,l_ (__q2. 2),q

we find that

lim K(x,y,zlq)
q--,1

2F(4a) sin
0 + q + + sin

2
O+q-q

sin
q++-O 12a-1

2 2

F=(2a)

lim M( O, q,, e/ q ),
ql

Isin 0 sin ql 4
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where

(3.9) M(O,q,+lq 2)

Using [18, p. 488, Ex. 2 and 3] we may write

(3.10) M(O,q,+lq2) [1 +H(O,,+lq2)] -1,
where

11

(3.11) H(O,q,qlq2) E Ai(O,q,qlq2),
i=1

with

A2=2 2---’)4(2-)03(2’)

(3.12)

a3---
’2’4 (-) 4(-) 3 ( -’ )

2,

2___.1_ ( -- ) ’1 1( 2 ) ’0 1( -’-- ) 2

0

41( 22(-) 1(-) 2(- 1(-)

042 ( - 1(-) 2(-) 2

0
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0 0

0 0 2

12()!1()2()11() 2

Alo

2()1()2()1()2()1()2(

Using Poisson’s transformation [18, p. 476]

and the definitions of the theta functions we find that, with q- e -’’,

Ret>0

(3.14)

(0) e-(rr-O)2/4rtvx E (- 1)"exp
7/’/’/2

--OO

0 e rn(n-O/r)
2 - (-1)"exp

) -02/4rto e
exp

0) e- (r- 0)2/4rt exp[ rrn n r O

see also [13, eq. (2.29)].
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As q 1- it follows that

A1=1, A2=2,

( [0A 4 exp As---2(exp[ q,-rr2t

A 6 exp 2t
A 7 (exp 2t

A9=l, A10=1, All= -2.

Thus

(3.16)
/

lim H(O,q,g, lq) !
q-+l-

3

if either 0 + > 0 or 0 q q > 0 or

+-0-q,>0 or 0+++-2r>0,
if none of these is satisfied,

where 0 __< 0, q,, p N r.
Using (3.16) in (3.10) we find that

(3.17)

limK(x,y,zlq)
q--

0 if either 0 q q > 0 or q 0 > 0 or

q- 0->0 or 0+q,+q- 2r> 0,

{sin( 0+o2  )sin( o+ 2 0 ) sin( o

2F2(2a) (sin 0 sinq)4a-1

if none of the above inequalities is satisfied.

Setting X 2a and using the duplication formula for the gamma function, it is easy
to see that the right side of (3.17) reduces to that of (1.7).

4. Proof of the addition formula. Since by (1.12) the polynomials orthogonal with
respect to the weight function w(z; ae i+i’t’, ae-i-i, aei-iq,aei*-i) are
pn(z;aei+i’t’,ae-i-i’l’,aei-i’t’,aeiq’-i), it is natural to look for an expansion of the
form

(4.1) p,,( z; a,av/-, a, agr-4)

A,,,,,(O,q)p,,(z;ae
m=0

io + i,#, ae iO iq, ae io iq, ae iq io ).
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Using the orthogonality relation (1.12) we get

say, where, by (2.6),

h (aeiO + iq,, ae-io-i,, aeiO-i,t,, aei,t, iO) Am,n ( O,)

f_ (w z;ae iO + i ae io idp ae io ick ae idp io

"Pm Z ae iO + i, ae io idp ae io ae i,, io )
dz"P"(z; a’aV’ -a’ -aVt)

/1-z
(l+qna2) (_l)nq_n/2gm
(1 +ag.) ,n

(4.3) S,,,,(O,q) fl aeiO+ iO--id? iO--ick i--iOw(z; ’’,ae- ,ae ,ae
-1

By (1.11),

(4.4)

where

(4.5)

pro(Z; ae iO+iq’, ae iO idp, ae io id ae idp io

dzp,,(z;-af,-a,a,a/)
/1-z

m (q-n,a4qn;q)k(q-m,a4qm-1;q)jqj+kBj_,_Sm, (0, q)
k=O ,=o (, q, a 2/-i ---i--aq;q)k(q,a2,a2e2i,ae21q’;q),

fl w(z" aqJei+i’t’,ae io- iO-ick iOBj,k= ,,I,, ae ae i’l )
-1

(-alOei+, -agre-i+;q) k v/l_z2,
z cos.

Except for the qJ factor in the first parameter in w, this integral is exactly the same
as that in (2.10). Hence

(4.6) Bj, k=A(O,q)(--a2fei-i’, --Vtei’l’-i; q)k(a2,a2e2i,a2e2i’t’; q)j/(a4; q).
k (q k 2 2e-2i 2i0.,a ,a a2qe ,q) q.

1=o ( q, a2feiO-iq’, q1/2-keiO-iq’, a4qj; q )
Substituting in (4.4) we find that

(4.7) Sm.n(O,fl))=h(O,) i (q-n’a4q’’-a21/e
k=0 ( q a 2f a 2v/- a 2q q ) k

,0--’4 -’ttf- id?--,0, q ]E k kq

ql

[ 1"32
q-m’a4qm-l’a2e2iql

a4qt, a2e2iO
q’q

k (q-k,aa,aae2iO,a2e-2i,l,; q)tZ 41 Z-a-2-F;i’---i- ql/2-keiO-i q)l/=o (q,a
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By q-Saalschutz formula [4, p. 68, 8.4(1)], the 3q2 series has the sum (ql+l-m,
aZe-2i;q)m/(a4q/,ql-me-Zi/a2;q) which vanishes if O<l<m-1. So the summa-
tion indices and k in (4.7) both must be > m. Replacing and k by + rn and k + m,
respectively, and doing some straightforward simplification, we obtain

(4.8)

So,,,,(O,,)=A(O,,) ( q-n,a4qn,a2, a2e-2iO a2e-2iq", q)
( a2/- a2v/- a27r q ) ( a 4 q )2m

m2/2 + a 2mei(O +)mq

n-m (qm-n a4qn+m a2qm _a2qm+l/2eiO-iq,,_a2qm+l/2eiq,-io

k=O ( q,a4q2m,a2qm+ 1/2, a2qm+ 1/2 a2q,+ 1., q) k

q_, a2q m, ff-eiO+i,k ff-e-iO-iq, ]"4q3
ql_-m/a2, a)-qm+ l/2e iO-iq’,- a2qm+ l/2e i’-i

q, q

Observe that the double series above is the same as that in (2.8) with n and a

replaced by n- rn and aq m/2, respectively. So we get

(4.9)

.(__q-n, a_ 4__qn__, a2, a2e- 2i, a2e- 2i’

Sin’ n(O’dp)=A(O’dP)(o2vF, a]- --qqi i i,;q)2mq)m qm2/2+ma2mei(O+q,)m
l+q; (-1) mq(,-m)/2p,_ (x;aqm/2 aq,m+l)/2 _aqm/2,_aqm+l)/2)a2q

"Pn-m ( Y; aq m/2 aq (m+ 1)/2 aqm/2 aq(m+ 1)/2)
Using (1.15), (1.22) and (4.2), and simplifying, we finally obtain

(4.10) Am,n(O,q)--Cm,n(a[q)e-mi(+g’)(aaeai,aaeaig’;q)

p,,_,, ( x; aq m/2, aqm+ 1)/2, aqm/2, aq(m+ 1)/2 )
"Pn-m( Y; aqm/2,aqm+ 1)/2, aqm/2, aqm+ 1)/2),

where Cm,,(alq is given by (1.25). This completes the proof of the addition formula
(1.24).

Acknowledgments. We would like to thank Professor O. Gasper and the referee
for many valuable suggestions.
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ASYMPTOTICS OF THE ASKEY-WILSON AND q-JACOBI
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Abstract. We derive explicit representations and complete asymptotic expansions for the Askey-Wilson
4t3 polynomials and the little and big q-Jacobi polynomials. We also give an alternate proof of a
Dirichlet-Mehler type formula for the continuous q-ultraspherical polynomials. We also determine the
asymptotic behavior of the q-Racah polynomials.

Key words, complete asymptotic expansion, little q-Jacobi polynomials, big q-Jacobi polynomials,
Askey-Wilson polynomials, Dirichlet-Mehler formula
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1. Introduction. The q-shifted factorial (a; q)n is defined by

n

-1)(a;q)o=l, (a;q),,= 1-I (1-aq2
j--1

n=,1,2,. .,[ql<l,

and the basic hypergeometric factorization rqr+,_ is

;q,xrl)r+P--1 bl " br+p-1 (l i--q)’-n ibT-p----1; )
[(-1) px] qp,,.

(q; q),,

The Askey-Wilson 4b3 polynomials [6] are

(1.1) p,,(x)=pn(x;a,b,c,d):= 4ch3( q-n’abcdq’-l’az’a/z )ab,ac, ad
q’q

where

(1.2) z2- 2xz + l=O,

that is

(1.3) z x V/x 2 1,
1 x+ 1/x2-- 1
2

In fact, if x cos0, then z e-i0. The big q-Jacobi polynomials of Andrews and Askey
[2], [31 are

(1.4) P,,(x)=P,,(x’a,fl "t" q):= 3*2( q-"’aflq"+X’x )aq, yq
q’ q

Received by the editors February 20, 1985, and in revised form August 7, 1985. This research was
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and the little q-Jacobi polynomials are defined via

(1.5) tff’( x) 2l ( q-n’ aflqn+ )aq
q, qx

Ismail and Wilson [8] determined the main term in the asymptotic expansion of the
aforementioned orthogonal polynomials for fixed x and n o. In this paper we
determine the complete asymptotic expansions of these polynomials as n . The idea
is to apply Cauchy’s theorem to a generating function and derive a contour integral
representation, and then use analytic continuation and calculus of residues to evaluate
the integral. This gives rise to a Dirichlet-Mehler type formula [12] which is also a
convergent asymptotic series. In 2 we investigate the asymptotics of the Askey-Wilson
43 polynomials. We also determine the main term in the asymptotic expansion, as
N o, of p,,( x; a, b, c, d ) whenab=q-N and n=O(Nl-), where e is a fixed number
in (0,1). The case q= 1 of this later result is treated heuristically in [9]. The asymptotics
of the little and big q-Jacobi polynomials are in 3. In 4 we give an alternate proof of
a result of Rahman and Verma [10].

The Askey-Wilson 4t3 polynomials generalize the 6-j symbols in the sense that
they contain one more parameter and the 6-j symbols are limiting cases of 4t3
polynomials. The Askey-Wilson polynomials are also the most general orthogonal
polynomials that resemble the classical polynomials of Jacobi, Hermite and Laguerre.
In fact, Andrews and Askey [2] define an orthogonal family of polynomials (rn(x) ) to
be classical if and only if rn(x) is a special case or a limiting case of the 4q3 orthogonal
polynomials.

2. The Askey-Wilson polynomials. Ismail and Wilson [8] derived the generating
function

o

(a/z,b/z.)(cz,dz.)(2.a) tna-n(ac, q)n(ad;q)n (x) 2 ,q,zt 2q1 q t/z
n=0 (-d -)--n -( -’ Pn ab cd

The 2q,l’s in (2.1) converge when [t[<[z[ since [z[__<[z-X[. We need to continue the 2qx’S
in (2.1) to meromorphic functions. The appropriate transformation to apply is the
q-analogue of the Pfaff-Kummer transformation, [1],

(w; q)o ,=0 (q; q)-("-q-)--(-A’,-i- (- Bw)

This transforms the right-hand side of (2.1) to

(at;q)(ct;q)o o (az;q)k(a/z;q)k(cz;q)j(c/z;q)j
(zt’q), (t/z’q), o,.= (q’q)k(ab’q)k(at’-q(q’q)j(cd’q)j,

(-bt)k(-dt) j

q()+().
(ct;q)j

The above expression is analytic in the complex plane except at the poles t=zq-m,
t=q-m/z, m=0,1,.... Let us denote the left-hand side of (2.1) by F(x,t). This gives
the integral representation

(ac;q)n(ad;q) a f(2.3) (cd;q)n(q;q) pn(x)=-i Jc t-n-lF(x’t)dt’
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where C is a circle [t[=p, p < [z[. Now think of C as a contour around the point t= m.
So C encloses all the poles of F(x,t) but has the wrong orientation. Therefore, the
right-hand side of (2.3) is -E Residues. Now 0 is outside the contour. Observe that

Res( F(x,t)/t n+l", t=zq ) ( azq- m; q ) czq- m; q q

(zZq-m; q)o(q-m; q)m(q; q)

o (az;q),(a/z;q)k(cz;q)j(c/z;q)jbkdJ(_zq-m)k+J
k,.’=o (q;q)k(ab;q)k(azq-m;q)(cd;q)j(czq-m;q)J(q;q)J

qj(j- 1)/2 + k(k- 1)/2.

This gives the asymptotic formula

(2.4)

(ac;q),,(ad;q),,
(cd;q),,(q;q),,

( a ) (az; q)(cz; q-.)-- (-z q)m(-zz q)
7 i-i;-qii-; q)o (q, q) (qz 2;

(a)mqmn
m=0 q)

"22 ab azq- q, zbq- 22 cd czq- q, zdq-

+ a similar term with z and 1/z interchanged.

The relationship (2.4) is actually an explicit representation as well as an asymptotic
expansion. As n oe the main term on the right-hand side of (2.4) is

( z2; q)o ( q; q)o 1’ ab
q,zb 1’ cd

q,zd

+ a similar term with z and 1/z interchanged.

Clearly, if r is a positive integer, then

11 ab
q’ zb lim 21 q, zbqr r_

r-, ab (ab; q)r (ab; q)

where we used the q-analogue of Gauss’s theorem, Slater [11, p. 247]. This shows that
the main term in the asymptotic expansion of the left-hand side of (2.4) is

a A(z)+(az),,A(z_l)
Z

where

(az; q)o( bz; q)o(cz; q)o( dz; q)
(ab; q)o( ca; q)o (z2; q)o (q; q)o
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We now consider the q-Racah case, that is the case ab---q-N. Formula (3.2) in [8]
implies

(ac;q),,(ad;q) Pn(X; a,q-U/a,c,d)(cd; q)n(q; q),

(a/z;q)n-,(q-N/az;q)n-,(cz;q),(dz;q)k n-2,--a z
=0 (U-?iq),-k(q;q),-k(Cd;a)k(q;-i-

0 =< n =< N. Applying

we obtain, 0 < n < N,

(q-N/X; q)n-,= (Xq; q) E(__q_i q_) N-n_+k__tk-n
(q-N; q)n-k (Xq; q)N-n+(-i-)U

(ac;q)n(ad;q)n
(cd;q)n(q;q)n

pn(x;a,q-U/a,c,d)

(q;q)n k=o (-t -q- i (- q ) k ( aqz q ) N + k ( q q ) k -We now let N oe, n m in such a way that n-O(Nl-e), e is a fixed number in
(0,1). One can easily justify interchanging the limiting and summation processes in
(2.5) and establish

(2.6) pn(x.a q_N/a cd)(a/z;q)(cd;q) (cz,dz )(ac;q)(ad;q) 2’1 ad
;q,a/z

One disadvantage of the right-hand side in (2.6) is its lack of symmetry. It should be
symmetric in z and 1/z. In order to obtain a more symmetric representation we apply
the transformation (2.2) and get

(cd;q) (cz;q),(c/z;q)k(--ad) k

q()(2.7) P"(x;a’q-N/a’c’d)--(ad;q)
,=0 (q;q),(cd;q)k(ac;q)

as n oe, N oe, n O(NX-). Observe that (cz; q)k(C/Z; q), is a polynomial in x of
degree k. In fact

k-1

(cz;q)(c/z;q)= l-I (1-2qJcx+c2qZJ)
j=0

3. The q-Jacobi polynomials. Ismail and Wilson [8] found the generating function

(n--1)/2/n
fl(

0 1/X
(flq;2(i)n:’ X) 21 ;q’--xt 0 ;q’--xaqt

0

Applying the Pfaff-Kummer transformation (2.2) to the 20x appearing in the above
generating function, we obtain

(.)

(fl;q)(q;q)2’ x)=(_xt;q)X* flq
;q,-t o* aq ;q,-xaqt
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The singularities of the right-hand side of (3.1) are simple poles located at t= -q-m/x,
rn 0,1, . Let

(3.2) *(X,t)--= (flq;ii)n(I)na’ X).

Cauchy’s theorem implies

(3.3) qn(n-1)/2 1 fc -n-1(q;q),(q;q),,’(x)=vi (x,t)t dt,

where C is a circle Itl=0 < 1/Ix I. As we did in the case of Askey-Wilson polynomials,
we think of C as a contour enclosing the point at infinity in the t-plane but with a
clockwise orientation. Clearly

Res( t-n-ldp(X,t); --q-mix )
qmn(--x)n ( ) (Bqx )(q-m;q)m(q;q)oo01 aq ;q,aql-m 10 flq

;q,q-m/x

This and (3.3) establish the explicit formula

(3.4) (--x)-nqn(n-1)/2
(Bq;q)n(q;q)n

(- 1) Oqbl aq q, aq1- 11 flq q, q m/x

This is also an asymptotic formula as n --* o when x is fixed. Each of the hypergeomet-
ric functions appearing on the right-hand side of (3.4) is a sum of rn terms. This can be
seen as follows

o1 aq ;q,aq1-m lim01 ;q,ae2q1-m-0 aq

1
lim 201--,o (aq; q)

q-m, __1
e ;eaq

aeq1-m

where we used the transformation, Askey and Ismail [4, p. 67],

abx )(a b (bx;q)(c/b;q) b
2’1 ;q,x

(x" q) (c" q) 2’/’1 c ;q,c/b

This gives

Oql aq ;q’aql-m
(aq; q) (i (- 0)kqL(kfl)/2
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Furthermore,

ltl flq
;q,q m/x lim 211 E

-o flq

(qflq; q ) 2qbl

q, eq- m/x )
)flxq q, 1/x

Thus we proved

(3.6) ( x)-"q"("- 1)/2

(flq;q),(q;q),,
(1/x; q) o qmn+m(m+ l)/2

d2’B(x)= (flq;q)o(aq;q)o ,o (q;q)m(q;q)o (-1)m

"211 0
q’ ltl 0

q’aq

We now treat the big q-Jacobi polynomials. Ismail and Wilson [8] obtained the
generating function

E (7q; q)-"t--
n=O (qi-n(flq;q), Pn(x)

=( (aq/x;q)n(tx)n)( (flX/y;q)k(--Ytlkqk(’+i)/2)
that is,

(3.7)
o 7q;q),t (O, aq/x,0 (q?-n(flq;-q)n Pn(x)=2dpl aq ;q,xt

Bx/v )101 Bq q’ /qt

Applying the transformation (2.2) to the 2q1 in (3.7) gives

(3.8) E(yq;q)ntn 1 (X )
n=0 (flq; q)n(q; q)n pn(x)-’-

(xt; q)o lbl aq ;aqt lqbl

The poles of the right-hand side are all simple and are located at t=q-m/x, m=
0, 1, . The residue of t-"- times the right-hand side of (3.8) at q- m/x is

xnq x a ql-m lt1(q-m;q)m(q;q)o 11 aq ;q,
x qfl

This establishes

(3.9) (7q;q)n(q;q)o
(flq;q),(q;q)n

o + +
en(x) =Xn E (--1)mq 1)/2

m=O (q;q)m

( X 0/ I-m)(X/[ __.ql-m)1q1 O/q;q,q lq’1 qfl ;q’x

Each of the lql’s appearing in (3.9) is a sum of m terms. This follows from (3.5) since
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This enables us to transform (3.9) to

(3.11)
(O;q)n(q;q)m x’(Yq;q)m(otq/x;q)m
(flq;q,,(q;q),,Pn(X)= (aq’q)(flq’q), m=l

( 1) mqmn+m(m+l)/2
(q;q)m

X 21 ’q’
x0

’q’ x

The relationship (3.11) is an explicit representation of P,(x). The right-hand side of
(3.11) is clearly an asymptotic series as n .

4. The continuous q-ultraspherieal polynomials. The continuous q-ultraspherical
polynomials ( C,(x; fl q) } have the generating function

(4.a) C(cosO,lq)t"
(tei;q)(te ,O;q)

,,=0 ( te iO" q) ( ,e-i" q)
They were discovered by L. J. Rogers around the turn of the century and Rogers used
them to prove the Rogers-Ramanujan identities. Rogers did not realize that they are
orthogonal polynomials although he was well aware of the fact that they generalize the
ultraspherical (or Gegenbauer) polynomials. Their orthogonality was proved only re-
cently, [4] and [6]. Recently, Rahman and Verma [10] proved the q-integral representa-
tion

(4.2) C (cos 0, fl q
2isinO(fl;q)2 (f12. q)

(1 q)wa(cosO q)( q; q)o (/32; q)

fe-’ (quei;q)(que-i)
dqu,un

iO iOdeiO (flue ;q)(flue- ;q)
where 0 < 0 < r, wa(xlq) is the weight function

w(cosO q) (e2; q) ( e-2i; q)/[( fie 2i0;q)(e-2’;q)],
and the q-integral is defined by

o

lab f( u fo f(u)dqu-fo f(u)dqu.f(u)dqu=a(1-q) f(aq )q )dqu--
b a

n----O

The representation (4.2) resembles the familiar Dirichlet-Mehler formula, Szegi5 [12].
Rahman and Verma [10] observed that (4.2) can be used to compute the complete
asymptotic expansion of C,(cos 0; fllq) for large n. They also used (4.2) to derive a new
generating function for the continuous q-ultraspherical polynomials and to give a
simple derivation of the Poisson kernel for the continuous q-ultraspherical polynomials
that Gasper and Rahman obtained earlier [7].

Applying the procedure that we used in 2 and 3 to the generating function (4.1),
we obtain

(4"3) Cn(csO" fllq)=
(fl;q)(fle2i;q) -in ( q/fl’qe-2i/fl )(q;q)m(e2iO;q)5 e 2tl qe_2io

;q,fl2qn

+ a similar term with 0 replaced by -0.
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The relationship (4.3) is not exactly what Rahman and Verma obtained although it
serves the same purpose. Applying the transformation

2q1 ’c q’ x
x q )d c

q’ abx/c

to the basic hypergeometric functions in (4.3) transforms (4.3) to

(4"4) C,,(csO" fl’q)=(fl;q)(fle2g;q)(q+;q) (q) qe -2iO )
Formula (4.4) is a restatement of (4.2).

Acknowledgments. I thank Mizan Rahman and Arun Verma for sending me a
preprint of their paper [10] which motivated this work. Discussions with Dennis
Stanton of the University of Minnesota were extremely helpful.
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MONOTONICITY PROPERTIES OF THE ZEROS
OF BESSEL FUNCTIONS*

ARPAD ELBERT’ AND ANDREA LAFORGIA:

Abstract. For v >__ 0 let ck be the kth positive zero of the general cylinder function

C x)=cosaJ x)-sin aY x ),
where J (x) and Y (x) denote the Bessel functions of the first and second kind, respectively. Since the
notation c, does not reflect the dependence on the values of a, it is useful to define the function .I as in [3].
The sequence ./a ./’2 is used to denote the sequence of the zeros of J, (x) corresponding to a 0. Now for
any r(k-l,k), where k is some natural number, let L=c, with a=(k-)rr. The correspondence
between .ja and c,a is one-to-one. In this paper we are concerned with some monotonicity properties related
to ./’. We also study the convexity (concavity) of .L showing that j, is convex with respect to for fixed v

and 0 < v__< , and concave for v > -.
Finally for v >__ 0 and > 0 we prove that the function logj is concave in v for fixed and concave in

for fixed v.

Key words, zeros of Bessel functions

AMS(MOS) subject classification. Primary 33A40

1. Introduction. For v>0 we use c.k to denote the k th positive zero of the
cylinder function

C(x)=J,(x)cosa- Y,(x)sin a,

where J(x) and Y(x) are the Bessel functions of the first and second kind, respec-
tively.

The properties of c,, have been investigated by several authors.
Recently L. Lorch has studied the determinant [4, p. 223]

(1.1) T= Cvk Cv+8,k+h
Cv+e,k+r Cv+8+e,k+h+r

for e, 0, h, r 0,1, 2,. ., e + r > 0, h + > 0 and he has proved that T< 0.
In this paper we are interested, among other things, in determinants of the type

(1.1), and we prove a more general result than the one given by Lorch.
In [3] we introduced the notation j, to denote the function c, as follows: let
k a/rr, then j c,. Now we have j for v >__ 0, > 0 and with this notation (1.1)

can be rewritten in the following way

(1.2) T= Jv Jv+8, + h

Jv+e,+r Jv+8+e,+h+r

where v, , , h, r, e are nonnegative real numbers and e + r > 0, h + 8 > 0. We shall see
that Lorch’s result is true also for T in (1.2).

Received by the editors February 13, 1984, and in revised form August 8, 1985. This work was
sponsored by the Consiglio Nazionale delle Ricerche, Italy.
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Concerning the function j we know that it is increasing with respect to both the
variables. For fixed x this follows from the Watson formula [6, p. 508]

(1.3) d. f0-vA 2j. Ko (2j. sinh ) e 2"’ dt

where Ko(u ) is the modified Bessel function of order zero, which is positive. On the
other hand for fixed v we have proved in [2] that j, is strictly increasing with respect
to x. For the sake of the later reference we express this property in the form

(1.4) j,,>j,, ’>>0, v>-.

Moreover we know [5] that the sequence (c k+l-c, k }_ is strictly decreasing for

Ivl > 1/2 and increasing for Ivl < 1/2. So with our notation the sequence ( L,++1-

J, + }--o is monotonic. This property suggests that the function j is concave with
respect to r if v > 1/2 and convex for 0 =< v =< 1/2. Theorem 2.2 states that this observation is
true.

2. The function j and the determinant T. For u >__ 0 and x > 0 we consider the
derivative

Since in the special case v= gJ1/2,--1’//" [3], we have

(2.2) ll/2, "/r.

Differentiating the function dj,/dv given by (1.3) with respect to x, we obtain

--d l= 21f0dv
K(Zjsinht)e-2tdt

+ 2j Ko (2jsinh t)2/sinh te 2dt

where j =j,. An integration by parts of the second integral on the right-hand side gives

21 K;(2jsinht)2jcoshttanhte-"dt 2/[ Ko(2jsinht)tanhte-2"t]o

fo [12vtanht]e-2tdt.21 K0 (2j sinht) cosh2-----
Recalling that

{(1) u>O,
Ko(u)--

0 logu

the first term on the right-hand side is zero; therefore by (2.1)

21 Ko (2j sinh ) (tanh2 + 2 v tanh ) e "dr.
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Taking into account (2.2), we have

(2.3) 1 ’exp(2f [foKo(2jsinht)(tanh2t+2tanht)e-2tdt]dl)
/2

A simple consequence of the formula (2.3) is the following result.
THEOREM 2.1. For u > 0 and x’ > x > 0 the relations

l ,>1/2.

hold.
Proof. By (2.3) we have the inequalities l r if , 1/2 respectively, and L’-J=

f lxd; hence the conclusion of the Theorem follows.
THEOREM 2.2. The function j is concaoe with respect to x if , >= 1/2 and convex if

0__<,= .
Proof. To show the concavity of the function j with respect to x, in the case , >__ 1/2,

we need to show that the function l Oj/Ox decreases as x increases. Let x’> x > 0.
Then by (1.4) j, >j for , >= 0. On the other hand the function K0(u) has the integral
representation [6, p. 446]

K0 (u) e- Ucosh d;

hence Ko(u ) strictly decreases as u increases and by (2.3) we have l,> l,,. This gives
the concavity of j with respect to x, for , >__ 1/2.

Similarly we can prove the convexity of j with respect to x, in the case 0 =< , __< 1/2,
and the proof of Theorem 2.2 is complete.

THEOREM 2.3. For u > 0 and > 0 the function logj is concaoe in for fixed and
concaoe in forfixed u.

Proof. The first part of the theorem follows from

J"++n’ < J’+’ e,6>0;

thus we need to show that the function H(,, x) defined by

(2.4t H(v,x)- j"+’
Jvx

decreases as v increases. By (1.3) we have

(2.5) logH(,,x)=2f+[foKo(2j,sinht)e-2tdt]dl
and similarly
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By (1.3) j,+,>j,, and since Ko(u decreases as u increases, the function in the last
integral is less than the one in (2.5). This shows that H(v+ e,x)< H(v, x) and the result
follows.

For the proof of the second part we have to show the inequality

<Jv,x+h
Jv,+r L

r,h>O

which is equivalent to proving that the function L(v,x) defined by

(2.6) L(v,x)= jv’-+h
Jvx

decreases as x increases.
By (2.1) and (2.6) we have

) 1,+ h(2.7) -logL(v,x) J,,+h jv

and we need to prove that l./j. decreases as x increases. In the particular case v 1/2
this is trivial, because by (2.2)//2,= r and j/2, r.

Now we distinguish the cases v > 1/2 and 0 =< v =< 1/2. In the first case for r > 0 and

’= + r we have by (1.4) and (2.3)

so by (2.7) the function L(v,) decreases as increases, provided v > .
The case 0 < v __< 1/2 requires more detailed investigation. By (2.1) and (2.3) we get

(2.8) + (v, x) =-xlog= -2
Jv

[fo K(2j, sinh t)21sinht(tanh2t+ 2/, tanht )e-2t*tdt

We claim that (v,x)<0 for 0v1/2. For v=1/2 this is trivial. We show that
3+(v,x)/3v>O for v>0. Indeed by (1.3), (2.3) and (2.8) we get

(2.9) J 1

I v /(v,x)= 11 + 2vI2

where

I1= 4j. Ko(2jsinht)sinhttanh-te-2tdt

+2 Ko(2jvsinht)(1-tanh2t)e-dt,

and

12=fo
m

[4j.sinhttanhtK(2jsinht)-2 tanhtKo(2jsinht)] e-2’dt.
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An integration by parts gives for v > 0

12= ( [4j.sinhttanhtK(2j.sinht)-2 tanhtKo(2jsinht)] e-2t )-2u o

sinh )4L sinht+cosh Ko(2Lsinht)

+ 8j2sinh2 tK’(2jsinht)-
cosh2

Ko(2Lsinh t)

4jsinh tK (2jsinh t)] e- 2, dr.

Recalling that K(u)= -KI(U and

{(1) u>O
Ka(u)=

O logu

the first term on the right-hand side is zero and by (2.3) we obtain

(2.10)
j, 3

k(v )=2fo [T(t)Ko(2j,sinht)+2j,T2(t)K(2jsinht)
l 3v

+ 4j2sinh2"tK’(2jsinht)] e-2tdt

where

1
Tl(t) 1 tanh2t

cosht

T2(t) =.sinh tanh2 q sinh
sinh t.

cosh2

Taking into account that K0(u) satisfies the differential equation [1, p. 374]

u2K + uK u2K O,

we have

O
b(v )=8ljfo Ko(2jsinht)sinh2te-2tdt,(2.11) 3v

which is clearly positive. So the function +(v, x) increases as v increases and by (2.8)

q (v, x) =-37x log j-- <q= - x =<0,x 0<v<.=

Consequently the function l/j decreases as increases and by (2.7) L(v,x) de-
creases as x increases. The proof of Theorem 2.3 is complete.

COROLLARY 2.1. For e,8,h,r>O let Tbe definedby (1.2). If e+r>0 andh+8>O,
then T< O.
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Proof. The inequality T< 0 is equivalent to

(2.a2) + + + + +
where the functions H(u, r) and L(v, ) have been defined by (2.4) and (2.6), respec-
tively.

So it is sufficient to show that the functions H(v,) and L(v,r) are decreasing
with respect to both the variables.

Concerning the function H(v, r) we have already shown that it is decreasing with
respect to v.

Now let us suppose r > 0 and r’= r + r. Then by (1.4) and (2.5)

K0 (2j,sinh e 2,, dt dl= logH(v,).

This shows that the function H(v, ) decreases as increases, provided 8 > 0.
Let us consider the function L(v,r) defined by (2.6). The decrease of L as a

function of r has been shown. So we have to prove that L(v,+8, r)<L(v,r) for >0,
or equivalently

J+,+h<J+, >0.
J,+h J,

By (2.4) this inequality is equivalent to H(v, + h) < H(v, ), which is the property
proved above.

We have seen that the inequality (2.12) is equivalent to T< 0; hence we need the
sharp inequality in (2.12). Since e + r > 0 and e >__ 0, r >__ 0, there are two possibilities: the
first one, r>0, e>__0 and the second one r-0, e>0. In the first case we have
L(v+8+e,+r)<L(v+8,+r)<L(v+8,) and H(v+e,+r)<=H(v,) and (2.12)
holds. In the second case we have the sharp inequality H(v + e, )< H(v, ), and hence
T< 0. The proof of the Corollary 2.1 is complete.

Acknowledgment. We are grateful to the referee, whose constructive criticism and
suggestions led to the present improved version of this paper.
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THE SUMMABILITY SIGNIFICANCE OF ROOTS OF
BESSEL FUNCTIONS*

E. C. OBI

Abstract. A new semicontinuous Toeplitz (regular) matrix method of summability is developed from the
(roots of) Bessel functions. Like the method of the Bessel function itself, developed by R. G. Cooke, viz.,

(J,v)’ax,=2J+(X),
the new method,

((.9 m) ",(m) ,v)"k =fl(m .j2m
(where fl(m,u) is explicit in m, u), falls into the "Ceshro scope," but unlike the Cooke method, the (60, rn)
limitation methods are definitely consistent with (C, 1) throughout the convergence field of this Ceshro
means.

1. Introduction. The semicontinuous matrix of R. G. Cooke,

axe, 2J+(X) (X>0, k= 1,2,..-),
where v is fixed in R (- , ), is a Toeplitz (i.e. regular) method of summability (cf.
[1]). A sequence, z-- { z,) in C (the set of complex numbers), is said to be (J, v)-sum-
mable to , C if

lim E 2J+,(k)zk=7.
X k=l

Thus, for example, summability (J, 0) would be consistent with (C, 1)-summability for
such divergent sequences as zk=coskO if 0 (2nr n =0, _+ 1, _+ 2,--" ) is fixed (cf. [1]).
The (J, 1/2)-method sums divergent Fourier series to their functions, a.e. on [-r,r].
With these and other related results of Cooke the summability significance of J,(z) was
brought to light. Some cylinder (or their related) functions have played other classical
roles in the theory of infinite matrices. It is of interest to note (in {}3) that the zeros, j,,
of the particular cylinder functions, J,(z), have a strong relationship with an important
class of summability methods, viz. the delicate class. (We recall that there is the
powerful class (cf. [2, p. 197]), consisting of those methods which are efficient for
crudely divergent series--such as a power series outside the disc of convergencebut
are usually ineffective for the slowly oscillating types, such as E=(e(/v) [2, p.
197].) A summability method which is efficient for the slowly oscillating types, but
normally not for the former, is said to belong to the delicate class.

If we identify the element (u, k) R + N [0, ) { 1, 2,--- } by the k th zero of
J,(z), we construct explicit functions (rn,u) such that for each fixed rnN, the
transformation, (m) R + N R +, defined by

t(m) :juk- (m,p)j-k2m,

transforms the nonregular matrix j,, to a regular semicontinuous method of summabil-
ity which belongs to the delicate class and which, in addition, is endowed with other
desirable consistency properties. In particular, this matrix-construct of j,, is efficient

*Received by the editors May 3, 1983, and in revised form November l, 1984.
Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
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for Fourier series and has a more favorable comparison with (C, 1) than was shown
(Cooke [1]) between (J, ,) and (C, 1).

2. Summability theory and roots of Jr(z). Denote 5f=the linear space of all
complex sequences, (; ( z Sf: limz exists}, and ’--- the set of all divergent sequences
of 0’s and l’s. If M-- (rn,k), ’ >_- ’0 > 0, k 1, 2,. -, is an infinite semicontinuous
complex matrix such that

(1) o(,)-- E m,kz,
k=l

exists for all ’>_- ’0, then the M-transforms {w(’)},>_-o of z-- {zk} may be denoted by
w= Mz or by (1). Let Cd(M) be the convergence field of M (i.e. the linear space of those
z5limMz exists), and let (M) be the subspace of C (q (d(M) consisting of those
z limz= limMz. If (;

_
(d(M), M is called a K-matrix (after Kojima [2, p. 4]). Those

K-matrices that satisfy the following consistency or regularity property, (M)=C, are
called Toeplitz (or consistent, or regular, or simply T-) methods of summability, or just
T-matrices. The M-generalized limit of z is limMz , if ,/exists and if M is Toeplitz.
For a proof that the semicontinuous matrix, axk=2J+,(x), with , fixed in R, and
k N, and x varying in (0, oo), is Toeplitz (regular), see [1].

Two among the best known methods which we shall have an occasion to use below
are the Cesro and the Riesz means:

A2 if 1 <k<i
c() c,= AT_

0 if k > i, i, k- 1,2,. ., where A)- 1,

AT=(r+ 1).--(r+ i)/i!, if i>= 1 (r is real but not a negative integer); the correspond-
ing transformation is

W(i)--(AT-1) -1 Z
k=l

(the notation C() and (C,r) will be used interchangeably according to convenience);

((l-k)r-- i-k+l) if/-k>l
(,r)’rik

0 otherwise.

The M-sum of a series will mean that of the sequence of its partial sums, the
quantities lim mk and lim, Y’.k m, are called the (first and second) characteris-
tic numbers of M; and finally [x] will denote the integral part of x. Now, using the
zeros of Bessel functions, we construct a new J-related regular method of summability
which is of the delicate class and has the properties suggested in 1. It will be useful to
define the following quantities"

em=themthCatalannumber _1(2m-2).rn m-1
m

d(m)=l-2m+ [m/s]; hm(’)=em(’+m-1) d(m)"

rm(’) =am E (’+s)Im/’l,
s----1

for all m>__ 1, ,>__0.
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THEOREM 1. IfLk is the kth positive root of J(z), vR+, k=1,2,3,..., then each
of the semicontinuous matrices generated below byj, according to the equations,

tn)--q’l’m(l)( hm(/) } -lj-k2rn m=1,2,3,.--,

is a Toeplitz (regular) method of summability.
(The symbol (60, m), or (.0 if m is fixed, will below denote this method, and m will

be called its degree or order.)
Before the proof we first discuss a result which will be needed from the theory of

Bessel functions.
Consider the Maclaurin coefficients, Om(V)=Y’. m,k=lj2 of the function,

VCJ+I(V/)/(2J(v/7))=E=IOm(V)Zm (cf. [3, p. 528]), where for our purposes v>0,

Then the product,

Cm(l)) 4ml-[ (1)--S)[m/s] Om(1)),
s=l

is by a theorem of Kishore [3a] a polynomial in v which can be represented in the
form,

c(m)

(2) (/)m(/)) Y’. 2m’ I-[ (V+s)a"(m>=3), qbl=qb2=l
i=1 s=2

where

(2a)

[rn/2]

c(m)= E c(s)c(m-s), c(l)=l,
s=l

i=1
m m-1

and E a,,=deg(m)=l-2m+ E [m/s].
s=2 s=l

The proof of (2) may be found in [3a, p. 515].
Thus Om(V) is rational. Historically it was first used by Lord Rayleigh in his search

for the numerical value for min/k when v > 0 [4, p..502].
Proof of Theorem 1. We verify that ((.0,m) satisfies the Silverman-Toeplitz condi-

tions for regularity by showing that there exists 2, > 0, independent of in 0 =< v < oc,
such that 2t)<)t, and that the (first and second) characteristic numbers of ((.0,m)

Es= 2 ai=d(m fromare 0 and 1 respectively. Now take the polynomial qm" Since m-1

(2a), we can write (2) as

c(m) d(m)

qm(V) Y’. 2m; 1-I (v+bi,),
i=1 s=l

for some integers bi,, 2 =< b;, __< m 1. Then on v >__ 0,

c(m)

O<=r,,(V)<=(v+m--1)d(m) Y’ 2m’=(l’+m--1) d(m)

i=1

e, h,,(v)

The notation if2,, reads as if,, after 1964.
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and so,

Et’ .() ( h ()) -1 EJL:m rm() { h ()) -1

k k

Thus the first Silverman-Toeplitz condition holds for (O,m)D with X 1. Next, since

Jok > 2 for all k 1, then using the MacCann inequality [5, pp. 101-2],

() L+,, >(k-)+
we find that

m

O<t’)=rm(t,)( h,(r)}-lj2"<4 1-[ (,+s)t’/sl/( hm(,)(4+,2) } =-f(,)/g(,),
s=l

where f, g are polynomials in ,, with deg(f)=,sm=l[m/s], and deg(g)=d(m)+2m= 1
+ ,s= l[m/s]> deg(f). Therefore, lim__,f(,)/g(,)=O, whence lim_ t)= 0.

Finally, write 2k,")=q,,,,(,){.,, hm(,)} -x, which we obtained above. Since q’m and
h, have the same degrees in ,, and the same leading coefficients, em, it follows that
,t’ 1, as , o. This completes the proof. [:3

Now, regular methods A, P will be said to be comparable at z= (z }5, if
z (A)C3 (P). If A, P are comparable at z, and A-sum=P-sum at z, we say that A
and P are consistent at z. Thus consistency on a set X will mean consistency at all
z X. On the other hand, we will describe a regular method A as being consistent with
P at z if P-summability of z A-summability of z to the same sum. (In case A is
consistent with P everywhere in 5, we just say, "A is consistent with P." Example: if
r,r’ > O, (C,r) and (C,r’) are consistent on c(C,r)C3 (C,r’); (C, 2) is consistent with
(C, 1) but not vice versa. Otherwise we will specify the subset X of 5 to which the
phrase refers.) Next we write, "A--P at z" (i.e. equivalent at z), to mean that either
both A-sum and P-sum of z exist and are equal, or else neither exists. If (a) A P at z,
and (b) Az- Pz is a null sequence (in case neither A-sum nor P-sum exists at z), we
say that A is absolutely equivalent to P at z, and we write, "A P at z." The example,
(C, r) (, r) on all of , when r > 0, is well known.

Once a K-method, A, is proved regular, it raises other natural and important
classical questions. Does it have the Borel property? 2 Where is it consistent with some
older method? What divergent sequences may it sum to their right values? What about
the summability of such important series as divergent Fourier series? If l(A) is the
proper subspace of the nonseparable metric space (with the usual sup metric),
consisting of all the A-summable elements of , is l(A) also nonseparable? And so
on. Answers to these questions as they affect ((9, rn) are taken up next.

3. An efficiency theorem. Let two regular methods A, P be related as follows: (a)
A is consistent with P; and (b) the sequence Az is bounded whenever Pz is bounded.
Then A is said to be at least as efficient (or at least as powerful) as P. We claim that
every ((9, m) is at least as efficient as (C, 1) summability.

LEMMA 1. If P= (Pik) is a T matrix such that for each fixed i, kPik
then

(a) Ekpik= Y’,kbik, where bik= k(Pik--Pi,k+ ), and
(b) Ekpizk EkbikSk/k - This importantDoes the A-transform of almost all divergent sequences of O’s and l’s converge to 2.

property is held by many well-known regular methods, but is not necessary for regularity. For a definition of
"almost," see for example [2, p. 207].
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whenever z { zk } 5a is such that

1 1
"-Sk-" E Zn

n=l

is a bounded sequence. (For this known fact, cf. [2, p. 92, no. 5].)
TI-IEORFM 2. The &method, t’), of any degree rn > 1, is at least as efficient as the

Cesbro means ( C, 1) as a method ofsummability.
Proof. Fix m> 1, and denote (_9= ((_9, m) and ti t!ff ). Now for every fixed,

O<ktik=kIIm(i)(hm(i))-lji-k2m<l-Xm(i)(hm(i))-lrr-2mk k- - 0

as k , in view of the MacCann inequality (3). So,

(4) limkti=O.
k

Next, set b;, k(tik- ti,k+ 1)- Then with fixed, t, ti is a strictly decreasing sequence
of positive numbers, so that bi > 0, ’ k. Since t, > 0 is a T-matrix, :1 k > 0, independent
of i, such that in view of (4) and Lemma l(a),

0< Ebik Etik <__.
k k

It is now clear that b is a T-matrix also. Now let {(i))i>=0 be the &transform, (_9z,
of z= { zk }, and suppose Co)z is bounded. Then (1/k)Sk is a bounded sequence (say
by a). Therefore,

(5) oa(i)= ..,ti,zk= _,bi,S,/k
k k

(by Lemma l(b)), and so la(i)l__< etX, V i; hence (.0z is bounded.
For the consistency aspect, suppose Co)z--+’,/C, for a given z5a. Then

((1/k)S, ’,{ as k--+m, so that) (5) applies. Hence, since bi is a T-matrix, and
(1/k)Sk/, we must have t(i)3 as im. That is, lim(gz 7, as required.

If A is any T-matrix at least as efficient as some (C, r), r > 0, it can be shown (see
e.g. [2, p. 213]) that l(A) inherits nonseparability from l; hence the separability
problem raised before is settled for ((9,m). In fact, since every Ceshro means (C,r),
r > 0, satisfies just as well the particular summability properties indicated in the follow-
ing corollary for (9, this corollary is therefore a necessary consequence of Theorem 2.

COROLLARY. Let (9 denote ((9,m) for any fixed degree m >= 1. Then"
(i) (9 has the Borel property; in consequence this real T-matrix sums almost all z Jt

to their right value (their Abel sum).
(ii) Any z ( ck } 0’ such that the function f(s) represented by the Taylor series

Y’mk=O(Ck Ok_ 1)S k(c_ --0) in Isl < 1 has the boundary point s= 1 as a regular point, or
as a point of negative order, will be summable ((9) to its right value lim 1- f(s), which
reduces to f(1)/f 1 is regular.

(iii) The divergent Fourier series of any 2rr-periodic and summable function g(x),
over rr, r], is (9-summable to g(x), a.e. on [- rr, rr]; this series is &summable to

1/2 { g(x + O) + g(x O) } if x is ajump discontinuity.
(iv) ((_9, m) is consistent with (, r) on , for at least all r [0,1 ].
(v) l((O) retains the nonseparability of .
For such a singularity, see Dienes, Taylor Series, Oxford, p, 491.
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Thus for example, with z=(0, 0, 1, 0, 0, 1, 0, 0, 1,... )whose associated Taylor
series, s2-s3nt-s5-s6nt-s 8 represents f(s)=s2/(s2+s+l) on [sl<l, which
function has 1 as a regular point, the right value for z is f(1)= 1/3 (=lim._l-f(s));
hence the O-sum of z is 1/3. By Corollary 1, the questions raised at the close of 2 are
now settled for ((_9, rn ).

The remaining problem, the delicacy of ((9, m), will also be settled by Theorem 2.
For since the Cesro means, as is well known [2, p. 197], is efficient for delicately
convergent series (or sequences), it follows from Theorem 2 that the ((9,m) method of
any degree rn > 1 is of the delicate class. In closing, we conjecture that for rn >= 2, ((9, rn)
is consistent with (C, 2), or in general, for rn >= r, ((9, rn) is consistent with (C, r). The
case r= 1 follows from Theorem 2. The first eight of these methods are tabulated below
for reference purposes:

t})=4(i + l)/j;

t})= 42(i + 1)2(i + 2)/j/;

t,) 43 (i + 1)3(i + 2)(i + 3)/2 j/;

t)= 44(i+ 1)4(i + 2)2(i + 4)/5jisk;

t)= 4(i + 1)(i + 2)2(i + 3)(i + 5)/14j/1;

t,)= 46(i + 1)6(i-k 2)3(i + 3)(i + 4)(i+ 6)/42(i + 5) j/x2;

t,)= 47(i+ 1)7(i+ 2)3(i + 3)2(i + 4)(i+ 5)(i + 7)/132(i + 6)2j;

t)= 48(i + 1)8(i + 2)4(i + 3)2(i + 4)z(i + 5)(i + 6)(i + 8)/429(i + 7)4j/1k6.
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UNIFORM ASYMPTOTIC EXPANSIONS FOR PROLATE
SPHEROIDAL FUNCTIONS WITH LARGE PARAMETERS*

T. M. DUNSTER"
Abstract. By application of the theory for second order linear differential equations with a turning point

and a regular (double pole) singularity developed by Boyd and Dunster (this Journal, 17 (1986), pp. 422-450)
uniform asymptotic expansions are obtained for prolate spheroidal functions for large 7. The results are
uniformly valid for 0=<2/y2=<1+A and for A’ <__k/’C2<=A ’’, where A, A’ and A" are arbitrary real
constants such that 0__<A < A’ =<A" < o. An asymptotic relationship between ), /, 7 and the characteristic
exponent u is then derived from the approximations for the spheroidal functions. All the error terms
associated with the approximations have explicit bounds given.

Key words, spheroidal wave functions, asymptotic expansions, asymptotic representations
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1. Introduction. In this paper we shall derive asymptotic approximations to solu-
tions of the spheroidal wave equation, which we express in the form

dr( 2 2 )(1.1) (z2-1) d2V+Zz )k---T2 1) 0dz- Tzz (z 2-1)
(z

Throughout this paper we shall restrict the parameters ?t, t, 7 to being real and
nonnegative. We shall construct asymptotic approximations to solutions of (1.1), for
large 2, which will be uniformly valid either for z =-x real with 0 =< x < 1 (2 and 6),
or for z complex with larg(z)l _-< r/2 (3, 4 and 6).

There is a fourth parameter associated with (1.1) which is a function of ), t, and
y. This parameter is the characteristic exponent and we shall denote it by v.

When is real, solutions of (1.1) are known as prolate spheroidal functions, and in
the case where v and / are integers they are commonly known as prolate spheroidal
wave functions. Prolate spheroidal functions play an important role in many areas of
mathematics and physics, and we mention in particular problems of scalar and electro-
magnetic scattering by a prolate spheroid. In such problems is generally a real
constant given ab initio, and which is large in the high-frequency case.

There have been a number of approximations for prolate spheroidal wave func-
tions with large obtained previously, including the work of Flammer (1957), Mller
(1963), Slepian (1965), Streifer (1968), Cloizeaux and Mehta (1972), Miles (1975), and
Sink and Eu (1983). These results are essentially heuristic and do not contain error
bounds for the difference between the approximate and exact solutions.

The work of Miles (1975) is the most general. He considers four parametric
regimes with/ fixed,/ and v integral, and approximates solutions of (1.1) in both the
angular (0 =<x < 1) and radial (1 <x < m) cases. His case (ii) is a special case of our
results.
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by a Science and Engineering Research Council research studentship.

School of Mathematics, University of Bristol, Bristol BS8 1TW, England. Present address: Department
of Mathematical Sciences, The University, Dundee DD1 4HN, Scotland, U.K.
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Our results differ from previous results in several significant ways. Our approxima-
tions are uniformly valid for/ ranging from 0 to O(7), for large 7

2 and ?, and neither, nor need necessarily be an integer. The approximations either involve Bessel
functions or Airy functions, and taken together they are valid over the whole of the
right-half plane [arg(z)] =< r/2. Also, all the approximations in this paper are complete
with explicit error bounds.

It is convenient for our analysis to define at this stage new parameters a and fl by

and a new variable w(z) by

w(z) ( z2- 1)1/2 v ( z ).
Equations (1.2) and (1.3) then transform (1.1) into the differential equation

dz 2 (Z 2-1)2 (z 2- 1)2
w,

where for convenience we have written

(1.5a) z1= [1-1/2(( f14+ 4a2)1/2- a)] 1/2,
(1.5b) z2= [1 +1/2((f14+ 4a)_)1/2 + fle)] /2.
In the right-half complex z-plane (1.4) is characterized by a regular singularity at z--1
and an irregular singularity at z oe, and for large 3’ has turning points at z- z and
Z--Z 2.

Assume for the moment that fl is fixed and positive; we see then from (1.5b) that
z 2 is real and lies in the interval 1 < (1 + fl2)1/2__< z2 < oe for 0 _< a2< o. The character
of z as a2 ranges from 0 to oe is determined from (1.5a):

(i) a2= 0; z coalesces with the singularity at z 1.
(ii) 0 < a2 < 1 + fl 2; Zl is real and lies in the interval (0,1).
(iii) a2-- 1 + fl 2; zl coalesces with the turning point -z at z 0.
(iv) a2> 1 + f12; zl lies on the imaginary axis.

Our results will be uniformly valid for z real and lying in any closed subinterval of
(0,1], and with z 2 bounded away from 1.

We impose then the following restrictions on a and fl"
(1.6a) 0 o2 1 + A,
(1.6b) A’<=:<__A’’,

where A, A’, and A" are arbitrary real constants such that

(1.7) O<=A <A’ <=A" < oe.

The spheroidal functions we approximate are Ps;-"(x,,/2) and Qs-(x,y 2) in the
real variable case, and Ps2(z,’2), Qs(z, ya), S(3)(z,,/) and S(4)(z,,) in the com-
plex variable case. Definitions of these functions can be found in Arscott (1964, Chap.
VIII) and we shall employ Arscott’s notation throughout.

We shall frequently refer to the paper by Boyd and Dunster (1986) and so for
brevity we shall denote this reference by B&D.
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The plan of the paper is as follows. In 2 and 3 we derive asymptotic expansions
as 3’ for solutions of (1.1). These expansions are uniformly valid for 0 =< x < 1 in
the real variable case, and in certain domains containing the turning point z z and
the singularity z 1 in the complex variable case; in both cases the expansions will also
be uniformly valid for X,/ and , satisfying (1.6). For this we use the theory of B&D
which shows that solutions of second order linear differential equations with a turning
point and a regular singularity can be approximated by expressions involving Bessel
functions of large argument and variable order.

In {}4 we derive asymptotic expansions as 3’---> for solutions of (1.1) which hold
at the second turning point z z2 and at the singularities z= 1, c. Again we assume
(1.6) holds; the expansions are the standard Airy-function approximations for a turning
point problem.

In {}5 we establish a uniform relationship between v and X, , ,, as - c, using
the results of {}3. This is useful insofar as the approximations established in 2, 3, and
4 for the spheroidal functions involve ?t, v, and ,, whereas the spheroidal functions
themselves are defined in terms of v, , and 3’ only. Indeed in the case of the functions
Qs and Qs ({}6)a relationship between v and X, /, - is necessary to establish the
uniform validity of their approximations.

In 7 we give a summary of the principal results of this paper. This summary is
self-contained, in the sense that a reference is given for any term not explicitly defined
in the section.

2. A uniform approximation for the spheroidal function Psi- ’ (x, , 2). In this section
we shall construct an asymptotic expansion for large , for the spheroidal function
Ps-(x,3,-), uniformly valid for 0_<x<l with the parameters h, , satisfying the
restrictions (1.6). We use the notation of Arscott (1964) for spheroidal functions; thus
in terms of associated Legendre functions we have

E 2)a,,,( P(x),

where the coefficients ar are given by Arscott (1964, p. 168). A second standard
solution to (1.1) for 0 x < 1 is given by

E -"

and we shall establish a uniform asymptotic expansion for this function in 6 (equation
(6.13)).

Following B&D (3) we now apply the following Liouville transformation to (1.4):

N
If we take the positive square root of the second of (2.1) and integrate we obtain the
following x f transformation

(2.2) (--02)1/2 fx [(z-t)(z-t)ll/2
21i

dt=
Zl 1 _-t-- dr, (O<x= =<Zl),

(2 3) (-i)/= fx [(t2-z?)(z-t)]
2 d dt (z < x < 1).

1- 2

We shall denote the value of " at x 0 by ’o.
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Integrating (2.2) and (2.3) gives (see Gradshteyn and Ryzhik (1980, pp. 246, 247,
251))

(2.4)

a tan -1
(’-- "2) 1/2 Z12-X__._._2 )

1/2(z-Z)z2 II(rl,r,t)+z2E(rl,t)-x z_x 2

(O<=x<z),

(- . q_ a2)l/2 1 ("q-(--q-"2) 1/2 )-aln =z21z2F(f u)-z2E(f u).__ ,_}_ .2)1/2
1 2 2 ---(z2--l]l-Ig,s, u,+-((z22-x )(x -z12)} z12
X 22

(Zl=<X<l),

with

27(1--222 2--Z? 21 (222--2?) 1/2

(2.6) r= s t=-- u
z22(1 z2) z}(1- z12) z 2 z 2

r/= sin_l(x) and

F, E and H denote elliptic integrals of the first, second and third kind, definitions of
which can be found in Gradshteyn and Ryzhik (1980, pp. 904, 905). Let represent
differentiation with respect to ’; with the above transformations we see that (1.3) is
transformed to

where

On using the second of (2.1) b can be expressed explicitly as

(2.9) (., +4"2 + (x2-
2 16"

[ 5(4-2 q-/4)X2(X2-- 1)

(.2 +/2(x2-- 1)-- (x2-- 1)2)
2(382 + 2)x2- 282-- 4

(.2+ j2(X2 1)__(X 2 1)2) 2

Since fi is essentially fixed (see (1.6b)) we shall for simplicity suppress any dependence
of fl in all functions. Thus in (2.9) b (,, ’) b (,, fi, ’). Before we can identify the
solutions of (1.4) with those of (2.7) it is necessary for us to determine the asymptotic
behavior of ’(x) as x 1-. This is achieved by comparing the limiting behavior of
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both sides of (2.3) as x 1 and " -+ 0 +. First we make the splitting

z 1 2

t2 t2 1/2

dt= Lz 1 2
dt- a[x dt

1--t 2

and on observing that the first integral on the right-hand side is bounded as x 1- we
find that

(2.10) 1-x=a1(0/)+0(2), (’0+),
where

1
(2.11) a1(0/)

with

1 z ) le
0/2

(1 -t- Z1) 2+01(a)

(2.12) 01(0/)=2 [(t 2 Z?)(Z22--t2)] 1/2

a z, 1 2
dt.

Note that (2.10) is uniformly valid for all values of 0/ under consideration; when
0/= 0 the limiting value of (2.10), namely 1- x---(1/2fl)’, applies.

From Theorem 1 of B&D, with u replaced by , we obtain the following solution
of (2.7):

(2.13) W2 +1 1( )=l/2Jya(Tl/2) As(a,)
2s

s=0

n-1

+ E
T =0

The functions A(a,) and B(a,) are defined recursively for s=0,1,2,.., from
(2.9a, b) of B&D with A0(a,)=l. Bounds for the error function e and its derivative
are given by (3.8) of B&D: these bounds are somewhat complicated but their signifi-
cance is explained in 3 of B&D. Two important consequences are (i)
E2n+X,1()[l/2JTa(l/2)] -1 is O( -2n-l) for large 7, uniformly with respect to in the
interval (0,o] and with respect to a2 in the interval [0,1 +A]; and (ii) e+,l()=
/J(1/2)0() as 0. From the latter we see at once that W2+,1 is recessive at

=0 and hence is a multiple of a solution of (1.1) that is recessive at x= 1. This
solution is the spheroidal function Ps"(x, 72). From (1.1), (1.3), and (2.1) we therefore
deduce that

0/2__ )
1/4

(2.14) Ps;(x,y2)=C2,+l,1
2 2 )-(1-x0/ _/ (l_x 2 2 2 ,

-1/2W2n+l, 1(v’0/’)’

(0<x<l),
where the coefficient C2, + 1,1 is independent of x. To determine C2,,+ 1,1 we evaluate
the limiting value of the ratio of the two sides of (2.14) as x 1 and " 0 +. Firstly
we have, from Arscott (1964, p. 171)

A-t*(3’2) (1-x)t#2{l+O(1-x)}, (xl-)(2.15) Psi- (x, 2) 2.i; ;)
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where

A-(Y2) E (--1)ra-,r(y2)

From (2.13) we see that the right-hand side of (2.14) is equal to

(2.16)

C2n+l’l "" r(l+)
l+a + (1+O(’)) as ’--*0+.

s=0 ,2s+1 s=l "y2s

(In (2.16) we have used the fact that J,(x)-(1/2x)"/F(u+ 1) as x 0, (see, for example,
Olver (1974, p. 436)).)

If we divide (2.16) by (2.15) and use (2.10) we obtain the following exact expres-
sion for the coefficient C2, + 1,1:

3’
2

1 + a ?;i + ?
s=0 Y s=l Y

We note here that there is a certain degree of arbitrariness in (2.17), insofar as there is
an arbitrary integration constant 2, associated with each of A,(a,0) (s= 1,2,... (cf.
B&D, eq. (2.9b)). A natural choice is choose them so that A,(a,0)=0 (s= 1,2,... ),
thus removing the second series in (2.17).

3. Uniform approximations for spheroidal functions in domains containing the
turning point z--z . In this section we shall construct asymptotic expansions for large
3’ for solutions of (1.1) with complex argument (denoted by z). The results will be
uniformly valid with respect to z in certain domains containing the turning point z z
and with parameters satisfying the restrictions of (1.6). The standard solutions we
approximate in this section are Ps-Z(z,/), SO(z,3,)and S<4>(z,y). Our notation is
that of Arscott (1964, Chap. VIII, pp. 169, 170, 174); thus in terms of associated
Legendre functions we have

Ps-t(z, T2) E (-1)rav-,r(’I2)P-+2r(Z),

and this function is recessive at z 1. For the S-functions we have

S2(J)(z,Y) (z-l)-’/2z EA(t2 ) r= -a (y2) p(),r v+2r (j=3,4)

where q(.) are spherical Bessel functions. S(3) is recessive as z o for 0 < arg(z)< r,
and S$(4) is recessive as z ---> o for r < arg(z) < 0.

In 6 we shall derive uniform asymptotic expansions for the spheroidal functions
Qs(z, /) and Qs(x,’y2). For brevity we shall only consider the range larg(z)[__< rr/2;
appropriate connection formulae for spheroidal functions can be used for other ranges
of arg(z).

We use the theory of [}5 of B&D. The appropriate Liouville transformation is
again given by (2.1), with x replaced by z and " now considered as a complex variable.
Integration of the second of (2.1) now yields, in place of (2.2) and (2.3), the following
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z-" transformation

(3.1) ( 0/2 )1/2 fx [(t2-z21)(z22-t)]1/
2 d= dt z A f A

Z 1 2

where A is a certain subdomain of larg(z)l _-< r/2 and A is the corresponding " map of
this domain. Equation (3.1) as it stands does not give a 1-1 mapping between z and "as there is a singularity in the transformation at z z 2. Therefore we shall now choose a
branch cut in A from ’= ’2 to ’= -o along the negative real ’-axis, where ’ denotes
the map given by (3.1) of z at z z 2. With this cut we take the integrands of both sides
of (3.1) to be negative when z and " lie in the intervals (1,z2) and (’2, 0) respectively,
and we take them to be continuous elsewhere in A and _. Equation (3.1) now gives a
continuous 1-1 mapping between the independent variables z and ’. Domains A and

_
are shown in Figs. la and 2; in Fig. la, I" and F2 are conjugate curves given by

(3.2) Imf
z [(t2--Z?)(z--t2)]l/2

dt=O.
z2 1-t 2

A knowledge of the general configuration of the level curves in the ’-plane, defined
by

Im (I)(j) (V1/2) Re/’’’ ( .2 -t)1/2
a 2t

dt constant,

is necessary in applying the theory of [}5 of B&D. (A definition of , is given in the
summary (equation (7.13)).) These curves are illustrated in Fig. 2. The corresponding
configuration of these curves in the ’-plane depends mainly on whether ’2 lies inside or
outside the pear-shaped region S() bounded by the level curve Im()(3,’1/2)= 0, or
whether ’2 lies on this level curve. The three cases are illustrated in Figs. lb, c, d.

It is straightforward to show that the curve Im()(7’1/2)= 0 intersects the nega-
tive ’-axis at ’= (1/3,2)’f(2-1), where is the positive root of

(33a) (r+l)-e2=0 (’= 1.19968 )

It follows then that ’2 will lie outside S,() iff

(3.3b) 1 21’2 > -gX(" 1).

With the transformation (3.1) we obtain (2.7) with " a complex variable. Before we
obtain solutions to this equation it is necessary for us to determine the asymptotic
behavior of z, regarded as a function of ’, as [’[ oc. It is easy to see from (3.1) that

(3.4a) z- -T-il’l
1/a (’---) m + i0)

where + i0 denotes " above or below the cut running from ’= ’2 to ’= -o. We will,
in fact, need the next term in this asymptotic relationship, and this is not so straightfor-
ward to deduce.
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FIG. a. Domain A.

_Rc

it?-

Re

2"2FIG C. l,evel curves .[or 1if21-- ’-- X (r 1).

-2 "2FIG. b. Level curves for [ff21> , X (r 1).

FIG. d. Level curt,es jor [21< T-- r2 1).
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FIG. 2. Domain A with level curves Im J)(y’/2)=constant.

We first determine the asymptotic behavior of z(’) as " -m-i0. If we write

’=-R-- i0, where R is real and positive, then from (3.4a) we can write the corre-
sponding value of z(’) as

(3.4b) z=iR+2(R)

where

(3.4c) 2(R)
R -o(1) asR-+oz,

We shall now determine an asymptotic expression for as R oo. To do so we
consider the integral

(3.5) jo l_t2
dt

where the path of integration is shown in Fig. 3 and the branches of the square roots
are the same as for (2.3). Now if we make the splitting of (3.5) as

j(R)=,fm+’
2

"-o 1-t 2

z2 [(t2--a?)(z22--t2)]l/2
dt+ fo 1-t 2

dt

+ [(t2--Z21)(Z22--t2)11/2
z2 1--t 2

dt
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Im

iR

0 zl 1
Ret

FIG. 3. Path of integration

and equate the imaginary parts of both sides, we find on employing (3.2) that

(3.6) Im( J(R) ) Re f0;R+ /,2

1 --t 2
dt+im foz2 [(t2-zZ1)(z-tz)ll/Zl_t

dt + 2"

We next show that the left-hand side of (3.6) is o(1) as R ; we do this by
observing that the integrand of (3.5) is O(t -2) as ---, between the imaginary axis and
F1, and so from Cauchy’s theorem we can deform the contour of integration of J to lie
along the imaginary axis as R o. Thus from (3.4c) and (3.5) we have

tit+o(1), (+).

Since the integral of this equation is real we deduce that Im(J(R)) =o(1) as R--*
and therefore from (3.6) we have the desired expression for 2"

(3.7a) 2(R)=o+ - +o(1), (R + ),

where

(3.7b) = [(z2-t2)(z-t2)]/ f
/2

dr= o (t-a2)
dt

1-t 2 2t

The same argument holds when "-+ i0, and so from (3.4b) and (3.7a) we have
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the following asymptotic behavior of z(’) as I1 "
(3.8) z =- + o+ --- + o(1),

An important consequence of (3.8), on using (2.9), is that the ’-derivatives

(3.9) q()(,, ’) O(I ’ 1), (’ +i0).

We now apply Theorem 3 of B&D, with u replaced by ,, to obtain the following pair
of linearly independent solutions of (2.7) holomorphic in _"

n
hilt(J) (’ Ol )--’l/2.(J)(’)t1/2) E"2n+l a 2s

s=0 Y

n-1 Bs(ot,) +e(2J2 (’V,O/ ) (j--0 1)+ -- (aJ"(’’1/2 ) E 2s +1Y s=0 Y

In (3.10) n is a nonnegative integer, and cgv()(3,’/: denotes 2Jva(yl/2), H(vla)(y/2)
for j=0,1 respectively. We define .1/: here such that 0 =< arg(l/2) < .

For both solutions we associate a reference point (J) in from which error
bounds on e(J)2.+a are determined. SinceW is recessive at =0 we choose (0)= 0.
For the other solution W( we shall choose two reference points: g(1)= + i0 and
g(1)= i0. We shall denote W(x with reference point g(1)= + i0 by W;.+I
and w(l) with reference point g(1)2,+ i0 by W,+ . Both W,+ and W,+ are
expressible in the form (3.10) with (1). H), and both are holomorphic in 5,_ but the
error terms (which we denote by e,+ and e,+ 1) are different in the two cases.

The error functions in (3.10) satisfy the following bounds"

(3.11a)

1 -1 21/2 ( )) "n(;)}expy2n+l Va

when " _;

(3.11b)

.1/2 (2) , Ar (2) 1/2 1/2 (2)My" (1/2) 2l’? ()+- My" (yx/2)
1 KE(i)(I/2)-I, iO((--2n+1 ya -

Xexp ff -i0

when " _+ (see Figs. 4b and 5b).
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FIG. 5a. Domain A with [’21 < T-- ,2 (.2 1).

:::-:.:.:.:.:. ::::::::::::::::::::::::::::::::::::::::::::::::::i::i:i:i:::::::::::i!i:i:_i::i!i::..’:..:.:.:.i!i:.:.’..i:iii!:.:’,:i

FIG. 5b. Domain A with l’2l < "y-- -2 7.2 1).

The weight and modulus functions E,M and N, and the constant x are defined as in
{}5 of B&D. All variations in (3.11a, b) are taken on progressive paths (cf. B&D, (5.14)),
and their existence is a consequence of (3.9) (cf. Olver (1974, p. 445)).

We now proceed to identify the solutions (3.10) with standard spheroidal func-
tions. Firstly (d/dz)l/2(z2-1)/2pst(z,’2), considered as a function ’, and
W(O+(3,a,’) are both recessive at ’=0 and both are solutions of (2.7). It follows
immediately that there exists a coefficient C2()+ 1, independent of z, such that

(3.12) Ps;"(z 3,2) =c() -1/21/IZ(0) 1(] 19/ )-’2n+l
c2+/32(za_1 _(za_l)2 ,,,+

We know that (Arscott (1964, p. 171))

(3.13) (1+O(Iz-11)), (z- 1),
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and so from the same method of determining (2.17) we find from (3.10), (3.12) and
(3.13) that

(3.14) c(0 1

Next, we observe that (d/dz)l/:Z(z2-1)l/:Zg(3)(z,’y), considered as a function of
’, and Wn+ 1(, a, ’) are both recessive at ’= m in _- and are both solutions of (2.7).
Therefore we have the identity

) 1/4S(3)(2’v)=Cn+l
02"-/2(z 2 1)--(z 2 1

where the coefficient C-n+ is independent of ’.
We can conveniently determine this constant by comparing both sides of (3.15) as

" in A- and z in A- (see Fig. 4a). For the left-hand side we have (Meixner
and Schafke (1954, p. 293))

ei(Vz-r(’+ l)/2) ( (1) )(3.16) S(3)(z")= z
1 + O -z (z ).

For the right-hand side we have the following asymptotic behavior (on using the
asymptotic expression for HI)(y"1/2) with large argument (Abramowitz and Stegun
0965, p. 364)):

(3.17)

Cfn+l -1 e
s=0

+-
it s=0 t2s

In (3.17) s(-C)=lim__,_{(-f)l/:ZBs(f)}. By comparing (3.16) and (3.17), and
invoking (3.8) we obtain the following exact expression for C-n/ 1"

(3.18) ieiX -y eti/2 +--
.y2ss=O ]t2s " s=O

-1

where

(3.19) X= 2 2 +3’- -.
By the same procedure we find that

(3.20)
0/2__ " ) 1/4S(4)(z")--CL+I a2+i2(z_l)_(z2_l)2 -l/2W;n+l(3[’Ol’)’
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where

-1

(3.21) Cf,,+= ie -ix -g e’i/2 +
s=0 y2s Y s=0 .y2s

We finally remark that A, A- and A + are not the maximal regions of validity for
our uniform expansions for Ps"(z,’t2), S(3)(z,3,) and S,(4)(z,,) respectively; if
instead of choosing a branch cut along the negative ’-axis from ’= ’2 to ’=-m for
the z- " transformation (3.1) we could for instance have chosen the cut to be along the
level curve passing through ’2 (see Fig. 4d). The extended region of validity for the
asymptotic expansion for S{4) in this case is shown in Fig. 4c. For the function Ps’
we could extend the region of the validity A by choosing a cut in the z-plane along the
real axis from z z2 to z oo; the region of validity A in this case would be extended
to all points in the right-half plane larg(z)l __< rr/2 except points on or near this cut. The
corresponding ’-domain

_
would in this case be a Riemann sheet.

However, if one is considering uniform expansions for any pair of Ps, S3) and
S{4) in tandem the branch cut from ’= ’2 to ’=-oo for the z-" transformation
would seem to be the most convenient choice. Indeed this is our choice throughout this
paper.

4. Uniform approximations for spheroidal functions in a domain containing the
turning point z z. In this section we establish asymptotic expansions that hold in a
domain containing the second turning point z =z2. The expansions are the standard
Airy function approximations for a turning point problem, the theory of which is
concisely presented in Olver [1974, Chap. 11]. As in {}3 the standard solutions we
consider are Ps;-"(z,’t2), SO)(z,3,), and S{4)(z,3,). We restrict the parameters , t*
and 3’ to satisfy (1.6) and we only consider values of z such that [arg(z)l__<rr/2. To
avoid a clash of notation with {}3 we shall use the notation of Olver but with each term
written with a circumflex (^).

From (3.02) of Olver we see that the appropriate Liouville transformation is

(4.1) 12( )= W(Z) 3/2__
z [(/2 Z21)(Z_t2)]1/2

t2
dt,

g2 1

which throws (1.4) into the form

(4.2) d2J’
d2

where

(4.3) ,()
162 4

X [ 5(40/2+ ]4)z2(z2-- 1)

(0/2 +,82(z2-- 1)- (z2- 1)2)
2(32+ 2)z2- 2fl2- 4

(0/2+/2(Z2-- 1)--(Z2- 1)2) 2

We will use the results of Olver (1974, Chap. 11) extensively in this section, and therefore we will refer
to this reference simply as "Olver" to avoid undue repetition.
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In the second of (4.1) we take the branches to have their principal values when
z (1,z2) and (0, z), and to be continuous elsewhere. We see that this transforma-
tion is a continuous 1-1 map of the variables z and from the domains to

_
(see

Figs. 6a, b). We now record the asymptotic behavior of z() as I1 in _. Firstly,
from (4,1), we find that as z in the region between the curves DC and D’C’ of
Fig. 6b, z() 1 such that

(4.4) z 1 + a 2 ( a)exp 4 )

FIG. 6a. Domain

A
e Rez

Fo. 6b. Domain ..
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where

z + l
eP2(a)

with

2 z2 [(t2--z?)(z--t2)] 1/2

P2(C)--’- -fl t2__1
dr,

(cf. (2.10)). Also from (4.1) we find in a similar way to deriving (3.8) that z as
---, , such that

(4.5)

where o is given by (3.7b). From (4.3), (4.4) and (4.5) we see that

(4.6) () O(-2

when --+ in both cases.
We now apply Theorem 9.1 of Olver to (4.2), with u replaced by 3’, to obtain the

following solutions holomorphic in _2:

(4.7)

l/2n+ l,j(’g, ) mij(’g2/3
s=0 .y2s

Ai.(.2/3) nl .(g)
t- (, g)

_.4/3 2"-7 2n+ 1,j
s=O Y

where n is a nonnegative integer, and

Aij(z) Ai(ze- 2rij/3), (j=O, _+1).

Because of (4.6) the variations in the error bounds ((9.03) of Olver) converge in _2. The
reference points associated with ,,+1, are taken to be + m, e2ri/3, e-2ri/3

for j-O, 1,- 1 respectively. With these choices of reference points we find from the
known behavior of the Airy function at infinity that the solution a,+, is recessive as. (j-O, _+ 1). Therefore there exist constants d,+,.(j= O, + 1) such that

(4.8) PS;g(Z"2)’-’n+I’O
O2 +/3 2(2z -(z 2 -1)2

(4.9)

(4.10)

S(3)(Z"2)---2n+l’-I
19/2 ff.j 2(2Z --(Z 2 -1)2

1/4

Gn+I,-I(’Y, ),

)1/4S(4)(z"2)--Gn+l,
02 q_ 2(Z2__ 1) (Z2__ 1)2 n+l’l(/’ )’

since, in each of these three equations, the functions on both sides of the equation are
solutions of (1.1) that share the same recessive property at =a0, a-1 and al respec-
tively.

If we set the integration constants in lJ/2n + 1, 0 so that

(4.11) ds(m)=0, (s=1,2,...)
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and allow z to tend to 1 (and correspondingly --* m) in (4.8) we find, on employing
(3.13), (4.4), (4.7) with (1.07) of Olver, that

(4.12) dz,+l,0=A-"(y 2)

where

,8{ lim ( x/2" Bs()} (s=0,1 2 ...).

Similarly on letting +a_ in (4.9) and +a, in (4.10), and using (3.16), (4.5), (4.7)
with (1.07) of Olver, we have

(4.13)
n--1 )

-1

C2n+l,_l=2,rl’l/2y-5/6e i(-rt/3) 1- E #
s=0 /2s+

and

(4.14) n+1,1---2"lrl/2"y-5/6e-i(x-r/3) 1-
s=0 2s+l

where

Jim {(- t)/2s() ), (s=0,1,2,.. ).

We have set the integration constants in [/r2n+ -1 and l//r2n+l, SO that

5. The characteristic exponent. There are four parameters associated with the
spheroidal wave equation, namely k, /, 7 and the characteristic exponent ,. There
exists a transcendental relation among the four parameters; this relation is usually
expressed in two ways: , considered as a function of X,/, 7, or k(y2) considered
as a function of ,, /, 7. In the special case ,=0, the spheroidal wave equation
degenerates to the associated Legendre equation and the transcendental relationship is
known to be

,(0) (, + 2p)(, + 2p+ 1),

or, alternatively

’+ 2p 1/2 { (4)k + 1)1/- 1 }, (pZ).

For general values of the parameters, however, there is no explicit relationship in the
literature. But we can obtain an asymptotic relationship between , and X, /z, , for
large , and X, using the results of 3. This is of particular importance in problems of
high-frequency (, large) scattering by prolate spheroids; as an illustration of the
problem the reader is referred to a paper by Sleeman (1969).
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We start by considering the well-known analytic continuation formulae (Meixner
and Schhfke (1954, p. 293))

(5.1) S(3) ( ze ri, " ) e-’rS(4) ( z, "/),

S(4) ( ze i, y) e’SO) ( z, y) + 2i sin (r ) S(4) ( z, ’ ),

where S(3"4)(2e ri) denotes the value of S(3’4)(z) after describing a negative half-cir-
cuit about infinity. We now replace the S-functions in (5.1) and (5.2) with their uniform
approximations of 3 to obtain an asymptotic expression for sin(,r); as will be seen
shortly it is convenient to set z=0-i0 in (5.1) and (5.2). Now firstly from (3.15),
(3.18), (3.20) and (3.21) we have

(5.3) S(3’4)(O-iO,y)=f2n+le+iX(
and

(5.4) S(3’4)(O+ iO,3[)=C2n+le +ix(..g’2,,+l(y,ot,oe2i)-l/ZeL+l(y,ot,oe2i) ),
where

Can+-=Cn+e-iX ( 1+/2- or2
.,0__ 0/2 )1/4 Cn+ leix

1/4

and

2.+1(’ " ’)------ugl’(’1/2) 2s
s=0 Y

+ __H1)’(.1/2) E 2sY s=0 Y
(/x= ya).

Note that in (5.4) we have used the identity

(0 + iO) (0- iO)e2i= ’0e 2’i;

in other words a negative half-circuit about infinity from 0 i0 to 0 + i0 in the z-plane
corresponds to a positive circuit from 0 to ’0e2’i in the ’-plane. Indeed, it is this
particular property that led us to set z 0- i0 in (5.1) and (5.2).

In order that the error bounds (3.11b) can be applied to e+ and e- in (5.3) and
(5.4) we see from Figs. 4b and 5b that we must impose the restriction on ct and/3 that
’o and ’o e2i must lie in A_+ A- In [}3 we saw that this is equivalent to the condition
(3.3b); from (3.1) one can show that (3.3b) is equivalent to the condition

(5.6a) fi: [(t:-z)(z-t:)]x/:
dt> 1I(! )

t2-1 Y

where

/1-(,:-1) (t2+ t)/(5.6b) I(P’)
a.:(.:_ 1) 2t

dr.

From the definition of ff (B&D, 5) we have ff= tt + O(-1/3) as o0, and > tt
for 0 =</z < o. It follows then that I(tt) is positive and bounded for 0 =</ < .
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Now if we choose the integration constants in (3.10) so that

As(a,’0) 0, (s=l,2,... ,n),

and use the following relation for Hankel functions (with denoting complex con-
jugate)

-/,ri (2) -/,ri--(1) real),H)(zei)=-e H, (z)=-e H, (),

(see, for example, Olver (1974, pp. 238, 239)), we obtain from (5.5) the following
equations

(5.7)

(5.10) arg{ J2.+ (q/, 0, 0) q- 1/2/?+2"+1 (q/, O 0)} =q/O-q/’--’Jr-pn,
where p,, is some integer which we determine shortly.

Next from (3.19), (5.2), (5.3), (5.4), (5.8) and (A1) we derive

(5.11) sin(u)=ei(v-"/4){ 2.+l(V,a,o)+ffl/Zgn+l(V,a,O)}-1
XRe[ei(U+v-3/4)( 2n+ (T, a, 0) + ff 1/2E-2n+ l(y a, 0) }

and on employing the relation (5.10) this reduces to the following expression for
sin(v):

-1
(5.12) sin(v)=e-p"=il2n+l(y,a,o)+ff /Zefn+(y,a,o)

xRe[ei{’+v-3/4){ W2,+x( a,0)+g /2

This is the first important result of this section. We will show shortly that
provided y is sufficiently large for each value of n. Equation (5.12) gives then an
asymptotic expansion for sin(v) for large . With the restrictions (1.6) and (5.6a)
applying the error terms e + and e- in this equation can be bounded by (3.11b).

Note that the Hankel functions in (5.12) are of the form

where is real, positive and greater than 1, and therefore they are of oscillatory nature
as m. We shall now replace these functions in (5.12) with their "Debye"-type
approximations to obtain a more simple approximation for sin(v). The price we pay
for this is that the expression we obtain contains more error terms; bounds are given.

and

(5.8) ,.2 + ( q/ Ol oe
2 ) e g’2 + ( q/ a o )

From (3.19), (5.1), (5.3), (5.4), (5.8) and (A1) we derive

(5.9) 2Re[e-’(v-3"r/4){aC’z,+l(q/,a,o)+l/zef,+l(q/,a,o)}] =0,

and therefore the exact relation for each n
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For simplicity we set n 1 in (5.12). The Debye approximations for the Hankel
functions can be expressed as

(5.13)

e,(V 1 2__4_ )-3/2H(a)(t/2) (0 0/2) -1/4 t/4) (3.o+ 2a2)(, a2

and

(5.14) e {1+8o),n)’(.y/2)__i__ .)- /2 (. 0/2) 1/4 i(’yo-/4)

where 8o and 3 are constants which satisfy the following bounds for 0/2< ’o (Olver
(1974, p. 377))"

2 (2(5.15) ISolZ--go,q(U2)exp ’O,q(U1)
(5.16)

( ’( 2 )1/2 ( }1 - + 1+(’o 0/ )-3 2 2
6 l<-4-s"’(’-0/=

-t
)-3/2

472 f0q,(<)exp ff f0, q(<)

with

q= i(’0- 0/2) -1/:’, U1
(3q- 50/2q 3)

24

and

81q2- 4620/2q 4 + 3850/4q 6

1152

Now from (5.7), (5.13), (5.14) and

Bo(0/,o)-- -(’o-0/2)-1/2f0./t (t--0/2)-x/2(ol, t)dt

(see (2.9a) of B&D) we have

(5.17) ( v, ,, o ) +-/:- ( v, ,, o)
e 1-b() (1 +-(-,))," (’0 0/2)-1/4 i(’ro-r/4) +

where

(5.18) b(0/)-fI’02 (’-12)-l/2(0/’l)dlJl----- (3OJr- 20/2)(’-0/2)-3/2’

(5.19) fo’o 0/2 1/2k+-(’Y’0/)=8--8 (t- ) O/(0/,t)dt

y)
1/2

e ,0/"4-" 0 (0 0/2) 1/4 i(r/4 yo)Ef(.)t ’0)’
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and

1-iv-lb(a)

We see from (5.7), (5.13) and (5.14) that p,=0 in (5.10) provided, for each value of n,
y is sufficiently large.

It follows then from (5.12) and (5.17) that v satisfies

(5.21) sin(vrr) - -+ arg(1 + )

This is the second important result of this section. Note that from (5.20) and Jordan’s
inequality

[q [_< tan(qo)1, 0 =<(p <-
we obtain the following bounds for sufficiently large :
(5.22)
(5.23) larg(1 +n-)[_-<2[tan(arg(1 +n-))]<=-]n 1.

Equation (5.21) then provides an asymptotic relationship between v, X, / and y, for
large ,/ and )t, with the restrictions (1.6) and (5.6a) applying. All the error terms in
(5.21) have explicit bounds under these restrictions and they are O(1/y 2) for large "t’.

From (1.2), (1.5), (3.7b) and (5.21) we have in terms of the original parameters the
relation

(5.24) v 0 + e,

where v denotes the range of numbers v 1 + 2r and v + 2r (r 0, + 1, + 2, ) and
where

[2(1 /2)2 2 ]1/2’ dt-- tan0__/+2__ y +X(1-t )__2 1 b 1(5.25)
rr l_t 2 rr y 2’

1[ 2 1 2)1/2 ]1/2ZI-- r----((X2q-4]g2] --)k)(5.26)

and e is given implicitly by the equation

(5.27) sin( Orr + arg(1 + )) sin( err + err ).

An upper bound for ]sin(err)[ is readily derived from (5.27), but we will not record
details here. However, from this bound we find that

(5.28) sin(err )-- O(min { v-2[ cos( )1-1, .V- } ).
An interesting observation from (5.27), (5.28) is that if 3 is a fixed arbitrary

number such that

(5.29) cos(err)1>=3>0,
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then, for sufficiently large 7, e is real and O(1/72), and therefore from (5.24) it is seen
that v is real in the same circumstances.

Finally, let us set/=0 in (5.24) and (5.25). We obtain in this particular case the
relation

Pr"--(7eff -t- X)I/2E
( 72-+-x7 )1/2

where E is the complete elliptic integral of the second kind (see Gradshteyn and
Ryzhik (1980, p. 905)). This approximation is the same as the eigenvalue equation
(3.24) of Miles (1975). (In Miles’ notation 7

2 *, c 2, v *, n, )t + 7
2 = and /72 ** -/32.)

6. Uniform approximations for the spheroidal functions Qs- ’(x, 72) and Qs(z, 72).
In this section we derive asymptotic expansions for large 7 for the spheroidal functions
Qs, Qs. The results will be uniformly valid in the real case for 0 =<x < 1, and in the
complex case for z A/ A- (see Figs. 4a, 5a). They will also be uniformly valid for all
values of , X, ft, 7 satisfying the restrictions (1.6), (5.6a) and (5.29). (The last
restriction will be explained shortly.)

We first turn to the problem of deriving a uniform approximation for the spheroidal
function Qs. Unfortunately this function is not recessive anywhere in the complex
plane and therefore we cannot identify directly with the functions given by (3.10). We
overcome this difficulty by using the fact that

(6.1) Qs(z,72) Oc ( evS(3)(z,7)-e-VrS(4)(z,7) },

and then replacing the RHS of (6.1) with the uniform approximations of 3 for the
S-functions. However, a difficulty arises in this method if v is close to 1/2 (mod 1), for
then severe cancellations take place on the right-hand side of (6.1) in the domain
A + n A- where both S-functions are dominant. (From (5.21) and (5.25) we see that v -(rood 1) implies that cos(0r) is O(1/3, 2) for large 7.) As Arscott (1964) remarks, the
case when v 1/2 (mod 1) is exceptional in a very large part of the theory of spheroidal
functions; it appears that this case has not been treated in much detail in the literature.
The results in this section are valid for v bounded away from 1/2 (mod 1) for large 7.

It follows now from (3.10), (3.15), (3.18), (3.20), (3.21) and (6.1) that there exists a
constant C2", + such that

(6.2)

{x
0 y 2s

Z 2- 1)2 )
1/4

,1/2 nl-1- np"(1)’( 7’1/2 ) 2,

where

(6.3)
1 cosec(vr + ){ e i(v" +X)En+l i(ver+x)E2n+En+l(7,0,)--Z X (7,0/ ’)--e- (7,a ’)}.
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From (3.11b) and (6.3) we have the following bounds for e*"

(6.4) ,,
+ ( v, ,, )1 10,+ ( v, ,, )/01

1/2 (2) 1_,, M (2) -1/2 (2) /2My (y.W2) ’’w (y.1/2)+1/2. Mw (.)
/ (1) 1/2 -1,o (,,,’)

232"+ llsin(vr + x)l

[ 1/2 (ff 2 )
-F ",-oo-iO((-2)1/2Bn() }exp ff -,0 Bo<)}

when " A +C3 _- (see Figs. 4b and 5b). In deriving (6.4) we have made use of the fact
that v is real--a consequence of the restriction (5.29).

Now from (5.24) and the definition (3.19) of X we have

(6.5) sin(urr + X) -cos
b(a)

tan-

and so (5.29) and (6.5) give the bound

(6.6) 1 1
Isin( vrr + X)I 8 -Isin((1/2)tan-( b(a)/) + er/2)

The bounds (6.4) and (6.6) together establish the uniform validity of (6.2) for
z A +C3 A-. The constant of proportionality C*,+ could be determined by comparing
both sides of (6.2) as z --> 1 and ’(z)--> 0. However, the expression for C2",+ derived by
this method would include a constant for which only an explicit upper bound could be
given (cf. B&D, eq. (4.18)).

We therefore determine C*,+ as follows. Firstly we use the relation (Meixner and
Schhfke (1954, p. 287))

(6.7)
r(v + + 1)

psi_. y, , 2) _e-..r,/2Qs(y+iO. 3, 2) + e- 3.,i/2Qs(y-iO,./’ 2 )i
r(v-t,+ 1)

(-1<y<1),

with (2.14), (6.2) and (A6) to obtain the following:

(6.8) F(v+t+l)
I’(t,-/x + 1)C2n+I’’{qr2n+I(’I’a’Y)+Y-1/a2n+I’I(T’ot’Y)}

2e-3tri/2Cn { (’y, a,y) + Re[(y + iO)-/2e’,,+(’,a,y + i0)]}+1 J2n+l

where

(6.9) a. ,(’t a,Y)=J.(’Y/-) A(a,y)
+ 2s

s=0 Y

yl/2+ __j;(.yl/2) BsCa,Y)
s= y2s’ o
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We observe that the second term on the right-hand side of (6.8) must be recessive at
y 0 since all other terms in this equation are recessive at y 0. From (6.3), (A2) and
(A3) we therefore deduce that

(6.10)

f(i 1 1/2 ’1 1/2Re(e,,+,(y+iO))= K(y,;)-T{(a2-;) B,(a,;)} /2Jt(y; )

+(a2-{)-/2hb(a,)Re(en+l(+ iO))1 d,
where

K(y,)--r(ot2-)l/2{ yl/2y(yyl/2)-l/2j(yl/2)-yl/2j(yyl/2)-l/2yz(yl/2)}.

This is precisely the integral equation satisfied by E2n+l,1 (B&D, eq. (3.3)) and there-
fore it follows that

Re(en+l(Y,a,Y + iO))=e2n+l,l(Y,a,Y).

From (6.8) we therefore have the exact relationship

(6.11) C2n + --e r(v_p,+ l) C2n+l,1.

We finally turn to the problem of establishing a uniform asymptotic expansion for
Qs-’(x, 3, -) when x[0,1). Given the relation (Meixner and Schafke (1954, p. 287))

(6.12)

Qs- ( x, /2) 2F(F(v-+1)v+/, + 1) (e -t*ri/2"Sv*( x + iO,. 2 )+e-3ri/2Q(x_iO /2))

one deduces from (6.2), (6.11) and (A6) that

(6.13) ( a2_Qs-’(x’72) --C2n+l’l 2 2a-fl2(1-x )-(1-x 2)2 )1/4

+ Im{ (" + iO)-/2e’,+ 1(’, o, -t- i0)} ].
7. Summary. For reference we now collect the principal results of this paper,

re-expressed in terms of the original variables z (complex) or x (real), and the original
parameters X,/, , of the defining differential equation (1.1).

We introduce a transformed independent variable " that is an increasing function
of x, and a continuous function of X, t, 3’ and z. When z x is real with 0 __< x < 1, is
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defined by equations (2.2) and (2.3). In these equations a, fi, z and z 2 are given by

(7.1a) a =-
(7.1b) /2= --2 X 1 X2 2(7.2a) e2=1- ( +4/.23’ )1/2

23’ 2 23, 2

(7.2b) z=l +
3, 1 3,2 1/2

23, +23,2 ()2+4/.2 )

When z is complex " is defined by (3.1).
Next, we introduce a function q; which is given by (2.9). With this equation for q;,

functions As() and B,(’) (s=0,1,2,... ) are defined recursively by (2.9a, b) of B&D,
in which the 3,, are chosen such that

(7.3) A,(0) =0, (s=1,2,3,...).

The following expansions are uniformly valid for 3, > 0,/* > 0 and

/,2(7.4) 0__< -=< I+A,

where A, A’ and A" are arbitrary real constants such that 0__<A <A’ =<A" < m;

(7.6)

/.2 3’2 )1/4Ps’(x’3,2)=C2’+l,1
/.2_ X(1 x2)_3’2(1 x2)2

[j,(3,.1/2),=0 A,_(’)3,2,
__
j;(3’1/2 ) 2s

(7.7)

Ps;( z’ 3,2 ) "-"ff. C2n+ l,

1
-+ ’- 1/2e [2n+ 1,1(’)

s:0
’2n+

SvP’(3’4)(Z’3,)--C2T-n+l
/.2 + X(z2_ 1)_yZ(z2_ 1)2

[HP’(1,(3’I/2)s=0 As()3,2"
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The coefficient C2, + 1,1 is given by

(7.9) C2,,+x,,=A-(.cz)(1-z’ ) /22
(1 + Zl)-"/2’ 1+ s=0 3’2s

Xexp(/+flz [lt2--(1--t2)--’2(1--t2)211/21;;
The coefficients C+ are given by

(7.10) C+

in which

+
2s"Y s=0

foz
2 2) 2 2 __2] 1/2

(7.11) X r2 vr2 t-
, (1 -t + X(1 -t ) dt-Br

l_t 2 4

and

lim {(-)l/2Bs() }h,(-(7.12)

The error term g2n+l,1 in (7.6) is uniformly bounded by (3.8) of B&D for 0_<x < 1. The
error term e(2,)+ is uniformly bounded by (3.11a) for z A (see Fig. la). The error
terms el,+ are uniformly bounded by (3.11b) for z A -+ (see Figs. 4a and 5a).

A uniform relationship between ,/z, and the characteristic exponent , is given
as follows. Firstly we define ’, to be the smallest root of

(7.13) J,(x)+ Y(x)=O,
where/2 is the real (nonnegative) solution of

(7.14) =-c(f/2)
in which c denotes the negative root of smallest absolute value of the equation Ai(x)=
Bi(x) (c -0.36605... ). Then under the restrictions (7.4), (7.5), and in addition the
restriction

(7.15) ] [2+ X(,_ 1)__2(t2__ 1)211/2 (z2_1 (2+ t)l/2
dt > dr,

2-1 d2(y2-- 1) 2t

where r is defined by (3.3a), we have the following"

(7.16)

sin(ur)
-1

Re exp /xrr -- + 1-t 2
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In (7.16) ’o denotes the value of ’(x) at x=0, and Bs(" ) (s=0,1,2,.-.,n-1) are
given by (2.9a, b) of B&D, with hs chosen such that As(’o)= 0 (s= 1,2,..., n).

Under the restrictions (7.4), (7.5), (7.15), and in addition the restriction

1_t2
dt >>0,

where i is an arbitrary fixed number, we have the following uniform asymptotic
expansions:

(7.18) -ir3’"’/F(v+l+l) c2,,(+1,1
2 ")t 2" )1/4Os(z’Y2)=_ e

F(v-/+ 1) /.12 + X(z2_ 1)_y2(z2_ 1)2

?(/) ,(____2)_+),(/) --v-- ,+
s=0 T 2s Y s=0 Y

(7.19)

’77" ( /2__2 )1/4Qs-’(x,v2)= --C2n+1,1 /2_X(!_x2)_V2(1_x2)2

/: ,, (;)q.. y/(1/2) 2s

+ Im ( (" + i0) -1/2e,+1(" + i0) ) ].
Equation (7.18) is uniformly valid for zA+A-, and (7.19) is uniformly valid for
0 =<x < 1. The error term e’n+x is uniformly bounded under the above-mentioned
restrictions by (6.4).

Appendix. Analytic continuation of the error functions. We prove the following

(A1) f,,+l(,a, y+_.iO)=e"ie2,,+l(Y,a,y-T-iO), (0 <y_< ’0)
where denotes complex conjugate.

The error functions e /, e- are solutions of the integral equation

(A2)

+- f2,+t(Y,Y, ’)
-oz__iO

where

(A3)

/(,1 =(-.)/
1/2

{ U(1)( ]/1/2) U2)(/1/2) H/z(2, (/1/2) sl, ( 1/2) }.
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If we set ’=y + i0 in (A2) and take conjugates of both sides, we have the following
equation for /:

(A4)

f_.v+ i0
2.+ (7, a,y + i0)

-+i0

1 2 /2 ’-(y+_iO,) 7S-{(g-a ) B.(a,)} 1/2H(1)(’1/2)

q" (--0/2)- 1/2 (Og, )fn+ (/, 0, ) d.

If we make the change of variable in (A4) of

oa=e2i (0__< arg(o) < 2rr),
and use the identities

/(1) (Tl/2) -etriH(l)(Ttol/2),
and K(y iO,)=K(yT iO,), (see Olver (1974, pp. 238 and 239)), we find that

i= +(15) e- e2,+(T,a,yi0) .v+iO K(yTiO,w)

1 2

7 {(0)--0/ )l/2Bn(og, oo)} (.01/28(i}1)(’)i’001/2)

q- ( CO Ot 2 ) /2/ ( Ot O) ) e ,n+ ( Ot e 2 )

(A1) now follows from the observation that (A5) is precisely the integral equation (A2)
satisfied by e-n/ x(7,a,y T i0).

Finally we find from (6.3) and (A1) that if v is real (a sufficient condition is (5.29))
then the following analytic continuation formula for e* holds

(A6) /ri..,en+l(Y,ot,yq- i0)=e e2n +l(Y,a,y- i0).
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